WO2009128536A1 - 温度検出回路 - Google Patents

温度検出回路 Download PDF

Info

Publication number
WO2009128536A1
WO2009128536A1 PCT/JP2009/057775 JP2009057775W WO2009128536A1 WO 2009128536 A1 WO2009128536 A1 WO 2009128536A1 JP 2009057775 W JP2009057775 W JP 2009057775W WO 2009128536 A1 WO2009128536 A1 WO 2009128536A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
pwm signal
circuit
detection circuit
temperature detection
Prior art date
Application number
PCT/JP2009/057775
Other languages
English (en)
French (fr)
Inventor
隆太 長谷川
竜一 森川
田多 伸光
雅己 平田
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to EP09733231.6A priority Critical patent/EP2270453A4/en
Priority to CN2009801118385A priority patent/CN101983322B/zh
Publication of WO2009128536A1 publication Critical patent/WO2009128536A1/ja
Priority to US12/906,715 priority patent/US7969227B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/005Circuits arrangements for indicating a predetermined temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/01Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using semiconducting elements having PN junctions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2219/00Thermometers with dedicated analog to digital converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures

Definitions

  • the present invention relates to a temperature detection circuit, and more particularly to temperature detection of switching elements constituting an inverter device.
  • the electric motor is used as a power source for a hybrid vehicle or an electric vehicle combined with an engine.
  • an inverter is used to obtain a predetermined torque and frequency. Inverters are incorporated in automobiles, and miniaturization and high power are desired for securing boarding space.
  • the operating temperature of the inverter varies greatly depending on the driving environment of the vehicle. Especially in a hybrid vehicle equipped with an inverter in the engine room, the inverter becomes hot due to the heat generated by the engine.
  • the switching element (hereinafter referred to as SW element) in the inverter rises due to the steady loss caused by the current flowing through the SW element itself and the switching loss caused by on / off in addition to the ambient temperature. If exceeded, there is a risk of destruction.
  • the temperature of the SW element is detected and the inverter is cooled based on the obtained information, or the temperature of the SW element or the inverter is measured to limit the torque and the switching frequency. Proposed.
  • a PN junction semiconductor element such as a diode
  • the voltage changes linearly with respect to a temperature change.
  • torque limitation is started when the temperature of the SW element exceeds a certain temperature, and torque limitation proportional to the rising temperature and the temperature change rate is applied. With this method, the heat generation of the SW element can be suppressed and the destruction can be avoided.
  • inverters are controlled by an arithmetic device such as a microcontroller (hereinafter referred to as a microcomputer).
  • a microcontroller hereinafter referred to as a microcomputer.
  • the inverter is composed of a plurality of SW elements, temperature sensors are required as many as the number of SW elements in order to detect all SW element temperatures.
  • signals from a current sensor, a voltage sensor, an angle sensor, etc. that are indispensable for inverter operation have already been input, and there is no room in the input port of the microcomputer.
  • the sensor When high accuracy and high responsiveness are required for temperature information, since the sensor is installed in the vicinity of the SW element, the sensor has substantially the same potential as the SW element, and it is necessary to insulate the sensor from the microcomputer. Since the temperature detection circuit that transmits temperature information from the sensor to the microcomputer also requires insulation, it is difficult to extract the temperature information having the highest temperature at the stage of the temperature detection circuit.
  • the present invention proposes a temperature detection circuit that satisfies the insulation and high responsiveness by minimizing the increase in cost by adding a few parts, and solves the above-mentioned problems.
  • a temperature detection circuit includes a first temperature detection circuit unit having a first temperature sensor, and a second temperature detection circuit unit having a second temperature sensor and insulated from the first temperature detection circuit unit.
  • the first temperature detection circuit unit includes a first comparison circuit that outputs a first square wave, a first integration circuit that integrates the first square wave and outputs a first triangular wave, the first triangular wave, and the first A second comparison circuit that compares a temperature value obtained from one temperature sensor and outputs a first PWM signal; a first insulation circuit that insulates the first PWM signal and outputs a second PWM signal corresponding to the first PWM signal; Is provided.
  • the second temperature detection circuit unit integrates the second square wave with a second insulation circuit that insulates the first square wave and outputs a second square wave corresponding to the first square wave.
  • a second integration circuit that outputs a triangular wave, a second comparison circuit that outputs a third PWM signal by comparing the temperature value obtained from the second temperature sensor with the second triangular wave, and insulates the third PWM signal;
  • a third insulation circuit that outputs a fourth PWM signal corresponding to the third PWM signal.
  • the computing device computes the higher one of the temperatures detected by the first and second temperature sensors based on the second and fourth PWM signals output from the first and third insulation circuits. .
  • a temperature detection circuit that satisfies the insulation and high responsiveness is provided by minimizing the increase in cost by adding a few parts.
  • FIG. 6 is a diagram illustrating a temperature detection circuit according to a third embodiment of the present invention. A configuration in which three or more temperature sensors are provided and the temperature of the SW element having the highest temperature is measured from an asynchronous PWM signal is shown.
  • FIG. 10 is a diagram illustrating a temperature detection circuit according to a fourth embodiment of the present invention.
  • FIG. 1 shows a configuration when a temperature detection circuit according to the present invention is applied to an inverter device for an electric vehicle.
  • the temperature detection circuit according to the present invention can be applied not only to an inverter device but also to a use for obtaining temperature information from a plurality of temperature sensors that need to be insulated from each other.
  • This inverter device receives a torque command value 3 from the accelerator device 1, converts the output voltage of the DC power source 4 into an AC voltage having a desired frequency and magnitude according to the torque command value 3, and drives the motor 5 to drive the wheel. 6 is controlled.
  • the inverter 2 is connected to the electric motor 5 with three electric wires, and drives the electric motor 5 with three-phase AC power.
  • a capacitor 7 that smoothes a DC voltage is connected to an input stage, and a U-phase, V-phase, and W-phase bridge circuit is configured by SW elements.
  • the connection point of the SW element S U and the switching element S X is connected to the electric motor 5 by an electric wire.
  • a current sensor 8 for measuring current is installed on this electric wire, and the obtained current value 9 is input to the control arithmetic device 10.
  • Free-wheeling diodes FD U and FD X are connected in antiparallel to switching element S U and switching element S X , respectively.
  • the bridge circuit of the V-phase consists of a freewheeling diode FD V and FD Y, SW element S W and S Z, also bridge circuit composed W phase reflux diode FD W and FD Z It is constituted similarly.
  • Temperature sensors TD U to TD Z are provided in the vicinity of the SW elements S U to S Z , respectively.
  • the temperature sensors TD U to TD Z are diodes.
  • the diode 11 as the temperature sensor is formed close to the same semiconductor chip together with the switching element and the reflux diode. Therefore, the diode 11 can accurately detect the temperature of the switching element.
  • the diode has a characteristic that the forward voltage decreases as the temperature rises under constant current conditions.
  • the temperature of the SW element can be obtained by supplying a constant current to the diode and measuring the forward voltage.
  • the temperature sensors TD U to TD Z may be elements other than diodes, but are preferably highly responsive and highly accurate.
  • the voltages Vf U to Vf Z output from the temperature sensors TD U to TD Z are input to the control arithmetic device 10 through the temperature detection circuit 11.
  • the control arithmetic device 10 Based on the torque command value 3 input from the accelerator device 1 and the current value 9 fed back from the current sensor 8, the control arithmetic device 10 sends a gate signal 12 for obtaining a desired torque to the gate drive circuit 13. Output. In addition, the control arithmetic device 10 calculates the temperature of each SW element from the signal 14 input from the temperature detection circuit, and takes various protection means if there is a possibility that the SW element is destroyed due to the temperature rise.
  • the gate drive circuit 13 is connected to all the gates having the SW element S U ⁇ S Z, and switches the gate voltage Vg U ⁇ Vg Z in response to the gate signal 12 is input from the control arithmetic unit 10.
  • the above is the configuration of the entire inverter device.
  • FIG. 2 is a diagram showing a configuration of a temperature detection circuit that measures the temperatures of the SW elements S U and S X. Since the temperature sensors TD U and TD X are installed close to the SW elements S U and S X , a voltage of several hundred volts or more is applied in the same manner as the SW element depending on the on / off state of the SW element. It is necessary to insulate the temperature detection circuits including the temperature sensor so as not to be destroyed even when such a high voltage is applied.
  • Temperature detection circuit 15 operates with a supply voltage V N, the reference potential G N, including a triangular wave generating circuit 16, a comparator 17.
  • the triangular wave generation circuit 16 includes a comparator 18 and an integration circuit 19.
  • the integrating circuit 19 includes a resistor 20, a capacitor 21, and an OP amplifier 22.
  • the operation of generating a triangular wave will be described.
  • the output terminal of the comparator 18 is set to a Low (hereinafter, L) state.
  • the capacitor 21 is discharged through the resistor 20, and the output terminal potential of the OP amplifier 22 gradually increases.
  • the non-inverting input terminal potential of the comparator 18 is a potential obtained by dividing the output of the OP amplifier 22 and the output of the comparator 18 by the resistor 23 and the resistor 24.
  • the output terminal of the comparator 18 Since the output terminal of the comparator 18 is fixed at L in the initial state and the output voltage of the OP amplifier 22 increases, the potential of the non-inverting input terminal of the comparator 18 also increases. Further, if it exceeds the potential of the inverting input terminal (one-half of the supply voltage V N) of the comparator 18, the output terminal turns to High (hereinafter H) from L. The capacitor 21 is charged through the resistor 20, and the output voltage of the OP amplifier 22 decreases from H to L. The potential of the non-inverting input terminal of the comparator 18 divided by the resistors 23 and 24 also decreases, and becomes equal to or lower than the potential V N / 2 of the inverting input terminal.
  • the output terminal of the OP amplifier 22 that outputs the triangular wave 26 is connected to the inverting input terminal of the comparator 17.
  • Forward voltage Vf X of the temperature sensor TD X is applied to the non-inverting input terminal of the comparator 17.
  • the anode of temperature sensor TD X is connected, for example via a resistor to the power supply V N of the temperature detection circuit 15.
  • a diode whose forward voltage decreases as the temperature rises is used for the temperature sensor.
  • the temperature rises the forward voltage decreases from 28 to 29, and the on-pulse width (H level signal width) of the PWM signal becomes as short as 30 to 31.
  • the relationship between the non-inverting input terminal and the inverting input terminal of the comparator may be reversed so that the on-pulse width increases as the temperature rises.
  • the PWM signal 27 is transmitted to the low voltage side through an open collector or open drain output photocoupler 32 and a current limiting resistor 33.
  • the PWM signal 27 is input to the cathode of the input diode of the photocoupler 32. If the PWM signal 27 is connected to the anode of the photocoupler input and the cathode is grounded, the on-pulse width becomes longer due to the temperature rise. In this case, the connection may be changed according to the application.
  • the circuit 34 is a triangular wave insulating synchronous circuit 35 includes a comparator 36, a power supply V N, the reference potential G N and insulated power V U of the temperature detection circuit 15 operates at the reference potential G U.
  • the triangular wave insulation synchronizing circuit 35 is insulated from the temperature detection circuit 15 of the SW element S X and generates a triangular wave 37 synchronized with the triangular wave 26.
  • the triangular wave insulation synchronizing circuit 35 includes an insulation circuit 38, a comparator 39, an integration circuit 40, and an inverting filter circuit 41.
  • a square wave 25 generated incidentally by the triangular wave generation circuit 16 is integrated to generate a triangular wave 37 having a waveform substantially the same as that of the triangular wave 26.
  • the square wave 25 generated by the triangular wave generation circuit 16 is input to the insulation circuit 38.
  • the insulating circuit 38 includes an input resistor 42 that limits current, a photocoupler 43, and a pull-up resistor 44.
  • a square wave 45 that is insulated from the temperature detection circuit 15 is output through the photocoupler 43.
  • the square wave 45 has a waveform different from that of the square wave 25, so that the insulated synchronous triangular wave 37 does not have the same waveform as the triangular wave 26.
  • the comparator 39 has the same performance as the comparator 18 and the square wave 45 is input to the inverting input terminal, the L potential of the square wave 46 output from the comparator 39 is shifted to the L potential of the square wave 25 to avoid this problem. it can.
  • the square wave 46 output from the comparator 39 is input to the integration circuit 40. Similar to the integration circuit 19, the integration circuit 40 includes a resistor 47, a capacitor 48, and an OP amplifier 49. Further, the resistor 47 and the capacitor 48 are selected so that the time constant is the same as that of the integrating circuit 19. If the H ⁇ L period of the square wave 46 is exactly half each (duty ratio 50%), the integrating circuit 40 generates a triangular wave. However, the HL period of the square wave 46 is not exactly half, and is slightly shifted. As a result, the output of the integrating circuit 40 is saturated to either positive or negative, and a triangular wave cannot be output.
  • the filter circuit 41 includes resistors 50 and 51, a capacitor 52, and an OP amplifier 53.
  • the resistor 50 and the capacitor 52 are selected so that the time constant is sufficiently larger than the period of the triangular wave.
  • the circuit operation to avoid saturation is described below.
  • the capacitor 52 is charged through the resistor 50 and the output voltage of the OP amplifier 53 is lowered. Since the potential of the non-inverting input terminal of the OP amplifier 49 having the same potential is also lowered, the potential of the inverting input terminal that is virtually short-circuited is also lowered.
  • the current flowing from the comparator 39 to the integrating circuit 40 through the resistor 47 increases, and the output voltage of the OP amplifier 49 decreases.
  • the output of the integration circuit 40 can generate the triangular wave 37 without being saturated in either the positive or negative direction.
  • the saturation of the integration circuit 40 can be corrected more quickly. As shown in FIG. 4, the same effect can be obtained by inputting the square wave 46 to the filter circuit 81 including the resistor 79 and the capacitor 80 and inputting the output of the filter circuit to the non-inverting input terminal of the OP amplifier 49. .
  • Voltage Vf u of the triangular wave 37 and a temperature sensor TD U is similar to the comparator 17, is compared by the comparator 36, and outputs the PWM signal 54. At this time, the PWM signal 54 is in a relationship of decreasing the on-pulse width as the temperature rises, as in the PWM signal 27.
  • the PWM signal 54 is transmitted to the low voltage side through the current limiting resistor 55 and the photocoupler 56.
  • the collector output of the photocoupler 56 is connected to the collector output of the photocoupler 32 and pulled up by the resistor 57.
  • the low voltage side operates with the power supply voltage V L and the reference voltage GL .
  • the output signal operation of the photocouplers 56 and 32 will be described with reference to FIG. 5 by taking as an example a case where the temperature of the SW element S U is higher than that of S X.
  • the PWM signal 54 has a shorter pulse width than the PWM signal 27.
  • the PWM signal 54 is L and the PWM signal 27 is H as in the period 58
  • the output transistor of the photocoupler 56 is turned on and the output transistor of the photocoupler 32 is turned off. Therefore, the connection point of the photocoupler is set to the reference potential GL , and the PWM signal 59 becomes L.
  • both the PWM signal 54 and the PWM signal 27 are in the H state.
  • the PWM signal 59 becomes H.
  • both the PWM signal 54 and the PWM signal 27 in the period 61 are L, both the output transistors of the photocoupler are turned on, and the PWM signal 59 becomes L.
  • the PWM signal 59 has the same waveform as the PWM signal 54, and transmits the PWM signal of the SW element having the higher temperature.
  • an example in which there are two temperature detection circuits is shown. However, as will be described later, if the same configuration is implemented when there are three or more temperature detection circuits, only the PWM signal of the SW element having the highest temperature can be transmitted. Thus, even if it is necessary to detect the temperatures of the plurality of SW elements, only one input port of the control arithmetic device 10 is sufficient.
  • the output PWM signal 65 is the same as the PWM signal 59. At this time, since a logic IC is required, the number of parts increases.
  • the PWM signal 59 or 65 is input to the control arithmetic unit 10 to calculate the ratio between the on-pulse width and the pulse period (hereinafter referred to as duty ratio).
  • the control arithmetic device 10 stores in advance the relationship between the SW element temperature and the duty ratio, and the SW element temperature is obtained using this relationship. At this time, the SW element temperature may be obtained using only the on-pulse or off-pulse width instead of the duty ratio.
  • a temperature sensor for all of the SW element as in FIG 1 is provided, corresponding the case where the temperature detection circuit is installed, respectively, in addition to the configuration of FIG. 2, the temperature sensor TD V, same temperature as the temperature detection circuit 34 for TD W A detection circuit is configured, and a square wave 25 generated by the triangular wave generation circuit 16 is supplied to an input terminal of each temperature detection circuit.
  • a circuit on the right side of the temperature detection circuit 15 in the drawing that is, a circuit composed of a comparator and a photo interrupter is provided, and the inverting input terminal of each comparator is generated by the triangular wave generation circuit 16.
  • the triangular wave 26 is supplied.
  • the photointerrupter output terminals of all the temperature detection circuits are connected in common as shown in FIG. 2 and pulled up.
  • a temperature sensor and a temperature detection circuit are provided for all the SW elements as described above, when a large current flows through the SW element or the free wheel diode of the inverter 2, a large current also flows through the reference potential wiring N.
  • a deviation also occurs in the PWM wave generated by each comparator 17 and it may be difficult to measure the temperature accurately.
  • a circuit similar to the temperature detection circuit 34 is provided for the temperature sensors TD V , TD W , TD Y , and TD Z in addition to the configuration of FIG. 2, and a triangular wave generation circuit is provided at the input terminal of each temperature detection circuit.
  • a square wave 25 generated at 16 is supplied. Then, the photointerrupter output terminals of all the temperature detection circuits are connected in common as shown in FIG. 2 and pulled up. Thereby, it is possible to prevent a deviation from occurring in the PWM wave generated by each temperature detection circuit.
  • Example 2 Actually, the temperature detection accuracy of the SW element decreases due to variations in temperature sensors and detection circuits. In this embodiment, a method for improving the temperature detection accuracy when the inverter 2 is operated will be described.
  • the SW element “temperature / duty ratio” relationship also varies. If the same “SW element temperature / duty ratio” relationship is uniformly applied to the input PWM signal, the detection accuracy of the SW element temperature decreases. Although by applying the relationship between the temperature sensors TD U ⁇ TD Z combined SW element temperature / duty ratio are each variation problem can be avoided, PWM signal hottest SW element inputted to the control arithmetic unit 10, It is necessary to determine which SW element it is.
  • the current sensor 8 can identify the U, V, and W phase current values I U , I V, and I W. For example, the largest current flows in the negative direction of the U phase at the time of the dotted line 66 in FIG. Since this current flows through the SW element S X , it is estimated that S X has the highest temperature among the SW elements S U to S Z at this time.
  • Control arithmetic unit 10 PWM signal inputted is determined that the temperature sensor TD X, by utilizing the relationship between the temperature / duty ratio of the temperature sensor TD X, calculates the SW element temperature.
  • control arithmetic unit 10 always or periodically detects the SW element through which the largest current flows from each of the current values I U , I V, I W obtained from the current sensor 8, and the input PWM signal is It is determined that the signal corresponds to the detected temperature of the SW element, and the temperature of the element is calculated using the temperature / duty ratio relationship of the element.
  • the SW element with the highest temperature can be estimated, the SW element temperature can be obtained with high accuracy even if the accuracy of the temperature sensor and the detection circuit varies.
  • FIG. 8 shows an embodiment in which the PWM signal of the SW element having the highest temperature is input to the control arithmetic unit 10 without synchronizing the triangular waves generated by the plurality of temperature detection circuits. Also in this embodiment, a case where the temperatures of the SW elements S U and S X are measured will be described as an example.
  • Circuits 67 and 68 having the same configuration as the temperature detection circuit 15 described in the first embodiment are installed in the temperature sensors TD U and TD X, respectively.
  • PWM signals 69 and 70 insulated from the high voltage side are input to the data selector 71.
  • the PWM signal 69 is input to the inverting input terminal of the comparator 74 through an RC filter composed of a resistor 72 and a capacitor 73.
  • the PWM signal 70 passes through the filter of the resistor 75 and the capacitor 76 and is input to the non-inverting input terminal of the comparator 74.
  • the time constant of the filter circuit is set so that the PWM signals 69 and 70 can be sufficiently smoothed.
  • the output terminal of the comparator 74 is connected to the selection terminal of the data selector 71.
  • the on-duty ratio is such that the PWM signal 69 is smaller than the PWM signal 70.
  • the voltage signal 77 becomes lower than the voltage signal 78.
  • the output of the comparator 74 becomes H, and the data selector 71 passes the PWM signal 69.
  • Results in transmitting a PWM signal 69 of the temperature is high SW element S U to the control arithmetic unit 10. If contrary to the SW element S X temperature is higher than the S U, the data selector 71 passes the PWM signal 70.
  • the comparator 74 may be provided with hysteresis.
  • FIG. 9 shows a configuration in which three or more temperature sensors and temperature detection circuits are provided, the PWM signal is generated asynchronously, and the temperature is measured for the PWM signal of the SW element having the highest temperature.
  • the time constant of signal selection is increased by the filter circuit, so whether the PWM signal transmitted to the control arithmetic device 10 is that of the temperature sensor with the highest temperature. Compared to Example 1, it is not accurate. Therefore, the time constant of the filter circuit is set as short as possible within a value that can sufficiently smooth the PWM signal.
  • the temperature sensor having the highest temperature can be obtained by combining the method of estimating the temperature sensor having the highest temperature from the magnitude and direction of each current as in the second embodiment, and considering the time constant of the filter circuit. It is possible to accurately estimate and calculate the temperature of the element.
  • Example 4 In this embodiment, a measure for improving the accuracy of the temperature detection circuit will be described.
  • the intermediate voltage V N / 2 used in the triangular wave generation circuit 16 and the intermediate voltage V U / 2 used in the insulation-side comparator 39 vary depending on the accuracy of the power supply voltage and the voltage dividing resistor. Arise. As a result, the temperature-duty ratio relationship between the PWM signal 27 and the PWM signal 54 obtained as the temperature detection signal is different, and the temperature detection accuracy is lowered.
  • the temperature detection accuracy is improved by improving the temperature detection circuit of FIG. 2 as shown in FIG.
  • the difference from FIG. 2 is that a filter circuit 80 for smoothing the square wave 46 to the DC voltage 79 is added, and the output DC voltage 79 is input to the comparator 39 and the non-inverting input terminal of the OP amplifier 53.
  • the filter circuit 80 is constituted by a resistor 81 and a capacitor 82, but any configuration may be used as long as it is smoothed to a DC voltage.
  • the square wave 46 has the same waveform as the square wave 25, and the average voltage of the square wave 25 is equal to the intermediate voltage V N / 2.
  • the average voltage of the square wave 46 is equal to the intermediate voltage V N / 2, a DC voltage 79 to a square wave 46 and smoothed at the same potential as the intermediate voltage V N / 2. That is, only the intermediate voltage V N / 2 used in the triangular wave generation circuit 16 uses a high-precision voltage dividing resistor, and the insulation side circuit 34 does not use a high-precision voltage dividing resistor, and the duty ratio is accurately 50%.
  • the square wave 46 can be generated.
  • the DC voltage 79 obtained in this way is input to the non-inverting input terminal of the OP amplifier 53, variation in the temperature-duty ratio relationship is suppressed, and the temperature detection accuracy is improved. Furthermore, if the DC voltage 79 is input to the non-inverting input terminal of the comparator 39, it is not necessary to create an intermediate voltage with a voltage dividing resistor, leading to cost reduction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inverter Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

 本発明は、わずかな部品の追加によりコストの増大を最小限に抑え、絶縁と高応答性を満足する温度検出回路を提供する。温度検出回路15は、第1温度センサTDの温度に対応する第1PWM信号を、第1温度センサTDとは絶縁された信号としてフォトインタラプタ32から出力する。温度検出回路部34は、第2温度センサTDの温度に対応する第2PWM信号を、第2温度センサTDとは絶縁された信号としてフォトインタラプタ56から出力する。制御演算装置10はフォトインタラプタ32、56から出力されるPWM信号に基づいて、前記第1及び第2温度センサTD、TDにより検出される温度のうち、高い方の温度を演算する。

Description

温度検出回路
 本発明は温度検出回路に関し、特にインバータ装置を構成するスイッチング素子の温度検出に関する。
 電動機は、エンジンと組み合わせたハイブリッド自動車または電気自動車等の動力源として用いられる。電動機を駆動する際、所定のトルク、周波数を得るのにインバータが用いられる。インバータは自動車内に組み込まれ、搭乗スペースの確保のために小型化及び高パワー化が望まれている。
 自動車の走行環境によってインバータの運転温度が大きく変動し、特にエンジンルームにインバータを搭載したハイブリッド自動車においては、エンジンの発熱の影響でインバータは高温になる。インバータ内のスイッチング素子(以下SW素子)は、このような周囲温度に加えて、SW素子自身に電流が流れることによる定常損失、オン・オフによるスイッチング損失の影響で温度が上昇し、ある温度を超えると破壊に至る恐れがある。
 SW素子の破壊を回避するために、SW素子の温度を検出し、得た情報を基にインバータを冷却するか、またはSW素子やインバータの温度を測定してトルクやスイッチング周波数を制限する方法が提案されている。ダイオードなどのPN接合半導体素子は温度変化に対して電圧が線形に変化する。温度検出センサとしてダイオードをSW素子近傍に設置し、電圧を観測すると、高精度、高応答性の温度情報を得られる。高精度な温度情報が得られればSW素子の破壊温度近くまでトルクを出力でき、インバータの高密度化が期待できる。
 特許文献1では、SW素子の温度がある温度を超えたらトルク制限を開始し、上昇温度と温度変化率に比例したトルク制限をかけている。この手法でSW素子の発熱を抑え、破壊を回避することができる。
特開平10-210790号公報
 インバータはマイクロコントローラ(以下マイコン)などの演算装置によって制御されるものが多い。上記文献のようにトルク制御を行う場合、温度センサから出力される信号をマイコンに入力する必要がある。インバータは複数のSW素子で構成されるため、全てのSW素子温度を検出するには温度センサがSW素子の数だけ必要となる。これら複数の温度情報をマイコンに入力する必要があるが、インバータ運転に欠かせない電流センサ、電圧センサ、角度センサなどからの信号が既に入力され、マイコンの入力ポートに空きがない場合がある。
 入力ポートの多いマイコンを使用すればこの問題を回避できるが、コストの増大につながる。そこで、最も温度が高いSW素子の温度情報のみを伝達する方法が考えられる。
温度情報に高精度、高応答性を求める場合、センサをSW素子近傍に設置するため、センサはSW素子とほぼ同電位となり、センサとマイコンとの間を絶縁する必要がある。センサからマイコンに温度情報を伝達する温度検出回路も絶縁を必要とするため、温度検出回路の段階で最も温度が高い温度情報を抽出することは困難である。
 本発明は、わずかな部品の追加によりコストの増大を最小限に抑え、絶縁と高応答性を満足する温度検出回路を提案し、上記に挙げた課題を解決するものである。
 本発明に係る温度検出回路は、第1温度センサを有する第1温度検出回路部と、第2温度センサを有し第1温度検出回路部とは絶縁された第2温度検出回路部とを含む。前記第1温度検出回路部は、第1方形波を出力する第1比較回路と、前記第1方形波を積分して第1三角波を出力する第1積分回路と、前記第1三角波と前記第1温度センサから得られる温度値を比較して第1PWM信号を出力する第2比較回路と、前記第1PWM信号を絶縁し、該第1PWM信号に対応する第2PWM信号を出力する第1絶縁回路とを備える。前記第2温度検出回路部は、前記第1方形波を絶縁し、該第1方形波に対応する第2方形波を出力する第2絶縁回路と、前記第2方形波を積分して第2三角波を出力する第2積分回路と、前記第2温度センサから得られる温度値と前記第2三角波を比較して第3PWM信号を出力する第2比較回路と、前記第3PWM信号を絶縁し、該第3PWM信号に対応する第4PWM信号を出力する第3絶縁回路とを備える。演算装置は、前記第1及び第3絶縁回路ら出力される前記第2及び第4PWM信号に基づいて、前記第1及び第2温度センサにより検出される温度のうち、高い方の温度を演算する。
 わずかな部品の追加によりコストの増大を最小限に抑え、絶縁と高応答性を満足する温度検出回路が提供される。
本発明の実施形態に係るインバータ回路と制御ブロックを示す図。 本発明の実施例1に係る温度検出回路を示す図。 本発明の実施例1に係る温度センサの電圧と三角波とPWM信号の時系列変化を示す図。 本発明の実施例1に係る温度検出回路を示す図。 本発明の実施例1に係るPWM信号の時系列変化を示す図。 本発明の実施例1に係る論理回路を用いた温度検出回路を示す図。 本発明の実施例2に係る電流センサから得られる電流波形を示す図。 本発明の実施例3に係る温度検出回路を示す図。 温度センサを3つ以上設け、非同期のPWM信号から最も温度が高いSW素子の温度を測定する構成を示す。 本発明の実施例4に係る温度検出回路を示す図。
 以下、本発明に係る温度検出回路ついて、図面を参照して説明する。尚、同一の構成要素には同一の符号を付し、重複する説明は省略する。
(全体構成)
 図1は本発明による温度検出回路を電気車用のインバータ装置に適用したときの構成を示す。本発明による温度検出回路は、インバータ装置のみならず、複数の互いに絶縁が必要な温度センサから温度情報を得る用途に適用できる。
 このインバータ装置は、アクセル装置1からトルク指令値3を入力し、トルク指令値3に応じて直流電源4の出力電圧を所望周波数及び大きさの交流電圧に変換し、電動機5を駆動して車輪6の回転を制御する。インバータ2は電動機5と3本の電線で接続され、三相交流電力により電動機5を駆動する。
 インバータ2は、直流電圧を平滑化するコンデンサ7が入力段に接続され、SW素子によりU相、V相、W相のブリッジ回路が構成されている。U相のブリッジ回路は、SW素子Sとスイッチング素子Sの接続点が電線によって電動機5に接続されている。この電線には電流を測定する電流センサ8を設置し、得られた電流値9を制御演算装置10に入力する。スイッチング素子Sとスイッチング素子Sには還流ダイオードFDとFDがそれぞれ逆並列に接続されている。
 SW素子SとS,還流ダイオードFDとFDで構成されるV相のブリッジ回路、SW素子SとS,還流ダイオードFDとFDで構成されるW相のブリッジ回路も同様に構成されている。
 SW素子S~Sの近傍に温度センサTD~TDがそれぞれ設けられる。本実施例では温度センサTD~TDをダイオードとする。この温度センサとしてのダイオード11は、スイッチング素子及び還流ダイオードと共に同一半導体チップ上に近接して形成されている。従って、ダイオード11はスイッチング素子の温度を正確に検出することができる。ダイオードは定電流の条件では、温度が上昇すると順方向電圧が小さくなる特性を有している。ダイオードに一定の電流を供給し、順方向電圧を測定することによって、SW素子の温度が得られる。温度センサTD~TDはダイオード以外の素子でもよいが、応答性が高く、高精度のものが望ましい。温度センサTD~TDが出力した電圧Vf~Vfは、温度検出回路11を通して制御演算装置10に入力される。
 制御演算装置10は、アクセル装置1から入力されるトルク指令値3と、電流センサ8からフィードバックされる電流値9に基づいて、所望のトルクが得られるようなゲート信号12をゲート駆動回路13に出力する。また制御演算装置10は、温度検出回路から入力される信号14から各SW素子温度を演算し、温度の上昇によりSW素子が破壊する恐れがあれば、各種の保護手段を講じる。
 ゲート駆動回路13はSW素子S~Sが有するゲートの全てに接続され、制御演算装置10から入力されたゲート信号12に応じてゲート電圧Vg~Vgの切り替えを行う。以上がインバータ装置全体の構成である。
 [実施例1]
 図2はSW素子S、Sの温度を測定する温度検出回路の構成を示す図である。温度センサTDとTDはSW素子S、Sに近接して設置されるので、SW素子のオン・オフの状態によって、SW素子と同様に数100V以上の電圧が印加される。このような高電圧となっても破壊しないように、温度センサを含めた温度検出回路同士に絶縁をとる必要がある。
 先ずはSW素子Sの温度検出回路15の詳細を説明する。温度検出回路15は電源電圧V、基準電位Gで動作し、三角波発生回路16、コンパレータ17を含む。
 三角波発生回路16はコンパレータ18と積分回路19を含む。積分回路19は抵抗20、コンデンサ21、OPアンプ22を使用して構成される。三角波発生の動作を説明する。先ず、コンパレータ18の出力端子がLow(以下L)の状態とする。抵抗20を通してコンデンサ21が放電し、OPアンプ22の出力端子電位が徐々に上がっていく。コンパレータ18の非反転入力端子電位は、OPアンプ22の出力とコンパレータ18の出力を抵抗23と抵抗24で分圧した電位である。コンパレータ18の出力端子は初期状態のLで固定されており、OPアンプ22の出力電圧が上がっていくので、コンパレータ18の非反転入力端子の電位も上がる。さらに、コンパレータ18の反転入力端子の電位(電源電圧Vの2分の1)を超えると、出力端子がLからHigh(以下H)に転じる。抵抗20を通してコンデンサ21が充電され、OPアンプ22の出力電圧はHからLに下がっていく。抵抗23,24で分圧されたコンパレータ18の非反転入力端子の電位も下がり、反転入力端子の電位V/2以下となる。すると、再びコンパレータ18の出力端子はLに転じて初期の状態に戻り、以下同じ動作を繰り返す。その結果、コンパレータ18の出力端子からは方形波25が、OPアンプ22の出力端子からは三角波26がそれぞれ出力される。
 三角波26を出力するOPアンプ22の出力端子はコンパレータ17の反転入力端子に接続する。コンパレータ17の非反転入力端子には温度センサTDの順方向電圧Vfが印加される。温度センサTDのアノードは、例えば抵抗を介してこの温度検出回路15の電源Vに接続される。Vfが三角波の電圧より高いときはコンパレータ17の出力がH状態、逆のときはL状態となり、PWM信号27が出力端子から生成される。
 本実施例においては、温度が上昇すると順方向電圧が低下するダイオードを温度センサに用いている。図3を参照すると、温度が上昇して順方向電圧が28から29に低下し、PWM信号のオンパルス幅(Hレベル信号幅)が30から31のように短くなる。用途によってはコンパレータの非反転入力端子と反転入力端子の関係を逆にして、温度が上昇するとオンパルス幅が長くなるようにしてもよい。
 PWM信号27はオープンコレクタまたはオープンドレイン出力のフォトカプラ32と電流制限用の抵抗33を通じて、低圧側へ伝達される。PWM信号27はフォトカプラ32の入力ダイオードのカソードに入力する。PWM信号27をフォトカプラ入力のアノードに接続し、カソードを接地すれば、温度上昇によりオンパルス幅が長くなる。これも用途に応じて接続を変更してよい。
 次に、SW素子Sの温度検出回路34の構成及び動作を説明する。本回路34は三角波絶縁同期回路35、コンパレータ36を含み、温度検出回路15の電源V、基準電位Gと絶縁された電源V、基準電位Gで動作する。
 上述のように三角波絶縁同期回路35は、SW素子Sの温度検出回路15と絶縁され、三角波26と同期した三角波37を発生する。三角波絶縁同期回路35は絶縁回路38、コンパレータ39、積分回路40、反転フィルタ回路41で構成する。大まかな動作としては、三角波発生回路16で付随的に発生する方形波25を積分し、三角波26とほぼ同じ波形の三角波37を発生する。
 先ず、三角波発生回路16で発生する方形波25を絶縁回路38に入力する。絶縁回路38は電流を制限する入力抵抗42、フォトカプラ43、プルアップ抵抗44で構成する。フォトカプラ43を通し、温度検出回路15とは絶縁された方形波45が出力される。方形波45はLのときにフォトカプラ43の出力オン抵抗により、基準電位Gよりわずかに高い電位になる。これにより、方形波45は方形波25と異なる波形になるので、絶縁同期三角波37は三角波26と同じ波形にならない。コンパレータ39をコンパレータ18と同じ性能とし、反転入力端子に方形波45を入力すれば、コンパレータ39から出力される方形波46のL電位は方形波25のL電位にシフトして、この問題を回避できる。
 コンパレータ39から出力した方形波46は積分回路40に入力する。この積分回路40は積分回路19と同様、抵抗47、コンデンサ48、OPアンプ49で構成される。また、積分回路19と時定数が同じになるように抵抗47、コンデンサ48を選択する。方形波46のH・Lの期間がちょうど半分ずつ(デューティ比50%)であれば、積分回路40は三角波を発生する。しかし、方形波46のH・Lの期間がちょうど半分であることはなく、わずかにずれている。その結果、積分回路40の出力は正または負のどちらかに飽和してしまい、三角波を出力することができない。
 そこで、積分回路40の出力をフィルタ回路41に入力し、その出力を積分回路40のOPアンプ49の非反転入力端子にフィードバックする。フィルタ回路41は抵抗50、51、コンデンサ52、OPアンプ53で構成する。時定数を三角波の周期より十分に大きくなるように、抵抗50、コンデンサ52を選択する。
 以下に飽和を回避する回路動作を説明する。例えば積分回路40の出力電圧が上昇し、正の方向へ飽和しようとすると、抵抗50を通してコンデンサ52が充電され、OPアンプ53の出力電圧が下がる。これと同電位のOPアンプ49の非反転入力端子の電位も下がるので、仮想短絡されている反転入力端子の電位も下がる。コンパレータ39から抵抗47を通じて積分回路40へ流れる電流が大きくなり、OPアンプ49の出力電圧は下がる。このように、積分回路40の出力は正・負の方向どちらにも飽和することなく、三角波37を発生できる。フィルタ回路41のゲインを抵抗51で大きくすれば、積分回路40の飽和に対してより早く修正をかけられる。図4のように、方形波46を抵抗79、コンデンサ80で構成したフィルタ回路81に入力し、フィルタ回路の出力をOPアンプ49の非反転入力端子に入力しても、同様の効果が得られる。
 三角波37と温度センサTDの電圧Vfはコンパレータ17と同様、コンパレータ36により比較され、PWM信号54が出力する。この時点で、PWM信号54はPWM信号27と同様、温度が上昇するとオンパルス幅が短くなる関係にある。
 PWM信号54を電流制限用の抵抗55とフォトカプラ56を通じで低圧側に伝達する。フォトカプラ56のコレクタ出力をフォトカプラ32のコレクタ出力と接続し、抵抗57でプルアップする。このように接続することで、各PWM信号の関係は、図5のようになる。尚、低圧側は電源電圧V、基準電圧Gで動作する。
 ここで、SW素子SがSより温度が高い場合を例として、フォトカプラ56,32の出力信号動作を図5を参照して説明する。このとき、PWM信号54はPWM信27よりパルス幅は短い。期間58のようにPWM信号54がLでPWM信号27がHのときは、フォトカプラ56の出力トランジスタがオン、フォトカプラ32の出力トランジスタがオフになる。よって、フォトカプラの接続点は基準電位Gに定まり、PWM信号59はLとなる。期間60はPWM信号54、PWM信号27共にH状態である。このときは両方のフォトカプラの出力トランジスタがオフになるため、PWM信号59はHになる。期間61のPWM信号54、PWM信号27共にLのときは、フォトカプラの出力トランジスタは共にオンし、PWM信号59はLになる。以上の動作の結果、PWM信号59はPWM信号54と同じ波形になり、温度が高い方のSW素子のPWM信号を伝達する。本実施例では温度検出回路が2つのときの例を示しているが、後述するように3つ以上のときも同じ構成を実施すれば、最も温度が高いSW素子のPWM信号のみを伝達できる。このように、複数のSW素子の温度を検出する必要があっても、制御演算装置10の入力ポートは1つで足りる。
 図6のように、フォトカプラ32、56の出力をそれぞれ抵抗62、63でプルアップし、AND回路64に入力しても、出力されるPWM信号65はPWM信号59と同じになる。このときはロジックICが必要となるため、部品点数は増える。
 最後に、PWM信号59または65を制御演算装置10に入力し、オンパルス幅とパルスの周期の比(以下デューティ比)を演算する。制御演算装置10には、SW素子温度とデューティ比の関係をあらかじめ記憶しておき、この関係を利用してSW素子温度が得られる。このとき、デューティ比ではなく、オンパルスまたはオフパルス幅のみを利用してSW素子温度を得てもよい。
 ここで、インバータの全てのSW素子について温度センサならびに温度検出回路を設ける場合の回路構成について説明する。図1のように全てのSW素子について温度センサを設け、対応する温度検出回路をそれぞれ設置する場合は、図2の構成に加え、温度センサTD、TDについて温度検出回路34と同様な温度検出回路を構成し、各温度検出回路の入力端子に、三角波生成回路16で生成される方形波25を供給する。又、温度センサTD、TDについては、温度検出回路15の図中右側の回路つまりコンパレータ及びフォトインタラプタで構成される回路を設け、各コンパレータの反転入力端子には、三角波生成回路16で生成される三角波26をそれぞれ供給する。そして全ての温度検出回路のフォトインタラプタ出力端子を図2のように共通に接続してプルアップする。
 また、上記のように全てのSW素子に温度センサ及び温度検出回路を設けた場合、インバータ2のSW素子あるいは還流ダイオードに大電流が流れると、基準電位配線Nにも大電流が流れ、温度センサTD、TD、TDの基準電位Gに電位差が生じる。この結果、各コンパレータ17にて発生されるPWM波にも偏差が発生し、正確な温度の測定が困難となることがある。そのような場合は、図2の構成に加え、温度センサTD、TD、TD、TDについて温度検出回路34と同様な回路を設け、各温度検出回路の入力端子に、三角波生成回路16で生成される方形波25を供給する。そして全ての温度検出回路のフォトインタラプタ出力端子を図2のように共通に接続してプルアップする。これにより、各温度検出回路で生成されるPWM波における偏差の発生が防止できる。
 [実施例2]
 実際には、温度センサや検出回路のばらつきにより、SW素子の温度検出精度が低下する。本実施例では、インバータ2を運転する際の温度検出精度の向上方法を述べる。
 各温度センサTD~TDと温度検出回路に精度等のばらつきがあると、SW素子の「温度/デューティ比」の関係にもばらつきが生じる。入力されたPWM信号に、同一の「SW素子温度/デューティ比」の関係を画一的に適用すると、SW素子温度の検出精度が下がる。温度センサTD~TDそれぞれに合わせたSW素子温度/デューティ比の関係を適用すればばらつきの問題は回避できるが、制御演算装置10に入力される最も温度の高いSW素子のPWM信号が、どのSW素子のものかを判定する必要がある。
 図7を用いて、最も温度の高いSW素子の推定方法を説明する。電流センサ8によって、U,V,W相の各電流値I、IV、と向きがわかる。例えば、図7の点線66の時点ではU相の負の方向に最も大きな電流が流れている。この電流は、SW素子Sに流れているので、この時点でS~SのSW素子のうちSが最も温度が高いと推定される。制御演算装置10は、入力されるPWM信号は温度センサTDのものと判定し、温度センサTDの温度/デューティ比の関係を利用して、SW素子温度を演算する。つまり制御演算装置10は、電流センサ8から得られる各電流値I、IV、から、最も大きな電流が流れているSW素子を常に又は周期的に検出し、入力されるPWM信号は検出したSW素子の温度に対応する信号であると判断し、該素子の温度/デューティ比の関係を利用して該素子の温度を演算する。このように、最も温度の高いSW素子が推定できれば、温度センサや検出回路の精度等にばらつきがあっても、SW素子温度を精度よく求めることができる。
 [実施例3]
 図8は複数の温度検出回路で発生される三角波を同期させず、最も温度が高いSW素子のPWM信号を制御演算装置10へ入力する実施例である。本実施例においても、SW素子S、Sの温度を測定する場合を例に挙げる。
 実施例1で説明した温度検出回路15と同一構成の回路67、68を、温度センサTD、TDそれぞれに設置する。高圧側とは絶縁されたPWM信号69、70をデータセレクタ71に入力する。PWM信号69は抵抗72とコンデンサ73で構成したRCフィルタを通し、コンパレータ74の反転入力端子に入力する。PWM信号70も同様に、抵抗75とコンデンサ76のフィルタを通過し、コンパレータ74の非反転入力端子に入力する。フィルタ回路の時定数は、PWM信号69、70を十分に平滑化できるように設定する。コンパレータ74の出力端子はデータセレクタ71の選択端子に接続する。
 例えばSW素子SがSより温度が高い場合、オンデューティ比はPWM信号69がPWM信号70より小さくなる。それぞれのフィルタ回路を通過すると、電圧信号77は電圧信号78より低くなる。コンパレータ74の出力はHになり、データセレクタ71はPWM信号69を通過させる。結果、温度が高いSW素子SのPWM信号69を制御演算装置10に伝達することになる。逆にSW素子SがSより温度が高い場合、データセレクタ71はPWM信号70を通過させる。信号の選択する感度を調整するために、コンパレータ74にヒステリシスを持たせてもよい。
 このように、コンパレータとデータセレクタを使用し、温度が高いSW素子のPWM信号が伝えられる。温度センサが3つ以上の場合でも、同様の構成で最も温度が高いSW素子のPWM信号のみを通過させることができる。図9は温度センサ及び温度検出回路をそれぞれ3つ以上設け、PWM信号を非同期で発生させ、最も温度が高いSW素子のPWM信号について、温度を測定する構成を示す。
 ただし、図9のような構成を採用する場合、フィルタ回路によって信号選択の時定数が長くなるので、制御演算装置10に伝達されるPWM信号が、最も温度が高い温度センサのものであるかは実施例1に比べると正確でない。よって、フィルタ回路の時定数は、十分にPWM信号を平滑化できる値のなかで、できるだけ短く設定する。また、実施例2のように各電流の大きさ及び方向から最も温度が高い温度センサを推定する手法を併用し、かつフィルタ回路の時定数を考慮することによって、最も温度が高い温度センサをより正確に推定し、該素子の温度を演算することができる。
 [実施例4]
 本実施例では温度検出回路の精度向上の方策を述べる。図2の温度検出回路において、三角波発生回路16で使用する中間電圧V/2と、絶縁側のコンパレータ39で使用する中間電圧V/2は、電源電圧や分圧抵抗の精度によってばらつきが生じる。その結果、温度検出信号として得られるPWM信号27とPWM信号54の温度‐デューティ比の関係がそれぞれ異なってしまい、温度検出精度が低下する。
 図2の温度検出回路を図10のように改良すると、温度検出精度が向上する。図2に比べて変更した点は、方形波46を直流電圧79に平滑化するフィルタ回路80を追加し、出力された直流電圧79をコンパレータ39とOPアンプ53の非反転入力端子に入力する点である。本実施例においてフィルタ回路80は抵抗81とコンデンサ82で構成されているが、直流電圧に平滑化されればどのような構成でもよい。
 方形波46は方形波25と同じ波形であり、方形波25の平均電圧は中間電圧V/2と等しい。つまり、方形波46の平均電圧は中間電圧V/2と等しいので、方形波46を平滑化した直流電圧79は中間電圧V/2と同じ電位になる。つまり、三角波発生回路16で使用する中間電圧V/2のみ精度の高い分圧用抵抗を使用して、絶縁側回路34では精度の高い分圧用抵抗を使用せずにデューティ比が正確に50%の方形波46を発生できる。こうして得られた直流電圧79をOPアンプ53の非反転入力端子に入力すれば、温度‐デューティ比の関係のばらつきが抑えられ、温度検出精度が向上する。さらに、直流電圧79をコンパレータ39の非反転入力端子に入力すれば、分圧抵抗で中間電圧を作る必要がなくなるので、コストの低減につながる。
 以上の説明はこの発明の実施の形態であって、この発明の装置及び方法を限定するものではなく、様々な変形例を容易に実施することができるものである。

Claims (5)

  1.  第1温度センサを有する第1温度検出回路部と、第2温度センサを有し前記第1温度検出回路部とは絶縁された第2温度検出回路部とを含む温度検出回路であって、
     前記第1温度検出回路部は、
     第1方形波を出力する第1比較回路と、
     前記第1方形波を積分して第1三角波を出力する第1積分回路と、
     前記第1三角波と前記第1温度センサから得られる温度値を比較して第1PWM信号を出力する第2比較回路と、
     前記第1PWM信号を絶縁し、該第1PWM信号に対応する第2PWM信号を出力する第1絶縁回路と、を備え、
     前記第2温度検出回路部は、
     前記第1方形波を絶縁し、該第1方形波に対応する第2方形波を出力する第2絶縁回路と、
     前記第2方形波を積分して第2三角波を出力する第2積分回路と、
     前記第2温度センサから得られる温度値と前記第2三角波を比較して第3PWM信号を出力する第2比較回路と、
     前記第3PWM信号を絶縁し、該第3PWM信号に対応する第4PWM信号を出力する第3絶縁回路と、を備え、
     前記温度検出回路は、前記第1及び第3絶縁回路ら出力される前記第2及び第4PWM信号に基づいて、前記第1及び第2温度センサにより検出される温度のうち、高い方の温度を演算する演算手段を備えたことを特徴とする温度検出回路。
  2.  前記第2積分回路は演算増幅器を含み、
     前記第2絶縁回路から出力される前記第2方形波のLow状態の電位を回路基準電位にシフトさせ、第3方形波を出力するシフト手段と、
     前記シフト手段の出力と前記演算増幅器の反転入力端子の間に接続する抵抗と、
     前記演算増幅器の反転入力端子と出力端子間に接続されるコンデンサと、
     前記第2三角波または前記第3方形波を平滑化するフィルタ回路と、を備え、
     前記フィルタ回路の出力は前記演算増幅器の非反転入力端子に接続されることを特徴とする請求項1記載の温度検出回路。
  3.  前記第1及び第3絶縁回路をオープンコレクタまたはオープンドレイン型のトランジスタ出力フォトカプラからなる構成とし、該フォトカプラの出力を互いに接続し、前記演算手段は該接続点から得られるPWM信号に基づいて温度を演算することを特徴とする請求項1又は2記載の温度検出回路。
  4.  前記演算手段は、前記第1及び第3絶縁回路が出力するPWM信号のうち、高い温度を示すPWM信号を入力する手段と、前記第1及び第2温度センサのうち、高い温度を検出している温度センサを判定する手段と、前記高い温度を検出している温度センサのPWM信号デューティ比と温度との関係から前記高い温度を検出しているセンサの温度を演算する手段を備えることを特徴とする請求項1または2記載の温度検出回路。
  5.  前記第3方形波を平滑化して直流電圧信号を得る手段と、前記直流電圧信号を前記反転フィルタ回路及び前記シフト手段の基準電圧とする手段を備えることを特徴とする請求項3又は4記載の温度検出回路。
PCT/JP2009/057775 2008-04-18 2009-04-17 温度検出回路 WO2009128536A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09733231.6A EP2270453A4 (en) 2008-04-18 2009-04-17 Temperature detecting circuit
CN2009801118385A CN101983322B (zh) 2008-04-18 2009-04-17 温度检测电路
US12/906,715 US7969227B2 (en) 2008-04-18 2010-10-18 Temperature detection circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-109354 2008-04-18
JP2008109354A JP5161641B2 (ja) 2008-04-18 2008-04-18 温度検出回路

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/906,715 Continuation US7969227B2 (en) 2008-04-18 2010-10-18 Temperature detection circuit

Publications (1)

Publication Number Publication Date
WO2009128536A1 true WO2009128536A1 (ja) 2009-10-22

Family

ID=41199223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057775 WO2009128536A1 (ja) 2008-04-18 2009-04-17 温度検出回路

Country Status (5)

Country Link
US (1) US7969227B2 (ja)
EP (1) EP2270453A4 (ja)
JP (1) JP5161641B2 (ja)
CN (1) CN101983322B (ja)
WO (1) WO2009128536A1 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009058438A (ja) * 2007-08-31 2009-03-19 Toshiba Corp 温度検出回路
DE102011076908A1 (de) 2011-06-01 2012-12-06 Robert Bosch Gmbh Verfahren zum Betreiben eines Wechselrichters sowie Wechselrichter
JP6201296B2 (ja) * 2012-11-06 2017-09-27 富士電機株式会社 電力変換装置の制御装置
DE102013205255B4 (de) * 2013-03-26 2017-11-02 Institut für Mikroelektronik- und Mechatronik-Systeme gGmbH Digitaler Temperatursensor
CN104253605A (zh) * 2013-06-27 2014-12-31 鸿富锦精密工业(深圳)有限公司 调整电路及具有调整电路的电子设备
GB2516683B (en) * 2013-07-30 2016-03-02 Control Tech Ltd Modulation of switching signals in power converters
JP5907236B2 (ja) * 2013-12-11 2016-04-26 株式会社デンソー 温度検出装置
JP6070635B2 (ja) * 2014-06-02 2017-02-01 トヨタ自動車株式会社 半導体装置
WO2016039342A1 (ja) * 2014-09-09 2016-03-17 富士電機株式会社 半導体モジュール
KR101655533B1 (ko) 2014-09-22 2016-09-07 현대자동차주식회사 스위칭 소자의 온도 센싱 장치
DE112015004904T5 (de) * 2014-10-30 2017-07-20 Yazaki Corporation Fahrzeugenergieversorgungssteuervorrichtung
JP2017005824A (ja) * 2015-06-08 2017-01-05 株式会社豊田自動織機 インバータ駆動回路
FR3038053B1 (fr) * 2015-06-26 2019-04-05 Continental Automotive France Dispositif de mesure de temperature
JP2017034834A (ja) * 2015-07-31 2017-02-09 株式会社デンソー Pwm信号処理装置及びpwm信号処理システム
DE102016204094B4 (de) * 2016-03-11 2018-06-14 Baumüller Nürnberg GmbH Schaltungsanordnung und Verfahren zur sicheren Übertragung eines Sensorsignals
JP6665802B2 (ja) * 2017-01-27 2020-03-13 株式会社デンソー 回転電機制御装置、および、これを用いた電動パワーステアリング装置
JP6952493B2 (ja) * 2017-05-19 2021-10-20 三菱電機株式会社 通信システムおよび中継装置
KR102085449B1 (ko) * 2018-10-05 2020-03-05 주식회사 엘지화학 온도 센서의 비교 검증 시스템 및 비교 검증 방법, 온도 센서의 비교 검증 시스템을 포함하는 배터리 관리 시스템
CN108931315A (zh) * 2018-10-09 2018-12-04 国家海洋技术中心 一种基于ntc热敏电阻的温度测量电路
CN109580012A (zh) * 2018-12-21 2019-04-05 广州市优仪电子科技有限公司 基于积分计算的温度检测电路
US11233503B2 (en) 2019-03-28 2022-01-25 University Of Utah Research Foundation Temperature sensors and methods of use
CN111007377A (zh) * 2019-12-23 2020-04-14 广东宝星新能科技有限公司 Igbt模块的温度采样电路、温度采样系统和ups系统
CN111266139B (zh) * 2020-03-02 2022-06-07 京东方科技集团股份有限公司 微流控芯片的温度控制系统、检测系统及温度控制方法
CN111933070A (zh) * 2020-07-27 2020-11-13 重庆惠科金渝光电科技有限公司 驱动电路以及显示装置
CN114039479A (zh) * 2021-11-12 2022-02-11 天津航空机电有限公司 一种270v直流地面电源电压脉动保护电路
WO2024076025A1 (ko) * 2022-10-07 2024-04-11 주식회사 필드큐어 최대 온도 측정 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03139105A (ja) * 1989-08-21 1991-06-13 Suzuki Motor Corp 電動車の駆動装置
JPH10210790A (ja) 1997-01-27 1998-08-07 Toyota Motor Corp 電力変換器の過熱保護装置、その機能を有する電気自動車のインバータ制御装置およびインバータ冷却装置
JP2001169401A (ja) * 1999-12-02 2001-06-22 Honda Motor Co Ltd 電気自動車の制御装置
JP2003294543A (ja) * 2002-04-03 2003-10-15 Kokusan Denki Co Ltd 温度検出装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3139105B2 (ja) 1992-02-04 2001-02-26 スズキ株式会社 自動車用カップホルダー
CN2283839Y (zh) * 1996-07-11 1998-06-10 叶卫东 低成本多通道温度测量装置
CN2677895Y (zh) * 2003-09-03 2005-02-09 上海复旦微电子股份有限公司 一种温度测量电路
JP2006079404A (ja) * 2004-09-10 2006-03-23 Nsk Ltd センサ信号の多重化送受信装置
JP2006238546A (ja) * 2005-02-23 2006-09-07 Nissan Motor Co Ltd インバータ温度検出装置
JP4818971B2 (ja) * 2007-03-29 2011-11-16 三菱電機株式会社 温度検出回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03139105A (ja) * 1989-08-21 1991-06-13 Suzuki Motor Corp 電動車の駆動装置
JPH10210790A (ja) 1997-01-27 1998-08-07 Toyota Motor Corp 電力変換器の過熱保護装置、その機能を有する電気自動車のインバータ制御装置およびインバータ冷却装置
JP2001169401A (ja) * 1999-12-02 2001-06-22 Honda Motor Co Ltd 電気自動車の制御装置
JP2003294543A (ja) * 2002-04-03 2003-10-15 Kokusan Denki Co Ltd 温度検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2270453A4

Also Published As

Publication number Publication date
EP2270453A4 (en) 2017-07-05
JP2009258016A (ja) 2009-11-05
EP2270453A1 (en) 2011-01-05
JP5161641B2 (ja) 2013-03-13
CN101983322A (zh) 2011-03-02
CN101983322B (zh) 2012-07-04
US7969227B2 (en) 2011-06-28
US20110032001A1 (en) 2011-02-10

Similar Documents

Publication Publication Date Title
JP5161641B2 (ja) 温度検出回路
US8901863B2 (en) Motor control device
JP5443946B2 (ja) インバータ装置
KR101947934B1 (ko) 전력 변환 장치 및 이것을 사용한 전동 파워 스티어링 장치
US20090134826A1 (en) Controller of multi-phase electric motor
JP6498473B2 (ja) スイッチ駆動回路
JP2006136086A (ja) 電流検知方法と電流検知装置及びこの電流検知装置を用いた電力変換装置並びにこの電力変換装置を用いた車両
CN101142737A (zh) 电动机控制装置的过热检测方式
CN107112922B (zh) 变流器和用于运行变流器的方法
CN106257251B (zh) 估算车辆的转换器的结温的方法
MXPA04005093A (es) Controlador de vehiculo.
WO2015079492A1 (ja) ゲート駆動回路及びインテリジェントパワーモジュール
JP5635032B2 (ja) 同期モータの駆動装置、および、これを用いた送風装置
JP2009124782A (ja) 多相電動モータ制御装置
JP6266298B2 (ja) 電流検出回路、およびモータ制御装置
JP2009112143A (ja) 3相交流モータ制御装置および3相交流モータ制御方法
US20200132736A1 (en) Current sensor
KR102177720B1 (ko) 인버터 구동용 전류센서의 옵셋 보상 장치 및 이의 방법
JP2018057227A (ja) インバータ装置
JP6995700B2 (ja) 電力変換器
JP5482694B2 (ja) 電力変換装置
JP2009254059A (ja) 車両駆動装置
CN111092563A (zh) 功率变换装置以及功率变换装置的诊断方法
JP2018057226A (ja) インバータ装置
JP4631575B2 (ja) インバータ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980111838.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09733231

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009733231

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009733231

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE