WO2009125655A1 - ステータ及びステータ製造装置 - Google Patents

ステータ及びステータ製造装置 Download PDF

Info

Publication number
WO2009125655A1
WO2009125655A1 PCT/JP2009/055073 JP2009055073W WO2009125655A1 WO 2009125655 A1 WO2009125655 A1 WO 2009125655A1 JP 2009055073 W JP2009055073 W JP 2009055073W WO 2009125655 A1 WO2009125655 A1 WO 2009125655A1
Authority
WO
WIPO (PCT)
Prior art keywords
auxiliary
main line
stator
main
nozzle
Prior art date
Application number
PCT/JP2009/055073
Other languages
English (en)
French (fr)
Inventor
塩原仁
佐々木守
三佐尾健史
山田光浩
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to EP09729477.1A priority Critical patent/EP2264861A4/en
Priority to US12/937,086 priority patent/US8476801B2/en
Priority to BRPI0909204-8A priority patent/BRPI0909204A2/pt
Priority to CN2009801122338A priority patent/CN101999201B/zh
Publication of WO2009125655A1 publication Critical patent/WO2009125655A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/08Forming windings by laying conductors into or around core parts
    • H02K15/095Forming windings by laying conductors into or around core parts by laying conductors around salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/18Windings for salient poles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/53143Motor or generator

Definitions

  • the present invention relates to a stator and a stator manufacturing apparatus used in rotating electrical machines such as motors and generators, and more particularly to a stator and a stator manufacturing apparatus that form a winding by increasing a space factor by winding conductive wires in alignment. About.
  • a stator is formed by forming a wire and assembling a plurality of divided cores with windings into a ring shape.
  • a thick line 902, a thin line 904, a thick line 906 and a thin line 908 are wound around a bobbin 900 in multiple layers, and each end is connected to three terminals not shown.
  • a thick wire 902 and a thin wire 904 are wound as a pair, and a thick wire 906 and a thin wire 908 are wound as a pair, and a substantially rectangular space formed between the four thick wires 902 and 906 is wound.
  • Fine wires 904 and 908 are arranged.
  • the diameter ratio of the thick lines 902 and 906 and the thin lines 904 and 908 is 1: 0.4.
  • the thick lines 902 and 906 which are main lines are arranged so that the respective layers are the same layer, and are in contact with the lower thick lines 902 and 906 at one point. Therefore, it is inferior in stability.
  • the thicker lines 902 and 906 after the second layer enter the valleys between the two thicker lines as the winding tension increases, and are not stable.
  • this coil has a considerably high space factor because the thin wires 904 and 908 are arranged in the gaps formed by the thick wires 902 and 906, but a stator having a higher space factor is desired.
  • the present invention has been made in consideration of such problems, and an object thereof is to provide a stator and a stator manufacturing apparatus capable of obtaining a winding with a high space factor.
  • the stator according to the present invention is a stator having a winding formed by winding a conducting wire around a bobbin, and the conducting wire is provided corresponding to the main line and the main line, and is a first narrower than the main line.
  • An auxiliary conductive wire and a second auxiliary conductive wire, the main wires are arranged and wound in a plurality of layers, and the main layer of the upper layer is arranged in a valley between adjacent main wires of the same layer, and the first layer
  • the first auxiliary conductor and the second auxiliary conductor are arranged in the first space and the second space surrounded by the main line and the bobbin adjacent to the left and right of the same layer, and the second layer
  • the first auxiliary conductive line is disposed in a third space surrounded by the main lines adjacent to the left and right of the lower layer, and one of the main line and the lower layer adjacent to one of the same layers
  • the second auxiliary conductor in a fourth space surrounded by the main conductor adjacent to Character
  • the first auxiliary conductor and the second auxiliary conductor can be efficiently packed in the space between the aligned main wires, the space between the winding gaps is reduced, and the space factor of the winding is increased. . Therefore, the performance and output of the rotating electrical machine can be improved.
  • the first auxiliary conductor and the second auxiliary conductor corresponding to the main wire of the first layer are disposed at the same angle on the left and right with respect to a perpendicular passing through the center point of the main wire and perpendicular to the bobbin winding surface.
  • the first auxiliary conductor and the second auxiliary conductor corresponding to the main line in the second and subsequent layers are arranged such that one of the auxiliary conductors is disposed on the perpendicular, and the other of the other at a position of 60 ° with respect to the perpendicular.
  • the auxiliary conducting wire may be provided. Thereby, it can wind efficiently and with sufficient balance and can improve a space factor.
  • a stator manufacturing apparatus includes a conductive wire supply unit that supplies a conductive wire, a nozzle mechanism that guides the conductive wire from the conductive wire supply unit to a bobbin, and a bobbin rotating unit that rotates the bobbin, while rotating the bobbin.
  • the conductive wire is provided corresponding to the main wire and the main wire, and has a first auxiliary wire and a second auxiliary wire that are narrower than the main wire.
  • the nozzle mechanism is disposed so as to be movable in a circumferential direction around a main nozzle guided by the main nozzle and a main line guided by the main nozzle, and the first auxiliary conductor and the second auxiliary conductor are arranged.
  • the arrangement angle of the sub-nozzle is switched between the first layer and the second and subsequent layers on the bobbin, and the first auxiliary conductor and the second auxiliary conductor are efficiently placed in the gap between the main wires that are aligned and wound. Packing reduces the gap between the windings and increases the space factor of the windings. Therefore, the performance and output of the rotating electrical machine are improved.
  • a high space factor stator can be manufactured simply by changing the nozzle mechanism in the conventional stator manufacturing apparatus to the nozzle mechanism described above.
  • the nozzle moving means may be two rotating bodies that fit into the main nozzle and rotate individually around the main nozzle. Thereby, the 1st auxiliary conducting wire and the 2nd auxiliary conducting wire can be guided simply and appropriately.
  • the first auxiliary conductor and the second auxiliary conductor are hexagonal in cross section, and the two sub nozzles are hexagonal in cross section to guide the first auxiliary conductor and the second auxiliary conductor, respectively,
  • An angle adjusting mechanism that is provided so as to be rotatable with respect to the rotating body and rotates the sub nozzle so as to keep the first auxiliary conductor and the second auxiliary conductor in the same direction in the first layer and the second and subsequent layers. You may have.
  • first auxiliary conductor and the second auxiliary conductor for example, damage to the insulating film formed on the surface of the conductor
  • the quality can be improved.
  • the first auxiliary conductor and the second auxiliary conductor can be appropriately set and stabilized.
  • the first auxiliary conductor and the second auxiliary conductor can be efficiently packed in the space between the aligned main wires, the space between the winding gaps is reduced, and the winding space is reduced. The rate goes up. Therefore, the performance and output of the rotating electrical machine can be improved.
  • FIG. 1 is a plan view of the stator according to the present embodiment.
  • FIG. 2 is a perspective view of the split core.
  • FIG. 3 is an exploded perspective view of the split core.
  • FIG. 4 is a cross-sectional view of the coil according to the first embodiment.
  • FIG. 5 is a partially enlarged cross-sectional view of the coil according to the first embodiment.
  • FIG. 6 is a block configuration diagram of the stator manufacturing apparatus according to the present embodiment.
  • FIG. 7 is a perspective view of the composite nozzle according to the first embodiment when the first layer is wound.
  • FIG. 8 is an exploded perspective view of the composite nozzle according to the first embodiment as viewed from the first direction.
  • FIG. 9 is an exploded perspective view of the composite nozzle according to the first embodiment viewed from the second direction.
  • FIG. 1 is a plan view of the stator according to the present embodiment.
  • FIG. 2 is a perspective view of the split core.
  • FIG. 3 is an exploded perspective view of the split core.
  • FIG. 10 is a perspective view of the composite nozzle according to the first embodiment when the second and subsequent layers are wound.
  • FIG. 11 is a cross-sectional view of a coil according to the second embodiment.
  • FIG. 12 is a partially enlarged cross-sectional view of a coil according to the second embodiment.
  • FIG. 13 is a perspective view of the composite nozzle according to the second embodiment when the first layer is wound.
  • FIG. 14 is an exploded perspective view of the composite nozzle according to the second embodiment as viewed from the first direction.
  • FIG. 15 is an exploded perspective view of the composite nozzle according to the second embodiment as viewed from the second direction.
  • FIG. 16 is a perspective view of the composite nozzle according to the second embodiment when the second and subsequent layers are wound.
  • FIG. 17 is a cross-sectional view of a coil according to the prior art.
  • stator 10 according to the first embodiment and the stator 200 according to the second embodiment are used in rotating electrical machines such as motors and generators. First, the stator 10 according to the first embodiment will be described.
  • the stator 10 is a three-phase stator, has three-phase input terminals U, V, W, and a plurality of divided cores 12 arranged in a ring, and is combined with a rotor (not shown). Thus, a three-phase rotating electric machine is formed.
  • the stator 10 may be either Y-connection or ⁇ -connection.
  • the stator 10 may not be three-phase.
  • the split core 12 in a state before the assembly of the stator 10 includes a laminated steel plate 14 in which a plurality of substantially T-shaped steel plates punched out by pressing are integrated and the laminated steel plate 14.
  • Insulators 16 and 18 become bobbins 26 on which coils 20 are formed.
  • the laminated steel plate 14 is substantially T-shaped, and a portion 14 a corresponding to the upper side of the “T” is a yoke in the stator 10. Further, the portion 14 b corresponding to the lower side extending portion of the “T” is a pole portion in the stator 10.
  • the coil 20 includes one main line 28 having an insulating film, two auxiliary conductors (first auxiliary conductors) 30, and auxiliary conductors (second auxiliary conductors) 32.
  • the main lines 28 are arranged in a plurality of layers, and adjacent main lines 28 in the same layer are in contact with both left and right ends.
  • the main lines 28 are arranged in the adjacent layer so as to be shifted by a half (R / 2) of the diameter R of the main line 28, and the main lines 28 of the adjacent layers are in contact with each other at an oblique position of 60 °.
  • the upper-layer main lines 28 are arranged in the valleys between adjacent main lines 28 in the same layer, and the main lines 28 after the second layer are in contact with the two lower main lines 28 at two points. Become stable. Therefore, the tension at the time of winding the main line 28 can be appropriately increased.
  • the electrical connection form of the main line 28 and the auxiliary conductive lines 30 and 32 is not particularly limited, for example, a parallel connection is preferable.
  • a means for adjusting impedance may be connected to the main line 28 or the auxiliary conductive lines 30 and 32.
  • the auxiliary conducting wires 30 and 32 have the same diameter, and are the maximum diameter that can be arranged with respect to the space 40 (see FIG. 4) between the windings formed by the three main wires 28 in the same layer and the upper layer. Two are arranged in the space around the main line 28.
  • lead lines 28 are wound on the odd layer and seven lead lines 28 are wound on the even layer, and the winding order is indicated by subscript alphabets, such as 28a, 28b, 28c.
  • 28a to 28h are wound around the first layer
  • 28i to 28o are wound around the second layer.
  • the auxiliary conducting wires 30 and 32 corresponding to the main line 28 of the first layer have the same angle on the left and right with respect to the perpendicular 44 passing through the center point O of the main line 28 and perpendicular to the winding surface of the bobbin 26. It is arranged at the position of ⁇ .
  • the auxiliary conductors 30 and 32 corresponding to the main and subsequent lines 28 in the second and subsequent layers have one auxiliary conductor 30 disposed on the perpendicular 44 and the other auxiliary conductor 32 disposed at a position of 60 ° with respect to the perpendicular 44. ing. That is, after the second layer, the auxiliary conductors 30 and 32 are in contact with the adjacent main line 28 at three points every 120 °.
  • the main line 28 of the first layer for example, the main line 28e, the first space 50 and the second space 52 surrounded by the main lines 28d and 28f adjacent to the left and right of the same layer and the bobbin 26.
  • Auxiliary conductors 30 and 32 are disposed on the side.
  • the auxiliary conductor 30 is disposed in the third space 54 surrounded by the main lines 28e and 28f adjacent to the left and right of the lower layer,
  • the auxiliary conducting wire 32 is disposed in the fourth space 56 surrounded by the main line 28n adjacent to one side and the main line 28f adjacent to one of the lower layers.
  • the total number of auxiliary wires 30 and 32 is 2N.
  • the arrangement angle of the sub nozzles is switched between the first layer and the second and subsequent layers on the bobbin 26, and the auxiliary conductors are efficiently packed into the gaps between the main lines wound in alignment, so that the gaps between the windings are reduced.
  • the space factor of the coil 20 increases. Therefore, the performance and output of the rotating electrical machine are improved.
  • auxiliary conductors 30 and 32 are arranged at the same angle on the left and right with respect to the vertical line 44 in the first layer with reference to the main wire 28 that is wound at the same time, and the auxiliary conductors on the vertical line 44 in the second and subsequent layers 30 and the auxiliary conducting wire 32 is disposed at a position of 60 ° with respect to the vertical line 44. Therefore, it is possible to efficiently wind in a well-balanced manner and improve the space factor.
  • stator manufacturing apparatus 100 that winds the main wire 28 and the auxiliary conductive wires 30 and 32 around the bobbin 26 of the split core 12 will be described.
  • the stator manufacturing apparatus 100 includes a conducting wire supply unit 102, a back tension unit 104, and a winding unit 106.
  • the conducting wire supply unit 102 includes a main drum 108 that supplies the main wire 28, auxiliary drums 110 and 112 that supply the auxiliary conducting wires 30 and 32, a feeding roller 114, a brake roller 116, and a plurality of idle rollers 118. .
  • the feeding roller 114 pulls out the supply of the main line 28 and the auxiliary conductive lines 30 and 32 from the back tension part 104 by a spring force. At this time, the feeding roller 114 rises, and a controller (not shown) reads the rising amount, and the servo drum rotates the main drum 108 and the sub drums 110 and 112 by appropriate amounts.
  • the brake roller 116 is a roller having friction to generate a certain static tension.
  • the back tension part 104 absorbs the tension fluctuation caused by the shapes of the main line 28 and the auxiliary conductive lines 30 and 32 with the pulley 120 and the spring 122.
  • the winding unit 106 includes a bobbin rotating unit 124 that rotates the bobbin 26 of the split core 12 and a composite nozzle (nozzle mechanism) 126 that supplies the main line 28 and the auxiliary conductive lines 30 and 32 to the bobbin 26.
  • the composite nozzle 126 has a main nozzle 130 that guides the main wire 28, sub nozzles 132 and 134 that guide the auxiliary wires 30 and 32, and the main nozzle 130.
  • a main ring 136 concentrically fixed, a sub ring (nozzle moving means, rotating body) 138 in which the sub nozzle 132 is fixed on the circumference and fitted to the main nozzle 130, and a sub nozzle 134 is fixed on the circumference.
  • a sub ring (nozzle moving means, rotating body) 140 fitted to the main nozzle 130, a sub nozzle control motor 144 that rotates the sub ring 138 via the belt 142, and the sub ring 140 that rotates via the belt 146.
  • a sub nozzle control motor 148 to be operated.
  • the secondary rings 138 and 140 are fitted to the main nozzle 130 and individually rotated around the main nozzle 130, the auxiliary conductors 30 and 32 can be guided easily and appropriately.
  • the sub nozzles 132 and 134 are arranged in parallel and close to the main nozzle 130.
  • the main line 28 guided by the main nozzle 130 it is arranged so as to be movable in the circumferential direction, and guides the auxiliary conductors 30 and 32.
  • the main nozzle 130 and the sub nozzles 132 and 134 are set to the same length.
  • the main ring 136 and the sub nozzle control motors 144 and 148 are fixed to the base plate 141.
  • the sub nozzle control motors 144 and 148 are small motors whose rotation angle can be controlled by a servo motor, a stepping motor, or the like.
  • the belts 142 and 146 may be replaced with chains, gears, or the like.
  • the main ring 136, the sub ring 138, and the sub ring 140 are arranged one on top of the other, with the main ring 136 having the largest diameter and the sub ring 140 having the smallest diameter.
  • the main ring 136 is provided with an arc hole 150 through which the sub nozzle 132 is inserted and an arc hole 152 through which the sub nozzle 134 is inserted.
  • the sub ring 138 is provided with an arc hole 154 through which the sub nozzle 134 is inserted, and the sub ring 140 is provided with an arc hole 156 through which the sub nozzle 132 is inserted.
  • the sub nozzles 132 and 134 are movable in the circumferential direction around the main nozzle 130 within the range of the arc holes 150, 152, 154, and 156.
  • the arc hole 150 is a hole in which the sub nozzle 132 can swing at an angle of 0 ° to at least 90 ° or more, and the arc hole 152 is a hole in which the sub nozzle 134 can swing at an angle of 42.8 ° to 90 °. is there.
  • the arc hole 154 is a hole in which the sub nozzle 134 can swing at an angle of at least 90 ° from 42.8 °, and the sub nozzle 132 itself can swing at an angle of 0 ° to 90 ° or more.
  • the arc hole 156 is a hole in which the sub nozzle 132 can swing at an angle of 0 ° to at least 90 ° and the sub nozzle 134 itself can swing at an angle of 42.8 ° to 90 °.
  • the sub nozzles 132 and 134 are moved according to the winding layer of the main line 28 supplied from the main nozzle 130, and the auxiliary conductive lines 30 and 32 are arranged in the gap between the main lines 28 to increase the space factor. Can be improved.
  • Such a switching operation is performed when moving from the first layer to the second layer, and when the first main line 28i (see FIG. 4) of the second layer is wound, the auxiliary conductive line 30 leads the main line 28a.
  • the auxiliary conductor 32 is moved between the main line 28b and the main line 28b so as to be disposed in the groove formed between the main line 28b and the main line 28i.
  • the sub nozzle 132 and the sub nozzle 134 operate in synchronization.
  • the sub nozzles 132 and 134 are set at the 0 ° position and the 60 ° position, but may be appropriately changed individually by design conditions and trial adjustment.
  • the auxiliary conductors 30 and 32 are always geometrically at the same position with respect to the main line 28, the auxiliary nozzles 132 and 134 can be wound while substantially maintaining their positions.
  • the auxiliary conductive line 32 geometrically interferes with the bobbin wall 26a, but actually the main lines 28h, 28o as shown by virtual lines. And naturally guided in the space 60 surrounded by 28w.
  • auxiliary conducting wire 30 corresponding to the main line 28p and the main line 28w at both ends of the third layer can move to an appropriate stable position in the spaces 60 and 62 as indicated by virtual lines.
  • the split core 202 in the stator 200 is a member corresponding to the split core 12, and the auxiliary conductors 30 and 32 having a circular cross section in the split core 12 in the split core 12 are regular hexagonal cross sections.
  • the auxiliary conductors 204 and 206 are replaced.
  • the regular hexagon is, for example, a shape closer to a circle than a triangle or a quadrangle, and thus can be applied by appropriately modifying the conventional stator manufacturing apparatus.
  • Auxiliary conductive wires 204 and 206 may be prepared in the secondary drums 110 and 112 (see FIG. 6) with a regular hexagonal cross section in advance, or round wires may be provided at any part of the winding process in the stator manufacturing apparatus. You may shape
  • Auxiliary conducting wires 204 and 206 corresponding to the main line 28 of the first layer are arranged at the same angle on the left and right with respect to the perpendicular 44 passing through the center point O of the main line 28 and perpendicular to the winding surface of the bobbin 26.
  • one side of the hexagon is in contact with the surface of the bobbin 26.
  • the auxiliary conductors 204 and 206 corresponding to the main and subsequent lines 28 in the second and subsequent layers have one auxiliary conductor 204 disposed on the perpendicular 44 and the other auxiliary conductor 206 disposed at a position of 60 ° with respect to the perpendicular 44. ing. That is, after the second layer, the auxiliary conductive wires 204 and 206 are in contact with the adjacent main wires 28 at three sides every 120 °. The auxiliary conductors 204 and 206 are in contact with the main line 28 geometrically strictly at three points, but are substantially in contact with three sides and are stable.
  • the maximum diameter of the auxiliary conductive lines 204 and 206 is a circle that contacts three points in the space formed by the three main lines 28 in contact.
  • the diameter r (the distance from the center point to each side) of the auxiliary conductors 204 and 206 is the same as that of the stator 10 described above with respect to the diameter R of the main line 28, and r ⁇ 0. 154R.
  • the total number of auxiliary conductive lines 204 and 206 is 2N.
  • the auxiliary conducting wires 204 and 206 are wound so as to always have the same direction (that is, a direction in which one side of the hexagon is parallel to the bobbin 26) in each layer.
  • stator 200 and the split core 202 are substantially the same as that of the stator 10 and the split core 12 described above, and therefore illustration thereof is omitted.
  • the stator manufacturing apparatus for manufacturing the split core 202 is obtained by replacing the composite nozzle 126 in the stator manufacturing apparatus 100 with the composite nozzle 300 shown in FIGS. 13, 14, and 15.
  • the composite nozzle 300 includes a main nozzle 130, sub nozzles 302 and 304 that guide the auxiliary conductors 204 and 206, a main ring 136, a sub ring 138, a sub ring 140, Sub nozzle control motors 144 and 148 are included.
  • the sub-nozzles 302 and 304 are provided so as to be rotatable with respect to the sub-rings 138 and 140, and the outer shape is the same as that of the sub-nozzles 132 and 134 described above, and is different in that the inner cavity has a hexagonal cross section. With such a shape of the lumen portion, the directions of the hexagonal auxiliary conductors 204 and 206 can be defined and stably derived.
  • the arc holes 150, 152, 154, and 156 have substantially the same shape as that in the composite nozzle 126, but are set to 44.5 ° where the operating angle range is set to 42.8 °.
  • the composite nozzle 300 further includes an angle adjustment mechanism 310 that holds the sub nozzles 302 and 304 in a predetermined direction.
  • Each angle adjustment mechanism 310 includes a post 311 protruding from the base plate 141, a belt 312 provided at the tip of the post 311, and a tensioner 314 that removes the slack of the belt 312.
  • the belt 312 is stretched between the post 311 and the sub nozzle 302 (or 304).
  • the tensioner 314 includes an arm 316 that tilts at the tip of the post 311, a torsion spring 318 that biases the arm 316, and a tension roller 320 provided at the tip of the arm 316.
  • the arm 316 is urged inward by a torsion spring 318, and the torsion spring 318 abuts against the side surface of the belt 312 to take loose.
  • the angle adjustment mechanism 310 is assembled by screws 322 and nuts 324.
  • the post 311 and the sub nozzles 302 and 304 have the same diameter, and the angle of the reference position of the sub nozzles 302 and 304 can be maintained.
  • the post 311 is not limited to a fixed one, and the orientation of the sub nozzles 302 and 304 may be adjusted by rotating the post 311 with a motor.
  • the damage to the auxiliary conductors 30 and 32 (for example, damage to the insulating film formed on the conductor surface) is reduced, and the quality can be improved. Further, the auxiliary conducting wires 30 and 32 can be set appropriately and stabilized.
  • the auxiliary conductors 30 and 32 and the auxiliary conductors 204 and 206 can be efficiently packed in the space between the main wires 28 that are aligned and wound.
  • the space of the wire gap is reduced, and the space factor of the coil 20 is increased. Therefore, the performance and output of the rotating electrical machine can be improved.
  • the arrangement angle of the sub nozzles 132 and 134 is switched between the first layer and the second and subsequent layers on the bobbin 26, and the gap between the main lines 28 that are aligned and wound is set.
  • a high space factor stator can be manufactured simply by changing the nozzle mechanism in the conventional stator manufacturing apparatus to the composite nozzle 126 (300).
  • stator and the stator manufacturing apparatus are not limited to the above-described embodiments, and various configurations can be adopted without departing from the gist of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

 ステータ製造装置(100)はステータ(10)を製造する。ステータ(10)の分割コア(12)には、主導線(28)、該主導線(28)に対応して該主導線(28)より細い2本の補助導線(30及び32)が巻回されている。主導線(28)は複数層に整列巻回され、同層の隣り合う主導線(28)間の谷間部に上層の主導線(28)が配置されている。1層目の主導線(28a~28h)に対しては、第1空間(50)及び第2空間(52)に補助導線(30及び32)が配設されている。2層目の以降の主導線(28i…)に対しては、第3空間(54)に補助導線(30)が配設され、第4空間(56)に補助導線(32)が配設されている。

Description

ステータ及びステータ製造装置
 本発明は、モータや発電機等の回転電機に用いられるステータ及びステータ製造装置に関し、特に、導線を整列して巻回することで占積率を上げて巻線を形成するステータ及びステータ製造装置に関する。
 従来、円弧状のヨーク部と、ヨーク部から径方向に延在するポール部とからなる分割コアを準備し、この分割コアのポール部に絶縁用ボビンを介して導線を巻回することで巻線を形成し、巻線が施された複数個の分割コアを環状に組み立てることでステータを構成したものが知られている。
 この種のステータにおいて、回転電機の性能向上を目的として、各分割コアに巻回される巻線の巻線数を増やし、ポール部間のスロット部において占積率を増大させるための研究開発がなされている。このような背景から、特開平9-140079号公報では、巻線間に生じる空間に細線を巻くことにより占積率を大きくするものが提案されている。
 この特開平9-140079号公報では、図17に示すように、ボビン900に太線902、細線904、太線906及び細線908が多重に巻回され、それぞれの端部が図示しない3つの端子に接続されている。太線902及び細線904が2本で1組となり、太線906及び細線908が2本で1組となって巻回されており、4つの太線902及び906の間に形成される略四角形の空間に細線904及び908を配置している。太線902及び906と細線904と908との線径比は1:0.4となっている。
 前記の特開平9-140079号公報記載のコイルでは、主線である太線902、906は各層が同層となるように配置されており、下層の太線902、906に対して1点で接していることから安定性に劣る。特に、2層以降の太線902、906は、巻回の張力を高めるほど、下層の2つの太線の谷間に入り込むようになり、安定しない。
 また、このコイルは、太線902、906によって生じる隙間に細線904、908が配置されていることから相当に占積率が高いが、より一層高い占積率のステータが望まれている。
 本発明はこのような課題を考慮してなされたものであり、高占積率の巻線を得ることが可能なステータ及びステータ製造装置を提供することを目的とする。
 本発明に係るステータは、導線をボビンに巻回して形成される巻線を有するステータであって、前記導線は、主導線及び該主導線に対応して設けられ、該主導線より細い第1補助導線及び第2補助導線を有し、前記主導線は複数層に整列巻回され、同層の隣り合う前記主導線間の谷間部に上層の前記主導線が配置され、1層目の前記主導線に対しては、同層の左右に隣接する前記主導線と前記ボビンとによって囲まれる第1空間及び第2空間に前記第1補助導線及び第2補助導線が配設され、2層目以降の前記主導線に対しては、下層の左右に隣接する前記主導線によって囲まれる第3空間に前記第1補助導線が配設され、同層の一方に隣接する前記主導線と下層の一方に隣接する前記主導線によって囲まれる第4空間に前記第2補助導線が配設されていることを特徴とする。
 この発明によれば、整列巻線した主導線間の空間に第1補助導線及び第2補助導線を効率よく詰めることができ、巻線隙間の空間が少なくなり、巻線の占積率が上がる。したがって、回転電機の性能、出力を向上させることができる。
 1層目の前記主導線に対応する前記第1補助導線及び第2補助導線は、前記主導線の中心点を通りボビン巻付面に垂直な垂線に対し左右に同角度の位置に配設され、2層目以降の前記主導線に対応する前記第1補助導線及び前記第2補助導線は、前記垂線上に一方の前記補助導線を配設し、前記垂線に対して60°位置に他方の前記補助導線が配設されていてもよい。これにより、効率的にバランスよく巻回し、占積率を向上できる。
 本発明に係るステータ製造装置は、導線を供給する導線供給部と、前記導線供給部から導線をボビンへ案内するノズル機構と、前記ボビンを回転させるボビン回転手段とを備え、ボビンを回転させながらノズル機構で導線を案内して巻装するステータ製造装置において、前記導線は、主導線及び該主導線に対応して設けられ、該主導線より細い第1補助導線及び第2補助導線を有し、前記ノズル機構は、前記主導線を案内する主ノズルと、前記主ノズルで案内される主導線の周囲で周方向に移動自在に配設され、前記第1補助導線及び前記第2補助導線を案内する2つの副ノズルと、前記副ノズルを夫々に移動させるノズル移動手段とを備え、前記ボビンへの1層目の巻回から2層目の巻回に移行する際に、前記副ノズルの配置角度を切り換えることを特徴とする。
 この発明によれば、ボビンへの1層目と2層目以降とで前記副ノズルの配置角度を切り換え、整列巻線した主導線間の隙間に第1補助導線及び第2補助導線を効率よく詰めることにより、巻線間の隙間が少なくなり、巻線の占積率が上がる。したがって、回転電機の性能、出力が向上する。
 また、従来のステータ製造装置におけるノズル機構を上記のノズル機構に変更するだけで高占積率のステータを製造することができる。
 ノズル移動手段は、前記主ノズルに嵌合して、該主ノズルを中心として個別に回転する2つの回転体であってもよい。これにより、第1補助導線及び第2補助導線を簡便かつ適切に案内することができる。
 前記第1補助導線及び前記第2補助導線は断面六角形であり、前記2つの前記副ノズルは、前記第1補助導線及び前記第2補助導線を案内するように断面六角形であり、それぞれ前記回転体に対して回転自在に設けられ、第1層及び第2層以降で、前記第1補助導線及び前記第2補助導線の向きを同一に保つように前記副ノズルを回転させる角度調整機構を有してもよい。
 これにより、第1補助導線及び第2補助導線のダメージ(例えば、導線表面に形成されている絶縁被膜のダメージ)が少なくなり、品質を向上させることができる。また、第1補助導線及び第2補助導線を適切に設定して安定させることができる。
 本発明に係るステータによれば、整列巻線した主導線間の空間に第1補助導線及び第2補助導線を効率よく詰めることができ、巻線隙間の空間が少なくなり、巻線の占積率が上がる。したがって、回転電機の性能、出力を向上させることができる。
図1は、本実施の形態に係るステータの平面図である。 図2は、分割コアの斜視図である。 図3は、分割コアの分解斜視図である。 図4は、第1の実施形態に係るコイルの断面図である。 図5は、第1の実施形態に係るコイルの一部拡大断面図である。 図6は、本実施の形態に係るステータ製造装置のブロック構成図である。 図7は、第1層目を巻回する際の第1の実施形態に係る複合ノズルの斜視図である。 図8は、第1の実施形態に係る複合ノズルを第1の方向から見た分解斜視図である。 図9は、第1の実施形態に係る複合ノズルを第2の方向から見た分解斜視図である。 図10は、第2層目以降を巻回する際の第1の実施形態に係る複合ノズルの斜視図である。 図11は、第2の実施形態に係るコイルの断面図である。 図12は、第2の実施形態に係るコイルの一部拡大断面図である。 図13は、第1層目を巻回する際の第2の実施形態に係る複合ノズルの斜視図である。 図14は、第2の実施形態に係る複合ノズルを第1の方向から見た分解斜視図である。 図15は、第2の実施形態に係る複合ノズルを第2の方向から見た分解斜視図である。 図16は、第2層目以降を巻回する際の第2の実施形態に係る複合ノズルの斜視図である。 図17は、従来技術に係るコイルの断面図である。
 以下、本発明に係るステータ及びステータ製造装置について実施の形態を挙げ、添付の図1~図16を参照しながら説明する。第1の実施形態に係るステータ10及び第2の実施形態に係るステータ200は、モータや発電機等の回転電機に用いられる。先ず、第1の実施形態に係るステータ10について説明する。
 図1に示すように、ステータ10は三相のステータであり、3相の入力端子U、V、Wと、環状に配列された複数個の分割コア12とを有し、図示しないロータと組み合わされて三相の回転電機を形成する。ステータ10はY結線及びΔ結線のいずれでもよい。ステータ10は三相でなくてもよい。
 図2及び図3に示すように、ステータ10の組み立て前の状態における分割コア12は、プレスにより打ち抜いた略T字状の鋼板を複数枚かしめて一体化した積層鋼板14と、前記積層鋼板14を絶縁するインシュレータ16および18と、該インシュレータ16および18を介して前記積層鋼板14に巻回されるコイル(巻線)20と、金属製のターミナル22および24とを有する。インシュレータ16および18は、コイル20が形成されるボビン26になる。
 積層鋼板14は、略T字状であり、「T」字の上辺に相当する部分14aはステータ10におけるヨークとなる。また、「T」字の下辺延出部に相当する部分14bはステータ10におけるポール部となる。
 図4に示すように、コイル20は、絶縁被膜を有する1本の主導線28と2本の補助導線(第1補助導線)30、補助導線(第2補助導線)32、とからなる。主導線28は複数層に整列配置され、同層の隣接する主導線28同士は左右両端が接している。主導線28は隣接層で主導線28の径Rの半分(R/2)ずれて配列され、隣接層の主導線28同士は斜め60°位置で接している。つまり、同層の隣り合う主導線28間の谷間部に上層の主導線28が配置されており、2層以降の主導線28は、下層の2つの主導線28に対して2点で接することになり安定している。したがって、主導線28を巻回する際の張力を適度に高めることができる。
 主導線28と補助導線30及び32との電気的接続形式は特に問われないが、例えば並列接続にするとよい。主導線28又は補助導線30、32には、インピーダンスを調整する手段が接続されていてもよい。
 補助導線30、32は同径であり、同層及び上層における3つの主導線28により形成される巻線間の空間40(図4参照)に対して配置可能な最大径であり、1本の主導線28の周りの空間部分に2本ずつ配置されている。
 以下、奇数層には8本、偶数層には7本の主導線28が巻回されているものとし、巻回の順を添え字のアルファベットで、28a、28b、28c…のように示す。例えば、第1層には28a~28hが巻回され、第2層には28i~28oが巻回されている。
 図5に示すように、1層目の主導線28に対応する補助導線30及び32は、主導線28の中心点Oを通りボビン26の巻付面に垂直な垂線44に対し左右に同角度θの位置に配設されている。2層目以降の主導線28に対応する補助導線30及び32は、垂線44上に一方の補助導線30を配設し、垂線44に対して60°位置に他方の補助導線32が配設されている。つまり、2層目以降、補助導線30及び32は、120°ごとの3点で隣接する主導線28に接している。
 換言すると、1層目の主導線28、例として、主導線28eに対しては、同層の左右に隣接する主導線28d及び28fとボビン26とによって囲まれる第1空間50及び第2空間52に補助導線30及び32が配設されている。2層目の以降の主導線28、例として主導線28mに対しては、下層の左右に隣接する主導線28e、28fによって囲まれる第3空間54に補助導線30が配設され、同層の一方に隣接する主導線28nと下層の一方に隣接する主導線28fによって囲まれる第4空間56に補助導線32が配設されている。
 主導線28は、六方細密の状態であることから3本の主導線28が接してできた空間に3点を接する円が補助導線30、32の最大径となる。具体的には、主導線28の径Rに対して、補助導線30及び32の径rは、(R+r)cos(30°)=Rを解いて、r≒0.154Rになる。
 また、一層目において、主導線28と補助導線30及び32との相対的な角度θは、(R+r)cosθ=R-rを解いて、θ=42.8°となる。
 主導線28の本数をNとすると、補助導線30及び32の合計本数は2Nになる。r≒0.154Rとした場合、主導線28が占める面積Sは、S=πR2×Nであり、補助導線30及び32が占める面積sは、s=πr2×2N≒π(0.154R)2×2Nである。占積率の向上率δは、δ=s/S≒(π(0.154R)2×2N)/(πR2×N)=0.0474であり、約4.7%の増加が見込まれる。
 これにより、整列巻回した主導線28間の空間に補助導線30及び32を効率よく詰めることができ、巻線隙間の空間が少なくなり、コイル20の占積率が上がる。したがって、回転電機の性能、出力を向上させることができる。
 これにより、ボビン26への1層目と2層目以降とで副ノズルの配置角度を切り換え、整列巻回した主導線間の隙間に補助導線を効率よく詰めることにより、巻線間の隙間が少なくなり、コイル20の占積率が上がる。したがって、回転電機の性能、出力が向上する。
 また、同時に巻回する主導線28を基準として補助導線30及び32を、1層目では垂線44に対し左右に同角度の位置に配設し、2層目以降では、垂線44上に補助導線30を配設し、垂線44に対して60°位置に補助導線32が配設するので、効率的にバランスよく巻回し、占積率を向上できる。
 次に、分割コア12のボビン26に主導線28と補助導線30及び32とを巻回するステータ製造装置100について説明する。
 図6に示すように、ステータ製造装置100は、導線供給部102と、バックテンション部104と、巻回部106とを有する。
 導線供給部102は、主導線28を供給する主ドラム108と、補助導線30及び32を供給する副ドラム110及び112と、繰出しローラ114と、ブレーキローラ116と、複数のアイドルローラ118とを有する。バックテンション部104から主導線28、補助導線30及び32の供給された分をバネ力で繰出しローラ114が引き出す。このとき、繰出しローラ114は上昇し、その上昇量を図示しないコントローラが読み取り、サーボモータにより主ドラム108と、副ドラム110及び112とをそれぞれ適量だけ回転させる。
 ブレーキローラ116は、一定の静的なテンションを発生させるためフリクションをもつローラである。
 バックテンション部104は、主導線28、補助導線30及び32の形状に起因するテンション変動を滑車120とばね122で吸収する。
 巻回部106は、分割コア12のボビン26を回転させるボビン回転手段124と、該ボビン26に対して主導線28、補助導線30及び32を供給する複合ノズル(ノズル機構)126とを有する。
 図7、図8及び図9に示すように、複合ノズル126は、主導線28を案内する主ノズル130と、補助導線30及び32を案内する副ノズル132、134と、主ノズル130に対して同心に固定された主リング136と、周上に副ノズル132が固定されて主ノズル130に嵌合する副リング(ノズル移動手段、回転体)138と、周上に副ノズル134が固定されて主ノズル130に嵌合する副リング(ノズル移動手段、回転体)140と、ベルト142を介して副リング138を回動させる副ノズル制御モータ144と、ベルト146を介して副リング140を回動させる副ノズル制御モータ148とを有する。
 副リング138及び140は、主ノズル130に嵌合して、該主ノズル130を中心として個別に回転することから、補助導線30及び32を簡便かつ適切に案内することができる。
 副ノズル132及び134は主ノズル130に対して平行且つ近接して配置されている。主ノズル130で案内される主導線28の周囲で周方向に移動自在に配設され、補助導線30及び32を案内する。主ノズル130、副ノズル132及び134は同じ長さに設定されている。主リング136、副ノズル制御モータ144及び148は、ベース板141に固定されている。副ノズル制御モータ144及び148は、サーボモータ及びステッピングモータ等で回転角を制御可能な小型のモータである。ベルト142及び146は、チェーンやギア等で置き換えてもよい。
 主リング136、副リング138及び副リング140は、順に重ねて配置されており、主リング136が最も大径、副リング140が最も小径である。
 主リング136には、副ノズル132が挿通する円弧孔150と、副ノズル134が挿通する円弧孔152が設けられている。副リング138には副ノズル134が挿通する円弧孔154が設けられ、副リング140には副ノズル132が挿通する円弧孔156が設けられている。
 副ノズル132及び134は、これらの円弧孔150、152、154、156の範囲内で、主ノズル130を中心とした周方向に移動可能である。
 円弧孔150は、副ノズル132が0°から少なくとも90°以上の角度で振れ可能な孔であり、円弧孔152は、副ノズル134が42.8°から90°の角度で振れ可能な孔である。
 円弧孔154は、副ノズル134が42.8°から少なくとも90°以上の角度で振れ可能で、且つ副ノズル132自身が0°から90°以上の角度で振れ可能な孔である。円弧孔156は、副ノズル132が0°から少なくとも90°以上の角度で振れ可能で、且つ副ノズル134自身が42.8°から90°の角度で振れ可能な孔である。
 複合ノズル126では、主ノズル130から供給する主導線28の巻き層に応じて、副ノズル132及び134を移動させ、主導線28同士の隙間に補助導線30及び32を配置して占積率を向上させることができる。
 具体的には、ボビン26に第1層の巻回を行うときには、図7に示すように、複合ノズル126では、副ノズル132及び134は、主ノズル130の下向き中心線を基準としてθa1及びθb1の位置に設定されている。基本的には、θa1及びθb1=θ=42.8°で対称に設定されているが、設計条件や試行的調整によりθa1及びθb1を個別に適宜変化させてもよい。
 ボビン26に2層目以降の巻回を行うときには、図10に示すように、副ノズル132を主ノズル130の真下に移動させ(つまり、42.8°移動させ)、副ノズル134を主ノズル130の下向き中心線を基準として60°の位置に移動させる(つまり、60°-42.8°=17.2°移動させる)。
 1層目から2層目に移るときにこのような切り換え動作を行い、2層目の最初の主導線28i(図4参照)を巻回するときに、補助導線30は、主導線28aと主導線28bとの間に落とし込まれ、補助導線32は、主導線28bと主導線28iとの間に形成される溝に配置されるように移動させる。このとき、副ノズル132と副ノズル134は同期して動作する。
 基本的には、副ノズル132及び134は、0°位置及び60°位置に設定されているが、設計条件や試行的調整により個別に適宜変化させてもよい。
 2層目以降は、主導線28に対して補助導線30及び32は、常に幾何学的に同じ位置になるので、副ノズル132及び134の位置をほぼ保ちながら巻回することができる。
 また、例えば、3層目の最後の主導線28wのような端位置では、幾何学的に補助導線32がボビン壁26aに干渉するが、実際には仮想線で示すように主導線28h、28o及び28wで囲まれる空間60内に自然と導かれ、差し支えない。
 さらに、3層目両端の主導線28p及び主導線28wに対応した補助導線30は、空間60及び62内で仮想線で示すように適当に安定する位置に移動しうる。
 次に、第2の実施形態に係るステータ200及び該ステータ200の製造装置における複合ノズル300について、前記の前記のステータ10及び複合ノズル126と同じ構成要素については同符号を付してその詳細な説明を省略する。
 図11及び図12に示すように、ステータ200における分割コア202は、前記分割コア12に相当する部材であり、該分割コア12における分割コア12における断面円形の補助導線30及び32を断面正六角形の補助導線204及び206で置き換えている。正六角形は、例えば三角形や四角形と比較して円に近い形状であることから、従来のステータ製造装置に対して適度に手を加えることで適用可能になる。補助導線204及び206は、予め断面正六角形に形成したものを副ドラム110及び112(図6参照)に用意してもよいし、ステータ製造装置における巻回工程のいずれかの箇所で丸線を六角線となるように成形してもよい。
 1層目の主導線28に対応する補助導線204及び206は、主導線28の中心点Oを通りボビン26の巻付面に垂直な垂線44に対し左右に同角度の位置に配設されており、六角形のうち一辺がボビン26面に当接している。
 2層目以降の主導線28に対応する補助導線204及び206は、垂線44上に一方の補助導線204を配設し、垂線44に対して60°位置に他方の補助導線206が配設されている。つまり、2層目以降、補助導線204及び206は、120°ごとの3辺で隣接する主導線28に接している。補助導線204及び206は、主導線28に対して幾何学的に厳密には3点で接するが、実質上は3辺で接しており、安定している。主導線28は、六方細密の状態であることから3本の主導線28が接してできた空間に3点を接する円が補助導線204、206の最大径となる。具体的には、主導線28の径Rに対して、補助導線204及び206の径r(中心点から各辺までの距離とする)は、前記のステータ10の場合と同様で、r≒0.154Rになる。
 また、一層目において、主導線28と補助導線204及び206との相対的な角度θは、R・cosθ=R-r-r・cos(30°)を解いて、θ=44.5°となる。
 主導線28の本数をNとすると、補助導線204及び206の合計本数は2Nになる。r≒0.154Rとした場合、主導線28が占める面積Sは、S=πR2×Nであり、補助導線204及び206が占める面積sは、s=2/√(3r)×r/2×6×2Nである。占積率の向上率δは、δ=s/S≒(2/√(3r)×r/2×6×2N)/(πR2×N)=0.0523であり、約5.2%の増加が見込まれる。
 図12から明らかなように、補助導線204及び206は、各層において常に同じ向き(つまり、六角形の1辺がボビン26と平行になる向き)となるように巻回されている。
 ステータ200及び分割コア202の外観は、前記のステータ10及び分割コア12とほぼ同じであることから図示を省略する。
 次に、分割コア202を製造するステータ製造装置について説明する。分割コア202を製造するステータ製造装置は、前記のステータ製造装置100における複合ノズル126を図13、図14及び図15に示す複合ノズル300に置き換えたものである。
 図13~図15に示すように、複合ノズル300は、主ノズル130と、補助導線204及び206を案内する副ノズル302、304と、主リング136と、副リング138と、副リング140と、副ノズル制御モータ144及び148とを有する。副ノズル302及び304は、副リング138及び140に対して回転可能に設けられ、外形は前記の副ノズル132及び134と同じであり、内腔部が断面六角形状である点で異なる。このような内腔部の形状により、六角形状の補助導線204及び206の向きを規定し、安定して導出することができる。
 円弧孔150、152、154、156は、前記の複合ノズル126におけるものとほぼ同形状であるが、動作角度範囲で42.8°に設定されていたところを44.5°に設定する。
 複合ノズル300は、さらに、副ノズル302及び304を所定の向きに保持する角度調整機構310をそれぞれ有する。各角度調整機構310は、ベース板141から突設されたポスト311と、該ポスト311の先端に設けられたベルト312と、該ベルト312の弛みをとるテンショナー314とを有する。ベルト312はポスト311と副ノズル302(又は304)の間に掛け渡されている。
 テンショナー314は、ポスト311の先端で傾動するアーム316と、該アーム316を付勢するトーションスプリング318と、アーム316の先端に設けられたテンションローラ320とを有する。アーム316はトーションスプリング318によって内向きに付勢され、トーションスプリング318がベルト312の側面に当接し、弛みをとっている。角度調整機構310は、ビス322、ナット324によって組み立てられている。
 ポスト311と副ノズル302及び304は同径であり、副ノズル302及び304の基準位置の角度を保つことができる。ポスト311は、固定的なものに限らず、モータで回転させることにより副ノズル302及び304の向きを調整してもよい。
 角度調整機構310によれば、補助導線30及び32のダメージ(例えば、導線表面に形成されている絶縁被膜のダメージ)が少なくなり、品質を向上させることができる。また、補助導線30及び32を適切に設定して安定させることができる。
 複合ノズル300では、ボビン26に第1層の巻回を行うときには、図13に示すように、副ノズル302及び304は、主ノズル130の下向き中心線を基準としてθa2及びθb2の位置に設定されている。基本的には、θa2及びθb2=θ=44.5°で対称に設定されているが、設計条件や試行的調整によりθa2及びθb2を個別に適宜変化させてもよい。
 ボビン26に2層目以降の巻回を行うときには、図16に示すように、副ノズル302を主ノズル130の真下に移動させ(つまり、44.5°移動させ)、副ノズル304を主ノズル130の下向き中心線を基準として60°の位置に移動させる(つまり、60°-44.5°=15.5°移動させる)。
 第1層から第2層に移るときには、前記の複合ノズル126と同様の切り換え動作を行う。このとき、角度調整機構310の作用により、副ノズル302及び304の向きは一定に保たれる。
 上述したように、本実施の形態に係るステータ10及び200によれば、整列巻線した主導線28間の空間に補助導線30、32及び補助導線204、206を効率よく詰めることができ、巻線隙間の空間が少なくなり、コイル20の占積率が上がる。したがって、回転電機の性能、出力を向上させることができる。
 本実施の形態に係るステータ製造装置100によれば、ボビン26への1層目と2層目以降とで副ノズル132及び134の配置角度を切り換え、整列巻線した主導線28間の隙間に補助導線30、32及び補助導線204、206を効率よく詰めることにより、巻線間の隙間が少なくなり、コイル20の占積率が上がる。したがって、回転電機の性能、出力が向上する。
 また、従来のステータ製造装置におけるノズル機構を上記の複合ノズル126(300)に変更するだけで高占積率のステータを製造することができる。
 本発明に係るステータ及びステータ製造装置は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。

Claims (9)

  1.  導線をボビンに巻回して形成される巻線を有するステータであって、
     前記導線は、主導線(28)及び該主導線(28)に対応して設けられ、該主導線(28)より細い第1補助導線(30)及び第2補助導線(32)を有し、
     前記主導線(28)は複数層に整列巻回され、同層の隣り合う前記主導線(28)間の谷間部に上層の前記主導線(28)が配置され、
     1層目の前記主導線(28)に対しては、同層の左右に隣接する前記主導線(28)と前記ボビンとによって囲まれる第1空間(50)及び第2空間(52)に前記第1補助導線(30)及び第2補助導線(32)が配設され、
     2層目以降の前記主導線(28)に対しては、下層の左右に隣接する前記主導線(28)によって囲まれる第3空間(54)に前記第1補助導線(30)が配設され、同層の一方に隣接する前記主導線(28)と下層の一方に隣接する前記主導線(28)によって囲まれる第4空間(56)に前記第2補助導線(32)が配設されていることを特徴とするステータ。
  2.  請求項1記載のステータにおいて、
     1層目の前記主導線(28)に対応する前記第1補助導線(30)及び第2補助導線(32)は、前記主導線(28)の中心点を通りボビン巻付面に垂直な垂線に対し左右に同角度の位置に配設され、
     2層目以降の前記主導線(28)に対応する前記第1補助導線(30)及び前記第2補助導線(32)は、前記垂線上に一方の前記補助導線を配設し、前記垂線に対して60°位置に他方の前記補助導線が配設されていることを特徴とするステータ。
  3.  請求項1記載のステータにおいて、
     前記第1補助導線(30)及び前記第2補助導線(32)は断面円形であることを特徴とするステータ。
  4.  請求項1記載のステータにおいて、
     前記第1補助導線(204)及び前記第2補助導線(206)は断面六角形であることを特徴とするステータ。
  5.  導線を供給する導線供給部(102)と、前記導線供給部(102)から導線をボビンへ案内するノズル機構(126)と、前記ボビンを回転させるボビン回転手段とを備え、ボビンを回転させながら前記ノズル機構(126)で導線を案内して巻装するステータ製造装置において、
     前記導線は、主導線(28)及び該主導線(28)に対応して設けられ、該主導線(28)より細い第1補助導線(30)及び第2補助導線(32)を有し、
     前記ノズル機構(126)は、
     前記主導線(28)を案内する主ノズル(130)と、
     前記主ノズル(130)で案内される主導線(28)の周囲で周方向に移動自在に配設され、前記第1補助導線(30)及び前記第2補助導線(32)を案内する2つの副ノズル(132,134)と、
     前記副ノズル(132,134)を夫々に移動させるノズル移動手段(138)とを備え、
     前記ボビンへの1層目の巻回から2層目の巻回に移行する際に、前記副ノズル(132,134)の配置角度を切り換えることを特徴とするステータ製造装置。
  6.  請求項5記載のステータ製造装置において、
     ノズル移動手段(138)は、前記主ノズル(130)に嵌合して、該主ノズル(130)を中心として個別に回転する2つの回転体であることを特徴とするステータ製造装置。
  7.  請求項6記載のステータ製造装置において、
     前記第1補助導線(204)及び前記第2補助導線(206)は断面六角形であり、
     前記2つの前記副ノズル(302,304)は、前記第1補助導線(204)及び前記第2補助導線(206)を案内するように断面六角形であり、それぞれ前記回転体に対して回転自在に設けられ、
     第1層及び第2層以降で、前記第1補助導線(204)及び前記第2補助導線(206)の向きを同一に保つように前記副ノズル(302,304)を回転させる角度調整機構(310)を有することを特徴とするステータ製造装置。
  8.  請求項5記載のステータ製造装置において、
     前記第1補助導線(30)及び前記第2補助導線(32)は断面円形であることを特徴とするステータ製造装置。
  9.  請求項5記載のステータ製造装置において、
     前記第1補助導線(204)及び前記第2補助導線(206)は断面六角形であることを特徴とするステータ製造装置。
PCT/JP2009/055073 2008-04-09 2009-03-16 ステータ及びステータ製造装置 WO2009125655A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09729477.1A EP2264861A4 (en) 2008-04-09 2009-03-16 STATOR AND DEVICE FOR PRODUCING THE STATOR
US12/937,086 US8476801B2 (en) 2008-04-09 2009-03-16 Stator, and stator manufacturing apparatus
BRPI0909204-8A BRPI0909204A2 (pt) 2008-04-09 2009-03-16 Estator, e aparelho para a fabricação do estator
CN2009801122338A CN101999201B (zh) 2008-04-09 2009-03-16 定子和定子制造设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-101165 2008-04-09
JP2008101165A JP4790748B2 (ja) 2008-04-09 2008-04-09 ステータ及びステータ製造装置

Publications (1)

Publication Number Publication Date
WO2009125655A1 true WO2009125655A1 (ja) 2009-10-15

Family

ID=41161790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055073 WO2009125655A1 (ja) 2008-04-09 2009-03-16 ステータ及びステータ製造装置

Country Status (6)

Country Link
US (1) US8476801B2 (ja)
EP (1) EP2264861A4 (ja)
JP (1) JP4790748B2 (ja)
CN (1) CN101999201B (ja)
BR (1) BRPI0909204A2 (ja)
WO (1) WO2009125655A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5693138B2 (ja) * 2010-10-19 2015-04-01 三菱重工業株式会社 密閉型電動圧縮機
US9236777B2 (en) * 2011-04-08 2016-01-12 Bison Gear & Engineering Corp. Bobbin wound motor
JP2012249443A (ja) * 2011-05-28 2012-12-13 Tamagawa Seiki Co Ltd ステータトランスボビンおよびブラシレス回転検出器
EP2560269A3 (en) 2011-08-16 2017-10-18 LG Innotek Co., Ltd. Stator of Motor
US9653951B2 (en) * 2012-04-13 2017-05-16 Regal Beloit America, Inc. Insulation member for use with a stator assembly and method of assembling the stator assembly
US20130338682A1 (en) * 2012-06-15 2013-12-19 Cook Medical Technologies Llc Tissue Ligation Devices and Methods
JP5693793B2 (ja) * 2012-06-21 2015-04-01 三菱電機株式会社 回転電機
AT513114B1 (de) * 2012-06-27 2016-01-15 Egston System Electronics Eggenburg Gmbh Spulenwicklung
CN104868631B (zh) * 2014-07-21 2017-11-14 广东美的环境电器制造有限公司 电机、用于电机的定子组件、线框环组件和线框组件
EP2978105A1 (fr) * 2014-07-22 2016-01-27 Mmt Ag Moteur électrique pas-à-pas
DE102015223109A1 (de) * 2015-11-23 2017-05-24 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Verfahren zum Bewickeln eines gezahnten Motorteils eines Elektromotors
US20170317548A1 (en) * 2016-04-28 2017-11-02 Makita Corporation Electric power tool
TWI671976B (zh) * 2018-08-08 2019-09-11 群光電能科技股份有限公司 馬達定子結構及定子組件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04140036A (ja) * 1990-09-28 1992-05-14 Sanyo Electric Co Ltd モータの駆動コイル
JPH08275422A (ja) * 1995-03-28 1996-10-18 Fanuc Ltd 同期電動機のステータ
JPH09140079A (ja) 1995-11-14 1997-05-27 Fuji Elelctrochem Co Ltd 小型モータ用コイルおよびその巻線方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3629024A (en) * 1969-02-25 1971-12-21 Tokyo Shibaura Electric Co Method of insulating armature coils
US4988055A (en) * 1988-05-25 1991-01-29 Nippondenso Co., Ltd. Coil assembly for polygonal wire
JP2000166152A (ja) * 1998-11-20 2000-06-16 Mitsubishi Electric Corp 車両用交流発電機の固定子およびその製造方法
JP3971692B2 (ja) * 2002-11-13 2007-09-05 本田技研工業株式会社 スロットレス永久磁石式回転電機及びその巻線製造方法
JP2005057931A (ja) * 2003-08-06 2005-03-03 Honda Motor Co Ltd ステータ
US20060197398A1 (en) * 2005-03-07 2006-09-07 Valeo Electrical Systems, Inc. Composite winding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04140036A (ja) * 1990-09-28 1992-05-14 Sanyo Electric Co Ltd モータの駆動コイル
JPH08275422A (ja) * 1995-03-28 1996-10-18 Fanuc Ltd 同期電動機のステータ
JPH09140079A (ja) 1995-11-14 1997-05-27 Fuji Elelctrochem Co Ltd 小型モータ用コイルおよびその巻線方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2264861A4

Also Published As

Publication number Publication date
CN101999201B (zh) 2013-01-09
US8476801B2 (en) 2013-07-02
JP2009254181A (ja) 2009-10-29
US20110025163A1 (en) 2011-02-03
JP4790748B2 (ja) 2011-10-12
BRPI0909204A2 (pt) 2015-08-11
EP2264861A1 (en) 2010-12-22
EP2264861A4 (en) 2016-12-21
CN101999201A (zh) 2011-03-30

Similar Documents

Publication Publication Date Title
JP4790748B2 (ja) ステータ及びステータ製造装置
JP5693793B2 (ja) 回転電機
US7560848B2 (en) Electrical machine with commutator rotor
JP5418484B2 (ja) 回転電機の固定子のコイルボビンおよびこのコイルボビンを使用した回転電機の固定子の巻線方法
JP6019234B2 (ja) アキシャルギャップ型モータとその巻線の製造方法
US9438078B2 (en) Arrangement of coil wires in a rotor of an electric motor
CA2586337A1 (en) Method of forming single-layer coils
JP4881960B2 (ja) 固定子の巻線方法及び永久磁石電動機
KR102441631B1 (ko) 권선 배열 및 권선 배열의 제조 방법
JP5943995B2 (ja) 回転電機の電機子
US7872391B2 (en) Stator core
JP5044542B2 (ja) 対称的な部分コイルを備えた電気機器
WO2020065853A1 (ja) 巻線ノズル、及び巻線機
JP2007244115A (ja) 電動機の巻線構造とその巻線方法及びその巻線装置
US7712697B1 (en) Core winding apparatus and method of winding a core
JP5130098B2 (ja) 巻線装置
JP3538422B2 (ja) 内転型電動機の固定子およびその製造方法
JP2006511189A (ja) 電気機械
JP2007282500A (ja) 直流機
JP2000333420A (ja) 巻線機
JP7050239B2 (ja) 固定子、電動機
JP2005247562A (ja) コイル巻線方法及びコイル巻線装置
JP3621079B2 (ja) 多極電機子の巻線方法及び巻線装置
KR20200029873A (ko) 모터
JPS62199008A (ja) コイル巻線方法及び巻線装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980112233.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09729477

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009729477

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12937086

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 7627/DELNP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: PI0909204

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101007