WO2009128133A1 - 反強誘電体ゲートトランジスタおよびその製造方法、不揮発性メモリ素子 - Google Patents

反強誘電体ゲートトランジスタおよびその製造方法、不揮発性メモリ素子 Download PDF

Info

Publication number
WO2009128133A1
WO2009128133A1 PCT/JP2008/057288 JP2008057288W WO2009128133A1 WO 2009128133 A1 WO2009128133 A1 WO 2009128133A1 JP 2008057288 W JP2008057288 W JP 2008057288W WO 2009128133 A1 WO2009128133 A1 WO 2009128133A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
antiferroelectric
oriented
silicon substrate
gate transistor
Prior art date
Application number
PCT/JP2008/057288
Other languages
English (en)
French (fr)
Inventor
佐藤 桂輔
栗原 和明
丸山 研二
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2008/057288 priority Critical patent/WO2009128133A1/ja
Publication of WO2009128133A1 publication Critical patent/WO2009128133A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/78391Field effect transistors with field effect produced by an insulated gate the gate comprising a layer which is used for its ferroelectric properties
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40111Multistep manufacturing processes for data storage electrodes the electrodes comprising a layer which is used for its ferroelectric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6684Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a ferroelectric gate insulator
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • G11C11/223Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements using MOS with ferroelectric gate insulating film

Definitions

  • the present invention generally relates to a semiconductor device, and more particularly to an antiferroelectric gate transistor and a manufacturing method thereof, and a nonvolatile memory element using such an antiferroelectric gate transistor.
  • a ferroelectric gate transistor is a field effect transistor having a structure in which a ferroelectric film is provided between a semiconductor substrate such as silicon and a gate electrode, and its output changes in accordance with polarization written in the ferroelectric film. Memory operation is shown. Therefore, the ferroelectric gate transistor is expected as a voltage-driven low power consumption nonvolatile memory device capable of nondestructive reading.
  • a ferroelectric film is generally formed on a semiconductor channel region through a very thin gate insulating film such as a silicon oxide film, but the ferroelectric film has spontaneous polarization. Therefore, a large electric field is applied to such a thin gate insulating film, and dielectric breakdown is likely to occur.
  • ferroelectric gate transistor it is required to use a ferroelectric film having a small remanent polarization and relative dielectric constant.
  • the remanent polarization is 1 ⁇ C / m 2 or less and the relative dielectric constant is 100 or less. It is considered preferable to use a ferroelectric film.
  • the present invention provides a silicon substrate, a perovskite structure antiferroelectric film having a remanent polarization formed on the silicon substrate via a gate insulating film, and a perovskite structure having the remanent polarization.
  • the present invention provides a perovskite structure antiferroelectric film having a remanent polarization formed on a silicon substrate via a gate insulating film, and a perovskite structure antiferroelectric material having the remanent polarization.
  • a gate electrode formed on the film; and a diffusion region formed in the silicon substrate on a first side of the gate electrode and a second side opposite to the first side.
  • a method for manufacturing a dielectric gate transistor the step of epitaxially forming a (200) -oriented yttrium-stabilized zirconium single crystal film on a (001) -oriented silicon substrate by a laser deposition method, and the (200) -oriented Forming a (100) -oriented PbHfO 3 film or a PbZrO 3 film epitaxially on the yttrium-stabilized zirconium single crystal film.
  • a method of manufacturing an antiferroelectric gate transistor is provided.
  • the present invention provides a perovskite structure antiferroelectric film having a remanent polarization formed on a silicon substrate via a gate insulating film, and a perovskite structure antiferroelectric film having the remanent polarization.
  • a gate electrode formed on the body film, and a diffusion region formed in the silicon substrate on the first side of the gate electrode and on the second side opposite to the first side.
  • a method for manufacturing a ferroelectric gate transistor the step of epitaxially forming a (200) -oriented yttrium-stabilized zirconium single crystal film on a (001) -oriented silicon substrate by a laser deposition method, and (200) A (100) -oriented strontium oxide film or strontium titanate film is deposited on the oriented yttrium-stabilized zirconium single crystal film by laser deposition.
  • a method for manufacturing a gate transistor is provided.
  • a transistor of a type in which a memory film having a remanent polarization is disposed between a gate insulating film and a gate electrode on a channel region, or a nonvolatile memory device using such a transistor has the remanent polarization.
  • a perovskite structure antiferroelectric film having a slight residual polarization instead of the conventional ferroelectric film, the electric field applied to the gate insulating film due to the residual polarization is reduced. The problem of dielectric breakdown can be avoided.
  • the relative dielectric constant becomes 100 or less. Therefore, when a gate voltage is applied to the gate electrode, the corresponding electric field is mainly The magnitude of the electric field applied to the antiferroelectric film having the perovskite structure and applied to the thin gate insulating film can be reduced. Further, by using a PbHfO 3 film or a PbZrO 3 film as the antiferroelectric film having the perovskite structure, the leakage current can be reduced.
  • FIG. 12 is a diagram (No. 1) for describing a manufacturing step of the antiferroelectric gate transistor of FIG. 11;
  • FIG. 12 is a diagram (No. 2) for explaining a production step of the antiferroelectric gate transistor of FIG. 11;
  • FIG. 12 is a diagram (No. 3) for explaining the production process of the anti-ferroelectric gate transistor of FIG. 11;
  • FIG. 12 is a diagram (No. 4) for explaining a production step of the antiferroelectric gate transistor of FIG. 11;
  • FIG. 12 is a diagram (No. 5) for explaining a production process of the anti-ferroelectric gate transistor of FIG. 11;
  • FIG. 12 is a diagram (No. 1) for describing a manufacturing step of the antiferroelectric gate transistor of FIG. 11;
  • FIG. 12 is a diagram (No. 2) for explaining a production step of the antiferroelectric gate transistor of FIG. 11;
  • FIG. 12 is a diagram (No. 3) for explaining the production process
  • FIG. 12 is a diagram (No. 6) for explaining a production step of the anti-ferroelectric gate transistor of FIG. 11;
  • FIG. 12 is a view (No. 7) for describing a manufacturing step of the anti-ferroelectric gate transistor of FIG. 11;
  • FIG. 12 is a view showing a modification of the antiferroelectric gate transistor of FIG. 11.
  • FIG. 12 is a diagram showing another modification of the antiferroelectric gate transistor of FIG. 11.
  • FIG. 1 is a diagram showing electric field (E) -polarization (P) characteristics of a typical antiferroelectric film. See the item “Antiferroelectric” in the 3rd edition of the Physical and Chemical Dictionary.
  • the antiferroelectric film has a first characteristic region (I) having no remanent polarization and a second characteristic region (II) having remanent polarization, and the magnitude of the electric field E is reduced.
  • a phase transition from paraelectric to ferroelectric occurs at the boundary B between the characteristic region (I) and the characteristic region (II).
  • the magnitude of the electric field E is decreased from the characteristic region (II)
  • a reverse phase transition occurs.
  • YSZ yttrium-stabilized zirconium
  • STO strontium titanate
  • the formed single crystal insulating film 12 is formed epitaxially, and a PbHfO 3 film 13 having a (100) orientation is formed epitaxially on the single crystal insulating film 12 to a thickness of 200 nm, and the PbHfO thus formed is formed.
  • V applied voltage
  • P polarization
  • the PbHfO 3 film has the characteristic region (I) as well as the electric field-polarization characteristics of the typical antiferroelectric film shown in FIG.
  • the electric field-polarization characteristic similar to that of a typical antiferroelectric material indicating the presence of a phase transition was exhibited.
  • the paraelectric region (I In the region (I) corresponding to) the remanent polarization was not zero and a slight remanent polarization was found.
  • PbHfO 3 is a typical antiferroelectric material in the past, and therefore, in the region (I), the remanent polarization has been considered to be zero.
  • the characteristic measurement in FIG. 3 is performed using a ferroelectric characteristic evaluation system FCE-1AB manufactured by Toyo Technica Co., Ltd.
  • a material having a non-zero remanent polarization despite showing a change in properties similar to the phase transition from the paraelectric to the ferroelectric in such an antiferroelectric material is referred to as “residual polarization”. It will be referred to as an “antiferroelectric material having a”.
  • PbHfO 3 is a material having a perovskite structure.
  • FIG. 5 shows the configuration of the laser deposition apparatus 30 used for forming the PbHfO 3 film 13 in the sample of FIG.
  • the laser deposition apparatus 30 includes a processing vessel 31 that is evacuated, and holds a substrate holding table 32 for holding a substrate W to be processed and a target 33 of PbHfO 3 composition.
  • the target holding base 34 is provided, and the target 33 is irradiated with an external laser beam 35, and the generated plume 36 causes the YSZ film 12A, the STO film 12B, and the PbHfO 3 film 13 to be formed on the substrate W to be processed.
  • the film is formed in an oxygen atmosphere.
  • the target holding base 34 is rotated so that the target 33 is uniformly irradiated with the laser light 35 and the evaporation of Pb atoms and Hf atoms from the target 33 occurs uniformly.
  • the formation of the YSZ film 12A, the STO film 12B, and the PbHfO 3 film 13 will be described in detail in the description of the embodiment.
  • FIGS. 6A and 6B show the results of measuring the polarization of the PbHfO 3 film 13 by double pulse using the capacitor structure of FIG. However, FIG. 6B shows the applied voltage pulse, while FIG. 6A shows the corresponding polarization.
  • FIG. 7 shows the remanent polarization corresponding to the voltage pulse of FIG. 6B.
  • the remanent polarization of the PbHfO 3 film 13 is about 0.02 ⁇ C / cm 2. I understand.
  • PbZrO 3 film which is also called an antiferroelectric material.
  • PbHfO 3 is also a material having a perovskite structure.
  • FIG. 8 shows the applied voltage (V) -polarization characteristics (P) of a (100) -oriented PbZrO 3 film similarly formed by laser vapor deposition to a thickness of 200 nm.
  • the measurement in FIG. 8 is performed by producing a capacitor structure similar to that in FIG. 2 by laser vapor deposition.
  • the PbZrO 3 film is similar to the electric field-polarization characteristics of the typical antiferroelectric film shown in FIG. 4V), a typical antiferroelectric field-polarization showing a change in properties similar to the characteristic phase transition seen at boundary B between regions (I) and (II) in FIG. It has electric field-polarization characteristics similar to the characteristics, but it can be seen that slight residual polarization occurs in the region (I) corresponding to the paraelectric region (I) in FIG.
  • the characteristic measurement in FIG. 8 is also performed using a ferroelectric characteristic evaluation system FCE-1AB manufactured by Toyo Technica Co., Ltd.
  • FIGS. 9A and 9B show the results of performing polarization measurement on the PbZrO 3 film with a double pulse. However, FIG. 9 (B) shows the applied voltage pulse, while FIG. 9 (A) shows the corresponding polarization.
  • 9A and 9B show that the polarization in the region (I) is reversed by applying a voltage pulse of ⁇ 5V.
  • FIG. 10 shows the remanent polarization corresponding to the voltage pulse shown in FIG. 9B.
  • the remanent polarization of the PbHfO 3 film 13 is about 1 ⁇ C / cm 2. .
  • the present invention provides a perovskite structure antiferroelectric film having a remanent polarization, such as a PbHfO 3 film or a PbZrO 3 film, directly below the gate electrode and a gate insulating film.
  • An antiferroelectric gate transistor having a structure provided as a memory film between a gate electrode and a non-volatile memory device using such an antiferroelectric gate transistor having a perovskite structure are provided.
  • FIG. 11 shows a configuration of the antiferroelectric gate transistor 20 according to the first embodiment of the present invention.
  • the antiferroelectric gate transistor 20 has a so-called MFIS type structure and is formed on the (100) plane of an n-type silicon substrate 21 in which an element region 21A is defined by an element isolation structure 21I. Has been.
  • An insulating film 22 is formed epitaxially with respect to the silicon substrate 21, and an antiferroelectric memory film 23 made of a (100) oriented PbHfO 3 film or PbZrO 3 film is formed on the gate insulating film 22.
  • the film is formed to be epitaxial with respect to the silicon substrate 21 with a film thickness of 200 nm.
  • a gate electrode 24 made of Pt is formed on the PbHfO 3 memory film 23 to a thickness of about 200 nm.
  • a p-type source region 21a is formed on the first side of the gate electrode 24 and a p-type drain region 21b is formed on the opposite second side in the element region 21A.
  • the antiferroelectric material is formed so as to cover the gate electrode 24 on the silicon substrate 21 including the antiferroelectric memory film 23 and the gate insulating film 22 therebelow.
  • a SiON cover film 25 for suppressing reduction of the memory film 23, the STO film 22B, the YSZ film 22A and the like thereunder is formed, and an interlayer insulating film 26 made of a silicon oxide film or the like is formed on the SiON cover film 25. ing.
  • via plugs 26A and 26B that are in contact with the source regions 21a and 21b, respectively, are formed in the interlayer insulating film 26.
  • a number of antiferroelectric gate transistors 20 shown in FIG. 11 are arranged in a matrix as shown in FIG. 12 to form a memory cell array.
  • the via plug 26A is used as a plate line PL
  • the via plug 26B is used as a bit line.
  • the gate electrodes 24 of the group of antiferroelectric transistors 20 arranged in the row direction are commonly connected to the word line WL1 or WL2, and the group of antiferroelectric transistors arranged in the row direction.
  • the 20 via plugs 26B are commonly connected to the plate line PL1 or PL2.
  • the via plugs 26A of the group of antiferroelectric transistors 20 arranged in the column direction are commonly connected to the bit line BL1 or BL2.
  • Table 1 below shows the writing of data “1” and data “0” to the selected memory cell of the nonvolatile memory element 40.
  • a predetermined gate voltage ⁇ Vg is applied to a selected word line, for example, the word line WL1, and the voltage of the selected bit line BL1 is set. Set to 0V.
  • an electric field is applied to the antiferroelectric memory film 23 from the channel region of the silicon substrate 21 such that the gate electrode 24 is on the low potential side. Polarization is induced in the direction from the silicon substrate 21 toward the gate electrode 24, and data "1" is written.
  • the selected word line for example, the word line WL1 is held at the voltage ⁇ Vg, and ⁇ 2Vg is written to the selected bit line BL1. Apply voltage.
  • an electric field is applied to the antiferroelectric memory film 23 from the channel region in the silicon substrate 21 so that the gate electrode 24 is on the high potential side.
  • polarization is induced in the direction from the gate electrode 24 toward the silicon substrate 21, and data "0" is written.
  • the voltage Vg has a value of about 5V.
  • Table 2 below shows reading of data “1” and data “0” from the selected memory cell of the nonvolatile memory element 40.
  • a predetermined gate voltage Vg of, for example, 0 V is applied to the selected word line, for example, the word line WL1. Then, another gate voltage is applied to the unselected word line WL2. Further, in this state, the selected plate line, for example, the plate line PL1 is grounded, and a predetermined read voltage + Vr is applied to the selected bit line, for example, the bit line BL1.
  • the antiferroelectric memory film 23 is polarized from the channel region in the silicon substrate 21 toward the gate electrode 24. Therefore, an inversion layer is formed by holes in the channel region, and a current flows from a selected bit line, for example, the bit line BL1, to a selected plate line, for example, the plate line PL1.
  • the antiferroelectric memory film 23 When a PbHfO 3 film or a PbZrO 3 film having a thickness of 100 nm is used as the antiferroelectric memory film 23, a voltage of 5V can be used as the gate voltage Vg. In this case, the memory window width is 0 .5 to 2.5V.
  • n-type diffusion regions are formed as the diffusion regions 21a and 21b, and the voltages Vg and Vr in Tables 1 and 2 are formed. What is necessary is just to reverse a polarity.
  • a 2 inch diameter silicon substrate 21 with the (100) plane orientation in which the element isolation region 21I is formed is immersed in 9 wt% dilute hydrofluoric acid to form a natural oxide film.
  • the substrate is introduced into the laser vapor deposition apparatus 30 described above with reference to FIG. 5 as the substrate to be processed W, and a YSZ target is held on the target holding base 33 as the target 33.
  • the process pressure in the processing vessel 31 is controlled to 7 ⁇ 10 ⁇ 2 Pa, the actual substrate temperature is controlled to 550 ° C., and 12 SCCM of oxygen is allowed to flow through the processing vessel 31 to the YSZ target 33 using a KrF excimer laser.
  • the YSZ film 22A having a (200) orientation is epitaxially formed with a thickness of 5 nm on the surface of the silicon substrate 21 by irradiation with light 35.
  • the target 33 is changed from the previous YSZ target to a strontium carbonate (SrCO 3 ) target, and in the process of FIG. 13B, the process pressure in the processing vessel 31 is 1.3 Pa.
  • the actual substrate temperature is controlled to 650 ° C.
  • the strontium carbonate target 33 is irradiated with a laser beam 35 from a KrF excimer laser while flowing 6 SCCM of oxygen into the processing vessel 31, and the YSZ film on the silicon substrate 21
  • a strontium oxide (SRO: SrO) film 22O is epitaxially formed on the surface of 22A to a thickness of, for example, 2 nm.
  • the target 33 is changed from the previous strontium carbonate target to the STO target, and in the step of FIG. 13C, the process pressure in the processing vessel 31 is set to 27 Pa and the actual substrate temperature.
  • the strontium carbonate (SRO: SrO) film on the silicon substrate 21 is controlled by irradiating the strontium carbonate target 33 with a laser beam 35 from a KrF excimer laser while flowing 6 SCCM of oxygen into the processing vessel 31.
  • a (100) -oriented STO film 22B is epitaxially formed on the surface of 22O with a thickness of, for example, 10 nm.
  • the SRO film 22O is taken into the STO film 22B, and the structure shown in FIG. 13C is obtained in which the (100) -oriented STO film 22B is epitaxially formed on the (200) -oriented YSZ film 22A. It is done.
  • the STO film 22B thus formed not only electrically insulates between the antiferroelectric memory film 23 to be formed and the silicon substrate 21, but also with the antiferroelectric memory film 23.
  • action and effect which suppress a chemical reaction between the silicon substrates 21 are produced.
  • the target 33 is changed from the previous STO target to a PbHfO 3 target, and in the step of FIG.
  • the substrate temperature was controlled to 650 ° C.
  • the PbHfO 3 target 33 was irradiated with laser light 35 from a KrF excimer laser while flowing 1 SCCM of oxygen into the processing container 31, and the (100) oriented STO film 22 B of FIG.
  • the (100) -oriented ZrHfO 3 film 23 is epitaxially formed on the surface with a thickness of 50 to 200 nm, for example, 100 nm.
  • a Pt film 24 is formed on the (100) -oriented ZrHfO 3 film 23 in FIG. 13D with a thickness of, for example, 200 nm by an electron beam evaporation method or the like.
  • the films 22A to 24 are etched using a mixed gas of Ar gas and chlorine gas as a mask, with the resist pattern R formed corresponding to the channel region of the antiferroelectric transistor 20 as a mask.
  • the gate pattern G is formed by laminating the YSZ film 22A, the STO film 22B, the PbHfO 3 film 23, and the Pt film 24 by the dry etching method used as described above until the surface of the silicon substrate 21 is exposed.
  • B boron in the silicon substrate 21 with the laminated gate pattern G as a mask, for example, under an acceleration voltage of 20 to 60 keV, preferably under an acceleration voltage of about 40 keV, 2 ⁇ 10 15 to
  • the p-type source region 21a and the drain region 21b are formed by ion implantation performed at a dose of 2 ⁇ 10 16 cm ⁇ 2 , preferably 8 ⁇ 10 15 cm ⁇ 2 .
  • FIG. 13G is rapidly heated by a lamp heating apparatus or the like at a temperature of 700 ° C. or higher and 1000 ° C. or lower for a time of 20 seconds or longer and 120 seconds or shorter, and impurities introduced in the step of FIG. Activate the element.
  • the SiON cover film 25 and the SiO 2 interlayer insulating film 26 described above with reference to FIG. 11 are formed by the plasma CVD method, and the via plugs 26A and 26B are formed.
  • the antiferroelectric transistor 20 is obtained.
  • the SiO 2 interlayer insulating film 26 is formed to a thickness of 1.0 ⁇ m using, for example, TEOS as a raw material.
  • the nonvolatile memory element 40 of FIG. 12 can be manufactured.
  • the antiferroelectric gate transistor 20 manufactured in this way has an antiferroelectric memory film 23 with an extremely small remanent polarization of 0.01 to 1 ⁇ C / cm 2 and 100 or less as described above. It has a dielectric constant, and the electric field caused by the spontaneous polarization of the antiferroelectric memory film 23 is not destroyed by the electric field caused by the spontaneous polarization, and the leakage current is small. Even when a memory cell array as shown in FIG. 12 is configured, reliable data writing and reading can be performed.
  • the STO film 22B it is possible to omit the STO film 22B and form the PbHfO 3 or PbZrO 3 antiferroelectric memory film 23 directly on the YSZ film 22A.
  • the orientation of the antiferroelectric memory film 23 is the (101) orientation, the polarization component acting on the channel region is reduced. Therefore, the STO film 22B having the (100) orientation is preferably interposed. preferable.
  • a gate insulating film 22C made of a silicon oxide film is formed on a channel region in the silicon substrate 21, and an antiferroelectric memory film 23 made of PbHfO 3 or PbZrO 3 is formed thereon. It may be formed.
  • the antiferroelectric memory film 23 is a polycrystalline film.
  • the YSZ film 22A, the STO film 22B, and further the PbHfO 3 film or the PbZrO 3 film are formed by the laser deposition method shown in FIG. 5, but the present invention is limited to such a specific film forming method. Instead, it is also possible to use, for example, a sputtering method or a sol-gel method that allows epitaxial growth.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

 強誘電体ゲートトランジスタの代わりに、反強誘電体ゲートトランジスタを使い、前記反強誘電体ゲートトランジスタは、シリコン基板と、前記シリコン基板上にゲート絶縁膜を介して形成された、残留分極を有するペロブスカイト構造の反強誘電体膜と、前記残留分極を有する反強誘電体膜上に形成されたゲート電極と、前記シリコン基板中、前記ゲート電極の第1の側、および前記第1の側の反対の第2の側に形成された、拡散領域と、を含む。

Description

反強誘電体ゲートトランジスタおよびその製造方法、不揮発性メモリ素子
  本発明は一般に半導体装置に係り、特に反強誘電体ゲートトランジスタおよびその製造方法、およびかかる反強誘電体ゲートトランジスタを使った不揮発性メモリ素子に関する。
  強誘電体ゲートトランジスタは、シリコンなどの半導体基板とゲート電極の間に強誘電体膜を設けた構成の電界効果トランジスタであり、前記強誘電体膜中に書き込まれた分極により出力が変化する不揮発性メモリ動作を示す。このため強誘電体ゲートトランジスタは、非破壊読み出しが可能な電圧駆動型の低消費電力不揮発性メモリ装置として期待されている。
 このような強誘電体ゲートトランジスタでは一般に、強誘電体膜が半導体チャネル領域上にシリコン酸化膜などの非常に薄いゲート絶縁膜を介して形成されるが、強誘電体膜が自発分極を有しているため、このような薄いゲート絶縁膜には大きな電界が印加され、絶縁破壊が生じやすい。
 このため、このような強誘電体ゲートトランジスタでは、残留分極および比誘電率の小さい強誘電体膜を使うことが要求されており、特に残留分極が1μC/m2以下で比誘電率が100以下の強誘電体膜を使うことが好ましいと考えられている。
 そこで従来、このような条件を満たす強誘電体材料としてBi2WO6の使用が検討されている。
 しかし、Bi2WO6を強誘電体膜として使った場合には、リーク電流が大きく、また残留分極が不安定である問題があり、実用的な不揮発性メモリに使える強誘電体ゲートトランジスタの実現は困難である。またBi2WO6を強誘電体材料として使った場合には、分極を反転させるのに高い電圧が必要で、このことが、先に述べたリーク電流特性の問題の解決をさらに困難なものとしている。
特開平5-90599号公報 特開平7-86527号公報 第54回応用物理学関係連合講演会講演予稿集(2007春)29a-SV-10 真岩宏司・石渡洋一「反強誘電体PbZrO3薄膜の電界誘起歪み」www.kanagawa-iri.go.jp/kitri/kouhou/program/H13/H13yousi/PDF19k/3301.pdf (2007年12月7日検索)
 一の側面によれば本発明は、シリコン基板と、前記シリコン基板上にゲート絶縁膜を介して形成された、残留分極を有するペロブスカイト構造の反強誘電体膜と、前記残留分極を有するペロブスカイト構造の反強誘電体膜上に形成されたゲート電極と、前記シリコン基板中、前記ゲート電極の第1の側、および前記第1の側の反対の第2の側に形成された、拡散領域と、を含む反強誘電体ゲートトランジスタ、およびかかる反強誘電体ゲートトランジスタを使った不揮発性メモリ素子を提供する。
 他の側面によれば本発明は、シリコン基板上にゲート絶縁膜を介して形成された、残留分極を有するペロブスカイト構造の反強誘電体膜と、前記残留分極を有するペロブスカイト構造の反強誘電体膜上に形成されたゲート電極と、前記シリコン基板中、前記ゲート電極の第1の側、および前記第1の側の反対の第2の側に形成された、拡散領域と、を含む反強誘電体ゲートトランジスタの製造方法であって、(001)配向のシリコン基板上に(200)配向のイットリウム安定化ジルコニウム単結晶膜を、レーザ蒸着法によりエピタキシャルに形成する工程と、前記(200)配向のイットリウム安定化ジルコニウム単結晶膜上に(100)配向のPbHfO3膜あるいはPbZrO3膜をエピタキシャルに形成する工程と、を含むことを特徴とする反強誘電体ゲートトランジスタの製造方法を、提供する。
 さらに他の側面によれば本発明は、シリコン基板上にゲート絶縁膜を介して形成された、残留分極を有するペロブスカイト構造の反強誘電体膜と、前記残留分極を有するペロブスカイト構造の反強誘電体膜上に形成されたゲート電極と、前記シリコン基板中、前記ゲート電極の第1の側、および前記第1の側の反対の第2の側に形成された、拡散領域と、を含む反強誘電体ゲートトランジスタの製造方法であって、(001)配向のシリコン基板上に(200)配向のイットリウム安定化ジルコニウム単結晶膜を、レーザ蒸着法によりエピタキシャルに形成する工程と、前記(200)配向のイットリウム安定化ジルコニウム単結晶膜上に(100)配向の酸化ストロンチウム膜あるいはチタン酸ストロンチウム膜を、レーザ蒸着法によりエピタキシャルに形成する工程と、前記(100)配向のチタン酸ストロンチウム膜上に(100)配向のPbHfO3膜あるいはPbZrO3膜をエピタキシャルに形成する工程と、を含むことを特徴とする反強誘電体ゲートトランジスタの製造方法、を提供する。
 本発明によれば、チャネル領域上、ゲート絶縁膜とゲート電極との間に残留分極を有するメモリ膜を配置した形式のトランジスタ、あるいはかかるトランジスタを使った不揮発性メモリ装置において、前記残留分極を有する膜として従来の強誘電体膜の代わりにわずかな残留分極を有するペロブスカイト構造の反強誘電体膜を使うことにより、ゲート絶縁膜に前記残留分極により印加される電界が減少し、ゲート絶縁膜の絶縁破壊の問題を回避することができる。特にかかるペロブスカイト構造の反強誘電体膜としてPbHfO3膜あるいはPbZrO3膜を使った場合、比誘電率が100以下となるため、前記ゲート電極にゲート電圧を印加した場合、対応する電界は主に前記ペロブスカイト構造の反強誘電体膜に印加され、薄いゲート絶縁膜に印加される電界の大きさを減少させることが可能となる。また前記ペロブスカイト構造の反強誘電体膜としてPbHfO3膜あるいはPbZrO3膜を使うことにより、リーク電流を減少させることができる。
典型的な反強誘電体膜の電気特性を示す図である。 本発明の原理を説明する図である。 本発明の原理を説明する図である。 本発明の原理を説明する図である。 本発明で使われるレーザ蒸着装置の構成を説明する図である。 (A),(B)は、本発明の原理を説明する図である。 本発明の原理を説明する図である。 本発明の原理を説明する図である。 (A),(B)は、本発明の原理を説明する図である。 本発明の原理を説明する図である。 本発明の第1の実施形態による反強誘電体ゲートトランジスタの構成を示す図である。 図11の反強誘電体ゲートトランジスタを使った不揮発性メモリ素子の構成を示す図である。 図11の反強誘電体ゲートトランジスタの製造工程を説明する図(その1)である。 図11の反強誘電体ゲートトランジスタの製造工程を説明する図(その2)である。 図11の反強誘電体ゲートトランジスタの製造工程を説明する図(その3)である。 図11の反強誘電体ゲートトランジスタの製造工程を説明する図(その4)である。 図11の反強誘電体ゲートトランジスタの製造工程を説明する図(その5)である。 図11の反強誘電体ゲートトランジスタの製造工程を説明する図(その6)である。 図11の反強誘電体ゲートトランジスタの製造工程を説明する図(その7)である。 図11の反強誘電体ゲートトランジスタの一変形例を示す図である。 図11の反強誘電体ゲートトランジスタの他の変形例を示す図である。
符号の説明
 11 シリコン基板
 12A YSZ単結晶膜
 12B STO単結晶膜
 13 反強誘電体膜
 14 上部電極膜
 21 シリコン基板
 21A 素子領域
 21I 素子分離領域
 21a,21b 拡散領域
 22A YSZ単結晶膜
 22B STO単結晶ゲート絶縁膜
 22C ゲート酸化膜
 23 反強誘電体メモリ膜
 24 ゲート電極
 25 SiONカバー膜
 26 層間絶縁膜
 26A,26B ビアプラグ
[原理]
 図1は、典型的な反強誘電体膜の電界(E)-分極(P)特性を示す図である。理化学事典第3版の「反強誘電体」の項目を参照。
 図1を参照するに、反強誘電体膜では、残留分極のない第1の特性領域(I)と、残留分極がある第2の特性領域(II)が存在し、電界Eの大きさをゼロから増大させると、前記特性領域(I)と特性領域(II)の境界Bで、常誘電体から強誘電体への相転移が発生する。また前記電界Eの大きさを、前記特性領域(II)から減少させると、逆の相転移が発生する。
 ところが本発明の発明者は、図2に示すように、(001)配向のn型シリコン基板11上に、厚さが5nmの(002)配向を有するイットリウム安定化ジルコニウム(以下「YSZ」と表記する)単結晶膜12Aと厚さが10nmの(100)配向を有し、前記YSZ膜12Aとともにゲート絶縁膜として作用するチタン酸ストロンチウム(以下「STO」と表記する)単結晶膜12Bとを積層した単結晶絶縁膜12をエピタキシャルに形成し、さらに前記単結晶絶縁膜12上に(100)配向を有するPbHfO3膜13を200nmの膜厚でエピタキシャルに形成し、このようにして形成した前記PbHfO3膜13の印加電圧(V)-分極(P)特性を調査したところ、以下のような事実を見出した。
 すなわち本発明の発明者は、このようなPbHfO3膜が、図3に示すように、図1に示す典型的な反強誘電体膜の電界-分極特性と同様に、特性領域(I)と特性領域(II)との境界C(約9V)において、前記図1における特性領域(I)と特性領域(II)の間の境界Bに見られる特徴的な相転移と同様な特性の変化、すなわち相転移の存在を示す、典型的な反強誘電体の電界-分極特性に類似した電界-分極特性を示すことを確認したが、さらに、この材料では、図1の常誘電体領域(I)に対応する領域(I)においても残留分極はゼロでなく、わずかな残留分極が生じていることを見出した。PbHfO3は従来、典型的な反強誘電体であり、従って、前記領域(I)においては、残留分極はゼロであるとされてきた材料であることに注意すべきである。図3の特性測定は、東陽テクニカ(株)製の強誘電体特性評価システムFCE-1ABを使って行っている。
 本明細書では以下、このような反強誘電体における常誘電体から強誘電体への相転移と類似した特性の変化を示すにもかかわらず、ゼロでない残留分極を有する材料を、「残留分極を有する反強誘電体」と称することにする。
 なお、図3の特性は、前記図2に示すように前記PbHfO3膜13上にPt厚さが200nmのPt上部電極を形成し、このようにして得られたキャパシタ構造について得られたものである。PbHfO3は、ペロブスカイト構造をとる材料である。
 また図4に示すように、このようにして形成されたキャパシタ構造を使い、前記PbHfO3膜13について1kHzから1MHzの周波数範囲で比誘電率を測定したところ、前記PbHfO3膜12の比誘電率は、最大でも100以下であることが確認された。
 以下に、前記図2の試料の作製について説明する。
 図5は、前記図2の試料においてPbHfO3膜13の成膜に使われたレーザ蒸着装置30の構成を示す。
 図5を参照するに、前記レーザ蒸着装置30は真空排気される処理容器31を含み、前記処理容器31中には被処理基板Wを保持する基板保持台32と、PbHfO3組成のターゲット33を保持するターゲット保持台34が設けられ、前記ターゲット33は、外部からのレーザ光35により照射され、発生したプルーム36により、前記被処理基板W上に前記YSZ膜12A、STO膜12BおよびPbHfO3膜13が、酸素雰囲気中において成膜される。成膜の間、前記ターゲット33が前記レーザ光35により一様に照射され前記ターゲット33からのPb原子およびHf原子の蒸発が一様に生じるように、前記ターゲット保持台34は回転される。前記YSZ膜12A,STO膜12BおよびPbHfO3膜13の成膜については、実施形態の説明のところで詳細に説明する。
 図6(A),(B)は、前記図2のキャパシタ構造を使い、ダブルパルスにより前記PbHfO3膜13の分極測定を行った結果を示す。ただし図6(B)が印加された電圧パルスを示し、一方、図6(A)が対応する分極を示す。
 図6(A),(B)より、前記領域(I)における分極は、±5Vの電圧パルスの印加により反転することがわかる。
 また図7は、前記図6(B)の電圧パルスに対応した残留分極を示すが、前記領域(I)においては前記PbHfO3膜13の残留分極は、約0.02μC/cm2であることがわかる。
 さらに図6(A)に示されるパルス波形の頂部が平坦であることから、前記PbHfO3膜13のリーク電流はわずかであることがわかる。
 同様な、残留分極を有しながら、常誘電性から強誘電性への相転移を含む電界-分極特性は、やはり反強誘電体と言われているPbZrO3膜についても確認されている。PbHfO3も、ペロブスカイト構造を有する材料である。
 図8は、同様にレーザ蒸着法により、200nmの膜厚に形成された(100)配向のPbZrO3膜の印加電圧(V)-分極特性(P)を示す。なお図8の測定は、前記図2と同様なキャパシタ構造をレーザ蒸着法により作製して行っている。
 図8を参照するに、前記PbZrO3膜は、前記図1に示す典型的な反強誘電体膜の電界-分極特性と同様に、領域(I)と領域(II)との境界D(約4V)において、前記図1において領域(I)と領域(II)の間の境界Bに見られる特徴的な相転移と同様な特性の変化を示す、典型的な反強誘電体の電界-分極特性に類似した電界-分極特性を有しているが、図1の常誘電体領域(I)に対応する領域(I)においても、わずかな残留分極が生じているのがわかる。この図8の特性測定も、東陽テクニカ(株)製の強誘電体特性評価システムFCE-1ABを使って行っている。
 図9(A),(B)は、前記PbZrO3膜に対し、ダブルパルスにより分極測定を行った結果を示す。ただし図9(B)が印加された電圧パルスを示し、一方、図9(A)が対応する分極を示す。
 図9(A),(B)より、前記領域(I)における分極は、±5Vの電圧パルスの印加により反転することがわかる。
 また図10は、前記図9(B)の電圧パルスに対応した残留分極を示すが、前記領域(I)においては前記PbHfO3膜13の残留分極は、約1μC/cm2であることがわかる。
 さらに図9(A)に示されるパルス波形の頂部が平坦であることから、前記PbZrO3膜13のリーク電流はわずかであることがわかる。
 そこで本発明は、以下の実施形態において説明するように、このようなPbHfO3膜あるいはPbZrO3膜などの、残留分極を有するペロブスカイト構造の反強誘電体膜を、ゲート電極直下、ゲート絶縁膜とゲート電極との間にメモリ膜として設けた構成の反強誘電体ゲートトランジスタ、およびかかるペロブスカイト構造の反強誘電体ゲートトランジスタを使った不揮発性メモリ装置を提供する。
[第1の実施形態]
 図11は、本発明の第1の実施形態による反強誘電体ゲートトランジスタ20の構成を示す。
 図11を参照するに、前記反強誘電体ゲートトランジスタ20はいわゆるMFIS型構造を有し、素子分離構造21Iにより素子領域21Aを画成されたn型シリコン基板21の(100)面上に形成されている。
 すなわち前記素子領域21A中、前記シリコン基板21の表面には(200)配向で厚さが約5nmのYSZ単結晶膜22Aと(100)配向で厚さが約10nmのSTO膜22Bを積層したゲート絶縁膜22が、前記シリコン基板21に対してエピタキシャルに形成されており、前記ゲート絶縁膜22上には(100)配向のPbHfO3膜あるいはPbZrO3膜よりなる反強誘電体メモリ膜23が約200nmの膜厚で、前記シリコン基板21に対してエピタキシャルに形成されている。
 さらに前記PbHfO3メモリ膜23上には、Ptよりなるゲート電極24が、約200nmの膜厚に形成されている。
 また前記シリコン基板21中、前記素子領域21Aには前記ゲート電極24の第1の側にp型ソース領域21aが形成され、反対の第2の側にp型ドレイン領域21bが形成される。
 さらに前記反強誘電体トランジスタ20では、前記シリコン基板21上に前記ゲート電極24を、その下の反強誘電体メモリ膜23およびゲート絶縁膜22をも含めて覆うように、前記反強誘電体メモリ膜23や、その下のSTO膜22B,YSZ膜22Aなどの還元を抑制するSiONカバー膜25が形成され、前記SiONカバー膜25上にはシリコン酸化膜などよりなる層間絶縁膜26が形成されている。
 さらに前記層間絶縁膜26中には、前記ソース領域21aおよび21bにそれぞれコンタクトしたビアプラグ26A,26Bが形成される。
 図11の反強誘電体ゲートトランジスタ20を多数、図12に示すように行列状に配列してメモリセルアレイを構成し、各々のトランジスタ20において前記ビアプラグ26Aをプレート線PLに、ビアプラグ26Bをビット線BLに、ゲート電極24をワード線WLに接続することにより、不揮発性メモリ素子40を構成することができる。
 図12を参照するに、行方向に配列した一群の反強誘電体トランジスタ20のゲート電極24が共通にワード線WL1あるいはWL2に接続され、また行方向に配列した前記一群の反強誘電体トランジスタ20のビアプラグ26Bが共通に、プレート線PL1あるいはPL2に接続される。また図12の構成では、列方向に配列した一群の反強誘電体トランジスタ20のビアプラグ26Aが共通に、ビット線BL1あるいはBL2に接続されている。
 次に図12の不揮発性メモリ素子40における書込動作について説明する。
 以下の表1は、前記不揮発性メモリ素子40の選択されたメモリセルへのデータ「1」およびデータ「0」の書込を示す。
Figure JPOXMLDOC01-appb-T000001
 前記不揮発性メモリ素子40の一つのメモリセルにデータ「1」を書き込む場合には、選択したワード線、例えばワード線WL1に所定のゲート電圧-Vgを印加し、選択したビット線BL1の電圧を0Vに設定する。これにより、前記反強誘電体メモリ膜23には前記シリコン基板21のチャネル領域から、前記ゲート電極24が低電位側となるような電界が印加され、前記反強誘電体メモリ膜23に、前記シリコン基板21からゲート電極24に向かう方向に分極が誘起され、データ「1」が書き込まれる。
 また前記選択された不揮発性メモリ素子40にデータ「0」を書き込む場合には、選択したワード線、例えばワード線WL1を前記電圧-Vgに保持し、選択したビット線BL1に-2Vgの書込電圧を印加する。これにより、前記反強誘電体メモリ膜23には、前記シリコン基板21中のチャネル領域から、前記ゲート電極24が高電位側となるような電界が印加され、前記反強誘電体メモリ膜23に、前記ゲート電極24からシリコン基板21に向かう方向に分極が誘起され、データ「0」が書き込まれる。
 前記反強誘電体メモリ膜23を厚さが100nmのPbZrO3膜により構成した場合には、前記電圧Vgは約5Vの値を有する。
 次に図12の不揮発性メモリ素子40における書込動作について説明する。
 以下の表2は、前記不揮発性メモリ素子40の選択されたメモリセルからのデータ「1」およびデータ「0」の読み出しを示す。
Figure JPOXMLDOC01-appb-T000002
 前記不揮発性メモリ素子40の一つのメモリセルに書き込まれた「1」または「0」のデータを読み出す場合には、選択したワード線、例えばワード線WL1に所定の、例えば0Vのゲート電圧Vgを印加し、非選択ワード線WL2には別のゲート電圧を印加しておく。さらにこの状態で、選択したプレート線、例えばプレート線PL1を接地し、選択したビット線、例えばビット線BL1に所定の読み出し電圧+Vrを印加する。
 そこで前記選択されたメモリセルにデータ「1」が書き込まれている場合には、前記反強誘電体メモリ膜23に、前記シリコン基板21中のチャネル領域からゲート電極24に向かう分極が生じており、このため前記チャネル領域には正孔により反転層が形成され、選択されたビット線、例えばビット線BL1、から選択されたプレート線、例えばプレート線PL1、に電流が流れる。
 また前記選択されたメモリセルにデータ「0」が書き込まれている場合には、前記反強誘電体メモリ膜23に生じた、逆極性の分極により、チャネル領域に正孔の反転層が形成されず、前記選択されたビット線には電流が流れない。
 そこで、選択されたビット線に流れる電流をセンスアンプ(図示せず)により検出することにより、前記反強誘電体メモリ膜23の分極、従って書き込まれた情報を判定することが可能となる。
 前記反強誘電体メモリ膜23として厚さが100nmのPbHfO3膜あるいはPbZrO3膜を使った場合には、前記ゲート電圧Vgとして5Vの電圧を使うことができ、その場合、メモリウィンドウ幅は0.5~2.5Vとなる。
 なお、前記図12の構成において前記基板21としてp型シリコン基板を使った場合には、前記拡散領域21a,21bとしてn型拡散領域を形成し、また前記表1,2において電圧Vg,Vrの極性を反転させればよい。
 次に、前記図11の反強誘電体ゲートトランジスタ20の製造工程を、図13A~13Gを参照しながら説明する。
 最初に図13Aに示すように、前記素子分離領域21Iが形成された(100)面方位の2インチ径のシリコン基板21が、9重量%の希フッ酸中に浸漬することにより自然酸化膜を除去された後、先に図5で説明したレーザ蒸着装置30中に被処理基板Wとして導入され、前記ターゲット保持台33上にYSZターゲットを、前記ターゲット33として保持する。
 さらに前記処理容器31中のプロセス圧を7×10-2Paに、また実基板温度を550℃に制御し、前記処理容器31中に12SCCMの酸素を流しながらYSZターゲット33にKrFエキシマレーザよりレーザ光35を照射し、前記シリコン基板21の表面に、(200)配向を有する前記YSZ膜22Aをエピタキシャルに、5nmの膜厚で形成する。
 次に前記図5のレーザ蒸着装置30において前記ターゲット33を、先のYSZターゲットから炭酸ストロンチウム(SrCO3)ターゲットに変更し、図13Bの工程において、前記処理容器31中のプロセス圧を1.3Paに、また実基板温度を650℃に制御し、前記処理容器31中に6SCCMの酸素を流しながら前記炭酸ストロンチウムターゲット33にKrFエキシマレーザよりレーザ光35を照射し、前記シリコン基板21上のYSZ膜22Aの表面に、酸化ストロンチウム(SRO:SrO)膜22Oをエピタキシャルに、例えば2nmの膜厚で形成する。
 次に前記図5のレーザ蒸着装置30において前記ターゲット33を、先の炭酸ストロンチウムターゲットからSTOターゲットに変更し、図13Cの工程において、前記処理容器31中のプロセス圧を27Paに、また実基板温度を650℃に制御し、前記処理容器31中に6SCCMの酸素を流しながら前記炭酸ストロンチウムターゲット33にKrFエキシマレーザよりレーザ光35を照射し、前記シリコン基板21上の酸化ストロンチウム(SRO:SrO)膜22Oの表面に(100)配向のSTO膜22Bをエピタキシャルに、例えば10nmの膜厚で形成する。
 このプロセスにより、前記SRO膜22Oは前記STO膜22B中に取り込まれ、前記(200)配向のYSZ膜22A上に(100)配向のSTO膜22Bがエピタキシャルに形成された図13Cに示す構造が得られる。このようにして形成されたSTO膜22Bは、形成しようとしている反強誘電体メモリ膜23と前記シリコン基板21との間を電気的に絶縁するのみならず、前記反強誘電体メモリ膜23とシリコン基板21との間の化学反応を抑制する作用・効果を奏する。
 次に前記図5のレーザ蒸着装置30において前記ターゲット33を、先のSTOターゲットからPbHfO3ターゲットに変更し、図13Dの工程において、前記処理容器31中のプロセス圧を0.1Paに、また実基板温度を650℃に制御し、前記処理容器31中に1SCCMの酸素を流しながら前記PbHfO3ターゲット33にKrFエキシマレーザよりレーザ光35を照射し、前記図13Cの(100)配向STO膜22Bの表面に、前記(100)配向のZrHfO3膜23をエピタキシャルに、50~200nm、例えば100nmの膜厚で形成する。
 さらに図13Eに示すように、前記図13Dの(100)配向ZrHfO3膜23上にPt膜24が、例えば200nmの膜厚で、電子線蒸着法などにより形勢される。
 次に図13Fに示すように前記膜22A~24が、前記反強誘電体トランジスタ20のチャネル領域に対応して形成されたレジストパターンRをマスクに、Arガスと塩素ガスの混合ガスをエッチングガスとして使ったドライエッチング法により、前記シリコン基板21の表面が露出するまでパターニングされ、前記YSZ膜22A,STO膜22B,PbHfO3膜23およびPt膜24を積層したゲートパターンGが形成される。
 さらに図13Gの工程において、前記積層ゲートパターンGをマスクに前記シリコン基板21中にB(ボロン)を、例えば20~60keVの加速電圧下、好ましくは約40keVの加速電圧下、2×1015~2×1016cm-2、好ましくは8×1015cm-2のドーズ量で実行するイオン注入により導入し、前記p型ソース領域21aおよびドレイン領域21bを形成する。
 さらに図示はしないが、図13Gの構造を、ランプ加熱装置などにより700℃以上、1000℃以下の温度で20秒以上120秒以下の時間、急速加熱し、前記図13Gの工程で導入された不純物元素を活性化する。
 さらにこのようにして形成された構造上に、先に図11で説明したSiONカバー膜25およびSiO2層間絶縁膜26をプラズマCVD法により形成し、ビアプラグ26A,26Bを形成することにより、図11の反強誘電体トランジスタ20が得られる。前記SiO2層間絶縁膜26は、例えばTEOSを原料として使い、1.0μmの膜厚に形成される。
 また前記層間絶縁膜26上に、図示はしないが配線パターンを形成する多層配線構造を形成することにより、前記図12の不揮発性メモリ素子40を作製することができる。
 このようにして作製された反強誘電体ゲートトランジスタ20は、先にも述べたように反強誘電体メモリ膜23が0.01~1μC/cm2の非常に小さな残留分極と、100以下の比誘電率を有しており、前記反強誘電体メモリ膜23の自発分極に起因する電界により、その下の薄いゲート絶縁膜22が破壊されることがなく、またリーク電流が少ないため、安定な動作特性を示し、図12に示すようなメモリセルアレイを構成した場合にも、確実なデータの書込および読み出しが可能となる。
 なお、以上の工程において前記反強誘電体メモリ膜23として、PbHfO3膜の代わりに同様な条件下で、ただしターゲットをPbZrO3に変更することで、PbZrO3膜を形成することも可能である。
 さらに図14に示すように前記STO膜22Bを省略し、YSZ膜22A上に直接にPbHfO3あるいはPbZrO3の反強誘電体メモリ膜23を形成することも可能である。ただし、この場合には前記反強誘電体メモリ膜23の配向が(101)配向となるためチャネル領域に作用する分極成分が減少するため、前記(100)配向のSTO膜22Bを介在させる方が好ましい。
 さらに図15に示すように、前記シリコン基板21中のチャネル領域上にシリコン酸化膜よりなるゲート絶縁膜22Cを形成し、その上に前記PbHfO3あるいはPbZrO3よりなる反強誘電体メモリ膜23を形成してもよい。この場合には、前記シリコン酸化膜22Cがアモルファス膜であるため、前記反強誘電体メモリ膜23は多結晶膜となる。
 なお以上の説明では、前記反強誘電体メモリ膜23がPbHfO3あるいはPbZrO3膜である場合を説明したが、前記反強誘電体メモリ膜23として、ペロブスカイト構造を有するNaNbO3,AgNbO3などを使うことも可能である。
 また本発明では、YSZ膜22AやSTO膜22B、さらにPbHfO3膜あるいはPbZrO3膜を図5に示すレーザ蒸着法により形成しているが、本発明はかかる特定の成膜方法に限定されるものではなく、エピタキシャル成長が可能な例えばスパッタ法、ゾルゲル法などを使うことも可能である。
 以上、本発明を好ましい実施形態について説明したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載した要旨内において様々な変形・変更が可能である。

Claims (11)

  1.  シリコン基板と、
     前記シリコン基板上にゲート絶縁膜を介して形成された、残留分極を有するペロブスカイト構造の反強誘電体膜と、
     前記残留分極を有するペロブスカイト構造の反強誘電体膜上に形成されたゲート電極と、
     前記シリコン基板中、前記ゲート電極の第1の側、および前記第1の側の反対の第2の側に形成された、拡散領域と、
    を含む反強誘電体ゲートトランジスタ。
  2.  前記残留分極を有するペロブスカイト構造の反強誘電体膜は、PbHfO3膜またはPbZrO3膜であることと特徴とする請求項1記載の反強誘電体ゲートトランジスタ。
  3.  前記残留分極を有するペロブスカイト構造の反強誘電体膜は、1μC/cm2以下の残留分極を有することを特徴とする請求項1記載の反強誘電体ゲートトランジスタ。
  4.  前記残留分極を有するペロブスカイト構造の反強誘電体膜は、0.01~1μC/cm2の残留分極を有することを特徴とする請求項1記載の反強誘電体ゲートトランジスタ。
  5.  前記残留分極を有するペロブスカイト構造の反強誘電体膜はエピタキシャル膜であることを特徴とする請求項1記載の反強誘電体ゲートトランジスタ。
  6.  前記ゲート絶縁膜は、前記シリコン基板上にエピタキシャルに形成された(200)配向イットリア安定化ジルコニア単結晶膜を含み、前記残留分極を有する反強誘電体膜は、前記(200)配向イットリア安定化ジルコニア単結晶膜上にエピタキシャルに形成された(100)配向PbHfO3膜または(100)配向PbZrO3膜であることを特徴とする請求項1記載の反強誘電体ゲートトランジスタ。
  7.  前記ゲート絶縁膜は、前記シリコン基板上にエピタキシャルに形成された、(200)配向イットリア安定化ジルコニア単結晶膜と、前記(200)配向イットリア安定化ジルコニア単結晶膜上にエピタキシャルに形成された(100)配向の酸化ストロンチウム膜またはチタン酸ストロンチウム膜を含み、前記残留分極を有する反強誘電体膜は、前記(100)配向の酸化ストロンチウム膜またはチタン酸ストロンチウム膜上にエピタキシャルに形成された(100)配向PbHfO3膜または(100)配向PbZrO3膜であることを特徴とする請求項1記載の反強誘電体ゲートトランジスタ。
  8.  前記ゲート絶縁膜はシリコン酸化膜であり、前記残留分極を有する反強誘電体膜は、前記シリコン基板上に形成されたPbHfO3膜またはPbZrO3膜であることを特徴とする請求項1記載の反強誘電体ゲートトランジスタ。
  9.  請求項1記載の反強誘電体ゲートトランジスタを有する不揮発性メモリ素子。
  10.  シリコン基板上にゲート絶縁膜を介して形成された、残留分極を有するペロブスカイト構造の反強誘電体膜と、前記残留分極を有するペロブスカイト構造の反強誘電体膜上に形成されたゲート電極と、前記シリコン基板中、前記ゲート電極の第1の側、および前記第1の側の反対の第2の側に形成された、拡散領域と、を含む反強誘電体ゲートトランジスタの製造方法であって、
     (001)配向のシリコン基板上に(200)配向のイットリウム安定化ジルコニウム単結晶膜を、エピタキシャルに形成する工程と、
     前記(200)配向のイットリウム安定化ジルコニウム単結晶膜上に(100)配向のPbHfO3膜あるいはPbZrO3膜を、レーザ蒸着法によりエピタキシャルに形成する工程と、
    を含むことを特徴とする反強誘電体ゲートトランジスタの製造方法。
  11.  シリコン基板上にゲート絶縁膜を介して形成された、残留分極を有するペロブスカイト構造の反強誘電体膜と、前記残留分極を有するペロブスカイト構造の反強誘電体膜上に形成されたゲート電極と、前記シリコン基板中、前記ゲート電極の第1の側、および前記第1の側の反対の第2の側に形成された、拡散領域と、を含む反強誘電体ゲートトランジスタの製造方法であって、
     (001)配向のシリコン基板上に(200)配向のイットリウム安定化ジルコニウム単結晶膜を、レーザ蒸着法によりエピタキシャルに形成する工程と、
     前記(200)配向のイットリウム安定化ジルコニウム単結晶膜上に(100)配向のチタン酸ストロンチウム膜を、エピタキシャルに形成する工程と、
     前記(100)配向の酸化ストロンチウム膜あるいはチタン酸ストロンチウム膜上に(100)配向のPbHfO3膜あるいはPbZrO3膜を、レーザ蒸着法によりエピタキシャルに形成する工程と、
    を含むことを特徴とする反強誘電体ゲートトランジスタの製造方法。
PCT/JP2008/057288 2008-04-14 2008-04-14 反強誘電体ゲートトランジスタおよびその製造方法、不揮発性メモリ素子 WO2009128133A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/057288 WO2009128133A1 (ja) 2008-04-14 2008-04-14 反強誘電体ゲートトランジスタおよびその製造方法、不揮発性メモリ素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/057288 WO2009128133A1 (ja) 2008-04-14 2008-04-14 反強誘電体ゲートトランジスタおよびその製造方法、不揮発性メモリ素子

Publications (1)

Publication Number Publication Date
WO2009128133A1 true WO2009128133A1 (ja) 2009-10-22

Family

ID=41198845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/057288 WO2009128133A1 (ja) 2008-04-14 2008-04-14 反強誘電体ゲートトランジスタおよびその製造方法、不揮発性メモリ素子

Country Status (1)

Country Link
WO (1) WO2009128133A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012238697A (ja) * 2011-05-11 2012-12-06 Renesas Electronics Corp 半導体装置
US11527646B2 (en) 2019-09-24 2022-12-13 Samsung Electronics Co., Ltd. Domain switching devices and methods of manufacturing the same
US11552180B2 (en) 2018-06-29 2023-01-10 Intel Corporation Antiferroelectric perovskite gate oxide for transistor applications
WO2023089440A1 (ja) * 2021-11-18 2023-05-25 株式会社半導体エネルギー研究所 記憶素子、記憶装置
US11889701B2 (en) 2021-04-22 2024-01-30 Globalfoundries U.S. Inc. Memory cell including polarization retention member(s) including antiferroelectric layer over ferroelectric layer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61229350A (ja) * 1985-04-04 1986-10-13 Nec Corp 高密度メモリ素子
JPH0590599A (ja) * 1991-08-16 1993-04-09 Rohm Co Ltd 強誘電体デバイス
JP2001222884A (ja) * 2000-02-07 2001-08-17 Seiko Epson Corp 不揮発性メモリ
JP2002043538A (ja) * 2000-07-27 2002-02-08 Mitsubishi Electric Corp 不揮発性半導体記憶装置
JP2002170953A (ja) * 2000-12-04 2002-06-14 Sharp Corp 半導体装置及びその製造方法
JP2003007861A (ja) * 2001-06-18 2003-01-10 Sharp Corp 不揮発性記憶装置及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61229350A (ja) * 1985-04-04 1986-10-13 Nec Corp 高密度メモリ素子
JPH0590599A (ja) * 1991-08-16 1993-04-09 Rohm Co Ltd 強誘電体デバイス
JP2001222884A (ja) * 2000-02-07 2001-08-17 Seiko Epson Corp 不揮発性メモリ
JP2002043538A (ja) * 2000-07-27 2002-02-08 Mitsubishi Electric Corp 不揮発性半導体記憶装置
JP2002170953A (ja) * 2000-12-04 2002-06-14 Sharp Corp 半導体装置及びその製造方法
JP2003007861A (ja) * 2001-06-18 2003-01-10 Sharp Corp 不揮発性記憶装置及びその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012238697A (ja) * 2011-05-11 2012-12-06 Renesas Electronics Corp 半導体装置
US11552180B2 (en) 2018-06-29 2023-01-10 Intel Corporation Antiferroelectric perovskite gate oxide for transistor applications
US11527646B2 (en) 2019-09-24 2022-12-13 Samsung Electronics Co., Ltd. Domain switching devices and methods of manufacturing the same
US11824119B2 (en) 2019-09-24 2023-11-21 Samsung Electronics Co., Ltd. Domain switching devices and methods of manufacturing the same
US11889701B2 (en) 2021-04-22 2024-01-30 Globalfoundries U.S. Inc. Memory cell including polarization retention member(s) including antiferroelectric layer over ferroelectric layer
WO2023089440A1 (ja) * 2021-11-18 2023-05-25 株式会社半導体エネルギー研究所 記憶素子、記憶装置

Similar Documents

Publication Publication Date Title
KR100419683B1 (ko) 평활 전극 및 향상된 메모리 유지 특성을 가지는 박막 강유전성 커패시터를 제작하는 dc 스퍼터링 공정
US6674109B1 (en) Nonvolatile memory
US6645779B2 (en) FeRAM (ferroelectric random access memory) and method for forming the same
US6888185B2 (en) Junction-isolated depletion mode ferroelectric memory devices
CN100388497C (zh) 金属薄膜及其制造方法、电介质电容器及其制造方法及半导体装置
JP3974640B2 (ja) 強誘電体コンデンサの製造方法
JPH10341002A (ja) 強誘電体トランジスタ、半導体記憶装置、強誘電体トランジスタの取扱い方法および強誘電体トランジスタの製造方法
US6242771B1 (en) Chemical vapor deposition of PB5GE3O11 thin film for ferroelectric applications
JP2015056485A (ja) 半導体記憶装置およびその動作方法
WO2009128133A1 (ja) 反強誘電体ゲートトランジスタおよびその製造方法、不揮発性メモリ素子
KR20000076056A (ko) 스트론튬 비스무트 니오베이트 탄탈레이트 강유전체박막
CN100456493C (zh) Mfs型场效应晶体管及其制造方法、强电介质存储器及半导体装置
US7750383B2 (en) Semiconductor apparatus and method for manufacturing the semiconductor apparatus
US7528034B2 (en) Method for forming ferroelectric capacitor, ferroelectric capacitor and electronic device
KR100533973B1 (ko) 하부전극과 강유전체막의 접착력을 향상시킬 수 있는강유전체캐패시터 형성 방법
KR100399074B1 (ko) 비엘티 강유전체막을 구비하는 강유전체 메모리 소자 제조방법
KR20050002989A (ko) 하부전극과 강유전체막의 접착력을 향상시킬 수 있는강유전체캐패시터 형성 방법
JP4827316B2 (ja) 強誘電体トランジスタ型不揮発性記憶素子の駆動方法
JP2003282838A (ja) 強誘電体キャパシタおよびその製造方法、メモリセルアレイ、誘電体キャパシタの製造方法、ならびに、メモリ装置
JP2010157748A (ja) 金属膜およびその製造方法、誘電体キャパシタおよびその製造方法ならびに半導体装置
Achard et al. Integration of ferroelectric thin films for memory applications
KR100362184B1 (ko) 반도체 소자의 강유전체 캐패시터 형성방법
JP2009231345A (ja) 強誘電性材料、強誘電体キャパシタ及び半導体記憶装置
Aggarwal et al. Conducting diffusion barriers for integration of ferroelectric capacitors on Si
JPH09237875A (ja) 半導体記憶素子、半導体記憶素子の形成方法、及びチタン酸ビスマス膜の形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08740376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 08740376

Country of ref document: EP

Kind code of ref document: A1