WO2009125829A1 - Pet延伸炉内ガスの浄化用触媒、同触媒を用いるpet延伸炉内ガスの浄化方法およびpet延伸炉の汚れ防止方法 - Google Patents

Pet延伸炉内ガスの浄化用触媒、同触媒を用いるpet延伸炉内ガスの浄化方法およびpet延伸炉の汚れ防止方法 Download PDF

Info

Publication number
WO2009125829A1
WO2009125829A1 PCT/JP2009/057319 JP2009057319W WO2009125829A1 WO 2009125829 A1 WO2009125829 A1 WO 2009125829A1 JP 2009057319 W JP2009057319 W JP 2009057319W WO 2009125829 A1 WO2009125829 A1 WO 2009125829A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
pet
component
gas
stretching furnace
Prior art date
Application number
PCT/JP2009/057319
Other languages
English (en)
French (fr)
Inventor
孝信 櫻井
信一 上野
Original Assignee
日揮ユニバーサル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮ユニバーサル株式会社 filed Critical 日揮ユニバーサル株式会社
Priority to JP2010507275A priority Critical patent/JP5419865B2/ja
Priority to CN200980112588.7A priority patent/CN101998882B/zh
Publication of WO2009125829A1 publication Critical patent/WO2009125829A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons

Definitions

  • the present invention uses a catalyst for oxidatively decomposing volatile PET oligomer components contained in hot air in a stretching furnace when a polyester resin (PET) is stretched with a stretching apparatus to produce a PET film.
  • PET polyester resin
  • the present invention relates to a method for purifying gas in a PET stretching furnace and a method for preventing contamination of a PET stretching furnace.
  • PET resin When a PET film is manufactured using a stretching apparatus (usually called a tenter), the PET resin is heated with hot air.
  • a stretching apparatus usually called a tenter
  • PET oligomers from films for example, low polymers such as cyclic trimers that are easily generated during polymerization, as well as volatile organic compounds such as 4-carboxybenzaldehyde, monohydroxyterephthalate, terephthalic acid, etc. produced by oxidative decomposition Sublimates or volatilizes and mixes in the hot air. Since the PET oligomer is sublimable, when the hot air containing it comes into contact with the furnace or the part where the temperature of the circulation system is low, the PET oligomer becomes solid and deposits on the walls and piping of the furnace, causing dirt and clogging. If it adheres to the film surface, it causes a problem of quality deterioration.
  • Patent Document 1 discloses a technique for passing hot air in a tenter through an oxidation catalyst layer made of a platinum group metal (ruthenium, rhodium, palladium, osmium, iridium, platinum).
  • a platinum group metal ruthenium, rhodium, palladium, osmium, iridium, platinum.
  • Patent Document 2 discloses a technique in which, when a PET film is produced while circulating hot air in a tenter, oligomers generated in the tenter are burned and removed by an oxidation catalyst, and the hot air after removal is blown onto the film surface.
  • Patent Document 3 discloses a technique in which a platinum catalyst is arranged in a hot air circulation path in a method for producing a biaxially oriented polyester film, and a low molecular weight material volatilized from the film and mixed in the circulating hot air is efficiently burned with the platinum catalyst. Disclose.
  • Patent Document 4 discloses a technique that uses a filter containing a platinum catalyst block to remove oligomers.
  • Patent Document 5 discloses a technology in which a tenter is provided with a catalyst for decomposing and removing sublimates generated from a thermoplastic resin.
  • an oxidation catalyst is used for gas treatment in the drawing furnace of the PET drawing apparatus, and a platinum group metal (ruthenium, rhodium, palladium, osmium, iridium, platinum) is used as an active component of the oxidation catalyst. It is also introduced in the above-mentioned documents that the treated gas is circulated and reused.
  • the PET oligomer has a relatively large molecular weight, it is difficult to oxidize completely, so that a coke-like substance is deposited on the catalyst, and the activity tends to decrease.
  • the gas in the PET stretching furnace may contain silicon-containing compounds and organic sulfur compounds that are attributed to the additive of the PET resin, which may cause a decrease in catalytic activity, so durability is also important. Become. Furthermore, since aldehydes such as acetaldehyde are generated during PET stretching, a catalyst that simultaneously decomposes and removes them is desired.
  • JP 59-98821 A Japanese Patent Publication No. 60-45577 Japanese Patent Laid-Open No. 11-342535 Japanese Patent Laid-Open No. 11-77823 JP 2002-144420 A
  • the object of the present invention is to provide a catalyst for decomposing PET oligomer in the gas in the drawing furnace of the PET stretching apparatus at a high conversion rate, and simultaneously provide a catalyst for simultaneously oxidizing and decomposing aldehydes such as acetaldehyde, and having high durability.
  • the present invention provides a catalyst, a method for purifying gas in a PET stretching furnace using the catalyst, and a method for preventing contamination of the PET stretching furnace.
  • the present inventor has found a catalyst that can solve the above problems by a specific combination of an active ingredient and a carrier in order to oxidize and burn a PET oligomer component, and has completed the present invention.
  • the gist of the present invention is as follows. [1] A catalyst for purifying gas in a PET stretching furnace, comprising at least one inorganic oxide (component 1) of alumina and zirconium oxide and platinum (component 2). [2] The PET purifying furnace gas purification catalyst according to [1], comprising zeolite (component 3) and having a weight ratio of component 1 to component 3 of 90:10 to 10:90.
  • [8] Contains at least one inorganic oxide of alumina and zirconium oxide (component 1), platinum (component 2), zeolite (component 3), and cerium oxide (component 4), and the content of component 3 is For purifying the PET stretching furnace gas, wherein the weight ratio of component 1 to component 3 is 90:10 to 10:90, and the content of component 4 is 1 to 100 parts by weight per 100 parts by weight of component 1 catalyst.
  • a catalyst for purifying gas in a PET stretching furnace wherein the catalyst support is loaded with the catalyst according to any one of [1] to [8].
  • the stretching furnace gas is a gas containing acetaldehyde together with a PET oligomer, and oxidatively decomposes these two components.
  • hot air containing volatile PET oligomers generated when a PET film is produced in a stretching furnace is provided in the furnace according to any one of [1] to [10].
  • Purification of the gas in the PET stretching furnace which includes a step 1 for oxidizing and decomposing the volatile PET oligomer in a temperature range of 350 ° C. and a step 2 for returning all or part of the generated cracked gas to the stretching furnace.
  • the PET stretching furnace gas purification catalyst of the present invention oxidizes and decomposes a sublimable polymer such as a PET oligomer contained in a PET stretching furnace gas at a high conversion rate to convert it into CO 2 and H 2 O. At the same time, the activity is not significantly reduced and the durability is excellent.
  • the purification of the gas in the PET drawing furnace can be achieved over a long period of time, which was difficult to achieve with known catalysts, thereby preventing the drawing furnace from being contaminated and reducing the maintenance work of the drawing furnace. It became possible.
  • the infrared absorption spectrum of a PET oligomer is shown.
  • the infrared absorption spectrum of PET resin is shown.
  • the object to which the catalyst of the present invention is applied is an in-furnace gas containing a PET oligomer generated when a PET film is produced in a PET stretching furnace.
  • the PET oligomer refers to a volatile (sublimation) organic component generated from the PET resin or the PET film in the heating step performed when the PET resin is stretched as described above.
  • the average particle diameter refers to the average particle diameter of secondary particles measured by a laser method.
  • the specific surface area is a value measured by the BET method.
  • Component 1 Alumina (Al 2 O 3 )
  • Alumina (Al 2 O 3 ) which is one of the components of the catalyst of the present invention, is an active alumina such as ⁇ , ⁇ , etc., which is generally used as a catalyst carrier, particularly ⁇ -alumina.
  • the specific surface area of the alumina is preferably 10 m 2 / g or more, preferably 50 to 300 m 2 / g, and the average particle size is 0.1 ⁇ m to 100 ⁇ m, more preferably 0.1 to The thing of the range of 50 micrometers is preferable.
  • the shape of alumina is arbitrary.
  • alumina examples include commercially available aluminas (product names; NST-5 and NSA20-3X6) sold by JGC Universal, and aluminas (product names; eg, NK-124) manufactured by Sumitomo Chemical. Goods can be used.
  • Component 1 Zirconium oxide (ZrO 2 )
  • Zirconium oxide (sometimes referred to as zirconia) as component 1 is a simple zirconia (chemical formula: ZrO 2 ) or composite oxide of magnesia and zirconia that is generally used as a catalyst carrier.
  • the specific surface area is an important factor for supporting platinum (component 2) described below in a highly dispersed manner and improving the contact property with the gas to be treated, and is preferably 5 m 2 / g or more. More preferably, it is 10 to 150 m 2 / g.
  • the average particle size is preferably in the range of 0.1 ⁇ m to 100 ⁇ m, more preferably 0.1 to 50 ⁇ m in order to improve the contact property with the gas.
  • platinum (Pt) of the above-described embodiment is composed of Al 2 O 3 and ZrO 2 as metal components. 100 wt ppm (0.01 wt%) to 10 wt%, preferably 200 wt ppm or more, more preferably 500 wt ppm or more, based on at least one inorganic oxide (component 1). .
  • the Pt content may be set in consideration of the oligomer content in the furnace gas to be treated, the reaction temperature and the space velocity, and the period of use of the catalyst, but if the Pt content is less than 100 ppm by weight, In some cases, the oxidation reaction is insufficient. On the other hand, when the amount exceeds 10% by weight, the reaction is not further improved and becomes uneconomical.
  • platinum exhibits higher activity with respect to PET oligomers than other platinum group elements such as ruthenium, rhodium, palladium, osmium and iridium.
  • platinum is supported on one or two of component 2 Al 2 O 3 particles and ZrO 2 particles. Platinum may be supported on the zeolite of component 3 or the cerium oxide particles of component 4 described below.
  • Examples of the basic production method of the catalyst of the present invention are as follows: (A) A slurry containing component 1 and component 2 is applied to a catalyst support (for example, a honeycomb) and dried to form a catalyst layer to be a catalyst precursor, impregnated with an aqueous solution of a Pt compound, and dried. And the method of firing and reduction treatment.
  • component 1 for example, Pt / Al 2 O 3 particles, Pt / ZrO 2 particles
  • component 3 or component 4 particles Particles of component 1 (for example, Pt / Al 2 O 3 particles, Pt / ZrO 2 particles) carrying a specified amount of Pt in advance are prepared and mixed with component 3 or component 4 particles.
  • a method of forming a catalyst layer by applying a slurry containing a catalyst to a catalyst support by means such as wash coating and drying and firing.
  • Component 3 Zeolite
  • the catalyst of the present invention (corresponding to [2] of the means for solving the above problems) is composed of at least one inorganic oxide of Al 2 O 3 and ZrO 2 (component 1) and Pt (component 2). ) And a zeolite containing component 3 is a preferred embodiment.
  • the content of Component 3 is 90:10 to 10:90, preferably 80:20 to 20:80, more preferably 70:30 to 30:70, by weight ratio of Component 1: Component 3, By containing the ratio in 10% or more, the decomposition activity for the PET oligomer is further improved, the durability of the catalyst is improved, and the effect of preventing fouling of the furnace is improved.
  • the zeolite may be a natural product or a synthetic product.
  • natural zeolites include mordenite, erionite, and ferrierite.
  • synthetic products include Y-type zeolite; MFI-type zeolite such as ZSM-5; and ⁇ -type zeolite.
  • Zeolite having a molar ratio of silica and alumina (SiO 2 / Al 2 O 3 molar ratio) of 5 to 100 is high in silicone resistance and has high decomposition activity for PET oligomer. Therefore, it is preferable. Further, the zeolite may be in a proton type (H type) or a metal substitution type (including metals such as Na and Fe and ammonium substitution).
  • H type proton type
  • metal substitution type including metals such as Na and Fe and ammonium substitution
  • the average particle diameter is preferably in the range of 0.1 to 100 ⁇ m, more preferably in the range of 0.1 to 50 ⁇ m.
  • the zeolite used in the present invention includes an FCC (fluid catalytic cracking) catalyst usually used in the petroleum refining industry.
  • the FCC catalyst is a catalyst containing 10 to 40% by weight of alumina and 90 to 60% by weight of silica and having a function of decomposing large molecular hydrocarbons contained in heavy oil, and is effective as component 3 of the present invention. is there.
  • Ingredient 4; CeO 2 The catalyst of the present invention includes component 1 and component 2, but may further include cerium oxide as component 4.
  • the cerium oxide is ceria (CeO 2 ), ceria-zirconia composite oxide (CeO 2 .ZrO 2 ), and a composite containing the CeO 2 , ZrO 2 and at least one oxide of La, Y, Pr, and Nd. One or more selected from the group of oxides.
  • the catalyst of the present invention containing the cerium oxide has a high decomposing activity of the PET oligomer, has little carbon generation, is excellent in durability, and is particularly excellent in the effect of preventing furnace fouling. Further, the catalyst of the present invention includes a catalyst comprising Component 1, Component 2, Component 3, and Component 4.
  • the content of the cerium oxide is 1 to 100 parts by weight, preferably 5 to 100 parts by weight, more preferably 10 to 100 parts by weight with respect to 100 parts by weight of Component 1, and less than 1 part by weight
  • the effect is insufficient, and in the presence of more than 100 parts by weight, no further activity or durability improvement effect is observed.
  • cerium oxide exists as particles.
  • the average particle size of the oxide is preferably in the range of 0.1 ⁇ m to 100 ⁇ m, more preferably in the range of 0.1 to 50 ⁇ m, in order to improve the activity of the catalyst obtained by mixing with the component 1 particles.
  • Al 2 O 3 or ZrO 2 particles of component 1 are impregnated with a solution of a cerium compound such as cerium nitrate, cerium ammonium nitrate, cerium chloride, cerium acetate, alkoxycerium, ammonium, or an ammine complex compound, and 400 By heating to ⁇ 800 ° C., cerium oxide can be included in the catalyst.
  • a cerium compound such as cerium nitrate, cerium ammonium nitrate, cerium chloride, cerium acetate, alkoxycerium, ammonium, or an ammine complex compound
  • the catalyst of the present invention contains other components such as other components, but contains other components as long as they do not interfere with the intended action / effect. It is not excluded.
  • a catalyst that exhibits high decomposition activity and durability at a temperature close to the temperature of PET stretching, that is, 200 to 350 ° C. is preferable.
  • One particularly preferred embodiment is a catalyst having a composition comprising component 2) and cerium oxide (component 4), wherein the content of component 4 is 10 to 100 parts by weight per 100 parts by weight of component 1.
  • Another preferred embodiment of the present invention comprises at least one inorganic oxide of alumina and zirconium oxide (component 1), platinum (component 2), zeolite (component 3), and cerium oxide (component 4).
  • the content of component 3 is 80:20 to 20:80 by weight ratio of component 1 and component 3, and component 3 is a zeolite having a SiO 2 / Al 2 O 3 molar ratio of 5 or more and 100 or less.
  • the catalyst having a composition in which the content of component 4 is 1 to 100 parts by weight, more preferably 10 to 100 parts by weight, per 100 parts by weight of component 1.
  • the support is preferably in the form of heat resistance, high contact efficiency and low pressure loss.
  • honeycomb, sheet, mesh, pipe, filter, punching metal, foam A metal body etc. are illustrated.
  • the material of the support is not particularly limited, but preferably has heat resistance and corrosion resistance. Cordierite, alumina, silica, silica / alumina, carbon fiber, metal fiber, glass fiber, ceramic fiber, stainless steel, titanium Etc. are exemplified.
  • the honeycomb catalyst is prepared by wash-coating a slurry containing the catalyst of the present invention on the support.
  • Production method 1 Step 1 of preparing a slurry containing at least one inorganic oxide particle (component 1) of alumina and zirconium oxide, zeolite particles (component 2), and a binder component, and a predetermined amount of the slurry, Step 2 of applying to the honeycomb and drying to form a catalyst precursor containing component 1 and component 2, and impregnating with an aqueous solution of a Pt compound before or after firing, followed by drying at 100 to 200 ° C. Baked in air at a temperature range of 450 to 650 ° C., and reduced and fired in a hydrogen atmosphere if necessary.
  • the Pt compound include dinitrodiammine platinum, chloroplatinic acid, platinum nitrate, and tetraammine platinum dichloride.
  • Production method 2 Another method is a step 1 for producing particles carrying Pt on alumina (Pt / Al 2 O 3 ) or particles carrying zirconium oxide (Pt / ZrO 2 ), and the supported particles and zeolite particles. And a step 2 of preparing a slurry containing a binder component, and a step 3 of applying the slurry to a honeycomb and drying and firing under the above conditions.
  • the thickness of the catalyst layer supported on the honeycomb support may be set in consideration of the effect of the catalyst effectively and in consideration of economy, but is usually 10 ⁇ m or more and 500 ⁇ m or less.
  • the amount of catalyst supported per liter of honeycomb is suitably 10 to 50 grams as the total weight of component 1 and component 2.
  • PET Stretching Furnace Gas Purification Method a stretching furnace gas purification method will be described.
  • the furnace gas can be purified.
  • a temperature range of 200 to 350 ° C., preferably 210 to 350 ° C., more preferably 220 to 350 ° C. is preferable.
  • the decomposition reaction with respect to the PET oligomer does not sufficiently proceed, and the undecomposed PET oligomer remains or carbon monoxide (CO) is easily generated.
  • the temperature exceeds 350 ° C., the reaction proceeds sufficiently, but when the processing gas is circulated and used, cooling to a temperature suitable for the heat treatment of the PET film (usually 200 to 230 ° C.) is required, and energy is wasted.
  • the gas space velocity (SV) is not limited, but in order to completely burn the PET oligomer component in the hot air, a range of 1,000 to 200,000 hr ⁇ 1 is usually preferable although it depends on the concentration of the PET oligomer.
  • the catalyst-treated gas (treatment gas) is refluxed to the heat treatment furnace. At that time, the entire amount may be refluxed, or a part thereof may be discarded and fresh air may be introduced into the remainder and then refluxed. .
  • Method for Preventing Stain in PET Stretching Furnace The method for preventing soiling in a PET stretching furnace of the present invention is carried out by applying hot air containing oligomers in a PET stretching furnace to the catalyst of the present invention installed in a stretching furnace or in a hot air circulation system at a temperature of 200 to 350.
  • a method comprising a step 1 of oxidatively decomposing an oligomer by contacting at a temperature of 200 ° C., preferably 210 to 350 ° C., more preferably 220 to 350 ° C., and a step 2 of returning all or a part of the processing gas to a drawing furnace. It is. Since the oligomer content in the hot air is reduced by this step, the amount of oligomers deposited in the furnace or in the hot air circulation system can be reduced, and the furnace can be prevented from being contaminated.
  • Example 1 Preparation of catalyst> Catalyst 1; Preparation of Pt (0.1) / Al 2 O 3 (100) Particles in which 0.1% by weight of Pt is supported on ⁇ -alumina powder (manufactured by JGC Universal Co., Ltd., average particle size 5 ⁇ m) ⁇ Pt (0. 1) / Al 2 O 3 > 100 g and 25 g of boehmite as a binder were mixed with 350 g of an aqueous nitric acid solution to prepare a slurry.
  • This slurry was applied to a cordierite honeycomb (Nippon Choshi Co., Ltd., 200 cells / square inch) by a wash coat method so that the weight of the catalyst layer per liter of the honeycomb was 50 g (excluding the binder).
  • the slurry was blown off with compressed air and then dried at 150 ° C. for 3 hours in a dryer. Thereafter, it was calcined in air at 500 ° C. for 2 hours to obtain a honeycomb type catalyst 1 carrying a Pt / Al 2 O 3 catalyst layer.
  • Catalyst 2 Preparation of Pt (0.1) / ZrO 2 (100) ZrO 2 powder (Daiichi Rare Element Co., Ltd., average particle size 5 ⁇ m, BET specific surface area 100 m 2 / g) was added with 0.1% by weight of Pt. Using the supported particles ⁇ Pt (0.1) / ZrO 2 >, a honeycomb type catalyst 2 was obtained in the same manner as the catalyst 1. The Pt content of the catalyst 2 is 0.1% by weight (ratio to ZrO 2 ).
  • Comparative Catalyst R1 Preparation of Pt (0.1) / TiO 2 (100) TiO 2 powder (Millennium, average particle size 1 ⁇ m, BET specific surface area 330 m 2 / g) was added with 0.1% by weight of Pt. By using the supported particles ⁇ Pt (0.1) / TiO 2 >, a honeycomb type comparative catalyst A was obtained in the same manner as in the catalyst 1.
  • the Pt content of the comparative catalyst R1 is 0.1% by weight (ratio to TiO 2 ).
  • Catalyst 3 Preparation of Pt (0.1) / Al 2 O 3 (50) + HY (50) Y-type zeolite powder (manufactured by UOP, trade name LZY85, average particle size 2 ⁇ m, SiO 2 / Al 2 O 3 molar ratio 5.9 H type substitution product), 50 g of ⁇ -Al 2 O 3 powder (manufactured by JGC Universal, BET specific surface area of 169 m 2 / g), and silica sol (Nissan Chemical, Snowtex C) as a binder. 10 g of SiO 2 solid content was added to 350 g of ion-exchanged water to prepare a slurry.
  • Y-type zeolite powder manufactured by UOP, trade name LZY85, average particle size 2 ⁇ m, SiO 2 / Al 2 O 3 molar ratio 5.9 H type substitution product
  • 50 g of ⁇ -Al 2 O 3 powder manufactured by JGC Universal, BET specific surface area
  • the slurry was applied to the honeycomb used in the catalyst 1 by a wash coat method so that a particle layer made of a mixture of Al 2 O 3 and HY particles (weight ratio 50:50) was 50 g per 1 L of honeycomb. And then dried in a dryer at 150 ° C. for 3 hours and then calcined in air at 500 ° C. for 2 hours.
  • the particle layer is impregnated with a dinitroammineplatinum aqueous solution containing a specified amount of Pt, dried and fired in a hydrogen atmosphere, and 0.1 wt% Pt (ratio to the total of Al 2 O 3 and HY)
  • a honeycomb type catalyst 4 containing 0.1% by weight of Pt (ratio to the total of Al 2 O 3 and HY) was obtained by the same method as that for the catalyst 3.
  • honeycomb carrier has a particle layer of a mixture of ZrO 2 and HY (weight ratio of 50:50) and Pt of 0.1% by weight (ZrO 2 And a ratio to the total of HY.)
  • a honeycomb type catalyst 5 was obtained.
  • Catalyst 6 Preparation of Pt (0.1) / Al 2 O 3 (50) + ⁇ zeolite (50) Instead of HY, ⁇ zeolite powder (manufactured by UOP, average particle size 2 ⁇ m, SiO 2 / Al 2 O 3 mol) Except for using the ratio 25), Pt was added in an amount of 0.1% by weight to a particle layer of a mixture of Al 2 O 3 and ⁇ zeolite (weight ratio 50:50) on the honeycomb support in the same manner as in the catalyst 3. (The ratio to the total of Al 2 O 3 and ⁇ zeolite) A honeycomb type catalyst 6 was obtained. (Example 2) ⁇ Evaluation 1: Decomposition test of PET oligomer> The honeycomb catalyst prepared in Example 1 was mounted on the reactor 1 shown below, and the decomposition activity and durability against the PET oligomer were measured for each catalyst.
  • FIG. 1 shows an outline of a flow reactor 1 used for catalyst evaluation.
  • a sample container 12 installed in the reaction tube 11 is filled with a solid PET oligomer (R) as a raw material for gas generation.
  • Reference numeral 13 denotes a cylindrical honeycomb catalyst (diameter 21 mm, length 10 mm).
  • the PET oligomer gas generated by heating is decomposed by the catalyst 13, the treated gas (referred to as exhaust gas) is cooled to about 130 ° C., and the undecomposed PET oligomer contained is collected as a solid by the collection filter 14.
  • the exhaust gas is discharged from the gas discharge pipe 16 and used for gas analysis.
  • PET oligomer gas used for activity evaluation A test gas for evaluation of decomposition activity was generated using a solid PET oligomer deposited in a PET stretching furnace (actual machine).
  • the infrared absorption spectrum of the solid PET oligomer used is shown in FIG. 2A.
  • the infrared absorption spectrum of the PET resin is shown in FIG. 2B.
  • a decomposition test of one operation For a decomposition test of one operation (referred to as one cycle), 1.5 g of PET oligomer powder is placed in a container 12 and the reaction tube 11 is heated from the outside to increase from room temperature to 250 ° C. at a rate of 5 ° C. per minute. After raising the temperature, air at 250 ° C. was introduced from the gas introduction pipe 15 at a rate of 2.0 liters / minute, and a total amount of 100 liters was introduced. The decomposition test was conducted by contacting them. CO in the exhaust gas was analyzed with an electrolytic CO analyzer. Every time one cycle of the decomposition test was completed, the undecomposed PET oligomer collected by the collection filter 14 was measured as carbon content by a LECO analyzer. The above operation was repeated 15 times (15 cycles) for each catalyst, and the decomposition activity and durability of the catalyst were examined.
  • PET oligomer degradation rate The PET oligomer degradation rate was determined by the following formula 1;
  • C1 represents the trapping when the cordierite honeycomb (not including the catalyst component) used for catalyst preparation was attached to the position of the catalyst 13 in FIG. 1 and the PET oligomer-containing gas was allowed to flow under the above conditions. It is the value which represented the weight of the undecomposed PET oligomer collected by the collection filter by carbon content (weight).
  • C2 is a value expressed by carbon content (weight) of the weight of undecomposed PET oligomer collected on the collection filter when a catalyst is attached and a decomposition test is performed.
  • the catalyst showing a large PET oligomer decomposition rate means that the C2 is small, so that the effect of preventing the stretching furnace from being soiled is large.
  • Table 1-1 shows the results of a decomposition test (15 cycles) of the PET oligomer-containing gas using each catalyst.
  • Table 1-1 shows the PET oligomer decomposition rate and the CO concentration (each average value) in the decomposition gas in 1 to 3 cycles, 8 to 10 cycles, and 13 to 15 cycles.
  • the degradation rate of the PET oligomer of the comparative catalyst R1 is 78% in 1 to 3 cycles, but 15% and 13 to 15 cycles in 8 to 10 cycles. Then, it decreased to 5% or less.
  • those of the catalyst 1 (Pt / Al 2 O 3 ) and the catalyst 2 (Pt / ZrO 2) of the present invention showed 50% or more, particularly 70% or more over 1 to 15 cycles.
  • Catalysts 3-6 containing zeolite showed higher cracking activity and durability. Further, it is clear that the CO concentration in the exhaust gas treated with the catalysts 1 to 6 of the present invention is low, and the PET oligomer is almost completely oxidized.
  • the catalyst 2 and the catalyst 5 containing ZrO 2 exhibit a high decomposition rate in 15 cycles, and thus are excellent in the effect of preventing contamination of the PET stretching furnace.
  • Example 3 ⁇ Preparation of catalyst> A catalyst comprising CeO 2 was prepared as follows: Catalyst 8; Preparation of Pt (0.1) / Al 2 O 3 (90) + CeO 2 (10) 90 g of Al 2 O 3 powder used in the preparation of Catalyst 1 described above and CeO 2 powder (manufactured by 1st rare element) A slurry was prepared by mixing 10 g of cerium oxide (average particle diameter; 5 ⁇ m) and 10 g of the binder used in the preparation of the catalyst 3 with 350 g of ion-exchanged water as a solid content.
  • a mixture of both particles of Al 2 O 3 and CeO 2 having a weight of 50 g (excluding the binder) of Al 2 O 3 and CeO 2 was applied to a cordierite honeycomb in the same manner as Catalyst 3 in a cordierite honeycomb. : 10) was formed on the honeycomb carrier. Subsequently, the particle layer was impregnated with an aqueous solution of dinitrodiammine platinum in the same manner as for the catalyst 3 to obtain a honeycomb type catalyst 8 carrying Pt. The Pt content in the catalyst layer of the catalyst 8 is 0.1% by weight.
  • Catalyst 9 Preparation of Pt (0.1) / ZrO 2 (90) + CeO 2 (10) 90 g of ZrO 2 particles used in the preparation of catalyst 2, 10 g of CeO 2 powder used in catalyst 8, and catalyst 3 10 g of the binder and 270 g of ion-exchanged water were mixed to prepare a slurry. Thereafter, a honeycomb type catalyst 9 provided with a catalyst layer having a weight ratio of ZrO 2 : CeO 2 of 90:10 was obtained by the same method as the preparation of the catalyst 3. The Pt content in the catalyst layer of the catalyst 9 is 0.1% by weight.
  • a honeycomb type catalyst 10 provided with a catalyst layer having a weight ratio of 50:50 of CeO 2 was prepared.
  • the Pt content in the catalyst layer of the catalyst 10 is 0.1% by weight.
  • Example 4 ⁇ Decomposition test of PET oligomer> The decomposition activities of the catalysts 8 to 10 and the comparative catalyst B were evaluated by the method of Evaluation 1 described above. The results are shown in Table 1-2 together with Catalyst 1 and Catalyst 2 described above. Catalysts 9 and 10 containing ZrO 2 and CeO 2 sustained high cracking activity over the entire cycle.
  • Example 5 ⁇ Preparation of catalyst> Catalyst A; Preparation of Pt (1.8) / Al 2 O 3 Honeycomb-type catalyst 11 was prepared in the same manner as Catalyst 1 except that the amount of Pt supported was changed. The Pt content of the catalyst 11 was set to 1.8 grams per liter of honeycomb.
  • Catalyst B; Preparation of Pt (1.8) / ZrO 2 (100) Honeycomb-type catalyst 12 was prepared in the same manner as Catalyst 2 except that the amount of Pt supported was changed. The Pt content of the catalyst 12 was set to 1.8 grams per liter of honeycomb.
  • Catalyst C Pt (1.8) / Al 2 O 3 (50) + HY (50)
  • an inorganic particle layer of Al 2 O 3 and HY weight ratio 50:50
  • a honeycomb carrier surface was formed.
  • the inorganic particle layer was impregnated with an aqueous solution of dinitrodiammine platinum containing a specified amount of Pt, dried and fired in a hydrogen atmosphere, and catalyst 13 containing 1.8 grams of Pt per liter of honeycomb was obtained.
  • Reactor 2 A simultaneous decomposition test of PET oligomer and acetaldehyde was conducted using a flow reactor 2 shown in FIG.
  • a sample container 22 placed in the sample evaporation container 20 of the reactor 2.5 grams of PET resin compound powder (indicated by S in FIG. 3) is placed.
  • a catalyst 23 (cylindrical honeycomb catalyst; diameter 21 mm, length 50 mm) is installed in the reaction tube 21.
  • a gas (exhaust gas) treated with the catalyst is accommodated in a gas collection container 27 connected via a connection pipe 26, cooled to 90 to 100 ° C. from the outside, and placed in a container.
  • undecomposed PET oligomer is recovered in a solid state and weighed.
  • the concentration of CO and acetaldehyde in the exhaust gas is measured.
  • the acetaldehyde concentration was measured using a GASTEC detector tube No. Measured at 91.
  • C1 is the aldehyde concentration (ppm) in the exhaust gas when treated with only the honeycomb carrier attached
  • C2 is the aldehyde concentration (ppm) in the exhaust gas when the catalyst is attached.
  • Table 2 shows the results of gravimetric analysis of silicon (Si) and sulfur (S) deposited on the catalyst after use for 9 months.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

 PET延伸装置の延伸炉内ガス中のPETオリゴマーを高い転化率で分解処理する触媒の提供、同時にアセトアルデヒド等アルデヒド類を同時に酸化分解処理する触媒の提供、耐久性の高い触媒の提供、および該触媒による延伸炉(テンター)内ガスの浄化方法の提供すること。  アルミナおよび酸化ジルコニウムの少なくとも1種の無機酸化物と、白金とを含んでなる、PETオリゴマーを含有するPET延伸炉内ガスの浄化用触媒。延伸炉でPETフィルムを製造する際に発生する揮発性PETオリゴマーを含む熱風を、炉内または炉外に設けた上記触媒に、200~350°Cの温度範囲で接触させ、前記揮発性PETオリゴマーを酸化分解し、分解ガスを前記延伸炉に循環する工程を含む、PET延伸炉内ガスの浄化方法およびPET延伸炉の汚れ防止方法。

Description

PET延伸炉内ガスの浄化用触媒、同触媒を用いるPET延伸炉内ガスの浄化方法およびPET延伸炉の汚れ防止方法
 本発明は、ポリエステル樹脂(PET)を延伸装置で延伸し、PETフィルムを製造する際の、延伸炉内の熱風中に含まれる揮発性のPETオリゴマー成分を酸化分解する触媒、該触媒を使用するPET延伸炉内ガスの浄化方法およびPET延伸炉の汚れ防止方法に関する。
 延伸装置(通常テンターと称される。)を用いて、PETフィルムを製造する際に、PET樹脂が熱風で加熱が行われる。延伸の際に、フィルムからPETオリゴマー、例えば、重合時に生成しやすい環状3量体などの低重合体のほか、酸化分解で生成する4-カルボキシベンズアルデヒド、モノヒドロキシテレフタレート、テレフタル酸など揮発性有機化合物が昇華あるいは揮発し、これが熱風中に混入する。該PETオリゴマーは昇華性であるため、これを含んだ熱風が炉内あるいは循環系統の温度が低い部位に接触するとPETオリゴマーは固体になって、炉の壁や配管内に沈積し、汚れや閉塞の原因になり、またフィルム表面に付着すると品質低下の問題を引き起こす。
 (従来技術)
 このため、炉内ガスを浄化する技術の1つとして、ガス浄化触媒およびその関連技術が開発されている。
 特許文献1は、テンター内の熱風を白金族金属(ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金)よりなる酸化触媒層を通過させる技術を開示する。
 特許文献2は、テンター内の熱風を循環させながらPETフィルムを製造する際、テンター内で発生するオリゴマーを酸化触媒によって燃焼除去し、除去した後の熱風を前記フィルム面に吹き付ける技術を開示する。
 特許文献3は、二軸配向ポリエステルフィルムの製造方法において、熱風循環経路に白金触媒を配置し、フィルムから揮散し循環熱風中に混入した低分子量物が白金触媒で効率よく燃焼処理される技術を開示する。
 特許文献4は、オリゴマーの除去のために、白金触媒ブロックを内蔵したフィルタを用いる技術を開示する。
 特許文献5は、テンターに熱可塑性樹脂から発生した昇華物を分解除去するための触媒を設ける技術を開示する。
 (従来技術の問題点)
 以上のとおり、PET延伸装置の延伸炉内ガス処理のために酸化触媒が使用されること、該酸化触媒の活性成分として白金族金属(ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金)が使用されること、また処理されたガスを循環して、再使用されることが、前掲の各文献に紹介されている。
 しかしながらいずれの文献にも、触媒の詳細は報告されていない。PETオリゴマーは分子量が比較的大きいため、完全に酸化しにくく、そのためコーク状物質が触媒に堆積して、活性低下を起こしやすい。またPET延伸炉内のガス中には、PET樹脂の添加剤に起因するとされるケイ素含有化合物や有機硫黄化合物も含まれることがあり、触媒活性の低下の原因になるから、耐久性も重要になる。さらにPET延伸の際、アセトアルデヒドなどアルデヒド類が発生するため、これらも同時に分解除去する触媒が望まれている。
特開昭59-98821号公報 特公昭60-45577号公報 特開平11-342535号公報 特開平11-77823号公報 特開2002-144420号公報
 したがって本発明の目的は、PET延伸装置の延伸炉内ガス中のPETオリゴマーを高い転化率で分解処理する触媒の提供、同時にアセトアルデヒド等アルデヒド類を同時に酸化分解処理する触媒の提供、耐久性の高い触媒の提供、該触媒によるPET延伸炉内ガスの浄化方法およびPET延伸炉の汚れ防止方法の提供にある。
 本発明者は、PETオリゴマー成分を酸化燃焼するために、活性成分と担体の特定の組み合わせにより、前記の課題を解決できる触媒を見出し、本発明を完成した。本発明の要旨は以下のとおりである。
[1] アルミナおよび酸化ジルコニウムの少なくとも1種の無機酸化物(成分1)と、白金(成分2)とを含んでなる、PET延伸炉内ガスの浄化用触媒。
[2] ゼオライト(成分3)を含み、成分1と成分3の重量比が90:10~10:90である、[1]に記載のPET延伸炉内ガスの浄化用触媒。
[3] 用いるゼオライトのSiO2/Al23モル比が5以上、100以下である、[2]に記載のPET延伸炉内ガスの浄化用触媒。
[4] 白金を担持したアルミナ粒子および白金を担持した酸化ジルコニウム粒子の少なくとも1種と、ゼオライト粒子を含む、[2]または[3]に記載のPET延伸炉内ガスの浄化用触媒。
[5] 酸化セリウム(成分4)を含み、当該酸化セリウムの含有量が、成分1の100重量部あたり、1~100重量部である、[1]に記載のPET延伸炉内ガスの浄化用触媒。
[6] 酸化セリウムがCeO2、CeO2とZrO2の複合酸化物(CeO2・ZrO2)、または該CeO2・ZrO2とLa,Y,Pr、Ndの少なくとも1種の酸化物とを含む複合酸化物である、[5]に記載のPET延伸炉内ガスの浄化用触媒。
[7] 白金の含有量が、成分1に対して、0.01~10重量%である、[1]~[6]のいずれかに記載のPET延伸炉内ガスの浄化用触媒。
[8] アルミナおよび酸化ジルコニウムの少なくとも1種の無機酸化物(成分1)と、白金(成分2)と、ゼオライト(成分3)と、酸化セリウム(成分4)を含み、成分3の含有量が、成分1と成分3の重量比で90:10~10:90であり、成分4の含有量が成分1の100重量部あたり、1~100重量部である、PET延伸炉内ガスの浄化用触媒。
[9] 触媒支持体に[1]~[8]のいずれかに記載の触媒を担持してなる、PET延伸炉内ガスの浄化用触媒。
[10] 延伸炉内ガスがPETオリゴマーとともにアセトアルデヒドを含むガスであり、これら2つの成分を酸化分解する、[1]~[9]のいずれかに記載のPET延伸炉内ガスの浄化用触媒。
[11] 延伸炉でPETフィルムを製造する際に発生する揮発性PETオリゴマーを含む熱風を、炉内または炉外に設けた[1]~[10]のいずれかに記載の触媒に、200~350℃の温度範囲で接触させ、前記揮発性PETオリゴマーを酸化分解する工程1と、生成した分解ガスの全部または一部を前記延伸炉に還流する工程2を含む、PET延伸炉内ガスの浄化方法。
[12] 延伸炉でPETフィルムを製造する際に発生する揮発性PETオリゴマーを含む熱風を、炉内または炉外に設けた[1]~[10]のいずれかに記載の触媒に、200~350℃の温度範囲で接触させ、前記揮発性PETオリゴマーを酸化分解する工程1と、生成した分解ガスの全部または一部を前記延伸炉に還流する工程2を含む、PET延伸炉の汚れ防止方法。
 本発明の触媒によれば、以下の様な顕著な効果が達成される。
[1]  本発明のPET延伸炉内ガスの浄化触媒は、PET延伸炉内ガスに含まれるPETオリゴマーのような昇華性重合物を高い転化率で酸化分解し、CO2とH2Oに転化するとともに、その活性の低下が少なく、耐久性に優れている。
[2]  PETフィルム延伸の際に発生するアルデヒド類を同時に酸化分解する。
[3]  従来知られている触媒では達成困難であった、長期間にわたりPET延伸炉内ガスの浄化が達成でき、これにより延伸炉の汚れ防止ができ、延伸炉の維持管理の手間を削減することが可能となった。
触媒の評価をするための反応装置1の概要図である。 PETオリゴマーの赤外吸収スペクトルを示す。 PET樹脂の赤外吸収スペクトルを示す。 PETオリゴマーとアセトアルデヒドの同時分解試験に用いた反応装置2の概要図である。
 以下、本発明の実施の形態を説明する。
 (適用分野)
 本発明の触媒が適用される対象は、PET延伸炉でPETフィルムを製造する際に発生するPETオリゴマーを含有する炉内ガスである。ここでPETオリゴマーとは、前記のとおりPET樹脂を延伸加工する際に行われる加熱工程で、PET樹脂もしくはPETフィルムから発生する、揮発性(昇華性)有機成分をいう。また本明細書において、特に断らない限り、平均粒径とはレーザー法で測定された2次粒子の平均粒径をいう。また比表面積はBET法で測定される値である。
 以下本発明の触媒について説明する。
 成分1;アルミナ(Al 2 3
 本発明の触媒の成分の1つであるアルミナ(Al23)は、一般に触媒担体として使用されているγ、δなどの活性アルミナ、とくにγ-アルミナである。該アルミナの比表面積は、10m2/g以上、好ましくは、50~300m2/gの活性アルミナの使用が好適であり、また平均粒径は0.1μm~100μm、より好ましくは0.1~50μmの範囲のものが好ましい。アルミナの形状は、任意である。なお、この様なアルミナとしては、例えば日揮ユニバーサル社が販売しているアルミナ(製品名;NST-5およびNSA20-3X6)、住友化学社製のアルミナ(製品名;例えばNK-124)などの市販品を使用することができる。
  成分1;酸化ジルコニウム(ZrO 2
 また成分1としての酸化ジルコニウム(ジルコニアと称することがある)は、一般に触媒担体として使用されている単体のジルコニア(化学式;ZrO)またはマグネシアとジルコニアとの複合酸化物である。その比表面積は、以下に述べる白金(成分2)を高分散に担持するためと、処理するガスとの接触性を高めるために重要な要素であり、5m2/g以上であることが好ましく、10~150m2/gであることがより好ましい。平均粒径もガスとの接触性を高めるために、0.1μm~100μm、より好ましくは0.1~50μmの範囲のものが好ましい。この様な酸化ジルコニウムとしては、例えば、第一稀元素製RCシリーズ、日本軽金属製XZOシリーズなどの市販品を使用することができる。
成分2;白金
 本発明の触媒には、上記の実施形態(前記課題を解決するための手段の〔1〕に対応)の白金(Pt)が、金属分として、Al23およびZrO2の少なくとも1種の無機酸化物(成分1)に対して、100重量ppm(0.01重量%)~10重量%、好ましくは200重量ppm以上、さらに好ましくは500重量ppm以上の範囲に含有される。該Pt含有量は、処理される炉内ガス中のオリゴマー含有量や、反応温度や空間速度、触媒の使用期間を考慮して設定されればよいが、Pt含有量が100重量ppm未満では、酸化反応が不十分な場合があり、一方10重量%を超えると、反応の一層の向上はみられなく、不経済になる。本発明の触媒において、白金がルテニウム、ロジウム、パラジウム、オスミウム、イリジウムなど他の白金族元素に比べてPETオリゴマーに対して高い活性を発揮する。
 本発明の触媒において、白金は成分1のAl23粒子およびZrO2粒子の1種または2種に担持して使用される。また白金は以下に述べる成分3のゼオライトあるいは成分4のセリウム酸化物粒子に担持されても良い。本発明の触媒の基本的な製造方法を例示すると以下のとおりである;
(イ) 成分1および成分2を含むスラリーを、触媒支持体(例えばハニカム)に塗布および乾燥し、触媒前駆体となる触媒層を形成しておき、これにPt化合物の水溶液を含浸させ、乾燥と焼成と還元処理を行う方法。
(ロ) 予めPtを規定量担持した成分1の粒子(例えばPt/Al23粒子、Pt/ZrO2粒子)を作成しておいて、成分3あるいは成分4の粒子と混合し、この混合物を含んだスラリーを触媒支持体にウオシュコートなどの手段で塗布し、乾燥・焼成により、触媒層を形成する方法。
 成分3;ゼオライト
 本発明の触媒(前記課題を解決するための手段の〔2〕に対応)は、Al23およびZrO2の少なくとも1種の無機酸化物(成分1)とPt(成分2)とともに、成分3であるゼオライトを含むものが好ましい態様である。成分3の含有量は、成分1:成分3の重量比で90:10~10:90、好ましくは80:20~20:80、より好ましくは70:30~30:70であり、成分3の割合が10%以上に含有することにより、PETオリゴマーに対する分解活性一層向上し、触媒の耐久性が向上するとともに、炉の汚れ防止効果が向上する。一方成分3の割合が90%を越えると、相対的に成分1の割合が小さくなるため、PETオリゴマーの分解率が低下しやすくなる。ゼオライトの存在は、PETオリゴマーを低分子量の成分に接触分解し、成分1の酸化作用を促進すると推定される。
該ゼオライトは天然品であっても合成品であってもよい。例えば、天然品のゼオライトとして、モルデナイト、エリオナイト、フェリエライトが挙げられる。合成品としては、Y型ゼオライト;ZSM-5等のMFI型ゼオライト;β型ゼオライト;が挙げられる。該ゼオライトの構成成分であるシリカとアルミナのモル比(SiO2/Al23モル比)は、5以上、100以下のゼオライトが、耐シリコーン耐久性が高く、しかもPETオリゴマーに対する分解活性が高いことから好ましい。またゼオライトは、プロトン型(H型)であっても、金属置換型(例えばNa、Feなどの金属やアンモニウム置換を含む)であってもよい。該ゼオライトの粒子サイズには特別な制限はないが、成分1のAl23やZrO2の粒子と混合したスラリーを用いて、ハニカムなどの支持体に触媒層を形成する際に、両粒子の分散と接触性を高めることが好ましく、このため平均粒径は0.1μm~100μm、より好ましくは0.1~50μmの範囲のものが好ましい。
 本発明で使用されるゼオライトには、通常石油精製工業で使用されているFCC(流動接触分解)触媒が含まれる。該FCC触媒は、アルミナを10~40重量%およびシリカを90~60重量%含み、重油に含まれる大きな分子の炭化水素を分解する作用を有する触媒であり、本発明の成分3として、有効である。
成分4;CeO 2
 本発明の触媒には、成分1と成分2を含んでなるが、さらに成分4としてセリウム酸化物を含んでもよい。セリウム酸化物とは、セリア(CeO2)、セリア・ジルコニア複合酸化物(CeO2・ZrO2)および該CeO2とZrO2とLa,Y,Pr、Ndの少なくとも1種の酸化物を含む複合酸化物の群から選択される1種又は2種以上である。該セリウム酸化物を含む本発明の触媒は、PETオリゴマーの分解活性が高く、しかもカーボンの生成が少なく、耐久性に優れ、結果として炉の汚れを防止する効果に特に優れる。さらに本発明の触媒は成分1と成分2と成分3と成分4を含む触媒を包含する。セリウム酸化物の含有量は、成分1の100重量部に対して、1~100重量部、好ましくは5~100重量部、より好ましくは10~100重量部であり、1重量部未満では、その効果が不十分であり、100重量部を超える存在では、更なる活性や耐久性の向上効果はみられない。
 本発明の触媒の組成物中では、セリウム酸化物は粒子として存在する。該酸化物の平均粒径は0.1μm~100μm、より好ましくは0.1~50μmの範囲の粒子が、成分1の粒子と混合して得られる触媒の活性向上を高める上で好ましい。
 別の手段として、成分1のAl23あるいはZrO2粒子に、硝酸セリウム、硝酸セリウムアンモニウム、塩化セリウム、酢酸セリウム、アルコキシセリウム、アンモニウムあるいはアンミン錯化合物などのセリウム化合物の溶液を含浸し、400~800℃に加熱することによって、セリウム酸化物を触媒中に含有させることができる。
 その他の成分の含有など
 なお本発明の触媒は、成分1と成分2と成分3を必須成分として含有するが、目的とする作用・効果を阻害しないものであれば、その他の成分を含むことを排除するものではない。
 本発明の目的達成には、PET延伸の温度に近い温度、すなわち200~350℃で、高い分解活性と耐久性を発揮する触媒が好ましく、そのためには、酸化ジルコニウム(成分1)と、白金(成分2)と、酸化セリウム(成分4)を含み、成分4の含有量が成分1の100重量部あたり、10~100重量部である組成の触媒が、特に好ましい実施態様の1つである。本発明の別の好ましい実施態様は、アルミナおよび酸化ジルコニウムの少なくとも1種の無機酸化物(成分1)と、白金(成分2)と、ゼオライト(成分3)と、酸化セリウム(成分4)を含み、成分3の含有量が、成分1と成分3の重量比で80:20~20:80であり、成分3はSiO2/Al23モル比が5以上、100以下を有するゼオライトであり、成分4の含有量が成分1の100重量部あたり、1~100重量部、より好ましくは10~100重量部である組成の触媒である。
 触媒の製造方法
 本発明の触媒を延伸炉ガス浄化用に適用するには、支持体(触媒を支持する担体)に担持した形態で使用される。支持体は、耐熱性を有し、接触効率が高く、しかも圧力損失が小さい形態のものが好ましいことはいうまでもなく、具体的にはハニカム、シート、メッシュ、パイプ、フィルター、パンチングメタル、発泡金属体等が例示される。また支持体の材質に特に制限はないが、耐熱性や耐腐食性を有するものが好ましく、コージライト、アルミナ、シリカ、シリカ・アルミナ、炭素繊維、金属繊維、ガラス繊維、セラミック繊維、ステンレス、チタン等が例示される。例えば該支持体に本発明の触媒を含むスラリーをウオッシュコートして、ハニカム触媒が調製される。
 以下、触媒を担持したハニカム触媒の製造方法を説明する。
 製法1;アルミナおよび酸化ジルコニウムの少なくとも1種の無機酸化物粒子(成分1)と、ゼオライト粒子(成分2)と、バインダー成分を含んだスラリーを調製する工程1と、該スラリーの所定量を、ハニカムに塗布し、乾燥して、成分1と成分2を含む触媒前駆体を形成する工程2と、これに焼成前あるいは焼成後に、Pt化合物の水溶液を含浸し、100~200℃で乾燥した後、450~650℃の温度範囲で、空気中で焼成し、必要に応じて水素雰囲気下で還元焼成する工程3によって製造される。Pt化合物としてはジニトロジアンミン白金、塩化白金酸、硝酸白金、テトラアンミン白金ジクロライドが例示される。
 製法2;別の方法は、Ptを前記アルミナに担持した粒子(Pt/Al23)または酸化ジルコニウムに担持した粒子(Pt/ZrO2)を作成する工程1と、該担持粒子とゼオライト粒子とバインダー成分を含んだスラリーを調製する工程2、および該スラリーをハニカムに塗布し、前記の条件で乾燥と焼成を行う工程3よりなる方法である。
 いずれの製法でも、ハニカム支持体に担持する触媒層の厚さは、触媒の効果を有効に発揮させ、かつ経済性を考慮して設定すればよいが、通常10μm以上、500μm以下が適当である。またハニカム1リットルあたりの触媒の担持量は、成分1と成分2の合計重量として、10~50グラムが適当である。
 PET延伸炉内ガスの浄化方法
 以下、延伸炉内ガスの浄化方法について説明する。本発明の触媒をPET延伸炉内あるいは熱風循環系統に配置して、これに熱風を接触して、含まれるPETオリゴマーを触媒により分解することにより、CO2とH2Oに転化することによって、炉内ガスを浄化することができる。本発明の触媒の分解活性を発揮させるには、200~350℃、好ましくは210~350℃、より好ましくは220~350℃の温度範囲が好ましい。200℃を下回る温度では、PETオリゴマーに対する分解反応が十分に進まず、未分解PETオリゴマーが残存したり、一酸化炭素(CO)を生成しやすくなる。一方350℃を超える温度では、反応は十分進むが、処理ガスを循環して使用する際、PETフィルムの熱処理に適する温度(通常200~230℃)まで冷却が必要になり、エネルギーの無駄になる。またガス空間速度(SV)には制限はないが、熱風中のPETオリゴマー成分を完全に燃焼させるには、PETオリゴマーの濃度にもよるが、通常1000~200000hr-1の範囲が好ましい。触媒処理されたガス(処理ガス)は、熱処理炉に還流されるが、その際全量還流するか、あるいは一部を廃棄して、残部に新鮮な空気を導入したうえで、還流しても良い。
PET延伸炉の汚れ防止方法
 本発明のPET延伸炉の汚れ防止方法は、延伸炉内あるいは熱風循環系統へ設置した本発明の触媒に、PET延伸炉内のオリゴマーを含む熱風を、温度200~350℃、好ましくは210~350℃、より好ましくは220~350℃の温度で接触させて、オリゴマーを酸化分解する工程1と、処理ガスの全量または一部分を、延伸炉に還流する工程2を含む方法である。この工程によって、熱風中のオリゴマーの含有量が低下するため、炉内や熱風循環系統へのオリゴマーの堆積量が低減でき、炉の汚れが防止できる。
 以下実施例および比較例に基づき、より詳細に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
<触媒の調製>
触媒1;Pt(0.1)/Al 2 3 (100)の調製
 γ-アルミナ粉末(日揮ユニバーサル社製、平均粒径5μm)にPtを0.1重量%担持した粒子<Pt(0.1)/Al23>100gと、バインダーとして、ベーマイト25gを、硝酸酸性水溶液350gに混合してスラリーを調製した。このスラリーを、コージライトハニカム(日本碍子社製、200セル/平方インチ)に、ハニカム1リットルあたりの触媒層の重量が50g(バインダーを除く)になるように、ウオッシュコート法により塗布し、過剰のスラリーを圧縮空気で吹き払った後、乾燥器中で150℃において3時間乾燥した。その後、空気中で500℃において2時間焼成してPt/Al23の触媒層を担持したハニカム型の触媒1を得た。
触媒2;Pt(0.1)/ZrO 2 (100)の調製
 ZrO2粉末(第一稀元素社製、平均粒径5μm、BET比表面積100m2/g)に、Ptを0.1重量%担持した粒子<Pt(0.1)/ZrO2>を用いて、触媒1と同じ方法で、ハニカム型の触媒2を得た。該触媒2のPt含有量は0.1重量%(ZrO2に対する割合)である。
比較触媒R1;Pt(0.1)/TiO 2 (100)の調製
 TiO2粉末(ミレニアム社製、平均粒径1μm、BET比表面積330m2/g)に、Ptを重量割合で0.1%担持した粒子<Pt(0.1)/TiO2>を用いて、触媒1と同じ方法で、ハニカム型の比較触媒Aを得た。該比較触媒R1のPt含有量は0.1重量%(TiO2に対する割合)である。
触媒3;Pt(0.1)/Al 2 3 (50)+HY(50)の調製
 Y型ゼオライト粉末(UOP社製、商品名LZY85、平均粒径2μm、SiO2/Al23モル比5.9のH型置換体)50gと、γ-Al23粉末(日揮ユニバーサル社製、BET比表面積169m2/g)の50gと、バインダーとしてシリカゾル(日産化学製、スノーテックスC)をSiO2固形分として10gを、イオン交換水350gに添加して、スラリーを調製した。該スラリーを、触媒1で用いたハニカムに、Al23とHYの各粒子の混合物(重量比50:50)よりなる粒子層を、ハニカム1Lあたり50gになるようウオッシュコート法で塗布して、次いで乾燥器中で150℃において3時間乾燥し、次いで空気中で500℃において2時間焼成した。次いで規定の量のPtを含むジニトロアンミン白金の水溶液を該粒子層に含浸させ、乾燥と水素雰囲気下での焼成を行って、Pt0.1重量%(Al23とHYの合計に対する割合)を含む、ハニカム型の触媒3を得た。
触媒4;Pt(0.1)/Al 2 3 (80)+HY(20)の調製
 Y型ゼオライト(HY)とγ-Al23粒子を、それぞれ80g、20gを用いた点を除き、他は触媒3と同じ方法で、Al23とHYの混合物(重量比80:20)よりなる粒子層をハニカム担体に形成した。次いで、触媒3と同じ方法で、Pt0.1重量%(Al23とHYの合計に対する割合)を含む、ハニカム型の触媒4を得た。
触媒5;Pt(0.1)/ZrO 2 (50)+HY(50)の調製
 Al23粒子の代わりに、ZrO2粒子(第一稀元素社製、平均粒径5μm、BET比表面積100m2/g)を用いた以外は、触媒3と同様の方法で、ハニカム担体にZrO2とHYの混合物(重量割合が50:50)の粒子層に、Ptを0.1重量%(ZrO2とHYの合計に対する割合。)含む、ハニカム型の触媒5を得た。
触媒6;Pt(0.1)/Al 2 3 (50)+βゼオライト(50)の調製
 HYの代わりに、βゼオライト粉末(UOP社製、平均粒径2μm、SiO2/Al23モル比25)を用いた以外は、触媒3と同様の方法で、ハニカム担持体にAl23とβゼオライトの混合物(重量割合が50:50)の粒子層に、Ptを0.1重量%(Al23とβゼオライトの合計に対する割合。)含む、ハニカム型の触媒6を得た。
(実施例2)
 <評価1;PETオリゴマーの分解試験>
 実施例1で調製したハニカム触媒を、以下に示す反応装置1に装着し、各触媒について、PETオリゴマーに対する分解活性と耐久性を測定した。
 反応装置1
 図1に触媒評価に用いた流通式反応装置1の概略を示す。反応管11内に設置した試料容器12に、ガス発生用に原料となる固体状PETオリゴマー(R)が充填されている。13は円筒状ハニカム触媒(直径21mm、長さ10mm)である。加熱により発生したPETオリゴマーガスは、触媒13により分解され、処理後のガス(排ガスという)は、約130℃に冷却され、含まれる未分解PETオリゴマーは、捕集フィルター14によって固体として捕集される。排ガスはガス排出管16から排出され、ガス分析に供される。
活性評価に用いたPETオリゴマーガス
 PET延伸炉(実機)内に堆積した固体状PETオリゴマーを用いて、分解活性の評価用のための供試ガスを発生させた。用いた固体状PETオリゴマーの赤外吸収スペクトルを図2Aに示す。参考としてPET樹脂の赤外吸収スペクトルを図2Bに示す。
 操作
 1回(1サイクルという)の分解試験につき、PETオリゴマーの粉末1.5gを、容器12に入れ、反応管11を外部より加熱して、室温から250℃まで、毎分5℃の速度で昇温した後、ガス導入管15から、250℃の空気を、2.0リットル/分の速さで、総量100リットル導入し、昇華したPETオリゴマーを含む空気を、温度250℃にて触媒と接触させて、分解試験を行った。排ガス中のCOを電解式CO分析計で分析した。1サイクルの分解試験終了毎に、捕集フィルター14で捕集された未分解PETオリゴマーをLECO分析計により、炭素分として測定した。以上の操作を、各触媒につき15回(15サイクル)繰り返して、触媒の分解活性と耐久性を調べた。
 PETオリゴマー分解率
 以下の式1により、PETオリゴマー分解率を求めた;
Figure JPOXMLDOC01-appb-M000001
 式1中、C1は、図1の触媒13の位置に、触媒作成に用いたコージライトハニカム(触媒成分を含まない。)を取り付け、前記条件にてPETオリゴマー含有ガスを流した場合の、捕集フィルターに捕集された未分解PETオリゴマーの重量を、炭素分(重量)で表した値である。またC2は、触媒を装着し、分解試験を行った場合の、捕集フィルター上に捕集された未分解PETオリゴマーの重量を、炭素分(重量)で表した値である。PETオリゴマー分解率が大きい値を示す触媒は、C2が小さいから、延伸炉の汚れの防止効果が大きいことを意味する。
<評価結果>
 各触媒を用いて、PETオリゴマー含有ガスの分解試験(15サイクル)を行った結果を表1-1に示す。なお表1-1に、1~3サイクル、8~10サイクルおよび13~15サイクルでの、PETオリゴマー分解率および分解ガス中のCO濃度(各平均値)を示した。
Figure JPOXMLDOC01-appb-T000002
 表1-1から明らかなように、比較触媒R1(Pt/TiO2)のPETオリゴマー分解率は、1~3サイクルは78%であるが、8~10サイクルでは、15%、13~15サイクルでは5%以下に低下した。これに対し、本発明の触媒1(Pt/Al23)および触媒2(Pt/ZrO2)のそれは、1~15サイクルにわたり、50%以上、特に触媒2は70%以上を示した。ゼオライトを含む触媒3~6は、一層高い分解活性および耐久性を示した。また本発明の触媒1~触媒6で処理した排ガス中のCO濃度は低く、PETオリゴマーをほぼ完全に酸化していることが明らかである。とりわけZrO2を含む触媒2および触媒5は、15サイクルに高い分解率を示し、よってPET延伸炉の汚れを防止する効果に優れている。
(実施例3)
<触媒の調製>
 以下のとおり、CeO2を含む触媒を調製した;
触媒8;Pt(0.1)/Al 2 3 (90)+CeO 2 (10)の調製
 前掲の触媒1の調製で用いたAl23粉末90gと、CeO2粉末(第一稀元素製酸化セリウム、平均粒径;5μm)10gと、触媒3の調製で用いたバインダーを、固形分として10gをイオン交換水350gに混合してスラリーを調製した。このスラリーを、触媒3と同様の方法で、コージライトハニカムに、ハニカム1リットルあたりの触媒層の重量が50g(バインダーを除く)のAl23とCeO2の両粒子の混合物(重量比90:10)よりなる粒子層をハニカム担体に形成した。次いで触媒3と同様の方法で、該粒子層に対して、ジニトロジアンミン白金の水溶液を含浸して、Ptを担持したハニカム型の触媒8を得た。該触媒8の触媒層中のPt含有量は0.1重量%である。
触媒9;Pt(0.1)/ZrO 2 (90)+CeO 2 (10)の調製
 触媒2の調製で用いたZrO2粒子90gと、触媒8で用いたCeO2粉末10gと、触媒3で用いたバインダーを固形分として10gとイオン交換水270gを混合してスラリーを調製した。以下、触媒3の調製と同じ方法にて、ZrO2:CeO2の重量比90:10の触媒層を設けたハニカム型の触媒9を得た。該触媒9の触媒層中のPt含有量は0.1重量%である。
触媒10;Pt(0.1)/ZrO 2 (50)+CeO 2 (50)の調製
 ZrO2:CeO2の重量比を50:50に変更した以外は、触媒9と同じ方法にて、ZrO2:CeO2の重量比50:50の触媒層を設けたハニカム型の触媒10を調整した。該触媒10の触媒層中のPt含有量は0.1重量%である。
(実施例4)
 <PETオリゴマーの分解試験>
 前掲の評価1の方法により、触媒8~10および比較触媒Bの分解活性を評価した。その結果を、前掲の触媒1および触媒2とともに、表1-2に示す。ZrO2とCeO2を含む触媒9および触媒10は、全サイクルにわたり、高い分解活性を持続した。
Figure JPOXMLDOC01-appb-T000003
(実施例5)
<触媒の調製>
触媒A;Pt(1.8)/Al 2 3 の調製
 Pt担持量を変えた以外は前掲の触媒1と同じ方法で、ハニカム型の触媒11を調製した。該触媒11のPt含有量はハニカム1リットルあたり1.8グラムに設定した。
触媒B;Pt(1.8)/ZrO 2 (100)の調製
 Pt担持量を変えた以外は前掲の触媒2と同じ方法で、ハニカム型触媒12を調製した。該触媒12のPt含有量はハニカム1リットルあたり1.8グラムに設定した。
触媒C;Pt(1.8)/Al 2 3 (50)+HY(50)の調製
 前掲の触媒3と同じ方法で、Al23とHY(重量比50:50)の無機粒子層をハニカム担体表面に形成した。次いで規定の量のPtを含むジニトロジアンミン白金の水溶液を該無機粒子層に含浸させ、乾燥と水素雰囲気下での焼成を行って、ハニカム1LあたりPt1.8グラムを含む触媒13を得た。
(実施例6)
<評価2;PETオリゴマーとアセトアルデヒドの同時分解試験>
 触媒A、BおよびCの触媒を、PETフィルム製造に用いるPET延伸装置(実機)に装着し、延伸炉内ガスを9ヶ月間処理した。9ヶ月間使用後の触媒の活性(PETオリゴマーおよびアセトアルデヒドの分解活性)を、以下の方法で試験した。
 反応装置2
 図3に示す流通式の反応装置2を用いて、PETオリゴマーとアセトアルデヒドの同時分解試験を行った。該反応装置の試料蒸発容器20内に置かれた試料容器22にPET樹脂コンパウンドの粉末(図3のSで表示)2.5グラム入れてある。反応管21に触媒23(円筒状ハニカム触媒;直径21mm、長さ50mm)が設置されている。触媒で処理されたガス(排ガス)は、接続配管26を介して接続されたガス捕集容器27に収容され、外部より90~100℃に冷却され、容器内に設置されたガラス製採取容器28に、未分解PETオリゴマーが固体状で回収され、秤量される。同時に排ガス中のCOおよびアセトアルデヒド濃度を測定する。アセトアルデヒド濃度をGASTEC検知管No.91で測定した。
 操作
 反応装置2のガス導入管25から空気を流しながら、室温から250℃まで15分間で昇温し、250℃で45分維持して、連続的に250℃の空気を流して、PET樹脂からPETオリゴマーとアセトアルデヒドを発生させ、これらを含む空気を、温度300℃、空間速度SV35000h-1の条件で触媒により分解反応を行った。
アルデヒド除去率
 以下の式2によってアルデヒド除去率を、また前掲の式1によってPETオリゴマー分解率を算出した;
Figure JPOXMLDOC01-appb-M000004
 式2中、C1はハニカム担体のみを装着したで処理した場合における、排ガス中のアルデヒド濃度(ppm)であり、C2は触媒を装着した場合における、排ガス中のアルデヒド濃度(ppm)である。
  結果
 新触媒ならびに9ヶ月間使用後の触媒について、活性試験結果を表2に示した。表2には、9ヶ月間使用後の触媒に堆積したケイ素分(Si)と硫黄分(S)の重量分析結果も示した。
Figure JPOXMLDOC01-appb-T000005
 表2から明らかなように、触媒A、BおよびCとも、PETリゴマーとともに、アルデヒドに対して、高い分解率を発揮した。中でも、触媒BおよびCは、9ヶ月間使用後も、アルデヒドおよびPETオリゴマーに対する分解活性の低下は非常に小さく、優れた耐久性を有している。9ヶ月間使用した各触媒には、PET樹脂に含まれていたと推定される、有機ケイ素化合物(Si)および硫黄化合物(S)が、触媒に堆積していたが、本発明の触媒は、これら触媒毒に対する抵抗性が高いことが明らかである。
11、21   反応管
12、22   試料容器
13、23   触媒
14      捕集フィルター
15、25   ガス導入管
16、29   ガス排出管
20      試料蒸発容器
26      接続配管
27      ガス捕集容器
28      採取容器

Claims (12)

  1.  アルミナおよび酸化ジルコニウムの少なくとも1種の無機酸化物(成分1)と、白金(成分2)とを含んでなる、PET延伸炉内ガスの浄化用触媒。
  2.  ゼオライト(成分3)を含み、成分1と成分3の重量比が90:10~10:90である、請求項1に記載のPET延伸炉内ガスの浄化用触媒。
  3.  用いるゼオライトのSiO2/Al23モル比が5以上、100以下である、請求項2に記載のPET延伸炉内ガスの浄化用触媒。
  4.  白金を担持したアルミナ粒子および白金を担持した酸化ジルコニウム粒子の少なくとも1種と、ゼオライト粒子を含む、請求項2または3に記載のPET延伸炉内ガスの浄化用触媒。
  5.  酸化セリウム(成分4)を含み、当該酸化セリウムの含有量が、成分1の100重量部あたり、1~100重量部である、請求項1に記載のPET延伸炉内ガスの浄化用触媒。
  6.  酸化セリウムがCeO2、CeO2とZrO2の複合酸化物(CeO2・ZrO2)、または該CeO2・ZrO2とLa,Y,Pr、Ndの少なくとも1種の酸化物とを含む複合酸化物である、請求項5に記載のPET延伸炉内ガスの浄化用触媒。
  7.  白金の含有量が、成分1に対して、0.01~10重量%である、請求項1~6のいずれかに記載のPET延伸炉内ガスの浄化用触媒。
  8.  アルミナおよび酸化ジルコニウムの少なくとも1種の無機酸化物(成分1)と、白金(成分2)と、ゼオライト(成分3)と、酸化セリウム(成分4)を含み、成分3の含有量が、成分1と成分3の重量比で90:10~10:90であり、成分4の含有量が成分1の100重量部あたり、1~100重量部である、PET延伸炉内ガスの浄化用触媒。
  9.  触媒支持体に請求項1~8のいずれかに記載の触媒を担持してなる、PET延伸炉内ガスの浄化用触媒。
  10.  延伸炉内ガスがPETオリゴマーとともにアセトアルデヒドを含むガスであり、これら2つの成分を酸化分解する、請求項1~9のいずれかに記載のPET延伸炉内ガスの浄化用触媒。
  11.  延伸炉でPETフィルムを製造する際に発生する揮発性PETオリゴマーを含む熱風を、炉内または炉外に設けた請求項1~10のいずれかに記載の触媒に、200~350℃の温度範囲で接触させ、前記揮発性PETオリゴマーを酸化分解する工程1と、生成した分解ガスの全部または一部分を前記延伸炉に還流する工程2を含む、PET延伸炉内ガスの浄化方法。
  12.  延伸炉でPETフィルムを製造する際に発生する揮発性PETオリゴマーを含む熱風を、炉内または炉外に設けた請求項1~10のいずれかに記載の触媒に、200~350℃の温度範囲で接触させ、前記揮発性PETオリゴマーを酸化分解する工程1と、生成した分解ガスの全部または一部分を前記延伸炉に還流する工程2を含む、PET延伸炉の汚れ防止方法。
PCT/JP2009/057319 2008-04-10 2009-04-10 Pet延伸炉内ガスの浄化用触媒、同触媒を用いるpet延伸炉内ガスの浄化方法およびpet延伸炉の汚れ防止方法 WO2009125829A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010507275A JP5419865B2 (ja) 2008-04-10 2009-04-10 Pet延伸炉内ガスの浄化用触媒、同触媒を用いるpet延伸炉内ガスの浄化方法およびpet延伸炉の汚れ防止方法
CN200980112588.7A CN101998882B (zh) 2008-04-10 2009-04-10 用于净化pet拉伸炉内气体的催化剂、使用该催化剂的pet拉伸炉内气体的净化方法以及pet拉伸炉的防污方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008102258 2008-04-10
JP2008102306 2008-04-10
JP2008-102306 2008-04-10
JP2008-102258 2008-04-10

Publications (1)

Publication Number Publication Date
WO2009125829A1 true WO2009125829A1 (ja) 2009-10-15

Family

ID=41161960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057319 WO2009125829A1 (ja) 2008-04-10 2009-04-10 Pet延伸炉内ガスの浄化用触媒、同触媒を用いるpet延伸炉内ガスの浄化方法およびpet延伸炉の汚れ防止方法

Country Status (3)

Country Link
JP (1) JP5419865B2 (ja)
CN (1) CN101998882B (ja)
WO (1) WO2009125829A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017077990A1 (ja) * 2015-11-05 2017-05-11 日揮ユニバーサル株式会社 ポリマーフィルム製造炉内浄化用触媒およびポリマーフィルム製造炉内浄化方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201438819A (zh) * 2012-12-25 2014-10-16 Nikki Universal Co Ltd 耐矽毒性優異之排氣淨化用觸媒

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331900A (en) * 1976-09-03 1978-03-25 Toray Industries Treatment of discharged gas of heat setter
JPS5865731A (ja) * 1981-09-14 1983-04-19 Toray Ind Inc ポリエステルフイルムの製造法
JPH08501728A (ja) * 1993-07-16 1996-02-27 シンコ・エンジニアリング・ソシエタ・ペル・アチオニ 不活性ガスの精製方法
JPH11342535A (ja) * 1998-06-01 1999-12-14 Toray Ind Inc 二軸配向ポリエステルフイルムの製造方法
WO2005094991A1 (ja) * 2004-03-30 2005-10-13 Nikki-Universal Co., Ltd. 排ガス浄化用触媒と排ガスの浄化方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0715693B1 (pt) * 2006-08-19 2018-10-23 Umicore Ag & Co Kg filtro de partículas diesel revestido cataliticamente, processo para sua produção e uso do mesmo

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331900A (en) * 1976-09-03 1978-03-25 Toray Industries Treatment of discharged gas of heat setter
JPS5865731A (ja) * 1981-09-14 1983-04-19 Toray Ind Inc ポリエステルフイルムの製造法
JPH08501728A (ja) * 1993-07-16 1996-02-27 シンコ・エンジニアリング・ソシエタ・ペル・アチオニ 不活性ガスの精製方法
JPH11342535A (ja) * 1998-06-01 1999-12-14 Toray Ind Inc 二軸配向ポリエステルフイルムの製造方法
WO2005094991A1 (ja) * 2004-03-30 2005-10-13 Nikki-Universal Co., Ltd. 排ガス浄化用触媒と排ガスの浄化方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017077990A1 (ja) * 2015-11-05 2017-05-11 日揮ユニバーサル株式会社 ポリマーフィルム製造炉内浄化用触媒およびポリマーフィルム製造炉内浄化方法
KR20180081090A (ko) 2015-11-05 2018-07-13 니키 유니바사루 가부시키가이샤 폴리머 필름 제조로 내 정화용 촉매 및 폴리머 필름 제조로 내 정화 방법
JPWO2017077990A1 (ja) * 2015-11-05 2018-09-13 日揮ユニバーサル株式会社 ポリマーフィルム製造炉内浄化用触媒およびポリマーフィルム製造炉内浄化方法
US11642660B2 (en) 2015-11-05 2023-05-09 Nikki-Universal Co., Ltd. Purification catalyst for interior of polymer film production furnace and purification method for interior of polymer film production furnace
KR102580976B1 (ko) * 2015-11-05 2023-09-20 니키 유니바사루 가부시키가이샤 폴리머 필름 제조로 내 정화용 촉매 및 폴리머 필름 제조로 내 정화 방법

Also Published As

Publication number Publication date
JPWO2009125829A1 (ja) 2011-08-04
JP5419865B2 (ja) 2014-02-19
CN101998882A (zh) 2011-03-30
CN101998882B (zh) 2014-12-03

Similar Documents

Publication Publication Date Title
JP6299049B2 (ja) 耐珪素被毒性に優れた排ガス浄化用触媒
JP5890920B2 (ja) 排ガス浄化用触媒、その製造方法およびそれを用いた排ガス浄化方法
JP6402336B2 (ja) アンモニア分解触媒
JP4319222B2 (ja) 排ガス浄化用触媒と排ガスの浄化方法
JP2007527845A (ja) ジルコニウム、セリウム及びスズの酸化物をベースとする組成物、その製造方法及び触媒としてのその使用
US11642660B2 (en) Purification catalyst for interior of polymer film production furnace and purification method for interior of polymer film production furnace
EP3363540A1 (en) Copper containing moz zeolite for selective nox reduction catalysis
JP6100381B2 (ja) 排ガスの浄化および酸化触媒の再生のための方法
JP5419865B2 (ja) Pet延伸炉内ガスの浄化用触媒、同触媒を用いるpet延伸炉内ガスの浄化方法およびpet延伸炉の汚れ防止方法
WO2019186121A1 (en) Catalyst article for use in an emission treatment system
JP2001524376A (ja) 気体状のハロゲン化有機化合物および非ハロゲン化有機化合物を酸化させる方法および触媒
JP5060045B2 (ja) 触媒の製造方法、接触分解触媒及び低硫黄接触分解ガソリンの製造方法
JP5366830B2 (ja) 熱処理炉排ガスの浄化用触媒、該触媒による熱処理炉排ガスの浄化方法および熱処理炉の汚染防止方法
JP2980633B2 (ja) 窒素酸化物除去用触媒
JP4711731B2 (ja) 排ガス浄化用触媒組成物
Leihong et al. Toluene Combustion over Pd-Ce0. 4 Zr0. 6 O2 Directly Washcoated Monolithic Catalysts
JP2000000468A (ja) 窒素酸化物を接触還元するための触媒及び方法
JPH10337470A (ja) 排ガス用吸着材及びその製造方法
JPH1147603A (ja) ハロゲン含有有機化合物燃焼除去触媒および燃焼除去方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980112588.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09730552

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010507275

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 7076/DELNP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09730552

Country of ref document: EP

Kind code of ref document: A1