WO2009133786A1 - マイクロ波アシスト記録用磁気ヘッド及びマイクロ波アシスト記録装置 - Google Patents

マイクロ波アシスト記録用磁気ヘッド及びマイクロ波アシスト記録装置 Download PDF

Info

Publication number
WO2009133786A1
WO2009133786A1 PCT/JP2009/057882 JP2009057882W WO2009133786A1 WO 2009133786 A1 WO2009133786 A1 WO 2009133786A1 JP 2009057882 W JP2009057882 W JP 2009057882W WO 2009133786 A1 WO2009133786 A1 WO 2009133786A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
recording
layer
magnetization
magnetic field
Prior art date
Application number
PCT/JP2009/057882
Other languages
English (en)
French (fr)
Inventor
万壽和 五十嵐
治一 宮本
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2010510082A priority Critical patent/JP5302302B2/ja
Priority to US12/990,132 priority patent/US8760806B2/en
Publication of WO2009133786A1 publication Critical patent/WO2009133786A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • G11B5/676Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers having magnetic layers separated by a nonmagnetic layer, e.g. antiferromagnetic layer, Cu layer or coupling layer
    • G11B5/678Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers having magnetic layers separated by a nonmagnetic layer, e.g. antiferromagnetic layer, Cu layer or coupling layer having three or more magnetic layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3133Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure
    • G11B5/314Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure where the layers are extra layers normally not provided in the transducing structure, e.g. optical layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • G11B5/672Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers having different compositions in a plurality of magnetic layers, e.g. layer compositions having differing elemental components or differing proportions of elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • G11B5/674Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers having differing macroscopic or microscopic structures, e.g. differing crystalline lattices, varying atomic structures or differing roughnesses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/001Controlling recording characteristics of record carriers or transducing characteristics of transducers by means not being part of their structure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/0024Microwave assisted recording

Definitions

  • the present invention is an information recording apparatus having a function of recording information by irradiating a magnetic recording medium with a high frequency magnetic field (hereinafter referred to as microwave) to excite magnetic resonance, inducing magnetization reversal of the recording medium. It is about.
  • microwave high frequency magnetic field
  • a high-frequency magnetic field in the microwave band is irradiated onto a nanometer-order region to locally excite the recording medium and reduce the magnetization reversal magnetic field to record information. Since magnetic resonance is used, the effect of reducing a large magnetization reversal magnetic field cannot be obtained unless a microwave having a frequency proportional to the medium anisotropic magnetic field is used.
  • Japanese Patent Application Laid-Open No. 7-244801 discloses a technique for recording information by locally reducing the coercive force of a magnetic recording medium by a Joule heating or a magnetic resonance heating with a high frequency magnetic field.
  • a magnetic field in which a perpendicular recording head driving current and a high-frequency current are superimposed is applied to the recording medium, the high-frequency magnetic field is induced in the magnetic recording medium, and the recording medium is locally Discloses a technique for recording information by setting a magnetic resonance state and reducing a magnetization reversal magnetic field.
  • Japanese Patent Laid-Open No. 2007-299460 discloses a technique for performing microwave-assisted recording by providing a small sub-coil for generating a microwave on a magnetic head separately from a main coil for main magnetic pole excitation. Yes.
  • TMR 2007-B6 a magnetic rotating body that rotates at high speed by spin torque is placed in the vicinity of the main pole of the perpendicular magnetic head.
  • a technique for generating microwaves and performing microwave-assisted recording is disclosed.
  • the size of the microwave irradiation area is nanometers. It becomes an order.
  • none of the conventional techniques described above are insufficient in performance.
  • a cavity resonator is provided on a magnetic head slider to irradiate a magnetic recording medium with microwaves.
  • the size of the cavity resonator becomes several millimeters. Therefore, the invention disclosed in Japanese Patent Laid-Open No. 7-244801 is difficult to mount on a magnetic head slider and is not realistic.
  • the high frequency current is superimposed on the recording head drive current, so that the direction of the magnetic field from the magnetic head magnetic pole portion matches the direction of the high frequency magnetic field. Therefore, it is difficult to form a magnetic resonance state.
  • 2007-299460 it is necessary to supply a gigahertz order alternating current to the secondary coil in order to generate a gigahertz order alternating magnetic field.
  • a gigahertz order alternating current to the secondary coil in order to generate a gigahertz order alternating magnetic field.
  • the irradiation area of the alternating magnetic field cannot be limited to the nanometer order.
  • the present invention applies microwave-assisted recording that can stably generate a microwave by reducing the influence of a leakage magnetic field from a recording magnetic pole in a microwave-assisted recording using a magnetization rotating body to generate a microwave.
  • An object is to realize a magnetic head or an information recording apparatus.
  • a counter magnetic pole for configuring a magnetic circuit (for circulating the magnetic flux) is provided on the trailing or leading side of the recording magnetic pole of the recording head unit, and the counter magnetic pole at the end of the air bearing surface of the recording magnetic pole is provided.
  • a film that has a rectifying effect on the magnetic flux is provided on the facing side, and a high frequency generator is provided between the magnetic flux rectifying film and the end of the air bearing surface of the counter magnetic pole to reduce the influence of the leakage magnetic field from the recording magnetic pole.
  • a head structure for microwave-assisted recording that can generate microwaves stably is realized.
  • the film having a rectifying effect on the magnetic flux is realized, for example, by providing a protrusion on the opposite magnetic pole surface side of the air bearing surface end of the recording magnetic pole.
  • This protrusion may be integrated with the recording magnetic pole, or may be provided as a magnetic material different from the recording magnetic pole.
  • the protrusion may be called a lip portion.
  • the above-described high-frequency generator is realized by arranging a magnetization rotator and a spin rectifying element adjacent to each other between the recording magnetic pole and the counter magnetic pole.
  • the magnetization rotator and the spin rectifier element may be formed of a single film or may be formed by stacking a plurality of films.
  • Providing the protrusions increases the component in the direction perpendicular to the film surface of the magnetic flux flowing from the recording magnetic pole to the high-frequency magnetic field generation unit, so that the magnetization rotation of the magnetization rotator is hindered by the leakage magnetic field from the recording magnetic pole. The degree of being reduced. As a result, a high-frequency magnetic field generator that can oscillate more stably than before can be realized, and a magnetic head or information recording apparatus suitable for microwave-assisted recording can be realized.
  • An information recording apparatus having a recording density exceeding 2T bits per square inch can be realized, and at the same time, the reliability can be improved, and as a result, the cost can be reduced.
  • FIG. 3 is a diagram illustrating a configuration example of a magnetic head slider and a magnetic head.
  • the enlarged view of a magnetic head part The enlarged view of a recording head part.
  • the figure which shows the magnetic head of the conventional structure made as an experiment.
  • 1 is an overall configuration diagram of a magnetic disk device.
  • 1 is a configuration diagram (cross-sectional view) of a recording head unit according to Embodiment 1.
  • FIG. 6 is a configuration diagram for explaining a method for evaluating characteristics of a high-frequency magnetic field generated from the recording head shown in FIG. 5.
  • produces from the magnetic head of FIG.
  • FIG. 6 is a diagram illustrating a configuration example of a magnetic head slider and a magnetic head according to a second embodiment.
  • FIG. 6 is an overall configuration diagram of a magnetic head according to a second embodiment.
  • FIG. 6 is a configuration diagram (cross-sectional view) of a recording head unit according to a second embodiment.
  • FIG. 6 is a schematic diagram of a simulation model used in Example 2. The figure which shows the computer experiment result which investigated the behavior of magnetization reversal about the combination of the upper recording layer and lower recording layer from which damping constant (alpha) differs.
  • FIG. 6 is a diagram showing the results of simulation used in Example 2.
  • FIG. 6 is a diagram showing the results of simulation used in Example 2.
  • FIG. 6 is a configuration diagram (cross-sectional view) of a recording head unit according to a third embodiment. The figure which looked at the recording head part of FIG. 19 from the air bearing surface side.
  • FIG. 20 is a diagram showing the high-frequency excitation current dependence of the high-frequency magnetic field intensity generated from the recording head of FIG.
  • FIG. 20 is a diagram showing the high frequency excitation current dependence of the frequency of a high frequency magnetic field generated from the recording head of FIG. 19.
  • FIG. 6 is a configuration diagram of a recording head unit according to a fourth embodiment.
  • FIG. 10 is a configuration diagram of a recording head unit according to a fifth embodiment.
  • FIG. 10 is a configuration diagram of a recording head unit according to a sixth embodiment.
  • Negative electrode 31 ... Antiferromagnetic layer 32 ... Fixed magnetic phase 33 ... CoFeB 35. Insulating layer (MgO) 36 ... CoFeB 37 ... free layer 41 ... spin rectifier element 43 ... rotation guide layer 48 ... magnetic flux rectifier film 56 ... first upper recording layer 57 ... second upper recording layer 58 ... lower recording layer 65 ... first upper recording layer 66 ... Second upper recording layer 67 ... third upper recording layer 101 ... recording medium 102 ... slider 103 ... rotary actuator 104 ... rotary bearing 105 ... arm 106 ... suspension 108 ... wiring ... magnetic head 110 ... processor 111 ... memory 112 ... Channel IC 113 ... IC amplifier 120 ... substrate 121 ...
  • FIG. 1A and 1B show a basic configuration of a magnetic head for microwave-assisted recording provided with a magnetization rotator, a spin rectifying element, and a magnetic flux rectifying film.
  • FIG. 1A is a diagram schematically showing the relative positional relationship between the magnetic head slider and the magnetic recording medium.
  • the magnetic head slider 102 is supported by the suspension 106 so as to face the recording medium 101.
  • FIG. 1A it is assumed that the recording medium 101 rotates in the right direction on the paper surface, and the opposing magnetic head slider moves relative to the recording medium in the left direction on the paper surface. Therefore, in FIG. 1A, the magnetic head portion 109 is disposed on the trailing side of the slider.
  • the drive current of each component of the magnetic head unit 109 is fed by the wiring 108 and supplied to each component by the terminal 110.
  • FIG. 1B shows an enlarged view of the magnetic head unit 109 shown in FIG. 1A.
  • the magnetic head 109 includes a recording head unit and a reproducing head unit.
  • the recording head unit includes an auxiliary magnetic pole 206, a high-frequency magnetic field generating element 201 disposed between the main magnetic pole 5 and the counter magnetic pole 6, and a main magnetic pole.
  • the coil 205 is configured to be excited.
  • the reproducing head unit includes a reproducing sensor 207 disposed between the lower shield 208 and the upper shield 210.
  • the auxiliary magnetic pole 206 and the upper shield 210 may be used in combination.
  • the coil excitation current, the reproduction sensor drive current, and the applied current to the high-frequency magnetic field generating element are supplied from current supply terminals provided for each component.
  • the opposing magnetic pole 6 extends toward the main magnetic pole 5 in the upper part of the drawing, and forms a magnetic circuit with each other. However, in the upper part of the drawing, it is assumed that it is electrically insulated. In the magnetic circuit, the magnetic lines of force form a closed circuit, and it is not necessary to be formed of only a magnetic material. Further, an auxiliary magnetic pole or the like may be arranged on the opposite side of the main magnetic pole 5 from the counter magnetic pole 6 to form a magnetic circuit. In this case, the main magnetic pole 5 and the auxiliary magnetic pole need not be electrically insulated.
  • the main magnetic pole 5 and the counter magnetic pole 6 are provided with an electrode or a means for making electrical contact with the electrode so that a high frequency excitation current can flow through the magnetization rotator layer from the main magnetic pole 5 side to the counter magnetic pole 6 side or vice versa. It is configured.
  • FIG. 1C is a further enlarged view of the recording head portion shown in FIG. 1B.
  • a magnetic flux rectifying film 48 is formed on the trailing side of the end of the air bearing surface of the main magnetic pole 5, and a high frequency magnetic field generating element 201 is formed between the magnetic flux rectifying film 48 and the counter magnetic pole 6.
  • a steady current flows in the direction of the black arrow shown in the figure, and the relative movement direction of the head is the direction indicated by the white arrow.
  • the magnetic recording medium 7 a medium in which the perpendicular recording film 122 was laminated on the substrate 120 via the intermediate layer 121 was used.
  • the high-frequency magnetic field generating element 201 includes a first non-magnetic spin conductive layer that is in contact with the magnetization rotation layer 2 as the spin guide element 43 and the first perpendicular magnetic anisotropic layer as the rotation guide layer 43, and the magnetization rotation layer 2 as the spin rectification element 41.
  • Two perpendicular magnetic anisotropic layers are stacked in the lateral direction between the main magnetic pole 5 and the counter magnetic pole 6. The directions of magnetization of the first and second perpendicular magnetic anisotropic layers are opposite to each other as shown by arrows in the drawing (direction perpendicular to the film surface).
  • the direction of the spontaneous magnetization of the magnetization rotation layer 2 is in a direction substantially parallel to the direction of the spontaneous magnetization of the rotation guide layer 43 and perpendicular to the film plane by the action of the rotation guide layer 43.
  • the perpendicular magnetic anisotropic layer may be made of a material having negative perpendicular magnetic anisotropy. The negative perpendicular magnetic anisotropy will be described in detail in Example 3.
  • the spin rectifier element 41 acts as a spin rectifier element for electrons, and supplies electrons whose spins are aligned in the right direction to the left magnetization rotation layer 2.
  • the electrons supplied from the spin rectifier element 41 to the magnetization rotation layer 2 exert a spin torque on the magnetization rotation layer 2 and act to direct the magnetization of the magnetization rotation layer 2 to the right (Operation 1).
  • an action (action 2) that attempts to turn to the left from the rotation guide layer 43 is in advance.
  • the leakage magnetic field from the main magnetic pole 5 also acts to direct the magnetization of the magnetization rotation layer 2 in the direction (action 3).
  • the direction of spontaneous magnetization of the magnetization rotation layer 2 is determined by the balance of action 1, action 2, and action 3, but torque is generated so as to restore the direction determined by action 2 and action 3, and the film surface Rotate at high speed.
  • an alternating magnetic field is generated by direct current (hereinafter referred to as high frequency excitation current).
  • the generated alternating magnetic field becomes maximum when the action 1, action 2, and action 3 cancel each other and the direction of the magnetization rotation layer 2 is in the film plane.
  • the reason why the metal nonmagnetic spin conductive layer is provided on the surface in contact with the magnetization rotation layer 2 in the spin rectifying element 41 is to avoid the direct contact between the magnetic materials and to interact with each other, and to flow only spin (electrons). It is.
  • the second perpendicular magnetic anisotropic layer can be in a state in which only spins in the magnetization direction can be extracted from electrons flowing from the counter magnetic pole 6.
  • the direction of the action 3 is reversed by the polarity of the leakage magnetic field from the main magnetic pole 5.
  • the generated AC magnetic field strength varies depending on the polarity of the leakage magnetic field from the main magnetic pole 5.
  • the magnetic flux rectification layer 48 (lip) is designed so that the direction of the leakage magnetic field from the main magnetic pole 5 is adjusted and the magnetic field component parallel to the film surface of the magnetization rotation layer 2 is minimized.
  • the spontaneous magnetization of the magnetization rotation layer 2 is fixed in this direction, and high-frequency oscillation cannot be performed.
  • the direction of the action 1 is reversed and coincides with the direction of the action 2, so that no spontaneous magnetization component parallel to the film surface of the magnetization rotation layer 2 is generated. Can not.
  • the magnetic flux rectifying layer 48 also functions as a spin rectification element for electrons, and takes away electrons whose spins are aligned in the magnetization direction of the main magnetic pole 5 from the magnetization rotation layer 2 or the rotation guide layer 43 on the right side.
  • the spin torque acts to direct the magnetization of 2 in the direction opposite to the magnetization of the main magnetic pole 5 (action 4).
  • the action 3 and the action 4 are opposite to each other, and the spin torque can be configured to work in a direction to suppress the influence of the magnetic field from the main magnetic pole on the magnetization rotating body. .
  • FIG. 1D A prototype magnetic head having a conventional structure is shown in FIG. 1D.
  • 3D magnetic field analysis software it is known that a magnetic field in the vertical direction of the drawing of about 0.1 MA / m is applied to the magnetization rotator layer 2. Magnetic recording was performed using a spin stand with a magnetic spacing of 5 nm and a track pitch of 20 nm, and this was reproduced by a GMR head with a shield interval of 20 nm. However, even if the magnitude and direction of the high-frequency excitation current were changed, the medium was changed. Even playback output was not obtained.
  • a high frequency magnetic field detector 203 is disposed on the opposite side of the recording medium 7 with the high frequency magnetic field generating element 201 interposed therebetween, and the intensity of the microwave magnetic field is monitored.
  • high frequency output was not obtained. This is presumably because the magnetization of the magnetization rotator layer 2 is magnetized in the direction of the leakage magnetic field by the leakage magnetic field of the main magnetic pole 5 and does not oscillate at high frequency.
  • FIG. 2 shows the application direction of the effective magnetic field. The vertical direction as the z-direction, was applied to H a.
  • H ext was applied in the direction opposite to the initial magnetization direction and inclined by ⁇ h from the vertical direction. Magnetization is reversed while rotating about the z axis from the + z direction to the ⁇ z direction.
  • the application direction of the high-frequency magnetic field Hac is a horizontal direction, but an oscillating magnetic field in one direction can be decomposed into a counterclockwise component and a clockwise component as shown in the following equation.
  • the clockwise component is a rotation opposite to the magnetization precession, so it is considered that it does not participate in resonance at all from the principle of magnetic resonance. If magnetic resonance is the cause of assist, it is expected that a large difference will occur in the assist effect between the counterclockwise oscillating magnetic field and the clockwise oscillating magnetic field.
  • Figure 3 is a one-way oscillating magnetic field, counterclockwise oscillating magnetic field, with respect to clockwise oscillating magnetic field, in which examined the status of the inversion by changing the H ac and H ext.
  • a white square indicates a region where the magnetization reversal has been completed before 3 ns
  • a lattice mark indicates a partially reversed region
  • a black square indicates a region where magnetization is not reversed.
  • the rotation guide layer, the magnetization rotation layer, and the spin rectifier element are realized by a single layer film, but may be configured by a plurality of laminated films.
  • the functions of the magnetization rotation layer and the spin rectification element may be realized as the entire action of the layers arranged separately in the high-frequency magnetic field generation element 201.
  • the magnetic flux rectifying film 48 has been described as a layer provided separately from the main magnetic pole, but may be configured as a protrusion associated with the main magnetic pole.
  • the configuration of this embodiment makes it possible to realize a microwave-assisted recording magnetic head capable of stable oscillation.
  • an information recording apparatus is configured by combining the above-described magnetic head for microwave-assisted recording having the magnetic flux rectifying film 48 and a magnetic recording medium having an artificial lattice film.
  • FIG. 4 (A) and 4 (B) are schematic views showing the overall configuration of the information recording apparatus of this embodiment.
  • 4A is a top view
  • FIG. 4B is a cross-sectional view taken along the line AA ′.
  • the recording medium 101 is fixed to the rotary bearing 104 and is rotated by the motor 100.
  • FIG. 4 has been described using an example in which three magnetic disks and six magnetic heads are mounted, one or more magnetic disks and one or more magnetic heads are sufficient.
  • the recording medium 101 has a disk shape, and recording layers are formed on both sides thereof.
  • the slider 102 moves substantially in the radial direction on the surface of the rotating recording medium, and has a magnetic head at the leading end or trailing end.
  • the suspension 106 is supported by the rotary actuator 103 via the arm 105.
  • the suspension 106 has a function of pressing or pulling the slider 102 against the recording medium 101 with a predetermined load.
  • a current for driving each component of the magnetic head is supplied from the IC amplifier 113 via the wiring 108.
  • Processing of the recording signal supplied to the recording head unit and the reproduction signal detected from the reproducing head unit is executed by the read / write channel IC 112 shown in FIG.
  • the control operation of the entire information processing apparatus is realized by the processor 110 executing a disk control program stored in the memory 111. Accordingly, in this embodiment, the processor 110 and the memory 111 constitute a so-called disk controller.
  • FIG. 5 is a schematic diagram showing the structure of the recording head portion of the information processing apparatus of this embodiment. Since the entire configuration of the magnetic head slider and the magnetic head is the same as the configuration shown in FIGS. 1A and 1B, description thereof will be omitted.
  • the high-frequency magnetic field generating element 201 of this embodiment includes a metal nonmagnetic spin conduction layer 15, a first perpendicular magnetic anisotropic body 1, a magnetization rotator layer 2, a metal nonmagnetic spin conduction layer 3, and a second perpendicular magnetic anomaly.
  • Each layer of the isotropic body 4 spin injection layer
  • spin injection layer has a structure in which the layers are laminated horizontally, and these laminated films have a structure in which the laminated film is disposed between the main magnetic pole 5 and the counter magnetic pole 6.
  • the spin rectifier 41 is a laminated structure of the metal nonmagnetic spin conduction layer 3 and the second perpendicular magnetic anisotropy 4, and the rotation guide layer 43 is the first perpendicular magnetic anisotropy.
  • the magnetic flux rectifying film 48 corresponds to the magnetic flux rectifying layer 8 (lip).
  • the shape of the high-frequency magnetic field generating element 201 is a columnar structure extending in the left-right direction of the drawing, and its cross section is a rectangle that is long in the direction along the ABS surface. By adopting the rectangular shape, shape anisotropy occurs, so that the magnetization of the magnetization rotator layer 2 is parallel to the ABS surface when not in an oscillation state, and unnecessary magnetization reversal due to a leakage magnetic field can be prevented.
  • the length in the direction along the rectangular ABS surface is an important factor for determining the recording track width, and is set to 15 nm in this embodiment.
  • a recording medium having a large magnetic anisotropy that cannot be recorded unless the recording magnetic field from the main magnetic pole 5 and the high-frequency magnetic field from the magnetization rotor layer 2 are aligned is used.
  • the width and thickness of 5 can be set large so that a large recording magnetic field can be obtained.
  • a recording magnetic field of about 0.9 MA / m is obtained by setting the width to 80 nm and the thickness to 100 nm.
  • the magnetic flux rectifying layer 8 is made of a material having the same or larger saturation magnetization as the main magnetic pole 5, and the magnetic flux rectifying layer using 3D magnetic field analysis software so that the magnetic field from the main magnetic pole 5 is perpendicular to the layer direction of the magnetization rotating body layer 2. A thickness design of 8 was performed.
  • the thickness of the magnetic flux rectifying layer 8 in this example was 11 nm, but this value depends on the above-mentioned rectangular shape, distance to the opposing magnetic pole and the situation, the situation of the medium used, and the situation of the magnetic circuit above the drawing. Dependent.
  • As the perpendicular magnetic anisotropy 1 a hexagonal CoCrPt 001 plane was in the horizontal direction in the figure, and the magnetic anisotropy was 5.1 ⁇ 10 5 J / m 3 . .
  • the material of the main magnetic pole 5 and the counter magnetic pole 6 was a CoFe alloy having a large saturation magnetization and almost no magnetocrystalline anisotropy.
  • the magnetization rotator layer 2 was a CoFe alloy having a thickness of 20 nm with a large saturation magnetization and almost no magnetocrystalline anisotropy.
  • the magnetization rotates at high speed in a plane substantially along the layer, and the leakage magnetic field from the magnetic pole appearing on the ABS surface acts as a high-frequency magnetic field.
  • the magnetization rotation driving force source of the magnetization rotator layer 2 is a spin torque flowing from the second perpendicular magnetic anisotropy 4 (spin injection layer) through the metal nonmagnetic spin conduction layer 3.
  • the metal nonmagnetic spin conductive layer 15 is provided at the interface between the magnetic flux rectifying layer 8 (lip) and the first perpendicular magnetic anisotropy 1, the leakage magnetic field from the main magnetic pole 5 is provided. It becomes possible to reduce the influence of polarity.
  • the magnetic flux rectification layer 8 also acts as a spin rectification element for electrons, and takes the electrons whose spins are aligned in the magnetization direction of the main magnetic pole 5 from the first perpendicular magnetic anisotropy 1 on the right side and rotates the magnetization.
  • spin torque acts to direct the magnetization of the layer 2 in the direction opposite to the magnetization of the main magnetic pole 5.
  • the spin torque can be configured to work in a direction to suppress the influence of the magnetic field from the main magnetic pole on the magnetization rotator 2.
  • it is necessary to flow a high-frequency excitation current from the main magnetic pole 5 side to the counter magnetic pole 6 side.
  • the direction and magnitude of the high-frequency excitation current is controlled by the disk controller switching the polarity and gain of the IC amplifier 113.
  • the spin torque action increases as the high-frequency excitation current (electron current) increases, and a CoFeB layer having a high polarizability is formed between the metal nonmagnetic spin conduction layer 3 and the metal nonmagnetic spin conduction layer 15 and the adjacent layer. Insertion increases by about 1 nm.
  • metal nonmagnetic spin conductive layer 15 and the metal nonmagnetic spin conductive layer 3, Cu or the like which is a metal nonmagnetic material with high spin conductivity, may be used.
  • L11 type CoPt 50 having a perpendicular magnetic anisotropy of 2.4 ⁇ 10 6 J / m 3 was used.
  • Magnetization of the first perpendicular magnetic anisotropy body 1 and the second perpendicular magnetic anisotropy body 4 is performed by first applying a strong magnetic field at a high temperature to magnetize the second perpendicular magnetic anisotropy body 4. Subsequently, the first perpendicular magnetic anisotropic body 1 was magnetized by applying a magnetic field weaker than the first magnetic field in the reverse direction.
  • the initial magnetization direction of the second perpendicular magnetic anisotropy 4 may be any as long as it is in the horizontal direction of the drawing, and does not define a current direction in which effective spin torque can be obtained.
  • a recording medium having a recording layer having the following structure was formed on the substrate 19, and the characteristics were evaluated in combination with the magnetic head of this example. These magnetic films were continuously formed in vacuum by sputtering with different target compositions.
  • FIG. 6 is a schematic diagram showing a main part of an evaluation apparatus created for evaluating the characteristics of the high-frequency magnetic field generating element used in the recording head part shown in FIG. From FIG. 5, the main magnetic main pole 5, the magnetic flux rectifying layer 8, the metal nonmagnetic spin conduction layer 15, and the counter magnetic pole 6 are removed, and a plus electrode 25 and a minus electrode 26 are added. In addition, an external magnetic field in the vertical direction of the drawing can be applied to the high-frequency magnetic field generating element (the upper direction is the positive direction in the drawing). A normal TMR element is used to detect the generation of the high-frequency magnetic field.
  • the antiferromagnetic layer 31 was 15 nm-IrMn
  • the pinned magnetic layer 32 was 10 nm-CoFe
  • the free layer 37 was 10 nm-CoFe.
  • the antiferromagnetic layer 31 was heat-treated so that the magnetization of the pinned magnetic layer 32 was in the reverse direction from the front of the drawing.
  • the magnetization of the free layer 37 is given a weak anisotropy so as to face in the horizontal direction of the drawing.
  • the magnetization rotator layer 2 and the first perpendicular magnetic anisotropy 1 or metal It was installed so that the interface with the magnetic spin conduction layer 3 would come.
  • the number of high frequency magnetic field components perpendicular to the surface of the free layer 37 increases, and the sensitivity in the high frequency region can be increased. This is due to the effect that the magnetization of the free layer 37 having a magnetic moment moves in a direction perpendicular to the magnetic field in a short time of nanosecond or less.
  • FIG. 7 shows the dependence of the high-frequency magnetic field intensity generated from the high-frequency magnetic field generating element shown in FIG. 6 on the high-frequency excitation current.
  • the external magnetic field is -0.4 MA / m (the magnetic field pointing downward in the drawing)
  • the high-frequency magnetic field strength is larger than in other cases, but when the high-frequency excitation current exceeds 1 unit, oscillation is unstable. It has become.
  • the high-frequency magnetic field strength increases with an increase in the high-frequency excitation current, decreases when the high-frequency excitation current exceeds 1 unit, and oscillation becomes unstable at a larger high-frequency excitation current.
  • the high-frequency magnetic field is not output until the high-frequency excitation current reaches a certain level.
  • the high-frequency magnetic field strength rapidly increases with the increase of the high-frequency excitation current, but the oscillation becomes unstable before reaching the maximum level in other cases.
  • FIG. 8 shows the high frequency excitation current dependence of the frequency of the high frequency magnetic field generated from the high frequency magnetic field generating element shown in FIG. It can be seen that the frequency depends only on the high-frequency excitation current regardless of the external magnetic field.
  • the high-frequency excitation current is strong, the oscillation is unstable, so that the maximum does not exceed 60 GHz. This is because when the magnetization rotation plane of the magnetization rotator layer 2 is in the opposite direction to the magnetization of the first perpendicular magnetic anisotropy 1, the strain in the first perpendicular magnetic anisotropy 1 becomes too large, This is probably because the exchange magnetic field cannot be transmitted sufficiently.
  • the high-frequency excitation current value for the maximum high-frequency output varies depending on the polarity of the main magnetic pole, the high-frequency excitation current is changed in order to obtain the maximum high-frequency output. It can be understood that there is a possibility that the magnetic resonance of the medium may not be obtained because the high frequency changes. Therefore, the high-frequency excitation current value that does not change the high-frequency frequency and the high-frequency output depending on the polarity of the main magnetic pole must oscillate with the average value of the optimum high-frequency excitation current value determined by the polarity of the main magnetic pole. In this case, the high frequency output is 90% or less of the maximum output.
  • magnetic recording was performed using a spin stand, a head medium relative speed of 20 m / s, a magnetic spacing of 5 nm, and a track pitch of 20 nm, and this was reproduced by a GMR head having a shield interval of 20 nm.
  • the signal / noise ratio at 1000 kFCI was measured by changing the oscillation frequency by changing the high frequency excitation current, a maximum of 12.0 dB was obtained with the recording medium A-30 / 60, and the recording density barely exceeded 2 Tbits per square inch. It was found that the recording and playback of was achieved.
  • the high frequency frequency at this time was 51 GHz.
  • the spin torque mediated by the metal nonmagnetic spin conduction layer 15 is strengthened, and the effect of reducing the influence of the leakage magnetic field from the main magnetic pole 5 is increased.
  • the maximum value of the signal / noise ratio is Recording / reproduction with a recording density exceeding 2T bits per square inch is not achieved, respectively, at 11.0 dB and 10.0 dB. This is considered that good recording (reversal) is not obtained because the high-frequency frequency deviates from the optimum writing value.
  • the asymmetry of the reproduction signal becomes significant when the high frequency frequency deviates from 51 GHz. Therefore, the magnetic anisotropy magnetic field of the upper recording layer 17 in the recording medium 7 used in combination is 2
  • the magnetic anisotropy magnetic field of the upper recording layer 17 in the recording medium 7 used in combination is 2
  • recording media A-30 / 30, A-60 / 60, and A-60 / 30 were used, 13.0 dB, 4.0 dB, and 8.1 dB at maximum were obtained, respectively.
  • the recording medium A-30 / 30 has no problem in the recording / reproducing characteristics, but the magnetization curve has a large magnetic field sweep speed dependency, and the recording magnetization may be thermally demagnetized.
  • Recording medium A-60 / 60 is not sufficiently written. It is considered that the magnetic field from the main pole and the high frequency magnetic field strength and frequency do not reach the resonance condition.
  • the recording medium A-60 / 30 has a lower recording layer in which the magnetic anisotropy of the lower recording layer 18 is smaller than the magnetic anisotropy of the upper recording layer 17 and is separated from the main pole 5 and the magnetization rotator layer 2. It is considered that a sufficient magnetic field does not reach 18.
  • the magnetic head of this embodiment has a magnetic resonance frequency in which the recording medium of the recording medium used in combination has two or more recording layers, and the anisotropic magnetic field of the upper magnetic layer matches the optimum oscillation condition of the recording head unit 200. If the recording medium is used so that the asymmetry of the reproduction signal is not significant, the recording density can be increased.
  • the assist effect is maximum, and when the high-frequency magnetic field strength is not 10% or more of H k , magnetization reversal does not occur even if the external magnetic field H ext is large.
  • the assist effect is small, and the critical characteristic for the high frequency magnetic field strength seen at the optimum value is not seen.
  • the switching time in the inversion region was found to be stable at 0.3-0.8 ns even when the write conditions were changed. This indicates that by making the high-frequency frequency slightly smaller than the optimum value, the assist effect is somewhat sacrificed, but there is a possibility that recording with less leftover or writing blur can be performed. Conversely, when the high frequency is greater than the optimum value, the assist effect is greatly reduced.
  • FIG. 10 shows the high-frequency frequency dependence of the external magnetic field H ext required for magnetization reversal for media with H k of 1.2 MA / m (30 kOe) and 3.6 MA / m (45 kOe) (medium saturation magnetization is 1.1 T). It shows sex.
  • the necessary external magnetic field has an optimum frequency f opt that has a minimum value, and gradually increases when the frequency deviates from the optimum value.
  • the value is about 70%. This corresponds to the fact that the magnitude of the anisotropic magnetic field changes with H k cos ⁇ m when ⁇ m is an angle formed between the magnetization and the easy axis of magnetization. That is, it is suggested that the assist energy by magnetic resonance is mainly supplied when the magnetization is separated from the easy axis of magnetization to some extent. Even if the saturation magnetization of the magnetic particles changes, no significant change is observed, but a slightly higher frequency is required when the saturation magnetization is larger. This is considered to be because magnetization is stabilized by the influence of a static magnetic field.
  • FIG. 12 shows the state of inversion for mediums having different H k , changing H ac and H ext at the optimum frequency.
  • H ac / H k less than 0.1 are not reversed almost magnetization, assisting effect (H ext for magnetization reversal from Stoner-Wohlfarth field Is not seen).
  • H ac / H k exceeds 0.1 an assist effect is observed, and reversal is possible when the external magnetic field is about 30% of H k .
  • H ac / H k is about 0.3, so that no external magnetic field is required.
  • H ac / H k exceeds 0.3 the magnetization is greatly oscillated by the high-frequency magnetic field, so that a re-inversion phenomenon of magnetization occurs and stable writing (inversion) cannot be expected.
  • a recording medium having a structure in which a plurality of magnetic layers having different magnetic anisotropy magnetic fields is laminated is used as the magnetic recording medium, and the oscillation frequency of the alternating magnetic field generated from the magnetic head is changed to the magnetic anisotropy of the recording medium.
  • FIG. 12 shows that the high-frequency magnetic field strength necessary for inversion is constant regardless of the external magnetic field strength at the optimum frequency. Therefore, in the actual recording process, when the high frequency magnetic field strength changes greatly when exiting the reversible state, a sharper magnetization reversal boundary may be formed on the medium. That is, the high frequency magnetic field strength is first increased, the magnetic field from the main pole is subsequently increased and recorded, and the high frequency magnetic field strength is attenuated immediately thereafter. This indicates that it is more preferable to move the head in the direction opposite to the head traveling direction of the embodiment shown in FIG. 1 or to reverse the structure of FIG. . This will be verified in the second embodiment.
  • FIGS. 13A and 13B There are two types of magnetic heads mounted on the magnetic head slider, one is the arrangement on the trailing side shown in FIG. 13 (A), and the other is the arrangement on the leading side shown in FIG. 13 (B). .
  • the trailing side and the leading side are determined by the relative movement direction of the magnetic head slider with respect to the recording medium, and the rotation direction of the recording medium is the direction shown in FIGS. 13A to 13B (in the drawing). If the direction is opposite to the direction of the arrow, FIG. 13A shows placement on the leading side, and FIG. 13B shows placement on the trailing side.
  • FIGS. 14A to 14D show configuration examples of the magnetic head in which the traveling direction of the magnetic head can be reversed from that in the first embodiment.
  • the definition of the trailing side and the leading side is assumed to be a direction from the right side to the left side as shown in FIGS. 13 (A) and 13 (B).
  • FIG. 14A shows a configuration example of a magnetic head for microwave assist recording in which the reproducing head portion is arranged on the trailing side and the recording head portion is arranged on the leading side.
  • the components corresponding to the respective extraction numbers are the same as those in FIG. 1B, and thus the description thereof is omitted.
  • the opposing magnetic pole 6 is formed at the leading end, and the main magnetic pole 5 is It is formed closer to the trailing side than the opposing magnetic pole. Therefore, the stacking order of the high-frequency generators 201 formed between the main magnetic pole 5 and the counter magnetic pole 6 is opposite to the stacking order shown in FIG.
  • FIG. 14B shows another configuration example of the magnetic head of this embodiment.
  • the exciting coil of the main magnetic pole 5 is wound sideways rather than upward.
  • the excitation position is closer to the main magnetic pole air bearing surface than in the structure of FIG. 14A, so that a stronger magnetic flux can be generated from the main magnetic pole 5 than in FIG. it can.
  • FIG. 14C shows a configuration example of a magnetic head for microwave assist recording in which the recording head portion is disposed on the trailing side and the reproducing head portion is disposed on the leading side.
  • the main magnetic pole 5 is disposed at the trailing end and the counter magnetic pole 6 is disposed on the leading side with respect to the main magnetic pole 5.
  • the counter magnetic pole 6 and the reproduction sensor shield are shared, but they may be separated.
  • the stacking order of the high-frequency generator 201 is the same as the stacking order shown in FIG.
  • the winding direction of the exciting coil is an upper winding as in FIG. 14A, but may be a horizontal winding as shown in FIG. 14D.
  • FIGS. 14A to 14D can be mounted on the magnetic head slider having any structure shown in FIGS. 13A and 13B.
  • FIGS. 14C and 14D since the counter magnetic pole and the auxiliary magnetic pole are used together, electrical insulation is provided between the main magnetic pole 5 and the main magnetic pole 5 for the purpose of allowing a high-frequency excitation current to flow through the high-frequency magnetic field generating element 201.
  • a film 209 is formed.
  • FIG. 15 shows a configuration example of the recording head unit of the information processing apparatus of this embodiment.
  • the configuration of the recording head unit shown in FIG. 15 is the same as the configuration of FIG. 5, but the head traveling direction is changed from the left to the right with respect to the medium.
  • FIG. 15 shows the arrangement of the main magnetic pole 5 and the counter magnetic pole 6 in alignment with FIG. 5. That is, the configuration of the recording head unit shown in this drawing corresponds to the configuration of the magnetic head shown in FIGS. 14A to 14D viewed from the back side of the drawing. Note that the configuration of the recording head unit itself is the same as that of the first embodiment, and therefore, detailed description thereof is omitted.
  • the auxiliary magnetic pole provided on the opposite side of the main magnetic pole 5 from the counter magnetic pole 6 is brought slightly closer to the main magnetic pole 5 side.
  • patterned media As the recording medium 7, so-called patterned media was used. After a continuous film was formed on the substrate 19 by sputtering, a magnetic pattern having a track direction length of 15 nm and a down track direction of 9 nm was formed by EB mastering. Thereafter, the continuous film was etched, and the above magnetic material pattern was formed so as to be arranged with a pitch of 20 nm in the track width direction and a pitch of 12.5 nm in the track circumferential direction.
  • the magnetic layer constituting the magnetic pattern has a structure in which two upper and lower magnetic materials shown below are laminated, and the upper recording layer 17 has a magnetic anisotropy field of 6 nm- (34 kOe) of 2.8 MA / m (34 kOe).
  • the upper recording layer 17 has a magnetic anisotropy field of 6 nm- (34 kOe) of 2.8 MA / m (34 kOe).
  • a 6 nm-FePt layer having a magnetic anisotropic magnetic field of 4.8 MA / m (60 kOe) was used.
  • the damping constant ⁇ of the upper recording layer 17 and the lower recording layer 18 was 0.20 and 0.02, respectively.
  • the damping constant ⁇ is large without using an artificial lattice structure.
  • the above recording medium was set on a spin stand, magnetic recording was performed with a head medium relative speed of 20 m / s, a magnetic spacing of 5 nm, and a track pitch of 20 nm, and this was reproduced by a GMR head having a shield interval of 20 nm. Recording / reproduction characteristics were measured by combining the magnetic head shown in FIG. 15 with the recording medium thus prepared. In the measurement, the current intensity supplied between the main magnetic pole and the counter magnetic pole was changed to change the oscillation frequency, and the recording pattern was set to 1000 kFCI. As a result, a maximum signal / noise ratio of 15 dB was obtained, and it was found that recording / reproduction with a recording density exceeding 2 Tbits per square inch can be sufficiently achieved.
  • the frequency of the high frequency magnetic field at which the signal / noise ratio was 15 dB was 28 GHz.
  • the maximum was 13.5 dB.
  • the characteristics were evaluated using the recording medium A-30 / 60 used in Example 1. In this case, the signal / noise ratio was 13 dB at the maximum.
  • the magnetization reversal speed becomes faster and the recording / reproducing characteristics are improved.
  • the ratio tended to depend on the head medium relative speed (the S / N ratio at a head medium relative speed of 40 m / s was 4 dB lower than that in the case of 20 m / s). In order to investigate this reason, further examination was performed using simulation.
  • FIG. 16 is an outline of the model used in this simulation.
  • the main magnetic pole 5 is arranged on the leading side and the counter magnetic pole 6 is arranged on the trailing side, respectively, and an AC magnetic field generating element is arranged therebetween.
  • an upper recording layer 17 and a lower recording layer 18 having a magnetic anisotropy magnetic field and a damping constant of H k1 , ⁇ 1 , H k2 , ⁇ 2 are laminated.
  • a reversal magnetic field (recording magnetic field) for reversing the magnetization of the recording layer leaks from the main magnetic pole 5 to the medium, and a high-frequency magnetic field leaks from the AC magnetic field generating element to the medium.
  • the reversal strength of the magnetizations of the upper and lower magnetic layers is a high-frequency magnetic field when the magnetic anisotropy magnetic field and the damping constant of the upper magnetic layer and the lower magnetic layer are the following four types. It is the figure which mapped how it changed depending on intensity
  • the transmission frequency of the high frequency magnetic field was fixed at 25 GHz.
  • the time required for magnetization reversal (reversal time) is also shown below each figure.
  • the inversion time was the time from when the high frequency magnetic field was applied until the magnetization was inverted by 95% or more.
  • FIG. 18 shows the inversion state with respect to the high frequency and the external magnetic field strength when the high frequency magnetic field strength is 0.4 MA / m and ( ⁇ upper part , ⁇ lower part ) is (0.2, 0.02). is there. It can be seen that the large reversal required external magnetic field is reduced at the optimum high frequency of the upper recording layer 17.
  • the lower magnetic anisotropy magnetic field of the upper recording layer 17 is considered to be recordable by a high-frequency magnetic field having a low frequency and an external magnetic field, and at least the magnetic anisotropy exceeding the half of the magnetic field created by the main magnetic pole 5 at the center of the recording layer. A magnetic field is required.
  • the thermal fluctuation of the magnetization of the upper recording layer 17 is increased and the probability of becoming an assist condition is increased. Therefore, it is considered that the time until magnetization reversal is shortened.
  • the information processing apparatus of the present embodiment has the following two advantages over the first embodiment. (1) Since the high frequency magnetic field strength first increases with respect to the recording medium, and subsequently the magnetic field from the main magnetic pole increases, recording is performed immediately thereafter, and the high frequency magnetic field strength is attenuated immediately. Can be formed. (2) The recording medium is patterned, and the recording density can be increased.
  • a configuration example of a magnetic head using a negative perpendicular magnetic anisotropy as a rotation guide layer included in a high-frequency magnetic field generating element and an information recording apparatus equipped with the magnetic head will be described.
  • a magnetic material having negative perpendicular magnetic anisotropy for the rotating guide layer the spontaneous magnetization of the magnetization rotating body layer is induced in the film plane, so that the driving current of the high-frequency magnetic field generating element depends on the desired frequency.
  • the rotation of the magnetization of the magnetization rotation layer is stabilized, and the resistance against the pinning magnetic field component leaked and applied from the outside such as the main pole in the direction of the rotation plane is improved.
  • the relationship between the magnetic head slider and the suspension is the same as in FIG. 1A, and the configuration of the entire magnetic head including the recording head portion and the reproducing head portion is the same as in FIG.
  • the overall configuration of the information processing apparatus is the same as the configuration shown in FIGS. That is, as a basic configuration of the magnetic head, it is assumed that the counter magnetic pole is disposed at the trailing end and the main magnetic pole is disposed on the leading side with respect to the counter magnetic pole.
  • FIG. 19 shows the configuration of the recording head unit of this embodiment.
  • a magnetic flux rectifying layer 8 is formed on the trailing side of the end portion on the air bearing surface side of the main magnetic pole 5, and a high frequency magnetic field generating element 201 is formed between the magnetic flux rectifying layer 8 and the counter magnetic pole 6.
  • the high-frequency magnetic field generating element 201 includes a metal nonmagnetic spin conduction layer 3, a magnetization rotator layer 2, a negative perpendicular magnetic anisotropy layer 11, and a metal nonmagnetic spin scatterer layer 12.
  • a second magnetic flux rectifying layer 13 is formed on the leading side of the end of the air bearing surface of the counter magnetic pole 6.
  • the metal non-magnetic spin scatterer layer 12 is affected by the second magnetic flux rectifying layer 13 and the magnetic rotator layer 2 that may cancel the effect of the spin torque flowing from the magnetic flux rectifying layer 8 into the magnetization rotator layer 2. Has the effect of scattering the spin flowing into the. Alternatively, it can be said that the spin torque is prevented from flowing out from the magnetization rotator layer 2 side to the magnetic flux rectifying layer 13. Therefore, when the metal nonmagnetic spin scatterer layer 12 is used, the current for obtaining the required spin torque can be reduced. This effect is particularly great when Ru is used as the metal nonmagnetic spin scatterer layer 12.
  • the main magnetic pole 5 and the magnetic flux rectifying layer 8 are injected. Since the horizontal magnetization component in the magnetic flux rectifying layer 8 can be increased by providing an extremely thin oxide layer or nonmagnetic layer at the interface of the magnetic layer to reduce the exchange coupling between the magnetic bodies, the operation of the magnetization rotating body layer 2 becomes stable.
  • the spin rectifying element 41 has a laminated structure of a metal nonmagnetic spin conduction layer 3 and a magnetic flux rectifying layer 8 (lip), the rotation guide layer 43 has a negative perpendicular magnetic anisotropy layer 11, and magnetic flux.
  • the rectifying film 48 corresponds to the magnetic flux rectifying layer 8.
  • the length in the longitudinal direction of the high-frequency magnetic field generating element 201 is an important factor for determining the recording track width, but in this example, it was set to 14 nm.
  • the width and thickness of the main pole 5 can be set large so that a large recording magnetic field can be obtained.
  • the schematic diagram which looked at the structure of the laminated film formed between the magnetic pole 5 and the opposing magnetic pole 6 from the air bearing surface side was shown.
  • the main magnetic pole 5, the counter magnetic pole 6, and the laminated film 201 in the track width direction of the present embodiment are arranged such that the main magnetic pole 5 is wider than the laminated film 201. Is wider than the width of the main pole 5.
  • a high-resolution recording magnetization pattern can be formed using the assist magnetic field from the high-frequency magnetic field generating element 201 that defines the track width while increasing the magnetic field from the main magnetic pole 5 for which the generated magnetic field strength is to be increased. It becomes possible.
  • the recording magnetic field of about 0.9 MA / m was obtained by setting the shape of the main pole 5 on the ABS surface to a width of 80 nm in the track width direction and a thickness of 100 nm in the head running direction. When these widths and thicknesses are increased, the magnetic field intensity from the main pole increases, but the magnetic field gradient decreases, so in conventional magnetic recording, the resolution was increased by conversely reducing the width and thickness. .
  • the magnetic flux rectifying layer 8 is made of a material having the same or larger saturation magnetization as the main magnetic pole 5, and the magnetic flux rectifying layer using 3D magnetic field analysis software so that the magnetic field from the main magnetic pole 5 is perpendicular to the layer direction of the magnetization rotating body layer 2.
  • a thickness design of 8 was performed.
  • the thickness of the magnetic flux rectifying layer 8 in this example was 10 nm. This value depends on the above-mentioned rectangular shape, distance to the opposing magnetic pole and the situation, the situation of the medium used, and the situation of the magnetic circuit above the drawing. Dependent.
  • As the second magnetic flux rectifying layer 13 a CoFe alloy having a film thickness of 15 nm was used.
  • the magnetization rotator layer 2 As the magnetization rotator layer 2, a CoFe alloy having a thickness of 20 nm was used as in Example 1.
  • spin torque acts on the magnetization rotator layer 2 and the magnetization rotates.
  • This spin torque acts in the direction in which the magnetization component parallel to the rotation axis of the magnetization rotating body layer 2 generated by the leakage magnetic field from the main magnetic pole 5 decreases.
  • the magnetic flux rectification layer 8 also functions as a spin rectification element for electrons, takes away electrons whose spins are aligned in the magnetization direction of the main magnetic pole 5 from the right magnetization rotation layer 2, and magnetizes the magnetization rotation layer 2 with the main magnetic pole.
  • metal nonmagnetic spin conductive layer 3 As the metal nonmagnetic spin conductive layer 3, 2 nm-Cu was used, but Ru or the like, which is a metal nonmagnetic material with high spin conductivity, may be used.
  • a negative perpendicular magnetic anisotropy was used as the perpendicular magnetic anisotropy layer.
  • negative perpendicular magnetic anisotropy means a state in which perpendicular magnetic anisotropy is negative.
  • Perfect perpendicular magnetic anisotropy used in a normal perpendicular magnetic recording medium has a property that magnetization tends to be oriented in the c-axis direction of a hexagonal crystal, for example.
  • the negative perpendicular magnetic anisotropy layer 11 is such that the 001 plane of hexagonal CoIr is in the horizontal direction in the drawing, and the magnitude of magnetic anisotropy is 6.0 ⁇ 10 5 J / m 3 Was used.
  • the CoFe alloy is used for the magnetization rotator layer 2
  • a large exchange interaction works like CoIr, and the action of keeping the magnetization direction perpendicular to the rotation axis becomes strong.
  • the exchange interaction between the magnetization rotator layer 2 and the negative perpendicular magnetic anisotropy layer 11 is weak, the action of directing the magnetization of the magnetization rotator layer 2 in the plane is weakened. Becomes unstable.
  • ⁇ ′-FeC, dhcpCoFe, NiAs type MnSb, and the like are known in addition to hexagonal CoIr, and negative perpendicular magnetic anisotropy using these materials is known.
  • the body layer 11 may be formed.
  • the metal nonmagnetic spin scatterer 12 3 nm-Pt was used. Even if Pd is used, the same effect is obtained.
  • a patterned medium is used as the recording medium 7, a continuous film is formed on the substrate 19 by sputtering, and then the lower recording layer 18 is 6 nm-CoPt (L10 with a magnetic anisotropic magnetic field of 4.8 MA / m (60 kOe)).
  • 6 nm- (Co / Pt) artificial lattice layer with a magnetic anisotropy field of 1.4 kA / m (17 kOe) are formed as the upper recording layer 17 and the length in the track direction is reduced by 9 nm by nanoimprint technology.
  • a magnetic pattern having a track direction of 7 nm was formed with a track pitch of 12.5 nm and a bit pitch of 10.0 nm.
  • the damping constant ⁇ of the upper recording layer 17 and the lower recording layer 18 was 0.20 and 0.02, respectively.
  • can be increased and the magnetization reversal speed can be increased.
  • the above medium was set on a spin stand, magnetic recording was performed with a head medium relative speed of 20 m / s, magnetic spacing of 5 nm, and track pitch of 12.5 nm, and this was reproduced by a GMR head having a shield interval of 18 nm.
  • a GMR head having a shield interval of 18 nm.
  • FIG. 21 shows the excitation current amount dependency of the microwave magnetic field intensity generated from the magnetic head of this embodiment, and the external magnetic field intensity leaking from the main pole to the high-frequency magnetic field generating element 201 is 0 MA / m and 0.4 MA / m, respectively.
  • FIG. 6 is a diagram showing a comparison in the case of 0.8 MA / m and ⁇ 0.8 MA / m.
  • the high-frequency magnetic field strength monotonously decreases as the high-frequency excitation current increases.
  • the external magnetic field is 0.4 MA / m
  • the high-frequency magnetic field strength slightly increases as the high-frequency excitation current increases. It becomes the maximum value and then decreases.
  • the external magnetic field is 0.8 MA / m
  • the high-frequency magnetic field strength greatly increases with the increase of the high-frequency excitation current to the maximum value, and then decreases.
  • the maximum value of the high-frequency magnetic field strength was almost the same regardless of the external magnetic field strength. It was also found that the oscillation does not become unstable depending on the change in the external magnetic field strength.
  • FIG. 22 shows the dependence of the frequency of the microwave magnetic field generated from the magnetic head of this embodiment on the amount of excitation current.
  • the external magnetic field strength leaking from the main pole to the high-frequency magnetic field generating element 201 is 0 MA / m and 0.4 MA, respectively.
  • FIG. 6 is a diagram showing comparison in the case of / m, 0.8 MA / m, and ⁇ 0.8 MA / m. From FIG. 22, it can be seen that the frequency of the generated microwave magnetic field does not depend on the external magnetic field intensity but depends only on the high-frequency excitation current. This is because there is no instability associated with an increase in the high-frequency excitation current. Therefore, it is considered that oscillation at a very high frequency of 100 GHz can be realized.
  • a material layer having a high spin polarizability such as CoFeB is disposed at the interface between the metal nonmagnetic spin conductive layer 3 and both layers, the spin torque is enhanced, and a graph in which the horizontal axis in FIGS. 21 and 22 is compressed is obtained.
  • an oscillation frequency of 40 GHz is obtained at a high frequency excitation current value of 0.5 and 80 GHz at a current value of 1.0. Therefore, in order to obtain a higher frequency than the high frequency magnetic field generating element 201 as shown in FIG. 16, it is necessary to increase the leakage magnetic field from the main magnetic pole 5.
  • the in-plane component of the leakage magnetic field from the main pole applied to the magnetization rotator layer 2 can be further suppressed, and the oscillation of the microwave magnetic field is stabilized in a wide frequency band.
  • the vertical component of the leakage magnetic field from the main magnetic pole applied to the magnetization rotator layer 2 is further increased, oscillation in a higher frequency band is possible, and as a result, oscillation in a wider band is possible.
  • the magnetization direction in the neutral state (the state where no current or magnetic field is applied) of the magnetization rotator layer 2 is in the plane where the magnetic field output is maximized.
  • the spin scatterer layer 12 suppresses the inflow of the spin torque from the opposing magnetic pole side lip 13 into the magnetization rotator layer 2, and the spin torque applied to the magnetization rotator layer 2 is further stabilized. There is a merit such as.
  • the magnetic head of the present embodiment can obtain a high-frequency magnetic field having a higher strength than the magnetic head described in the first and second embodiments. Further, since the oscillation frequency is substantially linear with respect to the excitation current, it is easy to control the magnetic head (control of the amount of supplied current) for forming magnetic resonance. Furthermore, since it is not necessary to consider the polarity of the magnetic flux leaking from the main pole, the head element can be easily designed accordingly.
  • the magnetic head of this embodiment can perform recording on a recording medium having a large magnetic anisotropy without being restricted by a frequency band obtained from a high-frequency magnetic field source. When an information recording / reproducing apparatus is configured, the recording density can be increased. In particular, the recording density can be further improved by using it in combination with a recording medium having an artificial lattice film having a high recording density.
  • a magnetic head using a negative perpendicular magnetic anisotropy is used, and the supply direction of the excitation current to the high-frequency magnetic field generating element and the traveling direction of the magnetic head are opposite to those of the third embodiment (that is, A configuration example of an information recording apparatus having a configuration in which the counter electrode is arranged on the leading side and the recording magnetic pole is arranged on the trailing side will be described.
  • the entire structure of the information processing apparatus is the same as that shown in FIGS. 4A and 4B, and the entire structure of the magnetic head has the structure shown in FIG. However, even if the head running direction shown in FIG. 14 was reversed left and right, there was no significant difference in the signal / noise ratio obtained.
  • FIG. 23 is a diagram showing a cross-sectional structure of the recording head portion of the information recording apparatus of the present embodiment.
  • the configurations and functions of the main magnetic pole 5, the counter magnetic pole 6, the magnetic flux rectifying layer 8, the second magnetic flux rectifying layer 13, and the high-frequency magnetic field generating element 201 are substantially the same as those in FIG.
  • the stacking order of the metal nonmagnetic spin transport layer 3 and the metal nonmagnetic spin scatterer layer 12 is exactly the reverse of FIG.
  • the magnetization rotator layer 2 and the negative perpendicular magnetic anisotropy layer 11 can obtain good microwave oscillation characteristics even if the stacking order is changed.
  • the magnetization rotator layer 2 When the magnetization rotator layer 2 is on the main magnetic pole 5 side as in this embodiment, a stronger microwave can be obtained in the magnetization reversal region of the recording medium. On the contrary, if the magnetization rotator layer 2 is on the counter magnetic pole 6 side, the spin torque inflow efficiency from the second magnetic flux rectifying layer 13 is increased, so that the current required for oscillation can be reduced.
  • the relationship between the main magnetic pole and the size of the high-frequency magnetic field generating element 201 in the track width direction is the same as in the third embodiment.
  • the length of the magnetic field generating element 201 in the longitudinal direction is 14 nm in this embodiment.
  • the configuration of the high-frequency magnetic field generating element shown in the present embodiment is the metal nonmagnetic spin conduction layer 3 and the second magnetic flux rectifying layer 13 that constitute the spin rectifier element. Since the spin torque directly acts on the negative perpendicular magnetic anisotropy 11 than the laminated film, the operation at a higher frequency is stable and the rise of oscillation is accelerated. Further, since the magnetization direction of the second magnetic flux rectifying layer 13 is substantially directed to the rotation axis direction of the magnetization rotator layer 2, the spin torque is stabilized, and the required current can be reduced as compared with the configuration shown in FIG. It becomes possible.
  • the spin torque increases as the high-frequency excitation current (electron current) increases, and increases when a CoFeB layer having a high polarizability is inserted between the second magnetic flux rectifying layer 13 and the metal nonmagnetic spin conduction layer 3 by about 1 nm.
  • the interval between the main magnetic pole 5 and the counter magnetic pole 6 was adjusted to produce a plurality of magnetic heads with different leakage magnetic fields to the magnetization rotating body layer 2.
  • the leakage magnetic field to the magnetization rotator layer 2 can be changed by adjusting the length of the magnetic flux rectifying layer 8.
  • the length of the magnetic flux rectifying layer 8 is zero (without the magnetic flux rectifying layer 8, Microwave oscillation could be observed even in a structure in which the magnetic pole 5 and the metal nonmagnetic spin scatterer layer 12 are adjacent to each other.
  • the recording medium 7 two types of a patterned medium and a continuous film medium having the following magnetic characteristics of the recording layer were prepared.
  • Recording medium B-30 (discrete track medium) Magnetic anisotropic magnetic field: 2.4 MA / m (30 kOe), film thickness: 10 nm, material: CoCrPt—SiOx
  • Recording medium B-34 continuous film medium
  • Magnetic anisotropy magnetic field 2.8 kA / m (34 kOe), film thickness: 10 nm, material: CoB / Pt (artificial lattice laminated film)
  • DTM Discreet Track Media
  • the above recording media (1) to (3) were set on a spin stand, and a test pattern was recorded at a predetermined recording density.
  • the recording conditions were changed by changing the oscillation frequency of the microwave magnetic field.
  • the head medium relative velocity during recording was 20 m / s, the magnetic spacing was 5 nm, and the track pitch was 18.0 nm.
  • the track pitch was 15 nm for convenience of track arrangement.
  • the recorded pattern was reproduced by a GMR head having a shield interval of 18 nm.
  • the obtained signal / noise ratio was as follows for each recording medium when the recording density of the test pattern was 1250 kFCI.
  • Recording medium B-30 Maximum 13.5 dB (oscillation frequency of microwave magnetic field: 48 GHz) (2) Recording medium B-34: 12.5 dB maximum (oscillation frequency of microwave magnetic field: 57 GHz) (3) Recording medium B-45: 14.5 dB maximum (oscillation frequency of microwave magnetic field: 75 GHz) Further, when the signal / noise ratio of the recording medium B-45 at 1500 kFCI was measured, 12.0 dB was obtained. Therefore, when the DTM recording medium B-30 is used, 4T bits per square inch, and when the recording medium B-34 is used, 3.5T bits per square inch, the recording medium B-45. It has been found that recording / reproduction with a recording density exceeding 4.2 Tbits per square inch can be sufficiently achieved.
  • the high-frequency magnetic field generating element of this example has a spin torque higher than that of the laminated film of the metal nonmagnetic spin conduction layer 3 and the second magnetic flux rectifying layer 13 constituting the spin rectifying element. Since it directly acts on the negative perpendicular magnetic anisotropy 11, the operation at a higher frequency is stable and the oscillation rises quickly. Therefore, writing to a continuous recording medium having a single recording layer or a discrete track medium is facilitated.
  • This embodiment differs from the magnetic head having the same structure as the magnetic head of Embodiment 3 and having the head traveling direction opposite (that is, the configuration in which the counter electrode is disposed on the leading side and the recording magnetic pole is disposed on the trailing side).
  • An example in which an information recording medium is configured using a patterned medium in which bit patterns formed of two kinds of magnetic materials having different isotropic magnetic field strengths are alternately arranged in the track circumferential direction will be described.
  • the entire structure of the information processing apparatus is the same as that shown in FIGS. 4A and 4B, and the entire structure of the magnetic head has the structure shown in FIG. However, even if the head running direction shown in FIG. 14 was reversed left and right, there was no significant difference in the signal / noise ratio obtained.
  • FIG. 24 is a diagram showing the configuration of the recording head unit of the present embodiment.
  • the configurations and functions of the main magnetic pole 5, the counter magnetic pole 6, the magnetic flux rectifying layer 8, the second magnetic flux rectifying layer 13, and the high frequency magnetic field generating element 201 are substantially the same as those in FIG.
  • the stacking order of the magnetization rotator layer 2 and the negative perpendicular magnetic anisotropy layer 11 is exactly opposite to that in FIG.
  • the lower recording layer 58 and the first upper recording layer 56 are continuously formed on the substrate 19 by sputtering, and then the length in the track direction is 9 nm and the down track direction is 5 nm by nanoimprint technology.
  • the magnetic pattern was prepared so as to be arranged with a track pitch of 12.5 nm and a bit pitch of 8.0 nm.
  • every second upper recording layer 56 was removed by nanoimprint technology to form a second upper recording layer 57.
  • the lower recording layer 58 has a gas anisotropic magnetic field of 4.8 MA / m (60 kOe) and a film thickness of 6 nm-CoPt (L10), and the first upper recording layer 56 has a magnetic anisotropic magnetic field of 1
  • the thickness is 5 nm- (Co / Pt) artificial lattice layer at .2 kA / m (15 kOe) and the second upper recording layer 57 has a thickness of 2.4 kA / m (30 kOe).
  • a 5 nm- (Co / Pt) artificial lattice layer was used.
  • the damping constants ⁇ of the first upper recording layer 56, the second upper recording layer 57, and the lower recording layer 58 were 0.15, 0.20, and 0.05, respectively.
  • the pattern for evaluation was recorded at a head medium relative speed of 20 m / s, a magnetic spacing of 5 nm, and a track pitch of 12.5 nm.
  • a certain track was DC demagnetized, and a pattern was recorded in synchronization with the patterns of the first upper recording layer 56 and the second upper recording layer 57.
  • the polarity of the recording magnetic field generated from the main magnetic pole 5 was changed every 16 nm. This recording operation was performed by changing the oscillation frequency of the microwave magnetic field, and the high frequency excitation current that maximized the reproduction output was obtained.
  • the optimum oscillation frequency for the first upper recording layer 56 was 27 GHz (hereinafter referred to as I 1 ), and the optimum oscillation frequency for the second upper recording layer 57 was 52 GHz (hereinafter referred to as I 2 ).
  • the high-frequency excitation current value is recorded with intensity modulation between I 1 and I 2 , and this is further recorded with a shield interval of 16 nm.
  • the GMR head was used for reproduction.
  • the signal / noise ratio at 1560 kFCI was measured, a maximum of 13.0 dB was obtained, and it was found that recording / reproduction with a recording density exceeding 6 Tbits per square inch was sufficiently achievable.
  • a high frequency excitation current value that maximizes the signal / noise ratio is stored in the memory 111, a register in the processor, or the like, and a current amplifier is connected based on the stored value.
  • the high frequency excitation current values I 1 and I 2 corresponding to the type of track are stored in the memory 111, and the test pattern recording operation is performed on a predetermined area (such as a management area) of the recording medium when the drive is turned on.
  • the optimum excitation current value may be determined by modulating the excitation current values I 1 and I 2 and reproducing the test pattern.
  • the first upper recording layer 56 or the second upper recording layer 57 may be independently recorded with the high frequency excitation current value I 1 or I 2 . When the other recording state is known, the error correction capability during reproduction is improved.
  • FIG. 25 is a cross-sectional view of the recording head portion of this embodiment as viewed from the track circumferential direction.
  • the configuration of the recording head unit of the present embodiment is the same as that of the second embodiment.
  • FIG. 25 shows a cross-sectional view of the magnetization rotator layer 2.
  • a high frequency magnetic field detector 203 monitors the oscillation state of the high frequency magnetic field generating element 201 during a recording operation, and has the same structure as the high frequency magnetic field detector 202 on the right side of FIG.
  • the length of the high frequency magnetic field generating element 201 in the longitudinal direction is 21 nm.
  • a recording medium having a structure in which three tracks having different magnetic anisotropic magnetic fields are arranged in the track width direction is used as the recording medium 7.
  • the three tracks were formed by continuously forming the lower recording layer 58 and the first upper recording layer 65 on the substrate 19 by sputtering, and then using the nanoimprint technique in the same manner as described in Example 5, to remove unnecessary upper recording layer material.
  • the tracks belonging to the first upper recording layer, the tracks belonging to the second upper recording layer, and the tracks belonging to the third upper recording layer were sequentially formed while being sequentially removed for each track.
  • the formed tracks have a track width of 4.5 nm, a pitch between adjacent tracks of 6 nm, and a track pitch of 18 tracks having one cycle from a track belonging to the first upper recording layer to a track belonging to the third upper recording layer. 0.0 nm.
  • the materials constituting each recording layer are as follows.
  • Lower recording layer 58 CoPt (L10) having a magnetic anisotropic magnetic field of 4.8 MA / m (60 kOe) and a film thickness of 6 nm
  • First upper recording layer 65 (Co / Pt) artificial lattice layer having a magnetic anisotropy field of 1.2 kA / m (15 kOe) and a thickness of 5 nm.
  • Second upper recording layer 66 magnetic anisotropy Magnetic field of 2.4 kA / m (30 kOe), film thickness of 5 nm (Co / Pt) artificial lattice layer and third upper recording layer 67: magnetic anisotropy magnetic field of 3.6 kA / m (45 kOe), film thickness (Co / Pt) artificial lattice layer having a thickness of 5 nm
  • the damping constants ⁇ of the first upper recording layer 65, the second upper recording layer 66, the third upper recording layer 67, and the lower recording layer 58 are each 0. It was 15, 0.20, 0.21 and 0.05.
  • First upper recording layer 27 GHz (hereinafter referred to as I 1 )
  • the first upper recording layer 56 or the second upper recording layer 57 may be independently recorded with the high frequency excitation current value I 1 or I 2 .
  • the optimum excitation current values of I 1 to I 3 may be stored in the information reproducing apparatus to control the excitation current value, as in the fifth embodiment, and a trial writing sequence is executed when the power is turned on. This may be the same as in the fifth embodiment.
  • the length of the magnetization high speed rotator in the track width direction can be increased, so that the curvature of the magnetic field distribution created by the magnetization rotator is relatively small with respect to the width of one discrete track. Get smaller. Therefore, steep magnetization transitions (granular continuous media, discrete track media) and reduction of write errors (bit pattern media) can be expected, and an improvement in track density can also be expected. Further, when the same structure is provided in the head traveling direction (when the interval between the main magnetic pole and the counter magnetic pole is increased), an improvement in linear recording density can be expected.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Magnetic Heads (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)
  • Hall/Mr Elements (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

 マイクロ波アシスト記録において、記録媒体上に良好な記録磁区を形成することにより高密度情報記録を行う。  マイクロ波を発生させて記録媒体を磁気共鳴状態とし、情報を記録する。記録媒体7は磁気異方性磁界の異なる部分17,18で構成され、マイクロ波の周波数は磁気異方性の小さい部分17を共鳴状態とする周波数を用いて記録する。情報記録装置における記録密度が増大できると同時に信頼性をも向上でき、結果としてコストを低減することが可能となる。

Description

マイクロ波アシスト記録用磁気ヘッド及びマイクロ波アシスト記録装置
 本発明は、磁気記録媒体に対して、高周波磁界(以下、マイクロ波と称する)を照射して磁気共鳴を励起し、該記録媒体の磁化反転を誘導、情報を記録する機能を有する情報記録装置に関するものである。
 磁気記録において記録密度を高めるためには記録ビットのサイズを低減することが必要であるが、微小な記録ビットを安定的に記録媒体に保持するためには異方性磁界の大きな(あるいは保磁力の大きな)磁性材料を用いて記録媒体を構成する必要がある。異方性磁界の大きな記録媒体に記録動作を行うためにはそれだけ強い記録磁界を用いて記録を行う必要があるが、将来的には記録ヘッドの記録磁界強度は不足すると言われている。そこで、マイクロ波アシスト記録や熱アシスト記録など、記録を行う時のみ一時的に媒体の異方性磁界を低減して記録を行う記録方式が検討されている。
 マイクロ波アシスト記録では、強力なマイクロ波帯の高周波磁界をナノメートルオーダーの領域に照射して記録媒体を局所的に励起、磁化反転磁界を低減して情報を記録する。磁気共鳴を利用するため、媒体異方性磁界に比例する周波数のマイクロ波を用いないと、大きな磁化反転磁界の低減効果は得られない。
 特開平7-244801号公報には、高周波磁界により磁気記録媒体をジュール加熱あるいは磁気共鳴加熱し、媒体保磁力を局所的に低減することにより、情報を記録する技術が開示されている。また、米国特許第7,256,955号明細書には、垂直記録ヘッド駆動電流と高周波電流を重畳した磁界を記録媒体に印加して、高周波磁界を磁気記録媒体に誘導、記録媒体を局所的に磁気共鳴状態にし、磁化反転磁界を低減して情報を記録する技術が開示されている。また、特開2007-299460号公報は、主磁極励磁用の主コイルとは別に、マイクロ波を発生させるための微小な副コイルを磁気ヘッドに設けてマイクロ波アシスト記録を行う技術が開示されている。
 一方、2007年のTMRC(The Magnetic Recording Conference)国際会議の講演予稿、TMR2007-B6には、垂直磁気ヘッドの主磁極に隣接した磁気記録媒体近傍に、スピントルクによって高速回転する磁化回転体を配置してマイクロ波を発生させ、マイクロ波アシスト記録を行う技術が開示されている。
特開平7-244801号公報 米国特許第7,256,955号明細書 特開2007-299460号公報 TMR2007-B6
 次世代の磁気記録方式に対して現状想定されている程度の記録密度(1平方インチあたり2Tビット程度)をマイクロ波アシスト記録で実現するためには、マイクロ波の照射領域の大きさはナノメートルオーダーになる。この程度の領域に強力なマイクロ波を照射するためには、上で説明した従来技術のいずれも性能的に不足である。
 例えば、特開平7-244801号公報に開示された技術においては、空洞共振器を磁気ヘッドスライダに設けてマイクロ波を磁気記録媒体に照射しているが、現状必要なギガヘルツオーダーのマイクロ波を発生する場合、空洞共振器のサイズは数ミリ程度になってしまう。従って、特開平7-244801号公報に開示された発明は、磁気ヘッドスライダへの搭載が困難であり現実的とは言えない。また、米国特許第7,256,955号明細書に記載の発明では、記録ヘッド駆動電流に高周波電流を重畳するため、記録ヘッド磁極部分からの磁界と高周波磁界の方向が一致してしまう。従って、磁気共鳴状態を形成することが困難である。また、特開2007-299460号公報に記載の発明では、ギガヘルツオーダーの交流磁界を発生するために副コイルに対してギガヘルツオーダーの交流電流を供給する必要があるが、そのように高速で動作しかつ十分な電流を供給可能な交流アンプは、現状では存在しない。また、交流磁界の照射領域もナノメートルオーダーに限定できない。
 TMR2007-B6に開示された従来技術においては、強力なマイクロ波をナノメートルオーダーの領域に照射して記録媒体を局所的に磁気共鳴状態にし、磁化反転磁界を低減して情報を記録することが可能であるが、スピントルクにより磁化が回転する磁化回転体が主磁極からの漏れ磁界方向に固定され高周波発振できない。
 本発明は、磁化回転体を用いてマイクロ波を発生する方式のマイクロ波アシスト記録において、記録磁極からの漏れ磁界の影響を低減し安定してマイクロ波を発生可能なマイクロ波アシスト記録を適用した磁気ヘッドないし情報記録装置を実現することを目的とする。
 本発明においては、記録ヘッド部の記録磁極のトレーリング側ないしリーディング側に磁気回路(磁束を環流させるために)を構成するための対向磁極を設け、記録磁極の浮上面端部の対向磁極に面した側に磁束に対する整流作用を持つ膜を設け、当該磁束整流膜と上記対向磁極の浮上面端部との間に、高周波発生部を設けることにより、記録磁極からの漏れ磁界の影響を低減し安定してマイクロ波を発生可能なマイクロ波アシスト記録用のヘッド構造を実現する。
 磁束に対する整流作用を持つ膜としては、例えば、記録磁極の浮上面端部の上記対向磁極面側に突起部を設けることにより実現する。この突起部は記録磁極と一体化していても良いし、記録磁極とは別な磁性体として設けても良い。突起部はリップ部と呼ばれる場合もある。
 上記の高周波発生部は、上記の記録磁極と対向磁極との間に磁化回転体とスピン整流素子とを隣接して配置することにより実現される。磁化回転体とスピン整流素子とは、単一の膜で構成しても良いし、複数の膜を積層して構成しても良い。
 上記突起部を設けることにより、記録磁極から高周波磁界発生部へ流入する磁束のうち膜面に垂直な方向の成分が増大するため、磁化回転体の磁化の回転が記録磁極からの漏洩磁界により阻害される程度が減少する。これにより、従来よりも安定して発振可能な高周波磁界発生部を実現でき、マイクロ波アシスト記録に好適な磁気ヘッドないし情報記録装置を実現できる。
 記録密度が1平方インチあたり2Tビットを超える情報記録装置が実現できると同時に信頼性をも向上でき、結果としてコストを低減することが可能となる。
磁気ヘッドスライダ及び磁気ヘッドの構成例を示す図。 磁気ヘッド部の拡大図。 記録ヘッド部の拡大図。 試作した従来構造の磁気ヘッドを示す図。 シミュレーションモデルの有効磁界の印加方向を示す図。 一方向振動磁界、反時計回り振動磁界、時計回り振動磁界の反転の挙動を示す図。 磁気ディスク装置の全体構成図。 実施例1の記録ヘッド部の構成図(断面図)。 図5に示す記録ヘッドから発生する高周波磁界の特性評価方法を説明するための構成図。 図5の磁気ヘッドより発生する高周波磁界強度の高周波励起電流依存性を示した図。 図5の磁気ヘッドより発生する高周波周波数の高周波励起電流依存性を示した図。 高周波周波数を最適値からずらした場合の反転の状況を調べた図。 kが異なる媒体について、磁化反転に必要な外部磁界強度の高周波周波数依存性を示した図。 最適周波数foptの磁気異方性磁界Hk依存性を示した図。 kの異なる媒体についてHacとHextとを変えて磁化反転の挙動を調べた図。 実施例2の磁気ヘッドスライダ及び磁気ヘッドの構成例を示す図。 実施例2の磁気ヘッドの全体構成図。 実施例2の記録ヘッド部の構成図(断面図)。 実施例2で用いたシミュレーションモデルの概要図。 ダンピング定数αの異なる上部記録層と下部記録層の組合わせについて、磁化反転の挙動を調べた計算機実験結果を示す図。 実施例2で用いたシミュレーションの結果を示す図。 実施例3の記録ヘッド部の構成図(断面図)。 図19の記録ヘッド部を浮上面側から見た図。 図19の記録ヘッドより発生する高周波磁界強度の高周波励起電流依存性を示した図。 図19の記録ヘッドより発生する発生する高周波磁界の周波数の高周波励起電流依存性を示した図。 実施例4の記録ヘッド部の構成図。 実施例5の記録ヘッド部の構成図。 実施例6の記録ヘッド部の構成図。
1…第1の垂直磁気異方性体
2…磁化回転体層
3…金属非磁性スピン伝導層
4…第2の垂直磁気異方性体(スピン注入層)
5…主磁極
6…対向磁極
7…記録媒体
8…リップ
11…負の垂直磁気異方性体
12…金属非磁性スピン散乱体
13…対向磁極側リップ
14…サイドシールド
15…金属非磁性スピン伝導層
16…記録層
17…上部記録層
18…下部記録層
19…基板
25…プラス電極
26…マイナス電極
27…プラス電極
28…マイナス電極
31…反強磁性層
32…固定磁性相
33…CoFeB
35…絶縁層(MgO)
36…CoFeB
37…自由層
41…スピン整流素子
43…回転ガイド層
48…磁束整流膜
56…第1の上部記録層
57…第2の上部記録層
58…下部記録層
65…第1の上部記録層
66…第2の上部記録層
67…第3の上部記録層
101…記録媒体
102…スライダ
103…ロータリアクチュエータ
104…回転軸受け
105…アーム
106…サスペンション
108…配線
109…磁気ヘッド部
110…プロセッサ
111…メモリ
112…チャネルIC
113…ICアンプ
120…基板
121…中間層
122…垂直記録膜
200…記録ヘッド
201…高周波磁界発生素子
202…高周波磁界検出器
203…高周波磁界検出器
205…コイル
206…補助磁極
207…再生センサ
208…下部シールド
209…絶縁膜
210…上部シールド
 以下、図1Aから図3を用いて、磁化回転体とスピン整流素子により高周波磁界が発生する原理について説明する。この原理は、後段で説明する各実施例に共通である。
 図1A及び図1Bには、磁化回転体とスピン整流素子及び磁束整流膜を備えたマイクロ波アシスト記録用磁気ヘッドの基本構成を示す。
 図1Aは、磁気ヘッドスライダと磁気記録媒体の相対位置関係を模式的に示した図である。磁気ヘッドスライダ102は、サスペンション106により、記録媒体101に対向して支持される。図1Aにおいて、記録媒体101は紙面右方向に回転し、対向する磁気ヘッドスライダは、記録媒体に対して相対的に紙面左方向に移動しているものとする。従って、図1Aにおいては、磁気ヘッド部109はスライダのトレーリング側に配置されていることになる。磁気ヘッド部109の各構成要素の駆動電流は配線108によって給電され、端子110によって各構成要素に供給される。
 図1Bは、図1Aに示された磁気ヘッド部109の拡大図を示す。磁気ヘッド109は、記録ヘッド部と再生ヘッド部により構成されており、記録ヘッド部は、補助磁極206、主磁極5と対向磁極6との間に配置された高周波磁界発生素子201、主磁極を励磁するコイル205等により構成される。再生ヘッド部は、下部シールド208と上部シールド210の間に配置された再生センサ207等により構成される。補助磁極206と上部シールド210は兼用される場合もある。図示されてはいないが、コイルの励磁電流や再生センサの駆動電流及び高周波磁界発生素子への印加電流は、各々の構成要素毎に設けられた電流供給端子により供給される。
 図1Bに示すように、対向磁極6は図面上方にて主磁極5の方へ延び、互いに磁気的な回路を構成している。ただし、図面上方においては電気的にはほぼ絶縁されているものとする。磁気的な回路は、磁力線が閉路を形成するものであり、磁性体のみで形成されている必要はない。また、主磁極5の対向磁極6と反対側に補助磁極等を配置し、磁気回路を形成してもよい。この場合には、主磁極5と補助磁極との間は電気的に絶縁されている必要はない。主磁極5と対向磁極6には、電極又は電極に電気的に接触する手段が備わっており、主磁極5側から対向磁極6側、あるいはその逆の高周波励起電流が磁化回転体層を通して流せるように構成されている。
 図1Cは、図1Bに示された記録ヘッド部を更に拡大した図である。主磁極5の浮上面端部のトレーリング側に磁束整流膜48が形成されており、この磁束整流膜48と対向磁極6との間に高周波磁界発生素子201が形成されている。主磁極5と対向磁極6の間には、図に示した黒の矢印の向きに定常電流が流れており、ヘッドの相対移動方向は白抜き矢印で示される方向である。磁気記録媒体7としては、基板120上に中間層121を介して垂直記録膜122を積層した媒体を使用した。
 高周波磁界発生素子201は、回転ガイド層43として第1の垂直磁気異方性層、磁化回転層2、スピン整流素子41として磁化回転層2と接触する面に金属非磁性スピン導電層を有する第2の垂直磁気異方性層が、主磁極5と対向磁極6の間に横方向に積層された構造を有している。第1及び第2の垂直磁気異方性層の磁化の向きは、図に示した矢印の向き(膜面に垂直方向)のように互いに逆方向を向いている。磁化回転層2の自発磁化の向きは、回転ガイド層43の作用で当該回転ガイド層43の自発磁化の向きと概ね平行で膜面内に垂直な方向にある。垂直磁気異方性層を負の垂直磁気異方性を持つ材料で構成しても良い。負の垂直磁気異方性については、実施例3で詳述する。
 このような構造の積層膜に主磁極5から対向磁極6の向きに電流を流した場合、電子は対向磁極6から各層を経由して主磁極5まで移動する。この際、スピン整流素子41は、電子に対するスピンの整流素子として作用し、右向きにスピンが揃った電子を左側の磁化回転層2に供給する。スピン整流素子41から磁化回転層2に供給される電子は、スピントルクを磁化回転層2に及ぼし、磁化回転層2の磁化を右向きに向けようと作用する(作用1)。一方、磁化回転層2には、あらかじめ回転ガイド層43より左に向けようとする作用(作用2)が働いている。また、主磁極5からの漏洩磁界も磁化回転層2の磁化をその向きに向けようと作用する(作用3)。磁化回転層2の自発磁化の向きは、作用1、作用2、作用3のバランスで決定されるが、作用2と作用3とで決定される方向に復元するようにトルクが発生し、膜面内で高速回転する。その結果、直流電流にて交流磁界が発生する(以下、高周波励起電流と呼ぶ)。発生する交流磁界は、作用1、作用2、作用3が互いに打ち消しあって、磁化回転層2の向きが、膜面内にあるときに最大となる。スピン整流素子41において磁化回転層2と接触する面に金属非磁性スピン導電層を設けたのは、磁性体同士が直接接触して相互作用をするのを避け、スピン(電子)のみを流す為である。第2の垂直磁気異方性層は、対向磁極6から流入する電子の中から、その磁化方向のスピンだけが取り出せる状態とすることができる。
 本構成の高周波磁界発生素子201は、主磁極5からの漏洩磁界の極性によって、作用3の方向が反転する。このため、発生する交流磁界強度が主磁極5からの漏洩磁界の極性によって変化する欠点がある。使用に当たっては、電流の大きさを変えて極性の影響を受けないポイントを求める必要がある。また、高周波磁界周波数は、電流に比例する為、記録する媒体の共鳴周波数を合わせてやる必要がある。磁束整流層48(リップ)は、主磁極5からの漏洩磁界の向きを整え、磁化回転層2の膜面に平行な磁界成分ができるだけ少なくなるように設計されている。磁化回転層2の膜面に平行な磁界成分があると、磁化回転層2の自発磁化が当該方向に固定されてしまい、高周波発振ができない。電流を逆向きに流した場合には、作用1の向きが逆転し作用2の方向と一致してしまう為、磁化回転層2の膜面に平行な自発磁化成分が生じないので、高周波発振ができない。
 磁束整流層48(リップ)の磁化回転層2側の表面に、別の金属非磁性スピン導電層を設けると、主磁極5からの漏洩磁界の極性の影響を減じることが可能となる。この際、磁束整流層48は、電子に対するスピンの整流素子としても作用し、主磁極5の磁化方向にスピンが揃った電子を右側の磁化回転層2又は回転ガイド層43から奪い取り、磁化回転層2の磁化を主磁極5の磁化と逆向きに向けようとするスピントルクが作用する(作用4)。図1Cに示す向きに電流を流す場合には、前記作用3と作用4は逆向きであり、磁化回転体への主磁極からの磁界の影響を抑制する向きにスピントルクが働くように構成できる。
 比較のため、磁束整流膜8のない従来構造のヘッドを試作し特性を調査した。試作した従来構造の磁気ヘッドを図1Dに示す。3D磁界解析ソフトを用いて計算すると、磁化回転体層2には、約0.1MA/mの図面上下方向の磁界が印加されることが分かっている。スピンスタンドを用い、磁気スペーシング5nm、トラックピッチ20nmとして磁気記録を行い、さらにこれをシールド間隔20nmのGMRヘッドにより再生したが、高周波励起電流の大きさや向きを変化させても、媒体を変えても再生出力が得られなかった。また、実際にマイクロ波磁界が発生しているかどうかを確認するため、高周波磁界発生素子201を挟んで記録媒体7の反対側に高周波磁界検出器203を配置してマイクロ波磁界の強度をモニタしたが、高周波出力は得られなかった。これは、磁化回転体層2の磁化が主磁極5の漏れ磁界により、当該漏れ磁界方向に磁化してしまい、高周波発振していないと考えられる。
 ここで、シミュレーションを用いて媒体の磁気共鳴がアシストの原因であることを検証する。一軸磁気異方性有する磁性粒子が一斉回転モデルにしたがって反転するものと考え、その磁化の挙動を次のLLG(Landau-Lifschitz-Gilbert)方程式を用いて計算した。
Figure JPOXMLDOC01-appb-M000001
 γはジャイロ磁気定数、αはダンピング定数である。有効磁界Hは、磁気異方性磁界Ha(=Hkcosθm、θmは磁化と磁化容易軸のなす角)、静磁界H、外部磁界Hext及び、高周波磁界Hacの4成分の和で構成される。実際の記録ヘッドにおいては、Hextが記録磁極からの記録磁界、Hacが高周波発生器からの交流磁界に相当する。図2に有効磁界の印加方向を示す。鉛直方向をz方向として、Haを印加した。Hextは、初期磁化方向と反対で、鉛直方向からθh傾いた方向に印加した。磁化は概ね+z方向から、-z方向に向かってz軸を軸とする回転運動をしながら反転する。図2では、高周波磁界Hacの印加方向は水平方向としたが、一方向への振動磁界は、次式に示すように反時計回り成分と時計回り成分とに分解可能である。
Figure JPOXMLDOC01-appb-M000002
 このうち時計回り成分は、磁化の才差運動と逆向きの回転であるため磁気共鳴の原理から、全く共鳴に関与しないと考えられる。磁気共鳴がアシストの原因であるとすれば、反時計回り振動磁界、時計回り振動磁界とでアシスト効果に大きな違いが発生するものと予想される。
 図3は、一方向振動磁界、反時計回り振動磁界、時計回り振動磁界に対して、HacとHextとを変えて反転の状況を調べたものである。図で、白い四角は3ns経過するまでに磁化反転が完了した領域、格子マークは部分反転した領域、黒い四角は磁化反転していない領域を示している。図より、時計回り振動磁界成分ではStoner-Wohlfarth磁界(孤立磁性粒子を磁化反転に至らしめる磁界。磁化容易軸と印加磁界の角度で変化し、ここでは、Hext/Hk=0.6)まで反転が全くなく、確かに、磁気共鳴がアシストの原因であることが確認された。
 なお、上で説明した図1Cの記録ヘッド構造では、回転ガイド層と磁化回転層とスピン整流素子が単層膜で実現されているが、複数の積層膜で構成しても構わない。或いは、高周波磁界発生素子201の中に離間して配置された層の全体の作用として磁化回転層とスピン整流素子としての機能が実現されていても構わない。更に、上の説明では、磁束整流膜48は、主磁極とは別に設けられた層であるとして説明したが、主磁極に付随する突出部として構成されていても良い。
 以上、本実施例の構成により、安定的に発振が可能なマイクロ波アシスト記録用磁気ヘッドが実現可能となる。
 本実施例では、上で説明した磁束整流膜48を有するマイクロ波アシスト記録用磁気ヘッドと人工格子膜を備えた磁気記録媒体を組み合わせて情報記録装置を構成した例について説明する。
 図4(A)及び図4(B)は、本実施例の情報記録装置の全体構成を示す模式図である。図4(A)が上面図、図4(B)はそのA-A′での断面図である。記録媒体101は回転軸受け104に固定され、モータ100により回転する。図4では3枚の磁気ディスク、6本の磁気ヘッドを搭載した例を用いて説明したが、磁気ディスクは1枚以上、磁気ヘッドは1本以上あれば良い。記録媒体101は、円盤状をしており、その両面に記録層を形成している。スライダ102は、回転する記録媒体面上を略半径方向移動し、リーディング側ないしトレーリング側先端部に磁気ヘッドを有する。サスペンション106は、アーム105を介してロータリアクチュエータ103に支持される。サスペンション106は、スライダ102を記録媒体101に所定の荷重で押しつけるあるいは引き離そうとする機能を有する。磁気ヘッドの各構成要素を駆動するための電流はICアンプ113から配線108を介して供給される。記録ヘッド部に供給される記録信号や再生ヘッド部から検出される再生信号の処理は、図4(B)に示されたリードライト用のチャネルIC112により実行される。また、情報処理装置全体の制御動作は、メモリ111に格納されたディスクコントロール用プログラムをプロセッサ110が実行することにより実現される。従って、本実施例の場合には、プロセッサ110とメモリ111とがいわゆるディスクコントローラを構成する。
 図5は、本実施例の情報処理装置の記録ヘッド部の構造を示す模式図である。磁気ヘッドスライダや磁気ヘッドの全体構成については、図1Aや図1Bに示した構成と同様であるため、説明は省略する。
 本実施例の高周波磁界発生素子201は、金属非磁性スピン伝導層15、第1の垂直磁気異方性体1、磁化回転体層2、金属非磁性スピン伝導層3、第2の垂直磁気異方性体4(スピン注入層)の各層が横に積層された構成を有し、これらの積層膜が主磁極5と対向磁極6の間に配置された構成を有している。図1Cに示す構成においては、スピン整流素子41が、金属非磁性スピン伝導層3と第2の垂直磁気異方性体4の積層構造、回転ガイド層43が第1の垂直磁気異方性体1、磁束整流膜48が磁束整流層8(リップ)に対応している。なお、高周波磁界発生素子201の形状は、図面左右方向に伸びる柱状構造で、その断面はABS面に沿った方向に長い長方形をしている。長方形形状とすることにより、形状異方性が生じる為、発振状態にない時に磁化回転体層2の磁化がABS面に平行となり、漏洩磁界による不要な磁化反転等を防ぐことができる。
 この長方形のABS面に沿った方向(長手方向あるいはリーディング側からトレーリング側に向かう方向)の長さは、記録トラック幅を決定する重要な因子であり、本実施例では15nmとした。マイクロ波アシスト記録においては、主磁極5からの記録磁界と磁化回転体層2からの高周波磁界とが揃わないと記録できないような磁気異方性の大きい記録媒体を用いることになる為、主磁極5の幅と厚さ(ヘッド走行方向の長さ)は、記録磁界が大きく取れるよう大きめに設定することが可能である。本実施例では、幅80nmと厚さ100nmとすることで、約0.9MA/mの記録磁界が得られている。磁束整流層8は、主磁極5と飽和磁化が同じ又は大きな材料を用い、主磁極5からの磁界が磁化回転体層2の層方向に垂直となるよう3D磁界解析ソフトを用いて磁束整流層8の厚さ設計を行った。
 本実施例における磁束整流層8の厚さは、11nmであったが、この値は、前述の長方形の形状、対向磁極までの距離と状況、用いる媒体の状況、図面上方における磁気回路の状況に依存する。垂直磁気異方性体1は、六方晶CoCrPtの001面が図中の左右方向となるようにし、磁気異方性の大きさは、5.1×105J/m3のものを用いた。主磁極5と対向磁極6の材料は、飽和磁化が大きく、結晶磁気異方性がほとんどないCoFe合金とした。
 磁化回転体層2は、飽和磁化が大きく、結晶磁気異方性がほとんどない厚さ20nmのCoFe合金とした。磁化回転体層2では、概ね層に沿った面内で磁化が高速回転し、ABS面に出現する磁極からの漏れ磁界が、高周波磁界として作用する。磁化回転体層2の磁化回転駆動力源は、金属非磁性スピン伝導層3を介して第2の垂直磁気異方性体4(スピン注入層)より流入するスピントルクである。また、本実施例では、磁束整流層8(リップ)と第1の垂直磁気異方性体1との界面に、金属非磁性スピン導電層15を設けているので、主磁極5からの漏洩磁界の極性の影響を減じることが可能となる。これは、磁束整流層8が、電子に対するスピンの整流素子としても作用し、主磁極5の磁化方向にスピンが揃った電子を右側の第1の垂直磁気異方性体1から奪い取り、磁化回転層2の磁化を主磁極5の磁化と逆向きに向けようとするスピントルクが作用するためである。図5に示す向きに電流を流すことにより、磁化回転体2への主磁極からの磁界の影響を抑制する向きにスピントルクが働くように構成できる。これらのスピントルクの作用を得るには、主磁極5側から対向磁極6側へ高周波励起電流を流す必要がある。高周波励起電流の向きと大きさは、ディスクコントローラがICアンプ113の極性とゲインを切り替えることにより制御される。スピントルク作用は、高周波励起電流(電子流)が大きくなるほど大きくなり、また、金属非磁性スピン伝導層3や金属非磁性スピン伝導層15と隣接する層との間に分極率の大きなCoFeB層を1nm程度挿入すると大きくなる。
 金属非磁性スピン伝導層15及び金属非磁性スピン伝導層3には、2nm-Ruを用いたが、スピン伝導性の高い金属非磁性体であるCu等を用いても良い。
 第2の垂直磁気異方性体4としては、垂直磁気異方性が2.4×106J/m3のL11型CoPt50を用いた。第1の垂直磁気異方性体1及び、第2の垂直磁気異方性体4の磁化は、高温にて、まず強い磁界を加えて第2の垂直磁気異方性体4を磁化し、続いて最初の磁界より弱い磁界を逆方向に印加して第1の垂直磁気異方性体1を磁化した。第2の垂直磁気異方性体4の初期磁化方向は、図面左右方向であればどちらでも良く、有効なスピントルクが得られる電流方向を規定しない。
 記録媒体7としては、基板19上に、以下の構造の記録層を有する記録媒体を作成し、各々本実施例の磁気ヘッドと組み合わせて特性評価を行った。なお、これらの磁性膜は、ターゲット組成の異なるスパッタリングにて真空中で連続形成した。
(1)記録媒体A-30/60
 下部記録層18:磁気異方性磁界が4.8MA/m(60kOe)、膜厚が6nmのFePt-SiOx層、
 上部記録層17:磁気異方性磁界が2.4MA/m(30kOe)、膜厚が5nmのCoCrPt-SiOx層、
(2)記録媒体A-60/30
 下部記録層18:磁気異方性磁界が2.4MA/m(30kOe)、膜厚が5nmのCoCrPt-SiOx層、
 上部記録層17:磁気異方性磁界が4.8kA/m(60kOe)、膜厚が6nmのFePt-SiOx層、
(3)記録媒体A-60/60
 単層記録層(上部記録層17と下部記録層18とを合体):磁気異方性磁界が4.8kA/m(60kOe)、膜厚が11nmのFePt-SiOx層、
(4)記録媒体A-30/30
 単層記録層:磁気異方性磁界が2.4kA/m(30kOe)、膜厚が11nmのCoCrPt-SiOx層
 上部記録層17の磁気異方性磁界は小さい方が、より周波数の低い高周波磁界で記録可能と考えられるが、小さすぎると主磁極の磁界で反転してしまう為、好ましくない。
 図6は、図5に示す記録ヘッド部に用いた高周波磁界発生素子の特性を評価するために作成した評価装置の要部を示す模式図である。図5より、主磁主磁極5、磁束整流層8、金属非磁性スピン伝導層15、対向磁極6を取り除き、プラス電極25とマイナス電極26を追加した構造を有する。また、高周波磁界発生素子には、図面上下方向の外部磁界が印加できるようにしてある(図面中、上方を正の向きとする)。高周波磁界発生の検出には通常のTMR素子を用い、プラス電極27、反強磁性層31、固定磁性層32、1nm-CoFeB(33)、1nm-絶縁層(MgO)35、1nm-CoFeB(36)、自由層37を経てマイナス電極28が積層された構造を有している。反強磁性層31には、15nm-IrMn、固定磁性層32には10nm-CoFe、自由層37には10nm-CoFeを用いた。反強磁性層31は、固定磁性層32の磁化が図面の表から裏方向になるよう熱処理をした。
 自由層37の磁化は、図面左右方向を向くように弱い異方性を付与しており、この磁化の延長上に、磁化回転体層2と第1の垂直磁気異方性体1又は金属非磁性スピン伝導層3との界面が来るように設置した。この配置とすることにより、自由層37面に垂直に入る高周波磁界成分が多くなり、高周波領域での感度を高くすることができる。これは、磁気モーメントを持つ自由層37の磁化が、ナノ秒以下の短時間では、磁界と垂直方向に動く効果に起因している。
 図7及び図8に評価結果を示した。図7は、図6に示す高周波磁界発生素子より発生する高周波磁界強度の高周波励起電流依存性を示したものである。外部磁界が-0.4MA/m(図面下向きの磁界)の場合には、他の場合と比べて大きな高周波磁界強度が出ているが、高周波励起電流が1単位を超えると発振が不安定となっている。外部磁界がない場合には、高周波励起電流の増加とともに高周波磁界強度増加しており、高周波励起電流が1単位を超えると減少し、さらに大きな高周波励起電流では発振が不安定となっている。外部磁界が0.4MA/m(図面上向きの磁界)の場合には、高周波励起電流がある一定レベルに達するまでは、高周波磁界が出力されない。一旦高周波磁界が発生すると高周波励起電流の増加とともに急速に高周波磁界強度が増加するが、他の場合の最大レベルに達する前に発振が不安定となっている。これらの現象は、第2の垂直磁気異方性体4から注入された下向きのスピントルクと外部磁界、第1の垂直磁気異方性体1からの交換磁界のベクトル和の向きによって簡単に理解できる。ベクトル和がゼロのときに高周波磁界強度は最大値を取り、このときの磁化回転体層2の磁化は、当該層内で回転する。
 図8は、図6に示す高周波磁界発生素子より発生する高周波磁界の周波数の高周波励起電流依存性を示したものである。外部磁界に依らず周波数は、高周波励起電流にのみ依存していることがわかる。高周波励起電流が強い場合には、発振が不安定となっているため、最大でも60GHzを超えることはなかった。これは、磁化回転体層2の磁化回転面が第1の垂直磁気異方性体1の磁化と反対方向になると、第1の垂直磁気異方性体1内のひずみが大きくなりすぎて、交換磁界が十分伝えられなくなる為と考えられる。
 以上の結果より、図5に示す高周波磁界発生素子を用いる場合には、主磁極の極性によって最大高周波出力となる高周波励起電流値が異なる為、最大高周波出力を得ようとして高周波励起電流を変化させると高周波周波数が変わってしまい、媒体の磁気共鳴が得られない可能性があることが理解できる。従って、主磁極の極性によって高周波周波数と高周波出力が変化しない高周波励起電流値として、主磁極の極性によって決まる最適高周波励起電流値の平均値にて発振せざるを得ない。この場合、高周波出力は最大出力の90%以下となる。
 図5の構成にて、スピンスタンドを用い、ヘッド媒体相対速度20m/s、磁気スペーシング5nm、トラックピッチ20nmとして磁気記録を行い、さらにこれをシールド間隔20nmのGMRヘッドにより再生した。高周波励起電流を変化させて発振周波数を変え1000kFCIでの信号/ノイズ比を測定したところ、記録媒体A-30/60で最大12.0dBが得られ、かろうじて1平方インチあたり2Tビットを超える記録密度の記録再生が達成されていることがわかった。このときの高周波周波数は51GHzであった。最大信号/ノイズ比が得られる高周波励起電流値より大きな、又は、小さな高周波励起電流で記録すると再生信号は、信号の平均値の正側と負側で非対称となった。図7に示されるような主磁極の極性の違いによって高周波磁界強度が異なるためと考えられる。金属非磁性スピン伝導層15と隣接する磁束整流層8及び第1の垂直磁気異方性体1層との間に分極率の大きなCoFeB層を1nm挿入した高周波磁界発生素子201を用いると、前記非対称性が小さくなった。これは、金属非磁性スピン伝導層15が媒介するスピントルクが強化され、主磁極5からの漏洩磁界の影響を減じる作用が大きくなったためと考えられる。記録媒体A-30/60において、上部記録層17の磁気異方性磁界を2.0MA/m及び2.8MA/mに替えたものを用いた場合には、信号/ノイズ比の最大値はそれぞれ、11.0dB及び10.0dBとなり、1平方インチあたり2Tビットを超える記録密度の記録再生は達成されない。これは、高周波周波数が書き込み最適値からずれる為、良好な記録(反転)が得られていないと考えられる。
 本構成例で作製した記録ヘッド部200では、高周波周波数が51GHzからはずれると再生信号の非対称性が顕著となるため、組み合わせて用いる記録媒体7における上部記録層17の磁気異方性磁界は、2.4MA/m程度に固定し、下部記録層18の磁気異方性を大きくすることによって、より高い記録密度が達成可能となる。記録媒体A-30/30,A-60/60,A-60/30を用いた場合には、それぞれ最大で13.0dB,4.0dB,8.1dBが得られた。記録媒体A-30/30は、記録再生特性としては問題が無いが、磁化曲線の磁界掃引速度依存性が大きく、記録磁化が熱減磁する可能性がある。記録媒体A-60/60は、書込みが十分行われていない。主磁極からの磁界や高周波磁界強度と周波数が共鳴条件に達していないと考えられる。記録媒体A-60/30は、下部記録層18の磁気異方性が上部記録層17の磁気異方性より小さくなっており、主磁極5や磁化回転体層2から離れている下部記録層18に十分な磁界が届いていないと考えられる。
 以上の通り、本実施例の磁気ヘッドは、組み合わせて用いる記録媒体の記録層が2層以上で上側の磁性層の異方性磁界が、記録ヘッド部200の最適発振条件に一致する磁気共鳴周波数を有するように使うと、再生信号の非対称性が顕著にならず、記録密度を高めることができることができる。
 図9は、Hk=2.4MA/m(30kOe)の媒体について、HacとHextとを変えて反転の状況を調べた計算機実験の結果である。アシスト磁界として用いるマイクロ波磁界の周波数は、最適値(f=50GHz)の前後30GHz、70GHzと変えて計算を行った。高周波周波数が最適値の時には、アシスト効果が最大で、高周波磁界強度がHkの10%以上無い場合に、外部磁界Hextが大きくても磁化反転が起こらないことを示している。高周波周波数が最適値より小さい場合には、アシスト効果が小さくなっており、最適値に見られた高周波磁界強度に対する臨界特性も見られない。しかしながら、反転領域でのスイッチング時間は、書込み条件が変わっても0.3-0.8nsと安定していることが分かった。このことは、高周波周波数を最適値より若干小さくすることにより、アシスト効果は多少犠牲となるが、書き残しや書きにじみの少ない記録が行える可能性を示している。逆に、高周波周波数が最適値より大きい場合には、アシスト効果が大幅に減少している。
 図10は、Hkが1.2MA/m(30kOe)と3.6MA/m(45kOe)の媒体(媒体飽和磁化は1.1T)について、磁化反転に必要な外部磁界Hextの高周波周波数依存性を示したものである。必要な外部磁界は、最小値となる最適周波数foptが存在し、周波数が最適値からずれると緩やかに増加する。
 図11は、媒体飽和磁化が0.38T(300emu/cc)、1.1T(900emu/cc)、1.9T(1500emu/cc)のものについて、foptのHk依存性を示したものである(θh=30deg.)。foptはHkにほぼ比例している。ただし、その大きさは、外部磁界H=Hkでの磁気共鳴振動数
Figure JPOXMLDOC01-appb-M000003
の70%程度の値となっている。これは、θmを磁化と磁化容易軸のなす角とするとき、異方性磁界の大きさがHkcosθmで変化することに対応している。すなわち、磁気共鳴によるアシストエネルギーは、磁化が磁化容易軸方向からある程度離れたとき、主に供給されていることを示唆している。磁性粒子の飽和磁化が変わっても大きな変化は見られないが、飽和磁化が大きいほうが若干高い周波数が必要である。これは、静磁界の影響で、磁化が安定化するためと考えられる。
 図12は、Hkの異なる媒体について最適周波数における、HacとHextとを変えて反転の状況を調べたものである。どちらの媒体においても、規格化高周波磁界強度Hac/Hkが0.1より小さい場合には、ほとんど磁化が反転しておらず、アシスト効果(磁化反転するHextがStoner-Wohlfarth磁界からの低下すること)が見られていない。Hac/Hkが0.1を超えるとアシスト効果が見られ、外部磁界がHkの3割程度での反転が可能となっている。高周波磁界強度が大きくなると必要な外部磁界強度はさらに小さくなり、Hac/Hkが0.3程度で外部磁界が不要となる。ただし、Hac/Hkが0.3を超えると、高周波磁界で磁化が大きく揺動しているので、磁化の再反転現象等が発生して安定な書込み(反転)は望めなくなる。
 以上のように、磁気記録媒体として磁気異方性磁界の異なる複数の磁性層を積層させた構造の記録媒体を使用し、磁気ヘッドから発生する交流磁界の発振周波数を、記録媒体の磁気異方性磁界の小さい方の磁性層に合わせて最大効率領域に調整することにより、より少ないエネルギー消費で記録を実現することが可能となる。
 なお、図12より、最適周波数において、反転に必要な高周波磁界強度が、外部磁界強度によらず一定であることが分かる。従って、実際の記録過程において、反転可能状態から抜け出すときに高周波磁界強度が大きく変化する方がよりシャープな磁化反転境界を媒体上に形成できる可能性を示唆している。すなわち、まず最初に高周波磁界強度が大きくなり、続いて主磁極からの磁界が大きくなって記録し、直後に高周波磁界強度が減衰する場合である。このことは、図1を用いて示した実施例のヘッド走行方向とは、逆方向にヘッドを移動させるか、又は、図1Bの構造を左右逆転させた方が、より好ましいことを示している。このことの検証は、実施例2で行うこととする。
 本実施例では、実施例1で説明した磁気ヘッドとは磁気ヘッド走行方向(記録媒体に対する相対移動方向)を逆にした構造の情報記録装置について説明する。
 最初に、図13(A)(B)を用いて磁気ヘッド走行方向と記録媒体との配置関係について説明する。磁気ヘッドの磁気ヘッドスライダへの載置形態は2種類あり、1つは図13(A)に示すトレーリング側への配置、もう1つが図13(B)に示すリーディング側への配置である。ここで、トレーリング側、リーディング側は、記録媒体に対する磁気ヘッドスライダの相対的な移動方向によって決まり、記録媒体の回転方向が図13(A)ないし図13(B)に示した向き(図中の矢印の方向)とは逆であれば、図13(A)がリーディング側への載置、図13(B)がトレーリング側への載置となる。なお原理的には、スピンドルモータの極性を逆にして記録媒体を逆向きに回転させれば、トレーリング側とリーディング側の関係を逆にすることが可能であるが、回転数を正確に制御する必要上、スピンドルモータの極性を変えるのは非現実的である。
 次に、実施例1とは磁気ヘッド走行方向が逆になりうる磁気ヘッドの構成例を図14(A)~(D)に示す。図14において、トレーリング側、リーディング側の定義は、図13(A)(B)に示されるように、紙面右から左側に向かう向きであるものとする。
 図14(A)には、再生ヘッド部をトレーリング側に配置し、記録ヘッド部をリーディング側に配置したマイクロ波アシスト記録用磁気ヘッドの構成例を示す。各引出番号に対応する構成要素は図1Bと共通であるので説明は省略するが、図14(A)に示される構成においては、対向磁極6がリーディング側端部に形成され、主磁極5は対向磁極よりはトレーリング側に形成されている。従って、主磁極5と対向磁極6の間に形成された高周波発生器201の積層順序は、紙面上側から見た場合、図5に示す積層順序とは逆になる。
 図14(B)には、本実施例の磁気ヘッドの別の構成例を示す。図14(B)に示す磁気ヘッドにおいては、主磁極5の励磁用コイルが上向きでは無く横向きに巻かれている。本構成の磁気ヘッドの場合、図14(A)の構造に比べて励磁位置がより主磁極浮上面に近いので、図14(A)に比べてより強い磁束を主磁極5から発生させることができる。
 図14(C)には、記録ヘッド部をトレーリング側に配置し、再生ヘッド部をリーディング側に配置したマイクロ波アシスト記録用磁気ヘッドの構成例を示す。図14(C)に示す構成の磁気ヘッドにおいては、主磁極5がトレーリング側最端部に配置され、対向磁極6は主磁極5に対してリーディング側に配置される。図14(C)に示す構造の磁気ヘッドの場合、対向磁極6と再生センサ用シールドを共用しているが、分離しても構わない。高周波発生器201の積層順序は、図5に示す積層順序とは逆になっているのは、図14(A)と同様である。励磁コイルの巻線方向は、図14(A)と同様に上巻きであるが、図14(D)に示すように横巻きにしても良い。なお、図14(A)~(D)に示す構成の記録ヘッド部は、図13(A)(B)のいずれの構造の磁気ヘッドスライダに実装することも可能である。図14(C)(D)においては、対向磁極と補助磁極が兼用されている為、高周波励起電流が高周波磁界発生素子201に流れるようにする目的で、主磁極5との間に電気的絶縁膜209を形成している。
 図15には、本実施例の情報処理装置の記録ヘッド部の構成例を示す。図15に示す記録ヘッド部の構成は、図5の構成と同じものであるが、ヘッド走行方向を媒体に対して左から右へと変えている。図5の構成例と比較しやすくするため、図15では、主磁極5と対向磁極6の配置を図5と一致させて示している。すなわち、本図に示す記録ヘッド部の構成は、図14(A)~(D)に示す磁気ヘッドを紙面裏側から見た構成に相当する。なお、記録ヘッド部の構成自体は実施例1と同じであるため、詳細については説明を省略する。
 また、磁化回転体層2への漏れ磁界を低減して高周波周波数を上げる目的で、主磁極5の対向磁極6と反対側に設けた補助磁極を主磁極5側に少し近づけている。
 記録媒体7としては、いわゆるパターンドメディアを使用した。基板19上にスパッタリングにより連続膜を形成した後、トラック方向の長さが15nmでダウントラック方向が9nmの磁性体パターンをEBマスタリングにより形成した。その後、連続膜をエッチングし、トラック幅方向のピッチ20nm、トラック周方向のピッチ12.5nmで配置されるように、上記の磁性体パターンを形成した。
 また、磁性体パターンを構成する磁性層は、以下に示す上下2層の磁性体を積層した構造とし、上部記録層17として磁気異方性磁界が2.8MA/m(34kOe)の6nm-(Co/Pt)人工格子層、下部記録層18には磁気異方性磁界が4.8MA/m(60kOe)の6nm-FePt層を用いた。強磁性共鳴による吸収線幅の測定の結果、上部記録層17と下部記録層18のダンピング定数αは、それぞれ0.20と0.02であった。磁性体にPtやPdのリッチ領域が接触すると、当該領域に磁化が誘導されて磁化の向きの変化を制動するように働くため、ダンピング定数αを大きくできる。例えば、Pt組成の大きなCoCrPt磁性体では、人工格子構造を用いなくてもダンピング定数αが大きくなっている。
 以上の記録媒体をスピンスタンドにセットし、ヘッド媒体相対速度20m/s、磁気スペーシング5nm、トラックピッチ20nmとして磁気記録を行い、さらにこれをシールド間隔20nmのGMRヘッドにより再生した。このように作成した記録媒体に図15の磁気ヘッドを組み合わせて記録再生特性を測定した。測定は、主磁極と対向磁極間に供給する電流強度を変化させて発振周波数を変え、記録パターンを1000kFCIとして行った。その結果、最大15dBの信号/ノイズ比が得られ、1平方インチあたり2Tビットを超える記録密度の記録再生が十分達成可能であることがわかった。信号/ノイズ比が15dBとなる高周波磁界の周波数は28GHzであった。ヘッド走行方向を右から左へとする構成の場合には、最大13.5dBであった。比較のため、実施例1で使用した記録媒体A-30/60を用いて特性評価を行ったが、その場合の信号/ノイズ比は、最大で13dBであった。上部記録層のダンピング定数が大きな記録媒体を用いた方が、磁化反転速度が速くなり、記録再生特性が向上する。
 本実施例に示した記録媒体と磁気ヘッドの組み合わせにおいては、記録再生特性と記録媒体の回転数との間に顕著な相関は見られなかった。例えば、ヘッド媒体相対速度を40m/sとしても記録再生特性の大きな劣化はみられなかった。しかし、上部記録層17としてダンピング定数が0.05(磁気異方性磁界が2.8MA/m(34kOe)の6nm-CoCrPt層を使用)と小さな磁性層を用いた場合には、信号/ノイズ比がヘッド媒体相対速度に依存する傾向が見られた(ヘッド媒体相対速度40m/sにおけるS/N比が、20m/sの場合に比べて4dB低下)。この理由を調べる為、シミュレーションを用いて更に検討を行った。
 図16は、本シミュレーションで用いたモデルの概要である。主磁極5がリーディング側に、対向磁極6がトレーリング側にそれぞれ配置され、その間に交流磁界発生素子が配置されている。記録ヘッド部の直下には、磁気異方性磁界とダンピング定数がそれぞれHk1、α、Hk2、αの上部記録層17と下部記録層18が積層されている。主磁極5からは記録層の磁化を反転させるための反転磁界(記録磁界)が媒体に漏洩し、交流磁界発生素子からは高周波磁界が媒体に漏洩する。
 図17は、図16のシミュレーションモデルを用い、上部磁性層と下部磁性層の磁気異方性磁界とダンピング定数が以下の4通りの場合について、上下の磁性層全体の磁化の反転強度が高周波磁界強度に依存してどう変化するかマッピングした図である。なお、高周波磁界の発信周波数は、25GHzと固定した。それぞれの図の下には、磁化反転に要した時間(反転時間)も記した。反転時間は、高周波磁界が印加されてから磁化が95%以上反転するまでの時間とした。
(1)媒体1
 上部記録層:Hk=1.2MA/m(15kOe)、ダンピング定数(α上部)=0.02
 下部記録層:Hk=2.4MA/m(30kOe)、ダンピング定数(α下部)=0.02
(2)媒体2
 上部記録層:Hk=1.2MA/m(15kOe)、ダンピング定数(α上部)=0.2
 下部記録層:Hk=2.4MA/m(30kOe)、ダンピング定数(α下部)=0.02
(3)媒体3
 上部記録層:Hk=1.2MA/m(15kOe)、ダンピング定数(α上部)=0.02
 下部記録層:Hk=2.4MA/m(30kOe)、ダンピング定数(α下部)=0.2
(4)媒体4
 上部記録層:Hk=1.2MA/m(15kOe)、ダンピング定数(α上部)=0.2
 下部記録層:Hk=2.4MA/m(30kOe)、ダンピング定数(α下部)=0.2
 図17によれば、(α上部,α下部)が(0.2,0.2)の場合には、反転時間は0.32nsと最も短いが、必要な外部磁界が大きくてアシスト効果が小さい。(α上部,α下部)が(0.02,0.02)の場合には、必要な外部磁界が小さくてアシスト効果が大きいが、反転時間は1.3nsと最も長く、高速の書込みに向かない。(α上部,α下部)が(0.2,0.02)の場合には、必要な外部磁界が小さくてアシスト効果が大きい上に、反転時間が0.49nsと短くなっており、高速の書込みが可能なマイクロ波アシスト記録が実現されている。ダンピング定数αが大きいと磁化が高速に反転するため、上部記録層17のαが大きいと、上部記録層17の磁化が小さい磁界で高速に反転し、これに引きずられる形で下部記録層18の磁化が反転すると考えられる。
 図18は、高周波磁界強度が0.4MA/mで、(α上部,α下部)が(0.2,0.02)の場合の、高周波周波数と外部磁界強度に対する反転状態を調べたものである。上部記録層17の最適高周波周波数において大きな反転必要外部磁界が低下していることが分かる。上部記録層17の磁気異方性磁界は小さい方が、周波数の低い高周波磁界と外部磁界とで記録可能と考えられ、少なくとも主磁極5が記録層中心に作る磁界の半分を超える磁気異方性磁界が必要である。上部記録層17の磁気異方性が適度に小さいと、上部記録層17の磁化の熱揺らぎが大きくなり、アシスト条件となる確率が高くなるため、磁化反転までの時間が短くなると考えられる。
 本実施例の情報処理装置は、実施例1に比べて、次の2つのメリットがある。(1)記録媒体に対して、まず最初に高周波磁界強度が大きくなり、続いて主磁極からの磁界が大きくなって記録し、直後に高周波磁界強度が減衰するので、記録境界がシャープになり良好な磁区が形成できる。(2)記録媒体をパターン化しており、記録密度を高くできる。
 本実施例では、高周波磁界発生素子に含まれる回転ガイド層として、負の垂直磁気異方性体を使用した磁気ヘッドと該磁気ヘッドを搭載した情報記録装置の構成例について説明する。回転ガイド層に負の垂直磁気異方性を有する磁性体を用いることにより、磁化回転体層の自発磁化が膜面内に誘導される為、高周波磁界発生素子の駆動電流が所望の周波数に応じて設定が可能となると伴に、磁化回転層の磁化の回転が安定化し、回転面内方向に主磁極等の外部から漏洩・印加されるピニング磁界成分に抗する耐性が向上する。なお、本実施例の情報処理装置において、磁気ヘッドスライダとサスペンションとの関係は図1Aと同様で、記録ヘッド部と再生ヘッド部を含めた磁気ヘッド全体の構成は図1Bにと同様で、かつ情報処理装置の全体構成としては図4(A)(B)に示す構成と同じであるものとする。すなわち、磁気ヘッドの基本構成としては、対向磁極がトレーリング側最端部に配置され、主磁極が対向磁極よりもリーディング側に配置されているものとする。
 図19には、本実施例の記録ヘッド部の構成を示す。主磁極5の浮上面側端部のトレーリング側に磁束整流層8が形成され、磁束整流層8と対向磁極6の間に高周波磁界発生素子201が形成されている。高周波磁界発生素子201は、金属非磁性スピン伝導層3、磁化回転体層2、負の垂直磁気異方性体層11、金属非磁性スピン散乱体層12により構成されている。また、対向磁極6の浮上面端部のリーディング側には、第2の磁束整流層13が形成されている。金属非磁性スピン散乱体層12は、磁束整流層8からの磁化回転体層2に流入するスピントルクの効果を打消す影響を及ぼす恐れのある第2の磁束整流層13から磁化回転体層2に流入するスピンを散乱する作用がある。あるいは、磁化回転体層2側から磁束整流層13へのスピントルクの流出を防ぐ作用があるとも言える。したがって、金属非磁性スピン散乱体層12を用いると必要なスピントルクを得るための電流を小さくすることができる。金属非磁性スピン散乱体層12としてRuを用いるとこの効果は特に大きくなる。本実施例のように、主磁極5側の磁束整流層8から金属非磁性スピン伝導層3を介して磁化回転体層2にスピントルクを注入する場合には、主磁極5と磁束整流層8の界面に極薄の酸化層や非磁性層を設け磁性体間の交換結合を小さくすることによって、磁束整流層8内の水平磁化成分を大きくすることができるため、磁化回転体層2の動作が安定となる。
 図1Cに示す構成においては、スピン整流素子41が、金属非磁性スピン伝導層3と磁束整流層8(リップ)の積層構造、回転ガイド層43が負の垂直磁気異方性体層11、磁束整流膜48が磁束整流層8に対応している。
 なお、実施例1と同様に、高周波磁界発生素子201の長手方向の長さは、記録トラック幅を決定する重要な因子であるが、本実施例では14nmとした。
 また、実施例1と同様に、主磁極5の幅と厚さ(ヘッド走行方向の長さ)は、記録磁界が大きく取れるよう大きめに設定することが可能であるが、図20には、主磁極5と対向磁極6間に形成された積層膜の構成を浮上面側から見た模式図を示した。本実施例の主磁極5と対向磁極6及び積層膜201のトラック幅方向の関係は、図20に示すように、主磁極5の幅が積層膜201の幅よりも広く、対向磁極6の幅は主磁極5の幅よりも広い。本構成とすることにより、発生磁界強度を強くしたい主磁極5からの磁界を強くしつつ、トラック幅を規定する高周波磁界発生素子201からのアシスト磁界を用いて高分解能の記録磁化パターンの形成が可能になる。本実施例では、主磁極5のABS面での形状は、トラック幅方向に幅80nmとヘッド走行方向に厚さ100nmとすることで、約0.9MA/mの記録磁界が得られた。これらの幅や厚さを大きくすると主磁極からの磁界強度は大きくなるが、磁界勾配が小さくなる為、従来の磁気記録においては、幅や厚さを逆に小さくすることで分解能を稼いでいた。
 磁束整流層8は、主磁極5と飽和磁化が同じ又は大きな材料を用い、主磁極5からの磁界が磁化回転体層2の層方向に垂直となるよう3D磁界解析ソフトを用いて磁束整流層8の厚さ設計を行った。本実施例における磁束整流層8の厚さは、10nmであったが、この値は、前述の長方形の形状、対向磁極までの距離と状況、用いる媒体の状況、図面上方における磁気回路の状況に依存する。なお第2の磁束整流層13としては、膜厚15nmのCoFe合金を用いた。
 磁化回転体層2としては、実施例1と同様、厚さ20nmのCoFe合金を用いた。主磁極5側から対向磁極6側へ高周波励起電流を流すと、磁化回転体層2にスピントルクが作用し、磁化が回転する。このスピントルクは、主磁極5からの漏洩磁界によって発生する磁化回転体層2の回転軸に平行な磁化成分が小さくなる方向に作用する。すなわち、磁束整流層8は、電子に対するスピンの整流素子としても作用し、主磁極5の磁化方向にスピンが揃った電子を右側の磁化回転層2から奪い取り、磁化回転層2の磁化を主磁極5の磁化と逆向きに向けようとするスピントルクが作用するからである。スピントルク作用は、高周波励起電流(電子流)が大きくなるほど大きくなる。金属非磁性スピン伝導層3と隣接する層との間に分極率の大きなCoFeB層を1nm程度挿入しても大きくなる。
 尚、電流一定のまま、主磁極5の磁化が逆転した場合でも、磁化回転層2の磁化を主磁極5の磁化と逆向きに向けようとするスピントルクが作用する状況に変わりはない。このとき磁化回転層2の磁化の回転方向は、主磁極5の磁化方向が逆転する前の回転方向と逆向きとなっている。記録密度が高くなって磁化回転体層2の幅が狭い場合には、磁化回転体層2の側面から創出される磁界が無視できなくなり、記録媒体7に磁界の向きが時間とともに回転する(回転振動磁界)ようになる。この場合、図3の検討から、反転させようとする磁化に対して反時計回り振動磁界が印加されるように当該回転振動磁界の回転方向を制御する必要がある。図19の構成の記録ヘッド部を用いることにより、電流一定のまま、前記回転方向の制御が実現されている。
 金属非磁性スピン伝導層3としては、2nm-Cuを用いたが、スピン伝導性の高い金属非磁性体であるRu等を用いても良い。
 本実施例においては、垂直磁気異方性体層として負の垂直磁気異方性体を用いた。ここで、「負の垂直磁気異方性」とは、垂直磁気異方性が負の状態を意味する。通常の垂直磁気記録媒体に用いられる「正の垂直磁気異方性」においては、例えば、六方晶のc軸方向に磁化が向きやすい性質を有する。これに対して、「負の垂直磁気異方性」では、c軸方向に磁化が向き難い性質を有するため、c軸方向に垂直な面内方向に磁化があると安定する。負の垂直磁気異方性を有する磁性体を磁化回転体層2と隣接させることにより、磁化回転体層2の磁化方向を回転軸と垂直方向に留める作用が生じる。ここで、磁化の回転軸は、スピントルクの向く方向であり、膜面に垂直方向にある。
 負の垂直磁気異方性体層11は、六方晶CoIrの001面が図中の左右方向となるようにし、磁気異方性の大きさは、6.0×105J/m3のものを用いた。本実施例では、磁化回転体層2にCoFe合金を用いているので、CoIrと同様大きな交換相互作用が働き、磁化方向を回転軸と垂直方向に留める作用が強くなる。磁化回転体層2と負の垂直磁気異方性体層11との交換相互作用が弱い場合には、磁化回転体層2の磁化を面内に向ける作用が弱まるため、特に高い周波数での発振が不安定になる。負の垂直磁気異方性を有する磁性体としては、六方晶CoIrの他、α’-FeC、dhcpCoFe、NiAs型MnSb等が知られており、これらの材料を用いて負の垂直磁気異方性体層11を形成しても良い。金属非磁性スピン散乱体12としては、3nm-Ptを用いた。Pdを用いても同様な作用がある。
 記録媒体7としてはパターンドメディアを使用し、基板19上にスパッタリングにより連続膜を形成した後、下部記録層18として磁気異方性磁界が4.8MA/m(60kOe)の6nm-CoPt(L10)層、上部記録層17として磁気異方性磁界が1.4kA/m(l7kOe)の6nm-(Co/Pt)人工格子層を形成し、ナノインプリント技術により、トラック方向の長さが9nmでダウントラック方向が7nmの磁性体パターンを、トラックピッチ12.5nm、ビットピッチ10.0nmで形成した。強磁性共鳴による吸収線幅の測定の結果、上部記録層17と下部記録層18のダンピング定数αは、それぞれ0.20と0.02であった。記録層にPtやPd等が含まれる場合αを大きくでき、磁化反転速度を速めることができる。
 以上の媒体をスピンスタンドに設置し、ヘッド媒体相対速度20m/s、磁気スペーシング5nm、トラックピッチ12.5nmとして磁気記録を行い、さらにこれをシールド間隔18nmのGMRヘッドにより再生した。高周波励起電流を変化させて1250kFCIでの信号/ノイズ比を測定したところ、最大13.0dBが得られ、1平方インチあたり5Tビットを超える記録密度の記録再生が十分達成可能であることがわかった。このときの高周波周波数は27.0GHzであった。
 以上作成した磁気ヘッドは、図6に示す方法と同じ方法で特性を評価した。図21は、本実施例の磁気ヘッドから発生するマイクロ波磁界強度の励起電流量依存性を、主磁極から高周波磁界発生素子201に漏洩する外部磁界強度がそれぞれ0MA/m、0.4MA/m、0.8MA/m、-0.8MA/mの場合について、比較して示した図である。
 外部磁界がない場合には、高周波励起電流の増加とともに高周波磁界強度が単調に減少し、外部磁界が0.4MA/mの場合には、高周波励起電流の増加とともに高周波磁界強度が少し増加して最大値となり、その後、減少する。外部磁界が0.8MA/mの場合には、高周波励起電流の増加とともに高周波磁界強度が大きく増加して最大値となり、その後、減少する。高周波磁界強度の最大値は、外部磁界強度によらずほぼ同じであった。また、外部磁界強度の変化によっては発振が不安定とはならないことがわかった。これは、磁化回転体層2と負の垂直磁気異方性体11が無理なく結合している為と考えられる。これらの現象は、磁束整流層8の影響で注入された下向きのスピントルクと外部磁界、負の垂直磁気異方性体11からの交換磁界のベクトル和の向きによって簡単に理解できる。ベクトル和がゼロのときに高周波磁界強度は最大値を取り、このときの磁化回転体層2の磁化は、当該層内で回転する。
 図22は、本実施例の磁気ヘッドから発生するマイクロ波磁界の周波数の励起電流量に対する依存性を、主磁極から高周波磁界発生素子201に漏洩する外部磁界強度がそれぞれ0MA/m、0.4MA/m、0.8MA/m、-0.8MA/mの場合について、比較して示した図である。図22から、発生するマイクロ波磁界の周波数は、外部磁界強度には依存せず高周波励起電流にのみ依存していることがわかる。これは、高周波励起電流増加に伴う不安定性が無い為であり、そのため、100GHzと非常に高い周波数での発振も実現できていると考えられる。また、金属非磁性スピン伝導層3と両側の層の界面にCoFeB等スピン分極率の高い材料層を配置すると、スピントルクが強化され、図21及び図22の横軸を圧縮したグラフが得られる。例えば、図22において、高周波励起電流値0.5にて40GHz、電流値1.0にて80GHzの発振周波数が得られる。したがって、図16に示すような高周波磁界発生素子201より高い周波数を得るには、主磁極5からの漏洩磁界を大きくする必要がある。これは、磁化回転体層2の磁化回転面を界面に平行にするために必要なスピントルクが、より大きな高周波励起電流において得られるようにするためであるので、金属非磁性スピン伝導層3の界面にCoFeB等のスピン分極率の高い金属材料層を挿入することによりスピントルク流を強化すると、同じ高周波励起電流でも高い周波数が得られる。
 本実施例のヘッドは、図1Cに示される原理構成に加えて、
(1)リップ層が一対あるため、磁化回転体層2に印加される主磁極からの漏洩磁界の面内成分をより抑えることができ、マイクロ波磁界の発振が広い周波数帯で安定化する。かつ、磁化回転体層2に印加される主磁極からの漏洩磁界の垂直成分がより増加するので、より高い周波数帯での発振が可能となり、結果的により広帯域での発振が可能となる、
(2)負の磁気異方性体層が存在することによって、磁化回転体層2のニュートラル状態(電流や磁界が印加されていない状態)での磁化方向が、磁界出力が最大となる面内に向き、主磁極からの漏洩磁界が加わってもその極性に依らず磁化の回転軸からの角度が一定となる為、主磁極極性による出力の非対称性が現れないこと、
(3)スピン散乱体層12により、対向磁極側リップ13からのスピントルクの磁化回転体層2への流入が抑制され、磁化回転体層2へ加わるスピントルクがより安定化する、
といったメリットがある。
 また、本実施例の磁気ヘッドは、実施例1、2で説明した磁気ヘッドに比較して、強度の強い高周波磁界を得ることができる。また、発振周波数が励起電流に対してほぼ線形であるため、磁気共鳴を形成するための磁気ヘッドの制御(供給電流量の制御)が容易である。更に、主磁極から漏洩する磁束の極性を考慮する必要がないため、その分ヘッド素子の設計が容易である。また、本実施例の磁気ヘッドは、高周波磁界源より得られる周波数帯の制限を受けることなく、大きな磁気異方性を有する記録媒体への記録ができるようになるため、磁気記録媒体と組み合わせて情報記録再生装置を構成した場合、記録密度を増大させることが可能となる。特に、記録密度の高い人工格子膜を備えた記録媒体と組み合わせて使用することにより、記録密度を更に向上することが可能となる。
 本実施例では、実施例3同様、負の垂直磁気異方性体を使用した磁気ヘッドを用い、高周波磁界発生素子に対する励起電流の供給方向と磁気ヘッド走行方向を実施例3とは逆(すなわち、対向電極をリーディング側に配置し、記録磁極をトレーリング側に配置した構成)にした情報記録装置の構成例について説明する。なお、本実施例において、情報処理装置の全体構造は図4(A)(B)と同じで、磁気ヘッドの全体構造は、図14のいずれかに示す構造を有しているものとする。ただし、図14に示したヘッド走行方向を左右逆転させても、得られる信号/ノイズ比に大きな違いは見られなかった。
 図23は、本実施例の情報記録装置の記録ヘッド部の断面構造を示す図である。主磁極5、対向磁極6、磁束整流層8、第2磁束整流層13、高周波磁界発生素子201の構成・機能は、図19とほぼ同様であるので、共通部分については説明は省略する。ただし、本実施例の場合、金属非磁性スピン伝導層3と金属非磁性スピン散乱体層12の積層順序が図19とはちょうど逆になっている。ただし、磁化回転体層2と負の垂直磁気異方性体層11は、積層順序を入れ替えても良好なマイクロ波発振特性が得られる。本実施例のように主磁極5側に磁化回転体層2があると記録媒体の磁化反転領域においてより強いマイクロ波が得られる。逆に対向磁極6側に磁化回転体層2があると第2磁束整流層13からのスピントルク流入効率が上がるので、発振に必要な電流を小さくすることができる。主磁極と高周波磁界発生素子201のトラック幅方向の大きさの関係も、実施例3と同様である。
 磁界発生素子201の長手方向の長さは、本実施例では14nmである。対向磁極側リップ13としては、10nmCoFe合金を用いた。
 本実施例に示す高周波磁界発生素子の構成は、図19に示された高周波磁界発生素子201の構成に比べて、スピン整流素子を構成する金属非磁性スピン伝導層3と第2磁束整流層13との積層膜よりスピントルクが直接、負の垂直磁気異方性体11に作用する為、より高い周波数での動作が安定で、発振の立ち上がりも早くなる。また、第2磁束整流層13の磁化方向がほぼ磁化回転体層2の回転軸方向を向く為、スピントルクが安定し、必要な電流を図19に示された構成に比べて小さくすることが可能となる。スピントルクは、高周波励起電流(電子流)が大きくなるほど大きくなり、また、第2磁束整流層13と金属非磁性スピン伝導層3の間に分極率の大きなCoFeB層を1nm程度挿入すると大きくなる。なお、本実施例では、主磁極5と対向磁極6の間隔を調整して、磁化回転体層2への漏洩磁界が異なる磁気ヘッドを複数作製した。また、図23の構成において、磁束整流層8の長さを調整することにより磁化回転体層2への漏洩磁界を変えることもできる。斜め漏洩磁界耐性の大きな負の垂直磁気異方性体11を磁化回転体層2の厚さの半分以上とすることにより、磁束整流層8の長さがゼロ(磁束整流層8なしに、主磁極5と金属非磁性スピン散乱体層12が隣接する構造)でも、マイクロ波の発振が観測できた。
 記録媒体7としては、記録層の磁気特性が以下の通りであるパターンド媒体と連続膜媒体の2種を準備した。
(1)記録媒体B-30(ディスクリートトラック媒体)
 磁気異方性磁界:2.4MA/m(30kOe)、膜厚:10nm、材料:CoCrPt-SiOx
(2)記録媒体B-34(連続膜媒体)
 磁気異方性磁界:2.8kA/m(34kOe)、膜厚:10nm、材料:CoB/Pt(人工格子積層膜)
(3)記録媒体B-45
 磁気異方性磁界:3.6MA/m(45kOe)、膜厚:10nm、材料:CoFe(L10)-SiOx層
 記録媒体B-30については、スパッタリング法で記録層16を作製後、ナノインプリント技術にて、記録部がヘッド走行方向に連続した媒体DTM(Discreet Track Media)に加工した。記録部のトラック方向の幅は11nmでトラックピッチは15nmとした。
 次に、上記の記録媒体(1)~(3)をスピンスタンドに設置し、所定の記録密度でテストパターンを記録した。記録条件は、マイクロ波磁界の発振周波数を変えることにより変えた。記録の際のヘッド媒体相対速度は20m/s、磁気スペーシングは5nm、トラックピッチは18.0nmであった。記録媒体B-30については、トラック配置の都合上、トラックピッチは15nmとした。
 記録したパターンは、シールド間隔18nmのGMRヘッドにより再生した。得られた信号/ノイズ比は、テストパターンの記録密度が1250kFCIの場合、各記録媒体について以下の通りであった。
(1)記録媒体B-30:最大13.5dB(マイクロ波磁界の発振周波数:48GHz)
(2)記録媒体B-34:最大12.5dB(マイクロ波磁界の発振周波数:57GHz)
(3)記録媒体B-45:最大14.5dB(マイクロ波磁界の発振周波数:75GHz)
 さらに、記録媒体B-45について1500kFCIでの信号/ノイズ比を測定すると12.0dBが得られた。このことから、DTM化した記録媒体B-30を用いた場合には1平方インチあたり4Tビット、記録媒体B-34を用いた場合には1平方インチあたり3.5Tビット、記録媒体B-45を用いた場合には1平方インチあたり4.2Tビットを超える記録密度の記録再生が十分達成可能であることがわかった。
 本実施例の高周波磁界発生素子は、実施例3の高周波磁界発生素子に比べて、スピン整流素子を構成する金属非磁性スピン伝導層3と第2磁束整流層13との積層膜よりスピントルクが直接、負の垂直磁気異方性体11に作用する為、より高い周波数での動作が安定で、発振の立ち上がりも早くなる。したがって、記録層が単層の連続記録媒体や、ディスクリートトラック媒体への書込みが容易になる。
 本実施例では、実施例3の磁気ヘッドと構造が同じでヘッド走行方向が逆の磁気ヘッド(すなわち、対向電極をリーディング側に配置し、記録磁極をトレーリング側に配置した構成)と、異方性磁界強度の異なる2種の磁性材料で形成されたビットパターンをトラック周方向に交互に配列したパターンド媒体を用いて情報記録媒体を構成した例について説明する。なお、本実施例において、情報処理装置の全体構造は図4(A)(B)と同じで、磁気ヘッドの全体構造は図14のいずれかに示す構造を有しているものとする。ただし、図14に示したヘッド走行方向を左右逆転させても、得られる信号/ノイズ比に大きな違いは見られなかった。
 図24は、本実施例の記録ヘッド部の構成を示す図である。主磁極5、対向磁極6、磁束整流層8、第2磁束整流層13、高周波磁界発生素子201の構成・機能は、図23とほぼ同様であるので、共通部分については説明は省略する。ただし、本実施例の場合、磁化回転体層2と負の垂直磁気異方性体層11の積層順序が図23とはちょうど逆になっている。
 記録媒体7としては、基板19上に、スパッタリングにより、下部記録層58と第1の上部記録層56を連続形成し、その後、ナノインプリント技術により、トラック方向の長さが9nmでダウントラック方向が5nmの磁性体パターンを、トラックピッチ12.5nm、ビットピッチ8.0nmで配置するように作製した。次に、ナノインプリント技術により、第1の上部記録層56を一つおきに除去し、第2の上部記録層57を形成した。下部記録層58としては、気異方性磁界が4.8MA/m(60kOe)で膜厚が6nm-CoPt(L10)層、第1の上部記録層56としては、磁気異方性磁界が1.2kA/m(15kOe)で膜厚が5nm-(Co/Pt)人工格子層、第2の上部記録層57としては、磁気異方性磁界が2.4kA/m(30kOe)で膜厚が5nm-(Co/Pt)人工格子層を用いた。第1の上部記録層56、第2の上部記録層57、下部記録層58のダンピング定数αは、それぞれ0.15,0.20と0.05であった。
 次に、スピンスタンドを用い記録再生特性を評価した。評価用のパターンは、ヘッド媒体相対速度20m/s、磁気スペーシング5nm、トラックピッチ12.5nmとして記録した。まず、あるトラックをDC消磁し、第1の上部記録層56と第2の上部記録層57のパターンに同期してパターンを記録した。ビットパターンに同期して記録を行うため、主磁極5から発生する記録磁界の極性は16nmごとに入れ替えた。この記録動作をマイクロ波磁界の発振周波数を変えて行い、再生出力が最大となる高周波励起電流をそれぞれ求めた。その結果、第1の上部記録層56に対する最適発振周波数は27GHz(以下I1と表記する)、第2の上部記録層57に対する最適発振周波数は52GHz(以下I2と表記する)であった。
 続いて、第1の上部記録層56と第2の上部記録層57のパターンに同期して高周波励起電流値をI1とI2の間で強度変調して記録し、さらにこれをシールド間隔16nmのGMRヘッドにより再生した。1560kFCIでの信号/ノイズ比を測定したところ、最大13.0dBが得られ、1平方インチあたり6Tビットを超える記録密度の記録再生が十分達成可能であることがわかった。図4に示すような磁気ディスク装置においては、信号/ノイズ比が最大になるような高周波励起電流値をメモリ111やプロセッサ内のレジスタなどに格納しておき、当該格納値に基づき、電流アンプを制御する。あるいは、トラックの種類に対応する高周波励起電流値I1とI2をメモリ111に格納し、ドライブの電源投入時等に、記録媒体の所定領域(管理エリアなど)にテストパターンの記録動作を高周波励起電流値I1とI2内で変調して行い、当該テストパターンを再生して最適励起電流値を決めても良い。第1の上部記録層56、又は、第2の上部記録層57を高周波励起電流値I1又はI2にてそれぞれ独立に記録するようにしても良い。他方の記録状態がわかっている場合には、再生時のエラー訂正能力が向上する。
 本実施例では、ディスクリートトラック媒体を用いて情報記録装置を構成した例について説明する。図25には、本実施例の記録ヘッド部をトラック周方向から見た断面図を示す。本実施例の記録ヘッド部の構成は、実施例2と同じであるものとする。図25は、磁化回転体層2における断面図を示したものである。図中、高周波磁界検出器203は、記録動作中に高周波磁界発生素子201の発振状態をモニタするもので、図6の右側部分にある高周波磁界検出器202と同様の構造を有している。高周波磁界発生素子201の長手方向の長さは21nmである。当該長さを大きくすることにより、磁化回転体層2の媒体内での磁界分布の湾曲がディスクリートトラック一本の幅に対して相対的に小さくなる為、磁化遷移形状が改善される。
 本実施例では、記録媒体7として、トラック幅方向に磁気異方性磁界が異なる3つのトラックが配列された構造の記録媒体を使用した。3つのトラックは、基板19上に、スパッタリングにより下部記録層58と第1の上部記録層65を連続形成後、実施例5で説明した要領で、ナノインプリント技術を用い、不要な上部記録層材料を各トラック毎に順次除去しつつ、第1の上部記録層に属するトラック、第2の上部記録層に属するトラック、第3の上部記録層に属するトラックを順次形成した。形成されたトラックは、トラック幅が4.5nm、隣接トラック間でのピッチが6nm、第1の上部記録層に属するトラックから第3の上部記録層に属するトラックを1周期とするトラックピッチが18.0nmであった。各記録層を構成する材料は以下の通りである。
・下部記録層58:磁気異方性磁界が4.8MA/m(60kOe)、膜厚が6nmのCoPt(L10)
・第1の上部記録層65:磁気異方性磁界が1.2kA/m(15kOe)、膜厚が5nmの(Co/Pt)人工格子層
・第2の上部記録層66:磁気異方性磁界が2.4kA/m(30kOe)、膜厚が5nmの(Co/Pt)人工格子層
・第3の上部記録層67:磁気異方性磁界が3.6kA/m(45kOe)、膜厚が5nmの(Co/Pt)人工格子層
 なお、第1の上部記録層65、第2の上部記録層66、第3の上部記録層67、下部記録層58のダンピング定数αは、それぞれ0.15,0.20,0.21と0.05であった。
 ヘッド媒体相対速度20m/s、磁気スペーシング6m、トラックピッチ18nmの条件で、スピンスタンドを用いて記録再生特性を評価したところ、1000kFCIでの信号/ノイズ比を測定したところ、最大13.0dBが得られ、1平方インチあたり6Tビットを超える記録密度の記録再生が十分達成可能であることがわかった。また、各上部記録層に対する最適発振周波数は次の通りであった。
・第1の上部記録層:27GHz(以下I1と表記)
・第2の上部記録層:52GHz(以下I2と表記)
・第3の上部記録層:76GHz(以下I3と表記)
 第1の上部記録層56、又は、第2の上部記録層57を高周波励起電流値I1又はI2にてそれぞれ独立に記録するようにしても良い。他方の記録状態がわかっている場合には、再生時のエラー訂正能力が向上する。また、上記I1~I3の励起電流最適値を情報再生装置内に格納して励起電流値を制御しても良い点は、実施例5と同様であり、電源投入時に試し書きシーケンスを実行しても良い点も実施例5と同様である。
 以上、本実施例の情報記録装置の場合、磁化高速回転体のトラック幅方向の長さを大きくできるため、磁化回転体のつくる磁界分布の湾曲がディスクリートトラック一本の幅に対して相対的に小さくなる。よって、磁化遷移の急峻化(グラニュラー連続媒体、ディスクリートトラック媒体)や書込みエラーの減少(ビットパターン媒体)が期待でき、トラック密度の向上も期待できる。また、同じ構造をヘッド走行方向に設けた場合(主磁極と対向磁極の間隔を長くした場合)には線記録密度の向上が期待できる。

Claims (9)

  1.  ユーザデータが格納される磁気記録媒体と、当該磁気記録媒体に記録動作を行う記録ヘッド部を備えた磁気ヘッドとを有し、高周波磁界と前記ユーザデータに対応する記録磁界とを前記磁気記録媒体に印加することで該磁気記録媒体に磁気共鳴状態を形成して前記記録を行う情報記録装置において、
     前記記録ヘッド部は、
     前記記録磁界を発生する記録磁極と、
     該記録磁極のトレーリング側ないしリーディング側に該記録磁極からは離間して設けられた対向磁極とを備え、
     前記記録磁極は、前記磁気記録媒体に対する浮上面側端部のトレーリング側ないしリーディング側に突出部を有し、
     当該突出部と前記対向磁極の間に、
     スピン整流素子と、膜面内で磁化の向きが回転可能な磁化回転体層と、当該磁化回転体層に接して当該磁化回転体層の磁化方向をガイドする回転ガイド層とを備えることを特徴とする情報記録装置。
  2.  ユーザデータが格納される磁気記録媒体と、当該磁気記録媒体に記録動作を行う記録ヘッド部を備えた磁気ヘッドとを有し、高周波磁界と前記ユーザデータに対応する記録磁界とを前記磁気記録媒体に印加することで該磁気記録媒体に磁気共鳴状態を形成して前記記録を行う情報記録装置において、
     前記記録ヘッド部は、
     前記記録磁界を発生する記録磁極と、
     該記録磁極のトレーリング側ないしリーディング側に該記録磁極からは離間して設けられた対向磁極とを備え、
     当該記録磁極と前記対向磁極の間に、
     前記記録磁極に接触して形成された、前記記録磁極と対向磁極の間を通過する磁束に対する整流作用を有する磁束整流層と、
     スピン整流素子と、
     膜面内で磁化の向きが回転可能な磁化回転体層と、当該磁化回転体層に接して当該磁化回転体層の磁化方向をガイドする回転ガイド層とを備えたことを特徴とする情報記録装置。
  3.  請求項1又は2に記載の情報記録装置において、
     前記回転ガイド層は、自発磁化の向きが膜面内に垂直な方向である垂直磁気異方性膜を備えたことを特徴とする情報記録装置。
  4.  請求項1又は2に記載の情報記録装置において、
     前記回転ガイド層は、自発磁化の向きが膜面内のいずれかの方向である負の垂直磁気異方性膜であることを特徴とする情報記録装置。
  5.  請求項1に記載の情報記録装置において、
     前記対向磁極は浮上面端部の前記記録磁極に面した側に突出部を有し、
     前記スピン整流素子と、膜面内で磁化の向きが回転可能な磁化回転体層とは、記録磁極の突出部と対向磁極の突出部の間に配置されたことを特徴とする情報記録装置。
  6.  請求項2に記載の情報記録装置において、
     前記対向磁極の浮上面端部の前記記録磁極に面した側に形成された第2の磁束整流層を有し、
     前記スピン整流素子と、膜面内で磁化の向きが回転可能な磁化回転体層とは、前記磁束整流層と第2の磁束整流層との間に配置されたことを特徴とする情報記録装置。
  7.  請求項1又は2に記載の情報記録装置において、
     前記記録磁極と対向磁極間に印加する励起電流の電流量を制御する手段とを備えたことを特徴とする情報記録装置。
  8.  請求項1又は2に記載の情報記録装置において、
     前記磁気記録媒体の記録層は、上部磁性層と下部磁性層の少なくとも2層により構成され、
     前記上部磁性層の異方性磁界が下部磁性層の異方性磁界よりも小さいことを特徴とする情報記録装置。
  9.  ユーザデータが格納される磁気記録媒体に対し、高周波磁界と前記ユーザデータに対応する記録磁界とを印加することにより当該磁気記録媒体に磁気共鳴状態を形成して前記記録を行う磁気ヘッドにおいて、
     前記記録磁界を発生する記録磁極と、
     該記録磁極のトレーリング側ないしリーディング側に該記録磁極からは離間して設けられた対向磁極とを備え、
     前記記録磁極と前記対向磁極の間に、
     前記記録磁極に接触して形成された、前記記録磁極と対向磁極の間を通過する磁束に対する整流作用を有する磁束整流層と、
     スピン整流素子と、膜面内で磁化の向きが回転可能な磁化回転体層と、当該磁化回転体層に接して当該磁化回転体層の磁化方向をガイドする回転ガイド層とを備えたことを特徴とする磁気ヘッド。
PCT/JP2009/057882 2008-04-28 2009-04-21 マイクロ波アシスト記録用磁気ヘッド及びマイクロ波アシスト記録装置 WO2009133786A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010510082A JP5302302B2 (ja) 2008-04-28 2009-04-21 マイクロ波アシスト記録用磁気ヘッド及びマイクロ波アシスト記録装置
US12/990,132 US8760806B2 (en) 2008-04-28 2009-04-21 Microwave assisted magnetic recording head and microwave assisted magnetic recording apparatus having a magnetic flux rectifying layer with a magnetic flux rectifying action

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008116546 2008-04-28
JP2008-116546 2008-04-28

Publications (1)

Publication Number Publication Date
WO2009133786A1 true WO2009133786A1 (ja) 2009-11-05

Family

ID=41255003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057882 WO2009133786A1 (ja) 2008-04-28 2009-04-21 マイクロ波アシスト記録用磁気ヘッド及びマイクロ波アシスト記録装置

Country Status (3)

Country Link
US (1) US8760806B2 (ja)
JP (1) JP5302302B2 (ja)
WO (1) WO2009133786A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011141934A (ja) * 2010-01-07 2011-07-21 Tama Tlo Ltd 磁気記録ヘッド
JP2011198399A (ja) * 2010-03-17 2011-10-06 Toshiba Corp 磁気記録ヘッド、磁気ヘッドアセンブリ、及び磁気記録再生装置
JP2012038491A (ja) * 2010-08-05 2012-02-23 Hitachi Metals Ltd 高周波磁場を用いた磁性部材の加熱方法
JP2012114364A (ja) * 2010-11-26 2012-06-14 Toshiba Corp スピントルク発振子および磁気記録装置
JP2014010865A (ja) * 2012-06-29 2014-01-20 Toshiba Corp 磁気記録ヘッド、およびこれを備えたディスク装置
JP2014049146A (ja) * 2012-08-29 2014-03-17 Showa Denko Kk 磁気記録媒体及び磁気記録再生装置
US9330691B1 (en) 2015-04-17 2016-05-03 Kabushiki Kaisha Toshiba Microwave assisted magnetic head
JP2020061199A (ja) * 2018-10-10 2020-04-16 国立研究開発法人産業技術総合研究所 マイクロ波センサ
JP2021005433A (ja) * 2019-06-26 2021-01-14 株式会社東芝 磁気ヘッドの評価方法及び磁気ヘッドの評価装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9305586B2 (en) * 2009-02-04 2016-04-05 HGST Netherlands B.V. Microwave-assisted magnetic recording device and method of formation thereof
JP5451096B2 (ja) * 2009-02-04 2014-03-26 エイチジーエスティーネザーランドビーブイ 磁気ヘッド
US8228632B2 (en) * 2009-05-20 2012-07-24 Seagate Technology Llc Transducing head design for microwave assisted magnetic recording
JP5658470B2 (ja) * 2010-03-04 2015-01-28 株式会社日立製作所 高周波アシスト磁気記録ヘッドおよびそれを用いた磁気記録再生装置
US8027110B1 (en) * 2010-07-27 2011-09-27 Tdk Corporation Apparatus for measuring magnetic field of microwave-assisted head
JP5581980B2 (ja) * 2010-11-08 2014-09-03 株式会社日立製作所 磁気記録ヘッドおよび磁気記録装置
US8264916B1 (en) * 2011-03-11 2012-09-11 Tdk Corporation Microwave assisted magnetic head and magnetic disk device
JP5172004B1 (ja) 2011-09-20 2013-03-27 株式会社日立製作所 磁気記録ヘッド及び磁気記録装置
JP5897399B2 (ja) * 2012-05-02 2016-03-30 株式会社日立製作所 マイクロ波アシスト記録用磁気記録媒体及びこれを用いた情報記録装置
US8553507B1 (en) * 2012-11-13 2013-10-08 HGST Netherlands B.V. Write track shift control in shingled-microwave-assisted magnetic recording (MAMR-SMR)
US9799363B2 (en) 2013-03-13 2017-10-24 Seagate Technology, Llc Damping controlled composite magnetic media for heat assisted magnetic recording
US8842387B1 (en) 2013-03-14 2014-09-23 HGST Netherlands B.V. Microwave-assisted magnetic recording (MAMR) head with highly resistive magnetic material
JP6442978B2 (ja) * 2013-12-18 2018-12-26 Tdk株式会社 磁気記録再生装置
JP2017045490A (ja) 2015-08-25 2017-03-02 株式会社東芝 磁気記録ヘッド、およびこれを備えたディスク装置
US10249332B1 (en) 2018-06-20 2019-04-02 Seagate Technology Llc Microwave-assisted magnetic recording apparatus and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002092820A (ja) * 2000-09-20 2002-03-29 Toshiba Corp 垂直記録用磁気ヘッドおよび磁気ディスク装置
JP2002100005A (ja) * 2000-09-25 2002-04-05 Toshiba Corp 磁気ヘッド
JP2006244693A (ja) * 2005-03-01 2006-09-14 Seagate Technology Llc 補助バイアスを備えたライター構造
JP2006286855A (ja) * 2005-03-31 2006-10-19 Toshiba Corp 磁性発振素子、磁気センサ、磁気ヘッドおよび磁気再生装置
JP2008034060A (ja) * 2006-07-31 2008-02-14 Fujitsu Ltd 垂直磁気記録媒体および磁気記憶装置
JP2008071383A (ja) * 2006-09-12 2008-03-27 Fujitsu Ltd 垂直磁気記録媒体の製造方法、垂直磁気記録媒体、および磁気記録装置
JP2009070541A (ja) * 2007-08-22 2009-04-02 Toshiba Corp 磁気記録ヘッド及び磁気記録装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6005087A (en) * 1995-06-06 1999-12-21 Isis Pharmaceuticals, Inc. 2'-modified oligonucleotides
JPH07244801A (ja) 1994-03-07 1995-09-19 Hitachi Ltd スピン加熱記録方法およびその装置
JP2003036503A (ja) * 2001-07-24 2003-02-07 Hitachi Ltd 垂直記録用磁気ヘッド及びそれを搭載した磁気ディスク装置
US7256955B2 (en) 2004-03-17 2007-08-14 Seagate Technology Llc High frequency assisted writing
JP2007299460A (ja) 2006-04-28 2007-11-15 Tdk Corp 磁気ヘッド装置及び磁気記録再生装置
US7616412B2 (en) * 2006-07-21 2009-11-10 Carnegie Melon University Perpendicular spin-torque-driven magnetic oscillator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002092820A (ja) * 2000-09-20 2002-03-29 Toshiba Corp 垂直記録用磁気ヘッドおよび磁気ディスク装置
JP2002100005A (ja) * 2000-09-25 2002-04-05 Toshiba Corp 磁気ヘッド
JP2006244693A (ja) * 2005-03-01 2006-09-14 Seagate Technology Llc 補助バイアスを備えたライター構造
JP2006286855A (ja) * 2005-03-31 2006-10-19 Toshiba Corp 磁性発振素子、磁気センサ、磁気ヘッドおよび磁気再生装置
JP2008034060A (ja) * 2006-07-31 2008-02-14 Fujitsu Ltd 垂直磁気記録媒体および磁気記憶装置
JP2008071383A (ja) * 2006-09-12 2008-03-27 Fujitsu Ltd 垂直磁気記録媒体の製造方法、垂直磁気記録媒体、および磁気記録装置
JP2009070541A (ja) * 2007-08-22 2009-04-02 Toshiba Corp 磁気記録ヘッド及び磁気記録装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011141934A (ja) * 2010-01-07 2011-07-21 Tama Tlo Ltd 磁気記録ヘッド
JP2011198399A (ja) * 2010-03-17 2011-10-06 Toshiba Corp 磁気記録ヘッド、磁気ヘッドアセンブリ、及び磁気記録再生装置
JP2012038491A (ja) * 2010-08-05 2012-02-23 Hitachi Metals Ltd 高周波磁場を用いた磁性部材の加熱方法
JP2012114364A (ja) * 2010-11-26 2012-06-14 Toshiba Corp スピントルク発振子および磁気記録装置
US8467149B2 (en) 2010-11-26 2013-06-18 Kabushiki Kaisha Toshiba Spin torque oscillator and magnetic recording apparatus
JP2014010865A (ja) * 2012-06-29 2014-01-20 Toshiba Corp 磁気記録ヘッド、およびこれを備えたディスク装置
JP2014049146A (ja) * 2012-08-29 2014-03-17 Showa Denko Kk 磁気記録媒体及び磁気記録再生装置
US9330691B1 (en) 2015-04-17 2016-05-03 Kabushiki Kaisha Toshiba Microwave assisted magnetic head
JP2020061199A (ja) * 2018-10-10 2020-04-16 国立研究開発法人産業技術総合研究所 マイクロ波センサ
JP7137837B2 (ja) 2018-10-10 2022-09-15 国立研究開発法人産業技術総合研究所 マイクロ波センサ
JP2021005433A (ja) * 2019-06-26 2021-01-14 株式会社東芝 磁気ヘッドの評価方法及び磁気ヘッドの評価装置
JP7265427B2 (ja) 2019-06-26 2023-04-26 株式会社東芝 磁気ヘッドの評価方法及び磁気ヘッドの評価装置

Also Published As

Publication number Publication date
JP5302302B2 (ja) 2013-10-02
US20110043943A1 (en) 2011-02-24
JPWO2009133786A1 (ja) 2011-09-01
US8760806B2 (en) 2014-06-24

Similar Documents

Publication Publication Date Title
JP5302302B2 (ja) マイクロ波アシスト記録用磁気ヘッド及びマイクロ波アシスト記録装置
JP5059924B2 (ja) スピントルク発振器、並びにそれを搭載した磁気記録ヘッド及び磁気記録装置
US8687319B2 (en) Magnetic recording apparatus with magnetic recording head capable of recording information on a magnetic recording medium
JP5760064B2 (ja) 情報記録装置
US9001466B2 (en) Three-dimensional magnetic recording and reproducing apparatus including a plurality of magnetic layers having different resonant frequencies
US9030777B2 (en) Microwave assisted magnetic recording head having spin torque oscillator, and magnetic recording apparatus
JP5361259B2 (ja) スピントルク発振子、磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置
US8755153B2 (en) Reproducing head with spin-torque oscillator, and magnetic recording and reproducing apparatus
US20100027158A1 (en) Magnetic head for high-frequency field assist recording and magnetic recording apparatus using magnetic head for high-frequency field assist recording
JP2013251042A (ja) スピントルク発振子、磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置
JP5795288B2 (ja) スピントルク発振器を有するマイクロ波アシスト磁気記録ヘッド及び磁気記録装置
JP4590003B2 (ja) 磁気記録ヘッド及び磁気記録装置
JP5730226B2 (ja) 磁気ヘッド及びその製造方法、及び磁気記録再生装置
JP4923092B2 (ja) 磁気記録媒体初期化装置
JP2013235621A (ja) マイクロ波アシスト記録用磁気ヘッド及び磁気記録装置
US9336797B2 (en) Extended spin torque oscillator
JP5468124B2 (ja) 磁気記録ヘッド及び磁気記録装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09738723

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010510082

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12990132

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09738723

Country of ref document: EP

Kind code of ref document: A1