WO2009125642A1 - 機能性溶液供給システム - Google Patents

機能性溶液供給システム Download PDF

Info

Publication number
WO2009125642A1
WO2009125642A1 PCT/JP2009/054631 JP2009054631W WO2009125642A1 WO 2009125642 A1 WO2009125642 A1 WO 2009125642A1 JP 2009054631 W JP2009054631 W JP 2009054631W WO 2009125642 A1 WO2009125642 A1 WO 2009125642A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage tank
sulfuric acid
circulation line
solution
acid solution
Prior art date
Application number
PCT/JP2009/054631
Other languages
English (en)
French (fr)
Inventor
稔 内田
達夫 永井
晴義 山川
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to CN2009801219992A priority Critical patent/CN102057470B/zh
Priority to KR1020107024802A priority patent/KR101331458B1/ko
Priority to EP09729203A priority patent/EP2280409B1/en
Priority to US12/737,079 priority patent/US8529748B2/en
Publication of WO2009125642A1 publication Critical patent/WO2009125642A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/28Per-compounds
    • C25B1/30Peroxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/28Per-compounds
    • C25B1/29Persulfates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/021Process control or regulation of heating or cooling
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Definitions

  • the present invention relates to a functional solution supply system capable of supplying a functional solution containing persulfuric acid as a cleaning solution or the like.
  • FIG. 2 (a) As a simplest system configuration of a resist stripping system for a semiconductor wafer using a persulfuric acid solution manufactured by electrolyzing a sulfuric acid solution, there is a one-loop system shown in FIG. 2 (a).
  • the outlet side of the washing machine 21 and the inlet side of the electrolysis cell 23 are connected via the cooler 24 and the storage tank 22 in the outward path of the circulation path 31, and the outlet side of the electrolysis cell 23 and the washing machine
  • the liquid inlet side 21 is connected to the return path of the circulation path 31 via the heater 25, and each device is connected by one loop.
  • This system has the advantage of requiring fewer pumps and valves, but it also has the following issues.
  • FIG. 2 of Patent Document 1 In the system of FIG. 2 (b), the washer 21 and the storage tank 22 are connected by the outward path of the circulation path 31a, and the storage tank 22 and the washer 21 are connected via the heater 25 in the return path of the circulation path 31a. Connecting. Further, the storage tank 22 and the electrolytic cell 23 are connected via the cooler 26 in the forward path of the circulation path 31b, and the electrolysis cell 23 and the storage tank 22 are connected in the return path of the circulation path 31b.
  • the storage tank 22 is provided with a heater 27 for preventing the temperature drop of the circulating fluid. That is, each device is connected by a loop formed by the forward path of the circulation path 31a and the return path of the circulation path 31a, and a loop formed by the forward path of the circulation path 31b and the return path of the circulation path 31b.
  • the washer 21 and the storage tank 22 are connected by the outward path of the circulation path 31a, and the storage tank 22 and the washer 21 are connected via the heater 25 in the return path of the circulation path 31a.
  • the storage tank 22 and the electrolytic cell 23 are connected by a circulation path 31 b via a cooler 26, and the electrolytic cell 23 and the washing machine 21 are connected by a circulation path 31.
  • the storage tank 22 is provided with a heater 27 for preventing the temperature drop of the circulating fluid.
  • each device is connected by two loops of a loop formed by the forward path of the circulation path 31a and a return path of the circulation path 31a, and a loop formed by the forward path of the circulation path 31a, the circulation path 31b and the circulation path 31. .
  • the washer 21 and the storage tank 22 are connected by the outward path of the circulation path 31a, and the storage tank 22 and the washer 21 are connected via the heater 25 in the return path of the circulation path 31a.
  • the storage tank 22 and the electrolytic cell 23 are connected via the cooler 26 in the forward path of the circulation path 31b, and the electrolysis cell 23 and the storage tank 22 are connected in the return path of the circulation path 31b.
  • the electrolysis cell 23 and the washing machine 21 are connected by a circulation path 31.
  • the storage tank 22 is provided with a heater 27 for preventing the temperature drop of the circulating fluid.
  • the adjustment of the flow rate of the loop circulating from the washing machine 21 through the storage tank 22 and the electrolysis cell 23 is substantially the same as the flow rate of the loop circulating from the washing machine 21 through the storage tank 22 Since the process can be performed independently, it is possible to maintain an appropriate sulfuric acid solution flow rate distribution inside the electrolysis cell 23 regardless of the increase or decrease of the sulfuric acid solution circulation amount to the washing machine 21. Further, a persulfuric acid solution can be produced with good electrolytic efficiency because of electrolysis of the cooled sulfuric acid solution, and since the persulfuric acid solution is not heated in the circulation path 31, it can be supplied to the washing machine 21 before autolysis proceeds. it can.
  • the resist since the persulfuric acid solution generated in the electrolysis cell 23 is added in the storage tank 22 to the circulating fluid containing the residual resist from the cleaning machine 21, the resist must be surely decomposed. it can.
  • the flow rate of the loop circulating from the washing machine 21 through the storage tank 22 and the electrolytic cell 23 and the flow rate of the loop circulating from the storage tank 22 through the electrolytic cell 23 are adjusted from the washing machine 21 through the storage tank 22 Since the flow can be performed substantially independently of the flow rate of the circulating loop, an appropriate sulfuric acid solution flow rate distribution can be maintained inside the electrolysis cell 23 regardless of the increase or decrease of the sulfuric acid solution circulation amount to the washing machine 21. .
  • a persulfuric acid solution can be produced with good electrolytic efficiency because of electrolysis of the cooled sulfuric acid solution, and since the persulfuric acid solution is not heated in the circulation path 31, it can be supplied to the washing machine 21 before autolysis proceeds. it can. However, also in this case, the entire amount of the circulating fluid from the cleaning device 21 is circulated to the storage tank 22.
  • the load of the heater 25 when the storage fluid whose liquid temperature in the storage tank 22 is lowered is returned to the cleaning device 21 It is necessary to separately install a heater 27 in the storage tank 22 in order to lower Therefore, since the sulfuric acid solution in the storage tank 22 is maintained at a high temperature, the persulfuric acid flowing into the storage tank 22 is immediately decomposed by itself and it is difficult to supply a high concentration persulfate solution to the washing machine 21 The problem of being there still remains. Also, when the required amount of persulfuric acid per unit time in the cleaning machine 21 is large, that is, the ion dose to the semiconductor wafer is large, the resist thickness is thick, or the processing time is short, etc. There still remains the problem that it is necessary to install a large number of electrolytic cells 23 in order to produce
  • the present invention has been made against the background described above, and provides a functional solution supply system capable of producing a high-performance functional solution and supplying it to the user while reducing the number of installed electrolytic cells.
  • the purpose is
  • the first present invention relates to a functional solution supply system for producing a functional solution by electrolyzing a sulfuric acid solution and supplying the functional solution to the use side
  • the system comprises a reservoir for storing a sulfuric acid solution, an electrolytic device for electrolyzing the sulfuric acid solution, a heating means for heating the sulfuric acid solution, a cooling means for cooling the sulfuric acid solution, and the following three circulation lines
  • a functional solution supply system characterized by comprising. 1. 1. A first circulation line for returning the sulfuric acid solution discharged from the storage tank to the storage tank via the electrolytic device without the heating means. 2.
  • the functional solution supply system is characterized in that, in the first aspect according to the present invention, the second circulation line and the third circulation line join immediately before returning to the use side. I assume.
  • the second circulation line and the third circulation line are branched after being introduced from the use side It is characterized by
  • the functional solution supply system is the functional solution supply system according to any of the first to third aspects of the present invention, wherein the first circulation line is downstream of the reservoir and upstream of the electrolytic device.
  • the side is characterized by comprising a second cooling means for cooling the sulfuric acid solution.
  • the functional solution supply system is the functional solution supply system according to any of the first to third aspects of the present invention, wherein the first circulation line is downstream of the electrolyzer and upstream of the reservoir.
  • the side is characterized by comprising a second cooling means for cooling the sulfuric acid solution.
  • the functional solution supply system is characterized in that, in any one of the first to fifth aspects of the present invention, the use side is a batch type substrate cleaning apparatus.
  • a functional solution supply system for producing a functional solution by electrolyzing a sulfuric acid solution and supplying the functional solution to the use side
  • the storage tank storing the sulfuric acid solution, and an electrolysis for electrolyzing the sulfuric acid solution
  • heating means for heating the sulfuric acid solution
  • cooling means for cooling the sulfuric acid solution
  • 1. A first circulation line for returning the solution discharged from the storage tank to the storage tank via the electrolytic device without the heating means.
  • a second circulation line for returning the sulfuric acid solution introduced from the use side to the use side via the cooling means and the storage tank in this order without using the heating means.
  • a third circulation line for returning the sulfuric acid solution introduced from the use side to the use side via a heating means without passing through the cooling means and the storage tank Therefore, by providing the first circulation line, it is possible to keep the persulfate in a high concentration in the reservoir with a small electrolytic capacity, and by providing the second and third circulation lines, the persulfate solution. Can be supplied to the use side as a high-performance functional solution before persulfuric acid self-decomposes.
  • FIG. 1 is a diagram showing a conventional one-loop and two-loop and three-loop functional solution supply systems.
  • a cleaning device 1 which is a batch type substrate cleaning device on the use side
  • a storage tank 2 which stores a sulfuric acid solution
  • an electrolytic cell 3 which is an electrolytic device which electrolyzes a sulfuric acid solution
  • the drainage side of the storage tank 2 and the inlet side of the electrolysis cell 3 are connected by the outward path of the first circulation line 11, and the drainage side of the electrolysis cell 3 and the inlet side of the storage tank 2 are the first. It is connected by the return path of the circulation line 11. That is, the storage tank 2 and the electrolysis cell 3 are connected by the 1st circulation line 11, and circulation of a sulfuric acid solution is possible.
  • the drainage side of the washer 1 and the inlet side of the storage tank 2 are connected by the outward path of the second circulation line 12, and the drainage side of the reservoir 2 and the inlet of the washer 1 are further connected.
  • the side is connected to the return path of the second circulation line 12. That is, the washer 1 and the storage tank 2 are connected by the second circulation line 12 so that the sulfuric acid solution can be circulated.
  • a third circulation line 13 branched on the downstream side of the second circulation line 12 is connected to the washing machine 1 in common with a part of the second circulation line 12.
  • the third circulation line 13 joins the return path of the second circulation line 12 immediately before the inlet side of the washer 1 so as to be connected to the inlet side of the washer 1.
  • the functional solution supply system of the present invention is a three-loop system different from the prior art.
  • a cooler as a cooling means is located downstream of the position where the third circulation line 13 is branched and upstream of the position connected to the liquid inlet side of the storage tank 2. 4 is interposed, and the third circulation line 13 is added at a position downstream of the branch position with the second circulation line 12 and before the second circulation line 12 merges with the second circulation line 12.
  • a heater 5 as a heating means is interposed.
  • the storage solution 2 contains a sulfuric acid solution preferably at 40 to 80 ° C., and electrolysis is performed while circulating the sulfuric acid solution to the electrolytic cell 3 through the first circulation line 11 to generate persulfuric acid.
  • the solution is stored in the storage tank 2 as a sulfuric acid solution containing high concentration persulfuric acid.
  • the configuration of the electrolytic cell is not particularly limited, but preferably, at least the anode is provided with a diamond electrode.
  • the sulfuric acid solution containing the high concentration persulfate stored in the storage tank 2 is sent to the washer 1 through the return path of the second circulation line 12.
  • the sulfuric acid solution used in the washing machine 1 is cooled to the reservoir temperature (about 40 ° C. to 80 ° C.) by the cooler 4 through the outward path of the second circulation line 12 while having a relatively small flow rate (at least the first The flow rate of the circulation line 11 is smaller than that of the circulation line 11).
  • the sulfuric acid solution is cooled by the cooler 4 to prevent the temperature of the solution in the storage tank 2 from rising and the progress of persulfate decomposition.
  • the structure of the cooler 4 is not specifically limited as this invention, Appropriate cooling means, such as a heat exchanger, can be used.
  • the sulfuric acid solution discharged from the washer 1 passes through the outward path of the second circulation line 12 and then is mostly transported to the branched third circulation line 13.
  • the sulfuric acid solution is heated by the heater 5.
  • the outlet temperature of the heater 5 By setting the outlet temperature of the heater 5 at that time to be higher than the operating temperature of the washer 1, the necessary heat quantity can be compensated.
  • the high temperature sulfuric acid solution and the sulfuric acid solution sent from the storage tank 1 are sent to the washing machine 1 so that the solution temperature in the washing machine 1 reaches the operating temperature. For this reason, as in the present embodiment, by combining the second circulation line 12 and the third circulation line 13 immediately before entering the washing machine 1, the liquid is sent through the second circulation line 12.
  • a sulfuric acid solution containing high concentration persulfuric acid is instantaneously heated and introduced into the washer 1. Since the persulfuric acid is self-decomposing at high temperature for a short time, the persulfuric acid is introduced into the washing machine 1 soon after the persulfuric acid is almost auto-decomposed by instantaneously raising the temperature of the sulfuric acid solution containing high concentration persulfuric acid. Thereby, the persulfuric acid stored in the storage tank 2 can be sent to the washer 1 without waste.
  • the structure of the said heater 5 is not specifically limited as this invention, A heater, a heat exchanger, etc. can be used.
  • the storage tank is used for the purpose of maintaining a high concentration of the peroxyacid. Also, the temperature of the functional solution and the concentration of persulfuric acid are adjusted so that the washing is completed in the washing machine. Therefore, unlike the prior art, the temperature in the reservoir is maintained at a predetermined low temperature.
  • the persulfuric acid self-decomposes in the washing machine 1 and leads to a loss, but in practice this is not wasteful.
  • the persulfuric acid In order for the persulfuric acid to function as an oxidizing agent, it is necessary to keep the inside of the washing machine 1 at a high temperature for the formation of sulfuric acid radicals because the sulfuric acid radicals generated by the autolysis at high temperature attack the organic matter. Since this sulfuric acid radical has a very short life, it needs to be generated in the washing machine 1 which is the reaction site.
  • the cooler 4 at the front stage of the storage tank 2 Therefore, it is necessary to control the temperature of the sulfuric acid solution in the storage tank 2, to increase the load of the cooler 4 and to increase the circulation amount of the second circulation line 12, which makes control difficult.
  • the cooler 4 can control the temperature of the circulating fluid in the second circulation line 12 and the cooler 6 can independently control the temperature of the circulating fluid in the first circulation line 11.
  • the amount of circulation of the second circulation line 12 can be reduced while reducing the load.
  • the system is not limited to the system of FIG. 1 (b).
  • the cooling may be performed at 7.
  • the first circulation line is connected to the reservoir, it is not limited to direct return to the reservoir. That is, it may be connected to the second circulation line on the downstream side of the cooler on the upstream side of the storage tank, or on the return path of the second circulation line (when merging with the third circulation line, the upstream side of the junction ) May be branched as the forward path of the first circulation line.
  • a batch type substrate cleaning apparatus is shown as a supply destination of the functional solution, but the present invention is not limited to this, and it is used on various applications where electrolytic sulfuric acid solution can be used It is possible to supply and use.
  • Example 1 (3-loop system) The operation was performed using a system corresponding to FIG.
  • the first circulation path 11 is referred to as loop 1
  • the second circulation path 12 as loop 2
  • the third circulation path 13 as loop 3.
  • Wafer 300 mm ⁇
  • resist thickness 860 nm
  • Liquid volume 50 L
  • electrolysis cell 3 inlet temperature 50 ° C
  • Electrolysis cell 3 outlet temperature 75 ° C
  • storage tank 2 temperature 50 ° C
  • Persulfate circulation rate 12.0 g / min
  • Heater 5 outlet temperature 174 ° C
  • heater 5 heat load 29.2 kW
  • Electrolysis cell 3 inlet temperature 50 ° C
  • electrolysis cell 3 outlet temperature 75 ° C
  • cooler 4 outlet temperature 40 ° C
  • reservoir 2 temperature 72 ° C
  • Persulfate concentration at the outlet of reservoir 2 11.9 g / L
  • Persulfate circulation rate 11.9 g / min
  • Heater 5 outlet temperature 143 ° C
  • heater 5 heat load 3.8 kW
  • Comparative Example 1 (1 Loop Method) The operation was performed using a system corresponding to FIG. (Operating conditions) Same as Example 1. However, the loop number and the loop configuration do not necessarily correspond to the embodiment. (The same applies to the following comparative examples)
  • Electrolysis cell 23 inlet temperature 50 ° C
  • electrolysis cell 23 outlet temperature 75 ° C
  • Persulfate concentration at the outlet of electrolysis cell 23 1.49 g / L
  • Outlet temperature of heater 25 140 ° C
  • heater 25 thermal load 28.5 kW
  • the heat load of the heater 25 becomes extremely large in order to feed the necessary amount of the excess acid to the washing machine 21, and not only it is not practical but also the residence time in the heater 25 is long. Has progressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

 機能性溶液として硫酸電解液を効率よく生成し、かつ電解によって生成された過硫酸を自己分解を抑制して効率よく使用側に供給する。 硫酸溶液を電解することにより機能性溶液を製造して使用側に供給する機能性溶液供給システムにおいて、該システムが硫酸溶液を貯留する貯留槽(2)と、硫酸溶液を電解する電解装置(電解セル(3))と、硫酸溶液を加温する加温手段(加熱器(4))と、硫酸溶液を冷却する冷却手段(冷却器(4))と、貯留槽(2)から排出された硫酸溶液を、加温手段を介することなく電解装置を介して前記貯留槽(2)に戻す第1の循環ライン(11)と、使用側(洗浄機(1))から導入された硫酸溶液を、加温手段を介することなく冷却手段及び前記貯留槽(2)をこの順に介して使用側に戻す第2の循環ライン(12)と、前記使用側から導入された硫酸溶液を、冷却手段及び前記貯留槽(2)を介することなく加温手段(加熱器(4))を介して前記使用側に戻す第3の循環ライン(13)を備える。

Description

機能性溶液供給システム
 この発明は、過硫酸を含む機能性溶液を洗浄液などとして供給可能な機能性溶液供給システムに関するものである。
 硫酸溶液を電解することにより製造した過硫酸溶液を用いた半導体ウェハのレジスト剥離システムの最も単純なシステム構成として、図2(a)に示す1ループ方式がある。
該システムでは、洗浄機21の出液側と電解セル23の入液側とを冷却器24、貯留槽22を介して循環路31の往路で接続し、電解セル23の出液側と洗浄機21の入液側とを、加熱器25を介して上記循環路31の復路で接続しており、1ループで各機器が接続されている。
 このシステムでは、ポンプやバルブが少なくて済むメリットがあるが、以下に述べる課題もある。
 洗浄機での単位時間当たり必要過硫酸量が多い場合、即ち半導体ウェハへのイオンドーズ量が多い、レジスト厚さが厚い、処理時間を短くしたいなどの場合、高濃度の過硫酸溶液を製造するために多数の電解セルを設置することが必要になるが、硫酸溶液循環量を増やせば、冷却器では冷却負荷が大きくなり、加熱器では、再加熱負荷が大きくなる問題が生じる。また、硫酸溶液循環量が少ないと、電解セル内部での適正な硫酸溶液流量分布を保つことができない。
 これを解決する方法として、図2(b)、(c)に示す2ループ方式や図2(d)に示す3ループ方式が考えられる。(例えば特許文献1の図2)
 図2(b)のシステムでは、洗浄機21と貯留槽22とを循環路31aの往路で接続し、前記貯留槽22と洗浄機21とを、加熱器25を介して循環路31aの復路で接続する。また、貯留槽22と電解セル23とを冷却器26を介して循環路31bの往路で接続し、前記電解セル23と貯留槽22とを循環路31bの復路で接続する。貯留槽22には循環液の温度低下を防ぐための加熱器27を設置する。すなわち、循環路31aの往路と循環路31aの復路で形成されるループと、循環路31bの往路と循環路31bの復路で形成されるループの2ループで各機器が接続されている。
 図2(c)のシステムでは、洗浄機21と貯留槽22とを循環路31aの往路で接続し、前記貯留槽22と洗浄機21とを、加熱器25を介して循環路31aの復路で接続する。また、貯留槽22と電解セル23とを冷却器26を介して循環路31bで接続し、前記電解セル23と洗浄機21とを循環路31で接続する。貯留槽22には循環液の温度低下を防ぐための加熱器27を設置する。すなわち循環路31aの往路と循環路31aの復路とで形成されるループと、循環路31aの往路と循環路31bと循環路31とで形成されるループの2ループで各機器が接続されている。
 図2(d)のシステムでは、洗浄機21と貯留槽22とを循環路31aの往路で接続し、前記貯留槽22と洗浄機21とを、加熱器25を介して循環路31aの復路で接続する。また、貯留槽22と電解セル23とを冷却器26を介して循環路31bの往路で接続し、前記電解セル23と貯留槽22とを循環路31bの復路で接続する。さらに、前記電解セル23と洗浄機21とを循環路31で接続する。貯留槽22には循環液の温度低下を防ぐための加熱器27を設置する。すなわち循環路31aの往路と循環路31aの復路とで形成されるループと、循環路31bの往路と循環路31bの復路とで形成されるループと、循環路31aの往路と循環路31bの往路と循環路31とで形成されるループの3ループで各機器が接続されている。
 以上のように、従来技術では貯留槽をレジスト分解反応を副次的に進行させる反応場として用いていた。
特開2007-266495号公報
 図2(b)のシステムでは、洗浄機21から排出される残留レジストを含む循環液に対して電解セル23において生成した過硫酸溶液を貯留槽22にて加えるため、貯留槽22においてレジストを確実に分解することができる。また貯留槽22から電解セル23を介して循環するループの流量の調整を、洗浄機21から貯留槽22を介して循環するループの流量と実質的に独立して行うことができるので、洗浄機21への硫酸溶液循環量の増減に関わらず、電解セル23内部において適正な硫酸溶液流量分布を保つことができる。
 しかし、洗浄機21からの循環液の全量を、貯留槽22を介して循環するので、貯留槽22の液温が低下した貯留液を洗浄機21に返送する際の加熱器25の負荷を下げるために、貯留槽22に別途加熱器27を設置する必要がある。すると貯留槽22の硫酸溶液が高温に保持されるため貯留槽22内に流入した過硫酸はすぐに自己分解してしまい、洗浄機21に高濃度の過硫酸溶液を供給することが困難であるという問題がある。
 図2(c)のシステムでは、洗浄機21から貯留槽22と電解セル23とを介して循環するループの流量の調整を、洗浄機21から貯留槽22を介して循環するループの流量と実質的に独立して行うことができるので、洗浄機21への硫酸溶液循環量の増減に関わらず、電解セル23内部において適正な硫酸溶液流量分布を保つことができる。また、冷却した硫酸溶液を電解するため電解効率良く過硫酸溶液を製造することができ、また循環路31において過硫酸溶液を加温しないので自己分解が進む前に洗浄機21に供給することができる。
 しかし、洗浄機21での単位時間当たり必要過硫酸量が多い場合、即ち半導体ウェハへのドーズ量が多い、レジスト厚さが厚い、処理時間を短くしたいなどの場合、高濃度の過硫酸溶液を短時間で製造するためには多数の電解セル23を設置することが必要になるという問題がある。
 図2(d)のシステムでは、洗浄機21からの残留レジストを含む循環液に対して、電解セル23において生成した過硫酸溶液を貯留槽22にて加えるため、レジストを確実に分解することができる。また洗浄機21から貯留槽22と電解セル23とを介して循環するループの流量と貯留槽22から電解セル23を介して循環するループの流量の調整を、洗浄機21から貯留槽22を介して循環するループの流量と実質的に独立して行うことができるので、洗浄機21への硫酸溶液循環量の増減に関わらず、電解セル23内部において適正な硫酸溶液流量分布を保つことができる。さらに、冷却した硫酸溶液を電解するため電解効率良く過硫酸溶液を製造することができ、また循環路31において過硫酸溶液を加温しないので自己分解が進む前に洗浄機21に供給することができる。
 しかしながらこの場合にも、洗浄機21からの循環液の全量を、貯留槽22に循環するので、貯留槽22の液温が低下した貯留液を洗浄機21に返送する際の加熱器25の負荷を下げるために、貯留槽22に別途加熱器27を設置する必要がある。それゆえ貯留槽22の硫酸溶液が高温に保持されるため貯留槽22内に流入した過硫酸はすぐに自己分解してしまい、洗浄機21に高濃度の過硫酸溶液を供給することが困難であるという問題が依然として残っている。また、洗浄機21での単位時間当たり必要過硫酸量が多い場合、即ち半導体ウェハへのイオンドーズ量が多い、レジスト厚さが厚い、処理時間を短くしたいなどの場合、高濃度の過硫酸溶液を製造するためには、やはり多数の電解セル23を設置することが必要になるという問題も残っている。
 本発明は、上記事情を背景としてなされたものであり、電解セルの設置数を低減しつつ高性能の機能性溶液を製造して使用側に供給することができる機能性溶液供給システムを提供することを目的とする。
 すなわち、本発明の機能性溶液供給システムのうち、第1の本発明は、硫酸溶液を電解することにより機能性溶液を製造して使用側に供給する機能性溶液供給システムにおいて、
 該システムが、硫酸溶液を貯留する貯留槽と、硫酸溶液を電解する電解装置と、硫酸溶液を加温する加温手段と、硫酸溶液を冷却する冷却手段と、以下の3つの循環ラインとを備えることを特徴とする機能性溶液供給システム。
1.前記貯留槽から排出された硫酸溶液を、前記加温手段を介することなく前記電解装置を介して前記貯留槽に戻す第1の循環ライン
2.前記使用側から導入された硫酸溶液を、前記加温手段を介することなく前記冷却手段及び前記貯留槽をこの順に介して前記使用側に戻す第2の循環ライン
3.前記使用側から導入された硫酸溶液を、前記冷却手段及び前記貯留槽を介することなく前記加温手段を介して前記使用側に戻す第3の循環ライン
 第2の本発明の機能性溶液供給システムは、前記第1の本発明において、前記第2の循環ラインと前記第3の循環ラインは、前記使用側に戻す直前に合流していることを特徴とする。
 第3の本発明の機能性溶液供給システムは、前記第1または第2の本発明において、前記第2の循環ラインと前記第3の循環ラインは前記使用側から導入された後に分岐していることを特徴とする。
 第4の本発明の機能性溶液供給システムは、前記第1~第3の本発明のいずれかにおいて、前記第1の循環ラインには、前記貯留槽の下流側であって前記電解装置の上流側に、硫酸溶液を冷却する第2の冷却手段を備えることを特徴とする。
 第5の本発明の機能性溶液供給システムは、前記第1~第3の本発明のいずれかにおいて、前記第1の循環ラインには、前記電解装置の下流側であって前記貯留槽の上流側に、硫酸溶液を冷却する第2の冷却手段を備えることを特徴とする。
 第6の本発明の機能性溶液供給システムは、前記第1~第5の本発明のいずれかにおいて、前記使用側はバッチ式基板洗浄装置であることを特徴とする。
 本発明によれば、硫酸溶液を電解することにより機能性溶液を製造して使用側に供給する機能性溶液供給システムにおいて、該システムが硫酸溶液を貯留する貯留槽と、硫酸溶液を電解する電解装置と、硫酸溶液を加温する加温手段と、硫酸溶液を冷却する冷却手段と、
1.前記貯留槽から排出された溶液を、前記加温手段を介することなく前記電解装置を介して前記貯留槽に戻す第1の循環ライン
2.使用側から導入された硫酸溶液を前記加温手段を介することなく、前記冷却手段及び前記貯留槽をこの順に介して使用側に戻す第2の循環ライン
3.前記使用側から導入された硫酸溶液を、前記冷却手段及び前記貯留槽を介することなく加温手段を介して前記使用側に戻す第3の循環ライン、
を備えているので、第1の循環ラインを設けることにより小さな電解能力で過硫酸を貯留槽内に高濃度に保持することができ、また第2、3の循環ラインを設けることにより過硫酸溶液を短時間で昇温することができるため、過硫酸が自己分解する前に高性能の機能性溶液として使用側に供給することができる。
本発明の一実施形態の機能性溶液供給システムおよび変更例の機能性溶液供給システムを示す図である。 従来の1ループ式と、2ループ式および3ループ方式の機能性溶液供給システムを示す図である。
符号の説明
 1  洗浄機
 2  貯留槽
 3  電解セル
 4  冷却器
 5  加熱器
 6  冷却器
 7  冷却器
11  第1の循環ライン
12  第2の循環ライン
13  第3の循環ライン
 以下に、本発明の一実施形態を図1(a)に基づいて説明する。
 この実施形態では、使用側のバッチ式基板洗浄装置である洗浄機1と、硫酸溶液を貯液する貯留槽2と、硫酸溶液を電解する電解装置である電解セル3とを備えている。
 そして、貯留槽2の排液側と電解セル3の入液側とは第1の循環ライン11の往路で接続され、電解セル3の排液側と貯留槽2の入液側とが第1の循環ライン11の復路で接続されている。すなわち、貯留槽2と電解セル3とが第1の循環ライン11で接続されて、硫酸溶液の循環が可能になっている。
 また、洗浄機1の排液側と前記貯留槽2の入液側とは、第2の循環ライン12の往路で接続されており、さらに貯留槽2の排液側と洗浄機1の入液側とは、第2の循環ライン12の復路で接続されている。すなわち、洗浄機1と貯留槽2とは第2の循環ライン12で接続されて硫酸溶液の循環が可能になっている。
 さらに洗浄機1には、排液側に接続するべく、前記第2の循環ライン12の往路と一部を共通にして、その下流側で分岐する第3の循環ライン13が接続されており、該第3の循環ライン13は、洗浄機1の入液側に接続するべく、洗浄機1の入液側直前で前記第2の循環ライン12の復路に合流している。以上のように本発明の機能性溶液供給システムは、従来技術とは異なる3ループ式のシステムとなっている。
 なお、第2の循環ライン12には、第3の循環ライン13が分岐した位置の下流側であって、貯留槽2の入液側に接続される位置の上流側に、冷却手段として冷却器4が介設されており、第3の循環ライン13には、前記第2の循環ライン12との分岐位置の下流側であって、前記第2の循環ライン12と合流する前の位置で加温手段としての加熱器5が介設されている。
 次に、上記機能性溶液供給システムの動作について説明する。
 貯留槽2では好適には40~80℃とされた硫酸溶液が収容され、第1の循環ライン11を通して電解セル3との間で硫酸溶液を循環しつつ電解することで、過硫酸が生成して、高濃度過硫酸を含む硫酸溶液として貯留槽2に貯液される。なお、本発明としては電解セルの構成が特に限定されるものではないが、好適には少なくとも陽極にダイヤモンド電極を備えるものが望ましい。
 貯留槽2に貯留された高濃度過硫酸を含む硫酸溶液は、第2の循環ライン12の復路を通して洗浄機1へと送液される。一方、洗浄機1で使用された硫酸溶液は、第2の循環ライン12の往路を通して冷却器4で貯留槽温度(40℃~80℃程度)にまで冷却されつつ比較的小流量(少なくとも第1の循環ライン11の循環量より小流量)で貯留槽2に投入される。これにより貯留槽2内の過硫酸が洗浄機1からの硫酸溶液の導入によって希薄化されるのを防止する。また、硫酸溶液が冷却器4で冷却されることで、貯留槽2内の溶液温度が上昇して過硫酸の自己分解が進行するのを防止する。なお、冷却器4の構成は本発明としては特に限定されるものではなく、熱交換器などの適宜の冷却手段を用いることができる。
 一方、洗浄機1から排出される硫酸溶液は、上流側では第2の循環ライン12の往路を通り、その後、分岐する第3の循環ライン13に多くが移送される。この硫酸溶液は加熱器5によって加熱される。その際の加熱器5の出口温度を洗浄機1の運転温度より高く設定することにより必要熱量を補うことができる。この高温の硫酸溶液と貯留槽1から送られる硫酸溶液とが洗浄機1に送液されることで、洗浄機1における溶液温度が運転温度に達する。このため、本実施形態のように第2の循環ライン12と第3の循環ライン13とを洗浄機1への入液側直前で合流させることで、第2の循環ライン12を通して送液される高濃度過硫酸を含む硫酸溶液が瞬時に昇温して洗浄機1に導入される。過硫酸は、高温で短時間に自己分解するため、高濃度過硫酸を含む硫酸溶液を瞬時に昇温させることで過硫酸が殆ど自己分解する間もなく洗浄機1に導入される。これにより、貯留槽2に貯留された過硫酸を無駄なく洗浄機1へ送りこむことができる。なお、上記加熱器5の構成は本発明として特に限定されるものではなく、ヒータや熱交換器などを用いることができる。 上記のように本発明においては貯留槽を過流酸の高濃度の保持の目的で用いている。また洗浄を洗浄機内で完結するように機能性溶液の温度と過硫酸濃度を整えている。そのため従来技術とは異なり貯留槽内の温度を所定の低温に維持している。
 尚、洗浄機1の温度が高温、例えば130℃以上の場合、洗浄機1内で過硫酸が自己分解して損失に繋がるように思われるが、実際にはこれは無駄ではない。過硫酸が酸化剤として働くためには、高温による自己分解で生じた硫酸ラジカルが有機物をアタックするので硫酸ラジカル生成のためには洗浄機1内を高温に保持する必要がある。この硫酸ラジカルは極めて短寿命なので、反応場である洗浄機1内で生成する必要がある。
 ただし図1(a)のシステムでは、電解による発熱により第1の循環ライン11の循環液が昇温されて貯留槽2に戻るため、その分も加味して貯留槽2の前段の冷却器4により貯留槽2中の硫酸溶液の温度制御を行う必要があり、冷却器4の負荷を高くすると共に第2の循環ライン12の循環量を大きくしなければならず、制御が難しくなる。その場合は、図1(b)のシステムのように貯留槽2の後段にも第2の冷却手段として冷却器6を設けることが好ましい。これにより冷却器4は第2の循環ライン12の循環液の温度制御を、冷却器6は第1の循環ライン11の循環液の温度制御をそれぞれ独立して行うことができ、冷却器4の負荷を下げると共に第2の循環ライン12の循環量を小さくすることができる。また、第1の循環ラインの循環液の温度を調整できれば図1(b)のシステムに限定されず、例えば図1(c)のように電解セルの後段で第2の冷却手段である冷却器7で冷却を行っても構わない。
 本発明では第1の循環ラインを貯留槽に接続すると表現しているが、直接貯留槽に戻すことに限定されない。つまり貯留槽の上流側で冷却器の下流側の第2の循環ラインに接続しても構わないし、第2の循環ラインの復路を(第3の循環ラインと合流する場合は合流点の上流側で)分岐して第1の循環ラインの往路としても構わない。
 上記実施形態では、機能性溶液の供給先としてバッチ式基板洗浄装置を示したが、本発明としてはこれに限定されるものではなく、電解した硫酸溶液を使用可能な種々の用途の使用側に供給して使用することが可能である。
 以下の実施例および比較例により、本発明のシステムが有効であることを明らかにする。
[実施例1](3ループ方式)
 図1(a)に対応するシステムを用いて運転を行った。なお、以降の実施例では、第1の循環路11をループ1、第2の循環路12をループ2、第3の循環路13をループ3という。
(運転条件)
ウエハ:300mmφ、レジスト厚さ=860nm
洗浄機1:温度=140℃、液容量=50L、処理枚数=50枚/バッチ
処理所要時間=10分/バッチ
洗浄液:硫酸濃度=85wt%
洗浄機1での過硫酸必要量=11.9g/分
(物質収支)
ループ1:循環量=8L/分、電解セル3入口温度=50℃
     電解セル3出口温度=75℃
ループ2:循環量=6L/分、冷却器4出口温度=19℃、貯留槽2温度=50℃
     貯留槽2出口:過硫酸濃度=2.0g/L
     (過硫酸循環量=12.0g/分)
ループ3:循環量=19L/分
     ヒーター5出口温度=174℃、ヒーター5熱負荷=29.2kW
 即ち冷却器4を設けたことにより洗浄機1に過硫酸12.0g/分を循環流量6L/分で送り込むことができた。また投入直前の過硫酸溶液は50℃なので、自己分解は殆ど起こらず、無駄がない。
[実施例2](3ループ方式)
 図1(b)に対応するシステムを用いて運転を行った。
(運転条件)
ウエハ:300mmφ、レジスト厚さ=860nm
洗浄機1:温度=140℃、液容量=50L、処理枚数=50枚/バッチ
処理所要時間=10分/バッチ
洗浄液:硫酸濃度=85wt%
洗浄機1での過硫酸必要量=11.9g/分
(物質収支)
ループ1:循環量=8L/分
     電解セル3入口温度=50℃、電解セル3出口温度=75℃
ループ2:循環量=1L/分、冷却器4出口温度=40℃、貯留槽2温度=72℃
     貯留槽2出口の過硫酸濃度=11.9g/L
     (過硫酸循環量=11.9g/分)
ループ3:循環量=24L/分
     ヒーター5出口温度=143℃、ヒーター5熱負荷=3.8kW
 冷却器6を設けたことにより洗浄機1に過硫酸11.9g/分を循環流量1L/分で送り込むことができた。すなわち冷却器6を設けたことにより冷却器4の負荷を下げることができ、ループ2の循環量を下げることができた。またループ2の循環量を下げることができたのでヒーター5の負荷を下げることができた。このように本システムでは温度制御が容易となりヒーターや冷却器の負荷を抑えることができた。
[比較例1](1ループ方式)
 図2(a)に対応するシステムを用いて運転を行った。
(運転条件)
実施例1と同じ。ただしループの番号とループの構成は必ずしも実施例に対応してない。(以下比較例も同様)
(物質収支)
ループ1:循環量=8L/分
     電解セル23入口温度=50℃、電解セル23出口温度=75℃
     電解セル23出口の過硫酸濃度=1.49g/L
     (過流酸循環量=11.9g/分)
     ヒーター25の出口温度=140℃、ヒーター25熱負荷=28.5kW
 即ち、洗浄機21に過流酸必要量を送り込むためにはヒーター25の熱負荷が極めて大きくなり、実用的ではないだけでなく、ヒーター25内での滞留時間が長いため、過硫酸の自己分解が進行してしまった。
[比較例2](2ループ方式)
 図2(b)に対応するシステムを用いて運転を行った。
(運転条件)
実施例1と同じ。
(物質収支)
ループ1(循環路31b):
     循環量=8L/分
     電解セル23の入口温度=50℃、電解セル23の出口温度=76℃
     電解セル23出口の過流酸濃度=1.49g/L
     (過流酸循環量=11.9g/分)
     冷却器26出口温度=50℃、貯留槽22温度=125℃
ループ2(循環路31a):
     循環量=25L/分
     ヒーター25出口温度=170℃、ヒーター25熱負荷=20kW
     貯留槽22の出口の過硫酸濃度=0g/L
 即ち比較例1に対してヒーター25の熱負荷が小さくはなったものの、依然として過大であり実用的ではない。また貯留槽22出口の過流酸濃度が0g/Lになってしまった。これは電解セル23から貯留槽22に過流酸濃度1.49g/Lの循環液が共給されているが、貯留槽22を125℃に温度調整しているので、貯留槽22内の過流酸は自己分解により実質的に無くなってしまったものと推定される。
[比較例3](2ループ方式)
 図2(c)に対応するシステムを用いて運転を行った。
(運転条件)
実施例1と同じ。
(物質収支)
ループ1(循環路31、31b):
     循環量=8L/分
     電解セル23入口温度=50℃、電解セル23出口温度=76℃
     電解セル23出口の過流酸液量1.49g/L
     (過流酸循環量=11.9g/分)
     冷却器26出口温度=50℃、貯留槽22温度=140℃
ループ2(循環路31a):
     循環量=17L/分
     ヒーター25出口温度=170℃、ヒーター25熱負荷=26kW
     洗浄機21入口の過硫酸濃度=0.48g/L
 即ち、比較例1に対してヒーター25の熱負荷が殆ど小さくならず、依然として過大であり実用的ではない。
[比較例4](3ループ方式)
 図2(d)に対応するシステムを用いて運転を行った。
(運転条件)
実施例1と同じ。ただし循環量は、各ループが他のループと合流していない部分における循環量を示す。
(物質収支)
ループ1(循環路31b):
     循環量=3.2L/分
     電解セル23入口温度=50℃、電解セル23出口温度=76℃
     電解セル23出口の過流濃度1.49g/L
     (過流酸循環量=4.8g/分)
     貯留槽22温度=133℃
ループ2(循環路31):
     循環量=4.8L/分
     洗浄機21入口の過硫酸濃度=1.49g/L
     (過流酸循環量=7.2g/分)
ループ3(循環路31a):
     循環量=21.8L/分
     ヒーター25出口温度=155℃、ヒーター25熱負荷=23.4kW
     貯留槽22出口の過流酸温度0g/L
 即ち比較例1に対してヒーター25の熱負荷が若干小さくなるものの依然として過大であり、実用的ではない。また貯留槽22出口の過流酸濃度が0g/Lになってしまった。これは、電解セル23から貯留槽22に過流酸濃度1.49g/Lの循環液が供給されているが、貯留槽22を133℃に温度調節しているので、貯留槽22内の過流酸は自己分解により実質的に無くなってしまったものと推定される。

Claims (6)

  1.  硫酸溶液を電解することにより機能性溶液を製造して使用側に供給する機能性溶液供給システムにおいて、
     該システムが、硫酸溶液を貯留する貯留槽と、硫酸溶液を電解する電解装置と、硫酸溶液を加温する加温手段と、硫酸溶液を冷却する冷却手段と、以下の3つの循環ラインとを備えることを特徴とする機能性溶液供給システム。
    1.前記貯留槽から排出された硫酸溶液を、前記加温手段を介することなく前記電解装置を介して前記貯留槽に戻す第1の循環ライン
    2.前記使用側から導入された硫酸溶液を、前記加温手段を介することなく前記冷却手段及び前記貯留槽をこの順に介して前記使用側に戻す第2の循環ライン
    3.前記使用側から導入された硫酸溶液を、前記冷却手段及び前記貯留槽を介することなく前記加温手段を介して前記使用側に戻す第3の循環ライン
  2.  前記第2の循環ラインと前記第3の循環ラインは、前記使用側に戻す直前に合流していることを特徴とする請求項1に記載の機能性溶液供給システム。
  3.  前記第2の循環ラインと前記第3の循環ラインは前記使用側から導入された後に分岐していることを特徴とする請求項1または2に記載の機能性溶液供給システム。
  4.  前記第1の循環ラインには、前記貯留槽の下流側であって前記電解装置の上流側に、硫酸溶液を冷却する第2の冷却手段を備えることを特徴とする請求項1~3のいずれかに記載の機能性溶液供給システム。
  5.  前記第1の循環ラインには、前記電解装置の下流側であって前記貯留槽の上流側に、硫酸溶液を冷却する第2の冷却手段を備えることを特徴とする請求項1~3のいずれかに記載の機能性溶液供給システム。
  6.  前記使用側はバッチ式基板洗浄装置であることを特徴とする請求項1~5のいずれかに記載の機能性溶液供給システム。
PCT/JP2009/054631 2008-04-08 2009-03-11 機能性溶液供給システム WO2009125642A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801219992A CN102057470B (zh) 2008-04-08 2009-03-11 功能性溶液供给系统
KR1020107024802A KR101331458B1 (ko) 2008-04-08 2009-03-11 기능성 용액 공급 시스템
EP09729203A EP2280409B1 (en) 2008-04-08 2009-03-11 Functional solution supply system
US12/737,079 US8529748B2 (en) 2008-04-08 2009-03-11 Functional solution supply system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-099888 2008-04-08
JP2008099888A JP5105081B2 (ja) 2008-04-08 2008-04-08 機能性溶液供給システムおよび機能性溶液供給方法

Publications (1)

Publication Number Publication Date
WO2009125642A1 true WO2009125642A1 (ja) 2009-10-15

Family

ID=41161777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054631 WO2009125642A1 (ja) 2008-04-08 2009-03-11 機能性溶液供給システム

Country Status (7)

Country Link
US (1) US8529748B2 (ja)
EP (1) EP2280409B1 (ja)
JP (1) JP5105081B2 (ja)
KR (1) KR101331458B1 (ja)
CN (1) CN102057470B (ja)
TW (1) TWI417422B (ja)
WO (1) WO2009125642A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140060596A1 (en) * 2011-04-05 2014-03-06 International Business Machines Corporation Partial solution replacement in recyclable persulfuric acid cleaning systems

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5668914B2 (ja) * 2010-08-27 2015-02-12 栗田工業株式会社 洗浄方法および洗浄システム
US9556526B2 (en) 2012-06-29 2017-01-31 Tennant Company Generator and method for forming hypochlorous acid
US20140001054A1 (en) * 2012-06-29 2014-01-02 Tennant Company System and Method for Generating and Dispensing Electrolyzed Solutions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02106929A (ja) * 1988-10-17 1990-04-19 Matsushita Electron Corp フォトマスク洗浄装置
JP2006278838A (ja) * 2005-03-30 2006-10-12 Kurita Water Ind Ltd 硫酸リサイクル型洗浄システム
JP2007266495A (ja) 2006-03-29 2007-10-11 Kurita Water Ind Ltd 洗浄システム
JP2008053484A (ja) * 2006-08-25 2008-03-06 Kurita Water Ind Ltd 過硫酸洗浄システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200417628A (en) * 2002-09-09 2004-09-16 Shipley Co Llc Improved cleaning composition
US20050139487A1 (en) * 2003-05-02 2005-06-30 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Method for the oxidative treatment of components comprised of or containing elementary silicon and/or substantially inorganic silicon compounds
CN1283836C (zh) * 2004-03-18 2006-11-08 中国科学院上海技术物理研究所 用于硅腐蚀的四甲基氢氧化铵腐蚀液及制备方法
JP4462146B2 (ja) * 2004-09-17 2010-05-12 栗田工業株式会社 硫酸リサイクル型洗浄システムおよび硫酸リサイクル型過硫酸供給装置
CN101110376A (zh) * 2006-07-21 2008-01-23 日月光半导体制造股份有限公司 形成焊接凸块的方法及其刻蚀剂
JP5024528B2 (ja) 2006-10-04 2012-09-12 栗田工業株式会社 過硫酸供給システムおよび過硫酸供給方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02106929A (ja) * 1988-10-17 1990-04-19 Matsushita Electron Corp フォトマスク洗浄装置
JP2006278838A (ja) * 2005-03-30 2006-10-12 Kurita Water Ind Ltd 硫酸リサイクル型洗浄システム
JP2007266495A (ja) 2006-03-29 2007-10-11 Kurita Water Ind Ltd 洗浄システム
JP2008053484A (ja) * 2006-08-25 2008-03-06 Kurita Water Ind Ltd 過硫酸洗浄システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2280409A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140060596A1 (en) * 2011-04-05 2014-03-06 International Business Machines Corporation Partial solution replacement in recyclable persulfuric acid cleaning systems
US9165801B2 (en) * 2011-04-05 2015-10-20 International Business Machines Corporation Partial solution replacement in recyclable persulfuric acid cleaning systems

Also Published As

Publication number Publication date
EP2280409A1 (en) 2011-02-02
EP2280409B1 (en) 2012-08-01
CN102057470B (zh) 2013-04-10
CN102057470A (zh) 2011-05-11
US8529748B2 (en) 2013-09-10
US20110120857A1 (en) 2011-05-26
KR20110008208A (ko) 2011-01-26
EP2280409A4 (en) 2011-07-06
TW200949018A (en) 2009-12-01
JP5105081B2 (ja) 2012-12-19
JP2009253057A (ja) 2009-10-29
TWI417422B (zh) 2013-12-01
KR101331458B1 (ko) 2013-11-26

Similar Documents

Publication Publication Date Title
JP5024528B2 (ja) 過硫酸供給システムおよび過硫酸供給方法
WO2009125642A1 (ja) 機能性溶液供給システム
CN114318389A (zh) 制氢设备和制氢设备的电解槽温度控制方法
CN104871296A (zh) 基板清洗液以及基板清洗方法
KR101255018B1 (ko) 세정 시스템 및 세정 방법
JP4412301B2 (ja) 洗浄システム
JP2006228899A (ja) 硫酸リサイクル型洗浄システム
WO2010110125A1 (ja) 機能性溶液供給システムおよび供給方法
TWI419999B (zh) 電解方法
JP2012204546A (ja) 電子材料洗浄方法および洗浄装置
JP2006278687A (ja) 硫酸リサイクル型枚葉式洗浄システム
JP5126478B2 (ja) 洗浄液製造方法および洗浄液供給装置ならびに洗浄システム
JP5024521B2 (ja) 高温高濃度過硫酸溶液の生成方法および生成装置
JP6609919B2 (ja) 半導体基板の洗浄方法
JP2006278915A (ja) 硫酸リサイクル型洗浄システム
CN108217856A (zh) 一种电化学水处理系统及其水处理方法
CN108603299B (zh) 过硫酸溶液制造供给装置及方法
CN111041493A (zh) 一种铝材立式抛光生产方法
JP2006111943A (ja) 硫酸リサイクル型洗浄システムおよびその運転方法
CN217203011U (zh) 一种含再生槽的电解磷化设备
JP4557167B2 (ja) 硫酸リサイクル型洗浄システム
JP2009027023A (ja) ウェハ洗浄液の製造方法及び装置
CN117385359A (zh) 一种无氯气电解再生酸性蚀刻液的方法
JP2003293179A (ja) 水電解装置とその運転方法
JPH01119679A (ja) 化学銅めっき液の管理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980121999.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09729203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107024802

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009729203

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12737079

Country of ref document: US