WO2009132537A1 - 光学镜头 - Google Patents

光学镜头 Download PDF

Info

Publication number
WO2009132537A1
WO2009132537A1 PCT/CN2009/070882 CN2009070882W WO2009132537A1 WO 2009132537 A1 WO2009132537 A1 WO 2009132537A1 CN 2009070882 W CN2009070882 W CN 2009070882W WO 2009132537 A1 WO2009132537 A1 WO 2009132537A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
positive
focal length
lenses
Prior art date
Application number
PCT/CN2009/070882
Other languages
English (en)
French (fr)
Inventor
高云峰
李家英
鲍瑞武
孙博
周朝明
Original Assignee
深圳市大族激光科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大族激光科技股份有限公司 filed Critical 深圳市大族激光科技股份有限公司
Priority to JP2011506555A priority Critical patent/JP2011519068A/ja
Publication of WO2009132537A1 publication Critical patent/WO2009132537A1/zh
Priority to US12/914,326 priority patent/US8331043B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/0005Optical objectives specially designed for the purposes specified below having F-Theta characteristic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only

Definitions

  • the invention belongs to the field of laser processing, and in particular relates to an optical lens.
  • the F-theta (fe) lens is a photographic objective with a large field of view, medium and small aperture, and medium and long focal length. From the parameters it has to bear, it is more appropriate to use a "three-piece" type photographic objective. of.
  • the laser-scanned flat-field optical lens is called a fe lens. This lens realizes that the laser beam is scanned at a constant angular velocity. The focus of the beam passing through the lens on the image plane also moves at a constant speed, which determines the beam scanning angle. It should be linear with the image height of the focus point on the image plane.
  • the laser galvanometer marking machine is realized because of the fe lens.
  • FIG. 1 is a typical fe lens optical system provided by the prior art.
  • the beam is reflected by a mirror scanned at an angular velocity rotating at a constant speed, and then focused on the image plane by a fe lens, that is, the beam sequentially passes through two
  • the galvanometers 1, 2, which rotate around the X-axis and the y- axis, are finally focused on the image plane 4 by the fe lens 3, and are scanned by the galvanometer to form an image.
  • ⁇ lens 3 is a flat field focusing mirror.
  • k is a constant
  • f is the focal length of the fe lens, which is a fixed value for a particular lens
  • is the scanning angle of the galvanometer (in radians).
  • the image height ⁇ and the lens focal length f and the beam angle ⁇ are as follows: Tp tge
  • the general imaging system has certain distortions. It is assumed that the distortion ⁇ is intentionally introduced in the aberration correction of the optical design, so that the relationship shown in the following formula is satisfied: the requirement of the linear relationship of the object image relationship of the F-theta lens can be realized. . thus f (t g e- k*e) , ⁇ is a positive value, and ⁇ lens is a negatively distorted optical system. Therefore, at larger angles, the system is required to have a larger negative distortion.
  • the lens of the fe lens is outside the lens and is a typical asymmetric optical system. Designed in existing products to consider the balance of vertical aberrations, it is generally designed with Pitzval's symmetrical structure to correct for vertical aberrations. However, in this asymmetric system, P is designed with Pitzval's symmetrical structure, but it is difficult to correct vertical aberrations.
  • the technical problem to be solved by the present invention is to provide a miniaturized optical lens that can capture a medium-short focal length with a large lens aperture and can be called with an existing lens mounting size.
  • the technical solution adopted by the present invention is to provide an optical lens including a lens group and an aperture, the aperture is located in front of the lens group, and the lens group includes three lenses, which are respectively The second and third lenses are sequentially arranged in a "negative-positive-positive" separation power system, wherein the first lens is a biconcave type negative lens, and the second lens is a meniscus type positive lens.
  • the third lens is a biconvex positive lens, and both curved surfaces of the second lens are bent toward the pupil direction, and the focal length of the entire optical system is f, and the focal lengths of the first, second, and third lenses are respectively fl. , f2, f3, the focal length of each lens and the focal length f ratio of the entire optical system meet the following requirements:
  • the optical lens provided by the embodiment of the present invention uses a lens group composed of a double concave concave lens, a meniscus positive lens, and a double convex positive lens which are sequentially arranged to make the spherical aberration, the aberration and the curvature of the system.
  • a good balance is achieved, so that the imaging effect is good and the imaging is uniform on the entire image surface, and the structure is applied to the large diameter
  • the miniaturization of the shot lens has achieved good results, and can be interchanged with the existing lens mount size.
  • the aperture, aberration, and ball are made. The difference between the difference and the astigmatism is better.
  • FIG. 1 is a schematic diagram of a typical fe lens optical system provided by the prior art
  • FIG. 2 is a schematic structural diagram of an optical lens according to an embodiment of the present invention.
  • FIG. 3 is a ray tracing diagram of an optical lens according to a first embodiment of the present invention
  • FIG. 4 is a diagram showing astigmatism, curvature of field, and distortion distribution of an optical lens according to a first embodiment of the present invention
  • FIG. 5 is a distribution diagram of a linearity difference curve of an optical lens according to a first embodiment of the present invention
  • FIG. 6 is a distribution diagram of optical path difference curves of optical fields of 0, 0.3, 0.5, 0.7, 0.85, and 1.0 ⁇ of the optical lens according to the first embodiment of the present invention
  • FIG. 7 is a distribution diagram of an optical transfer function MTF of an optical lens according to a second embodiment of the present invention.
  • FIG. 8 is a ray tracing diagram of an optical lens according to a second embodiment of the present invention.
  • FIG. 9 is a diagram showing astigmatism, field curvature and distortion distribution of an optical lens according to a second embodiment of the present invention.
  • FIG. 10 is a distribution diagram of a linearity difference curve of an optical lens according to a second embodiment of the present invention.
  • FIG. 11 is a diagram showing an optical path difference curve distribution of optical fields of the optical lens of 0, 0.3, 0.5, 0.7, 0.85, and 1.0 ⁇ according to a second embodiment of the present invention.
  • FIG. 12 is a diagram showing an optical transfer function MTF distribution of an optical lens according to a second embodiment of the present invention.
  • the f8 lens is a photographic objective with a large field of view, medium and small aperture, and medium and long focal length. From the parameters it bears, it is more appropriate to use a "three-piece” type photographic objective. We use the "negative_positive_positive” power distribution pattern.
  • the distortion caused by the lens outside the lens is exactly what the fe mirror needs. This distortion is easy to achieve the fe mirror requirement, and it is a kind of "no distortion" marking.
  • it is a large field of view photographic objective, like the photographic objective, it is a "flat field” objective.
  • the present invention is designed with a three-piece "negative_positive_positive” power distribution, including a lens group and an aperture (galvanometer) 1, and an aperture (galvanometer) 1 is located in the lens group.
  • the lens group In front of the lens group, the lens group includes three lenses, which are first, second, and third lenses L1, L2, and L3, respectively, wherein the first lens has a power of 1/fl which is negative, and the thickness thereof is thick.
  • the degree is about 30mm, and since the first lens is a thick lens, the entire lens can be balanced in three cases, so that the high-order spherical aberration and astigmatism are well balanced; the power of the second lens is l/f2 and The power of the third lens is positive l/f3, wherein the focal length of each lens and the focal length f of the entire optical system satisfy the following requirements:
  • the focal length of the entire optical system is f
  • the focal lengths of the first, second, and third lenses are fl, f2, and f3, respectively.
  • the distance d0 of the first lens L1 from the aperture (galvanometer) 1 is 25-60 mm
  • the first lens L1 is a double-concave negative thickness lens
  • the second lens L2 is a meniscus positive lens
  • second Both curved surfaces of the lens L2 are curved in the direction of the pupil (galvanometer) 1
  • the third lens L3 is a biconvex positive lens
  • the distance from the third lens L3 to the focal plane 4 is d6.
  • the above lens group constitutes an actual system, an optical window formed by adding parallel plates at any position in the direction in which the lens group is emitted for the purpose of protecting the exposed lens or for any other purpose.
  • This patent covers the addition of an optical window under the above parameters.
  • the beneficial effects of the above design are:
  • the first negative lens L1 uses a thick lens, which helps to reduce the size of the lens in the diameter direction, so that the lens is small and small when the incident beam diameter is large.
  • the same mounting size of the beam diameter lens is conducive to the standardization of the lens mounting size.
  • the asymmetric structure is used to achieve large distortion, and the distortion of the symmetrical structure is overcome, which makes the design easy to meet the linear relationship of the object relationship.
  • the asymmetric aberration is also well corrected; the use of a separate lens system, without the use of glued surfaces, avoids the effects of aging of the rubber used in the laser path of the strong laser application or the damage caused by the laser. Improve the stability and service life of the lens; ⁇ Three separate lenses make the aberrations that affect the imaging quality better corrected, greatly reducing the cost of the lens.
  • the system consists of three lenses L1, L2, L3, L1 consists of two curved surfaces S1, S2 with radius of curvature Rl, R2, respectively, the center thickness dl, material optical parameters It is Ndl: Vdl; L2 is composed of two curved surfaces S3 and S4 with radius of curvature R3 and R4, respectively.
  • the center thickness is d3, the optical parameters of the material are Nd3:Vd3; L3 are respectively composed of two curved surfaces S5 with radius of curvature R5 and R6.
  • S6 composition the center thickness d5, the material optical parameter is Nd5: Vd5; the interval between the first lens L1 and the second lens L2 is d2 The interval between the second lens L2 and the third lens L3 is d4.
  • FIG. 4 is an astigmatism, field curvature and distortion distribution map (A is an astigmatism and field curvature distribution diagram, and B is a distortion distribution diagram) It can be seen from the figure that the system astigmatism and field curvature of this embodiment are well corrected;
  • Figure 5 is a linearity difference curve diagram, the linear error of the system is within ⁇ 0.5%, and F- is better realized.
  • Figure 6 is the optical path difference distribution of the field of view of 0, 0.3, 0.5, 0.7, 0.85, and 1.0 ⁇ , respectively, the optical path difference is not more than 0.3 ⁇ , which illustrates the embodiment.
  • the aberration of the system is better corrected.
  • Figure 7 is an optical transfer function MTF diagram. It can be seen that the MTF values of the fields of view are all consistent, indicating uniform imaging over the full field of view.
  • FIG. 8 is a ray tracing diagram of Embodiment 2, illustrating a lens layout of the product of the embodiment
  • FIG. 9 is an astigmatism, field curvature, and distortion distribution map (A is an astigmatism and field curvature distribution diagram, and B is a distortion Distribution map), it can be seen from the figure that the system astigmatism and field curvature of this embodiment are well corrected
  • Figure 10 is a linearity difference curve diagram, the linear error of the system is within ⁇ 0.5%, which is better achieved. The image relationship of the F-theta lens.
  • Figure 11 is an optical path difference distribution diagram of 0, 0.3, 0.5, 0.7, 0.85, and 1.0 ⁇ , respectively, and the optical path difference does not exceed ⁇ 0.2 ⁇ at the maximum, indicating that the aberration of the system of this embodiment is better.
  • Figure 12 is the distribution diagram of the optical transfer function MTF. It can be seen that the MTF values of each field of view are consistent, indicating uniform imaging over the full field of view.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

技术领域
[1] 本发明属于激光加工领域, 尤其涉及一种光学镜头。
背景技术
[2] 目前,激光应用已深入到我们现代生活的各个方面, 在激光应用中便离不开为了 符合各种工艺要求的各种应用光学系统。 在目前市场上激光打标机, 以其速度 快, 灵活性强, 无耗材, 标记永久性等特点, 已逐渐地替代各种印字机, 丝印 机等。
[3] F-theta (fe)镜头是一种大视场、 中小孔径、 中长焦距的照相物镜, 从它要负担 的参数来说, 选用"三片"型的照相物镜, 应该是较为合适的。 激光扫描的平场光 学镜头称为 fe镜头, 此镜头实现了在激光束以匀速的角速度扫描吋, 通过该镜头 的光束在像平面上的聚焦点也是等速度移动的, 这决定了光束扫描角度与像平 面上的聚焦点的像高应成线性关系,激光振镜打标机是因为有了 fe镜头才得以实 现。
[4] 图 1是现有技术提供的一种典型的 fe镜头光学系统, 光束通过以匀速转动的角 速度扫描的反射镜反射, 再通过 fe镜头聚焦在像平面上,即:光束顺次经两块绕 X轴 和 y轴转动的振镜 1、 2, 最后通过 fe镜头 3聚焦在像面 4上, 由振镜扫描形成图像
。 ίθ镜头 3是一种平像场的聚焦镜, 在打标吋, 要求在成像面上像高 η与 X振镜 1 和 Υ振镜 2的扫描角度 Θ成线性关系, 即: η=ΡΘ (Sr) , 其中, 假设在某一吋刻 光相对 ίθ镜头的入射角为 θ, 所成的像相对中心点像高为 η, 则它们之间应成线性 关系, 即: Tpk*f*e。 其中, k为常数; f为 fe镜头的焦距,对特定的镜头为定值; Θ 为振镜的扫描角度 (单位为弧度) 。
由高斯光学成像理论知, 像高 η与镜头焦距 f和光束转角 Θ为下列关系: Tp tge
。 但一般成像系统均有一定的畸变存在, 假设在光学设计吋的象差校正中, 有 意引入畸变 Δη , 使得满足下式所示关系: 可实现 F-theta 镜头的物像关系为线性关系的要求。 由此
Figure imgf000003_0001
f (tge- k*e) , Δη为正值, ίθ镜头为负畸变的光学系统。 因此, 在角度较大吋, 要求系统有 较大的负畸变。
[6] 同吋, fe镜头的光阑在镜头之外, 是一种典型的非对称光学系统。 在现有产品 中设计吋考虑垂直像差的平衡问题, 一般釆用 Pitzval的对称结构进行设计, 实现 对垂直像差的校正。 但在这种非对称系统中, 釆用 Pitzval的对称结构进行设计吋 反而很难将垂直像差校正得很好。
[7] 另外, fe镜头的另一个特点是要求所有在成像范围内的聚焦点, 应有相似的聚 焦质量, 且不充许有渐晕, 以保证所有像点都相一致。 在激光应用光路中使用 , 有吋激光能量密度很大, 为了提高镜头的使用寿命, 要求不釆用胶合镜头。 对发明的公开
技术问题
[8] 本发明所欲解决的技术问题在于提供一种镜头入射光束口径大的中短焦距、 能 与现有的镜头安装尺寸进行呼唤的小型化光学镜头。
技术解决方案
[9] 本发明所釆用的技术方案是提供一种光学镜头, 包括透镜组和光阑, 所述光阑 位于所述透镜组的前方, 所述透镜组包括三个透镜,分别为第一、 第二、 第三透 镜, 依次排列为"负-正 -正"分离的光焦度系统, 其中, 所述第一透镜为双凹型 负透镜, 所述第二透镜为弯月型正透镜, 所述第三透镜为双凸型正透镜, 所述 第二透镜的两个曲面均向着光阑方向弯曲, 且整个光学系统的焦距为 f, 第一、 第二、 第三透镜的焦距分别为 fl、 f2、 f3, 各透镜的焦距与整个光学系统的焦距 f 比率满足以下要求:
[10] -0.7<fl/f<-0.5
[11] 1.0<f2/f<1.3
Figure imgf000004_0001
有益效果
[13] 本发明实施例提供的光学镜头釆用由依次排列的双凹型负透镜、 弯月型正透镜 、 双凸型正透镜组合成的透镜组使得系统的球差、 像差与场曲都达到了较好的 平衡, 使得成像效果良好且在整个像面上成像均匀, 且该结构应用于大口径入 射的 fe镜头的小型化取得较好的效果, 且又能与现有的镜头安装尺寸进行互换, 同吋, 在透镜总个数仍为三片的情况下, 使得孔径、 像差、 球差与像散得到较 好的平衡。
附图说明
[14] 图 1是现有技术提供的一种典型的 fe镜头光学系统示意图;
[15] 图 2是本发明实施例提供的光学镜头的结构示意图;
[16] 图 3为本发明第一实施例提供的光学镜头的光线追迹图;
[17] 图 4为本发明第一实施例提供的光学镜头的像散、 场曲及畸变分布图;
[18] 图 5为本发明第一实施例提供的光学镜头的线性度差曲线分布图;
[19] 图 6为本发明第一实施例提供的光学镜头的视场分别为 0、 0.3、 0.5、 0.7、 0.85 以及 1.0吋的光路差程曲线分布图;
[20] 图 7为本发明第二实施例提供的光学镜头的光学传递函数 MTF分布图;
[21] 图 8为本发明第二实施例提供的光学镜头光线追迹图;
[22] 图 9为本发明第二实施例提供的光学镜头的像散、 场曲及畸变分布图;
[23] 图 10为本发明第二实施例提供的光学镜头的线性度差曲线分布图;
[24] 图 11为本发明第二实施例提供的光学镜头的视场分别为 0、 0.3、 0.5、 0.7、 0.85 以及 1.0吋的光路差程曲线分布图;
[25] 图 12为本发明第二实施例提供的光学镜头的光学传递函数 MTF分布图。
本发明的最佳实施方式
[26] 下面结合附图和具体实施例对本发明作进一步说明。
[27] f8镜头是一种大视场、 中小孔径、 中长焦距的照相物镜, 从它要负担的参数来 说, 选用"三片"型的照相物镜, 应该是较为合适的。 我们釆用"负 _正_正"的光 焦度分布型式。 其入瞳在镜头外产生的畸变, 正好也是 fe镜所需要的, 此畸变很 容易达到 fe镜要求, 是一种 "无变形"的打标。 同吋, 它是一个大视场的照相物镜 , 与照相物镜一样, 它是一个"平像场 "的物镜。
[28] 如图 2, 本发明釆用三片式"负 _正_正"的光焦度分布进行设计, 包括透镜组 和光阑 (振镜) 1, 光阑 (振镜) 1位于透镜组的前方, 透镜组包括三个透镜,分 别为第一、 第二、 第三透镜 Ll、 L2、 L3, 其中第一透镜的光焦度 1/fl为负, 其厚 度为 30mm左右, 且由于第一透镜是厚透镜, 可使整个透镜在三片的情况下, 使 得孔径高级球差与像散得到较好的平衡; 第二透镜的光焦度 l/f2与第三透镜的光 焦度 l/f3均为正, 其中各透镜的焦距与整个光学系统的焦距 f比率满足以下要求:
[29] -0.7<fl/f<-0.5
[30] 1.0<f2/f<1.3
Figure imgf000006_0001
[32] 其中, 整个光学系统的焦距为 f, 第一、 第二、 第三透镜的焦距分别为 fl、 f2、 f3.
[33] 其中, 第一透镜 L1距光阑 (振镜) 1的距离 d0为 25-60mm, 第一透镜 L1为双凹 型的负厚透镜; 第二透镜 L2为弯月型正透镜, 第二透镜 L2的两个曲面均向着光 阑 (振镜) 1方向弯曲; 第三透镜 L3为双凸型正透镜, 第三透镜 L3到焦平面 4的 距离为 d6。
[34] 以上透镜组构成实际系统吋, 有吋为了保护裸露在外的透镜或为了其它任何目 的而在透镜组出光方向上任何位置增加平行平板构成的光学窗。 本专利涵盖增 加在以上参数条件下增加光学窗口。
[35] 釆用以上设计的有益效果是: 第一片负透镜 L1釆用厚透镜, 有利于使镜头在直 径方向上的尺寸变小, 使得镜头在入射光束直径较大的情况下实现与小光束直 径镜头一样的安装尺寸, 有利于镜头安装尺寸的标准化; 利用非对称的结构实 现较大的畸变, 克服了对称结构中畸变较小的制约, 使得设计很容易满足物像 关系为线性的要求, 并且使得非对称像差也得到很好的校正; 的使用分离的透 镜系统, 没有釆用胶合面, 避免了在强激光应用光路中使用吋胶的老化或被激 光破坏吋带来的影响, 提高镜头的稳定性与使用寿命; 釆用三片分离透镜便使 各种影响成像质量的像差得到较好的校正, 大大降低了镜头的成本。
[36] 它们的具体结构及参数表述为:系统由 Ll、 L2、 L3三个透镜构成, L1分别由曲 率半径为 Rl、 R2的两个曲面 Sl、 S2构成, 其中心厚度 dl, 材料光学参数为 Ndl: Vdl ; L2分别由曲率半径为 R3、 R4的两个曲面 S3、 S4构成, 其中心厚度 d3, 材 料光学参数为 Nd3:Vd3; L3分别由曲率半径为 R5、 R6的两个曲面 S5、 S6构成, 其中心厚度 d5, 材料光学参数为 Nd5:Vd5; 第一透镜 L1与第二透镜 L2的间隔为 d2 , 第二透镜 L2与第三透镜 L3的间隔为 d4。
[37] 结合以上的参数, 我们设计了两组镜头, 其具体数据分别如下所示:
[38] 实例 1 :
[39] 第一透镜 L1分别由曲率半径为 Rl=-56.116
mm、 R2=776.87mm的两个曲面 Sl、 S2构成, 其光轴上的中心厚度 dl=30 mm, 材料为 Ndl:Vdl约为 1.52/64; 第二透镜 L2分别由曲率半径为 R3=-361.22 mm、 R4=-102.494mm的两个曲面 S3、 S4构成, 其光轴上的中心厚度 d3=9mm, 材料为 Nd3:Vd3约为 1.8/25.4; 第三透镜 L3分别由曲率半径为 R5=339.46 mm、 R6=-175.248 mm的两个曲面 S5、 S6构成, 其光轴上的中心厚度 d5=6 mm, 材料为 Nd5:Vd5约为 1.8/25.4; 第一透镜 L1与第二透镜 L2在光轴上的间隔为 d2=6 mm, 第二透镜 L2与第三透镜 L3在光轴上的间隔为 d4=0.2 mm, 第三透镜 L3与成 象面在光轴上的距离为 d6=213.5mm。
[40] 列表如下:
[41]
Figure imgf000007_0001
根据上表, 可得出数据如下:
f= 164.3mm D/f=l :8
=1064nm 2ω=50°
fl/f=-0.62 f2/f=l.l l f3/f=0.92
由于 fl/f=—0.62满足 -0.7<fl/f<-0.5, f2/f=l.l 1满足 1.0<f2/f<1.3, f3/f=0.92满足 0.8< 图 3为实施例 1的光线追迹图, 说明该实施例产品的透镜布局; 图 4为像散、 场 曲及畸变分布图 (A为像散和场曲分布图, B为畸变分布图), 从图中可以看出该 实施例的系统像散与场曲得到很好的校正; 图 5为线性度差曲线图, 系统的线性 误差最大在 ±0.5%以内, 较好地实现了 F-theta镜头的物像关系式; 图 6为视场分 别为 0、 0.3、 0.5、 0.7、 0.85以及 1.0吋的光路差程分布图, 光程差最大也不超过土 0.3λ, 说明该实施例的系统的像差得较好的校正; 图 7为光学传递函数 MTF图, 从中可以看出各视场的 MTF值均较一致, 说明在全视场上成像均匀。
由以各图说明: 系统的像散与场曲得到很好的校正, 光程差最大也不超过 0.3λ , 且从光学传递函数 MTF图上看, 各视场的 MTF值均较一致, 说明在全视场上 成像均匀, 没有渐晕存在, 且在系统的入射光束口径较大, 釆用的与一般的 ίθ光 学系统不同的结构形式, 使得该系统的产品能够与一般小入射光束口径的产品 进行互换, 达到小型化设计, 且又能与现有的镜头安装尺寸进行互换, 同吋, 在透镜总个数仍为三片的情况下, 使得孔径、 像差、 球差与像散得到较好的平 衡。
实例 2:
第一透镜 L1分别由曲率半径为 Rl=-64.893 mm、 R2=∞的两个曲面 Sl、 S2构成 , 其光轴上的中心厚度 dl=30 mm, 材料为 Ndl:Vdl约为 1.52/64.2; 第二透镜 L2 分别由曲率半径为 R3=-350.291 mm、 R4=-133.167mm的两个曲面 S3、 S4构成, 其光轴上的中心厚度 d3=13mm, 材料为 Nd3:Vd3约为 1.8/25.4; 第三透镜 L3分别 由曲率半径为 R5=516.318 mm、 R6=-216.346 mm的两个曲面 S5、 S6构成, 其光 轴上的中心厚度 d5=6 mm, 材料为 Nd5:Vd5约为 1.81/25.4; 第一透镜 L1与第二透 镜 L2在光轴上的间隔为 d2=6
mm, 第二透镜 L2与第三透镜 L3在光轴上的间隔为 d4=0.5 mm, 第三透镜 L3与成 象面在光轴上的距离为 d6=268mm。
列表如下:
Figure imgf000009_0001
[53] 根据上表, 可得出数据如下:
[54] f=209.7mm D/f=l:10
Figure imgf000009_0002
[56] fl/f=-0.61 f2/f=1.01 f3/f=0.94
[57] 图 8为实施例 2的光线追迹图, 说明该实施例产品的透镜布局; 图 9为像散、 场 曲及畸变分布图 (A为像散和场曲分布图, B为畸变分布图), 从图中可以看出该 实施例的系统像散与场曲得到很好的校正; 图 10为线性度差曲线图, 系统的线 性误差最大在 ±0.5%以内, 较好地实现了 F-theta镜头的物像关系式。 图 11为视场 分别为 0、 0.3、 0.5、 0.7、 0.85以及 1.0吋的光路差程分布图, 光程差最大也不超 过 ±0.2λ, 说明该实施例的系统的像差得较好的校正; 图 12为光学传递函数 MTF 分布图, 从中可以看出各视场的 MTF值均较一致, 说明在全视场上成像均匀。

Claims

权利要求书 [1] 一种光学镜头, 包括透镜组和光阑, 其特征在于: 所述光阑位于所述透镜 组的前方, 所述透镜组包括三个透镜,分别为第一、 第二、 第三透镜, 依次 排列为 "负一正一正"分离的光焦度系统, 所述第一透镜为双凹型负透镜, 所述第二透镜为弯月型正透镜, 所述第三透镜为双凸型正透镜, 所述第二 透镜的两个曲面均向着所述光阑方向弯曲, 且整个光学系统的焦距为 f, 第 一、 第二、 第三透镜的焦距分别为 fl、 f2、 f3, 各透镜的焦距与系统的焦距 f比率满足以下要求: -0.7<fl/f<-0.5
1.0<f2/f<1.3
0.8<f3/f<1
[2] 如权利要求 1所述的光学镜头, 其特征在于: fl/f=-0.62;
/f=l.l l ; =0
[3] 如权利要求 1所述的光学镜头, 其特征在于:
fl/f=-0.61 ; f2/f=1.01 ; f3/f=0.94。
[4] 如权利要求 1所述的光学镜头, 其特征在于: 所述第一透镜与所述光阑之间 的距离为 25-60mm。
[5] 如权利要求 1所述的光学镜头, 其特征在于: 所述第一透镜的厚度为 30mm
PCT/CN2009/070882 2008-04-28 2009-03-19 光学镜头 WO2009132537A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011506555A JP2011519068A (ja) 2008-04-28 2009-03-19 光学レンズ
US12/914,326 US8331043B2 (en) 2008-04-28 2010-10-28 Optical lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810066903.4 2008-04-28
CN200810066903A CN100593742C (zh) 2008-04-28 2008-04-28 光学镜头

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/914,326 Continuation US8331043B2 (en) 2008-04-28 2010-10-28 Optical lens

Publications (1)

Publication Number Publication Date
WO2009132537A1 true WO2009132537A1 (zh) 2009-11-05

Family

ID=40412941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/070882 WO2009132537A1 (zh) 2008-04-28 2009-03-19 光学镜头

Country Status (4)

Country Link
US (1) US8331043B2 (zh)
JP (1) JP2011519068A (zh)
CN (1) CN100593742C (zh)
WO (1) WO2009132537A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113917655A (zh) * 2021-09-18 2022-01-11 北京极豪科技有限公司 光学镜头、指纹识别模组和电子设备
CN115327682A (zh) * 2022-09-01 2022-11-11 南京东利来光电实业有限责任公司 一种大数值孔径的胶合前片的制造方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100593742C (zh) 2008-04-28 2010-03-10 深圳市大族激光科技股份有限公司 光学镜头
CN101324696B (zh) 2008-04-28 2011-05-04 深圳市大族激光科技股份有限公司 光学镜头
CN101369047B (zh) 2008-04-28 2010-12-08 深圳市大族激光科技股份有限公司 光学镜头
CN101414047B (zh) 2008-04-28 2010-06-09 深圳市大族激光科技股份有限公司 光学镜头
CN101866043B (zh) * 2010-05-27 2011-11-09 深圳市大族激光科技股份有限公司 一种紫外激光应用的光学镜头
CN101866044B (zh) * 2010-05-27 2011-12-07 深圳市大族激光科技股份有限公司 一种光学镜头
CN102310264B (zh) * 2010-06-30 2014-09-10 深圳市大族激光科技股份有限公司 紫外激光应用光学系统
US8616712B2 (en) * 2011-03-24 2013-12-31 University Of Rochester Nonsymmetric optical system and design method for nonsymmetric optical system
TWI448722B (zh) * 2011-11-11 2014-08-11 Largan Precision Co Ltd 成像系統
WO2015024233A1 (zh) * 2013-08-22 2015-02-26 深圳市大族激光科技股份有限公司 红外大幅面远心激光打标Fθ镜头
WO2016058313A1 (zh) * 2014-10-17 2016-04-21 浙江舜宇光学有限公司 摄像镜头
CN106537216B (zh) 2014-11-28 2019-05-10 大族激光科技产业集团股份有限公司 激光刻线用光学镜头
US20170307859A1 (en) * 2014-12-03 2017-10-26 Han's Laser Technology Industry Group Co., Ltd. 3d printer, 3d printing method and lens module
CN109164558B (zh) * 2018-10-11 2023-11-28 佛山科学技术学院 一种小型化物像双侧远心光学系统
DE102020202549B4 (de) 2020-02-28 2022-05-05 Trumpf Laser Gmbh Optische Anordnung mit einem F-Theta-Objektiv
CN114326055B (zh) * 2021-12-30 2024-01-12 深圳市韵腾激光科技有限公司 一种大扫描角度的红外场镜

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61286810A (ja) * 1985-06-14 1986-12-17 Konishiroku Photo Ind Co Ltd 走査光学系用レンズ
JPS62254110A (ja) * 1986-04-28 1987-11-05 Fuji Xerox Co Ltd 光ビ−ム走査装置およびそれを用いたカラ−プリンタ
JPS63267910A (ja) * 1987-04-27 1988-11-04 Dainippon Screen Mfg Co Ltd 光ビ−ム走査用レンズ
US4880299A (en) * 1986-04-28 1989-11-14 Minolta Camera Kabushiki Kaisha Telecentric fθ lens system for laser COM
JPH0497211A (ja) * 1990-08-10 1992-03-30 Ricoh Opt Ind Co Ltd テレセントリックなfθレンズ
CN101369046A (zh) * 2008-04-28 2009-02-18 深圳市大族激光科技股份有限公司 光学镜头

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113573B1 (zh) * 1970-12-15 1976-04-30
JPS593725B2 (ja) * 1978-01-27 1984-01-25 旭光学工業株式会社 レトロフオ−カス型広角写真レンズ
JPS56135815A (en) 1980-03-26 1981-10-23 Minolta Camera Co Ltd Lens for optical scanning
JPS6053294B2 (ja) * 1980-06-20 1985-11-25 株式会社ニコン 4群構成fθレンズ系
JPS6289013A (ja) * 1985-10-15 1987-04-23 Copal Electron Co Ltd f・θレンズ
JPH0646258B2 (ja) 1986-02-28 1994-06-15 株式会社三協精機製作所 広角fθレンズ系
JPH07104483B2 (ja) * 1986-10-21 1995-11-13 松下電器産業株式会社 等速度走査レンズ
JP2702516B2 (ja) 1988-08-15 1998-01-21 リコー光学株式会社 fθレンズ
JPH02181712A (ja) * 1989-01-09 1990-07-16 Canon Inc 色消しレーザ走査光学系
JP2673591B2 (ja) * 1989-12-20 1997-11-05 キヤノン株式会社 fθレンズ及びそれを用いたレーザー走査光学系
JP3121452B2 (ja) * 1992-09-28 2000-12-25 セイコーエプソン株式会社 光走査装置
JP3467089B2 (ja) * 1993-12-01 2003-11-17 ペンタックス株式会社 走査光学系
JP3024906B2 (ja) 1994-07-01 2000-03-27 大日本スクリーン製造株式会社 光走査装置
US5917663A (en) * 1995-02-10 1999-06-29 Nikon Corporation Wide-angle lens with an image stabilizing function
US5633736A (en) * 1995-03-28 1997-05-27 Eastman Kodak Company Scan lens and an optical scanner system incorporating two deflectors
JPH0990216A (ja) 1995-09-22 1997-04-04 Matsushita Electric Ind Co Ltd テレセントリックfθレンズ
JPH1039205A (ja) 1996-07-24 1998-02-13 Nikon Corp 走査用レンズ
JP4488263B2 (ja) * 2000-03-29 2010-06-23 フジノン株式会社 f・θレンズ
JP4030743B2 (ja) * 2001-10-31 2008-01-09 ペンタックス株式会社 ズームレンズ系
CN2585256Y (zh) 2002-12-18 2003-11-05 上海市激光技术研究所 二个孔径光阑置于前端的fθ物镜
US6924938B2 (en) * 2003-03-19 2005-08-02 Ricoh Company, Ltd. Zoom lens, camera, and mobile information terminal
JP4646589B2 (ja) * 2004-07-29 2011-03-09 オリンパス株式会社 一眼レフカメラのファインダー光学系
JP4874852B2 (ja) * 2007-04-09 2012-02-15 Hoya株式会社 マクロレンズ系
JP5015657B2 (ja) * 2007-05-18 2012-08-29 富士フイルム株式会社 撮像レンズ、および該撮像レンズを備えた撮像装置
CN101324696B (zh) 2008-04-28 2011-05-04 深圳市大族激光科技股份有限公司 光学镜头
CN101369047B (zh) * 2008-04-28 2010-12-08 深圳市大族激光科技股份有限公司 光学镜头
CN101414047B (zh) * 2008-04-28 2010-06-09 深圳市大族激光科技股份有限公司 光学镜头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61286810A (ja) * 1985-06-14 1986-12-17 Konishiroku Photo Ind Co Ltd 走査光学系用レンズ
JPS62254110A (ja) * 1986-04-28 1987-11-05 Fuji Xerox Co Ltd 光ビ−ム走査装置およびそれを用いたカラ−プリンタ
US4880299A (en) * 1986-04-28 1989-11-14 Minolta Camera Kabushiki Kaisha Telecentric fθ lens system for laser COM
JPS63267910A (ja) * 1987-04-27 1988-11-04 Dainippon Screen Mfg Co Ltd 光ビ−ム走査用レンズ
JPH0497211A (ja) * 1990-08-10 1992-03-30 Ricoh Opt Ind Co Ltd テレセントリックなfθレンズ
CN101369046A (zh) * 2008-04-28 2009-02-18 深圳市大族激光科技股份有限公司 光学镜头

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113917655A (zh) * 2021-09-18 2022-01-11 北京极豪科技有限公司 光学镜头、指纹识别模组和电子设备
CN113917655B (zh) * 2021-09-18 2023-11-21 天津极豪科技有限公司 光学镜头、指纹识别模组和电子设备
CN115327682A (zh) * 2022-09-01 2022-11-11 南京东利来光电实业有限责任公司 一种大数值孔径的胶合前片的制造方法
CN115327682B (zh) * 2022-09-01 2024-03-26 南京东利来光电实业有限责任公司 一种大数值孔径的胶合前片的制造方法

Also Published As

Publication number Publication date
US20110096405A1 (en) 2011-04-28
JP2011519068A (ja) 2011-06-30
CN101369046A (zh) 2009-02-18
US8331043B2 (en) 2012-12-11
CN100593742C (zh) 2010-03-10

Similar Documents

Publication Publication Date Title
WO2009132537A1 (zh) 光学镜头
WO2009132539A1 (zh) 光学镜头
WO2009132535A1 (zh) 光学镜头
WO2009132538A1 (zh) 光学镜头
TWI664044B (zh) 一種適於在雷射加工工藝中使用的F-theta鏡頭
CN100549748C (zh) F-theta光学镜头
CN110221417A (zh) 广角光学系统及光学设备
CN101324697A (zh) 光学镜头
CN104375261A (zh) 一种应用于紫外激光打标的F-theta光学镜头
CN110673306B (zh) 一种小型全高清短焦投影镜头
CN108761744B (zh) 超广角镜头
CN100476489C (zh) 激光应用光学fθ镜头
CN201004108Y (zh) 用于激光打标系统中的fθ镜头
CN219016678U (zh) 一种近红外平场聚焦透镜
CN213987002U (zh) 大孔径且低畸变的F-theta紫外场镜装置
CN214751055U (zh) 355nm F-theta紫外场镜光路构造装置
CN101762868B (zh) 光学镜头
CN112817128A (zh) 大孔径且低畸变的F-theta紫外场镜装置
CN115877564A (zh) 一种近红外激光打标镜头的大视场大孔径成像方法
CN115343829A (zh) 一种平场远心管镜
CN108873257A (zh) 透镜组及激光加工设备
JPH06175213A (ja) カメラ
JPH1068876A (ja) fθレンズ
JPS6217720A (ja) 等速度走査用レンズ
JPH03188404A (ja) テレセントリックなfθレンズ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09737648

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011506555

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09737648

Country of ref document: EP

Kind code of ref document: A1