WO2009123193A1 - 吸水性樹脂を主成分とする粒子状吸水剤の製造方法 - Google Patents

吸水性樹脂を主成分とする粒子状吸水剤の製造方法 Download PDF

Info

Publication number
WO2009123193A1
WO2009123193A1 PCT/JP2009/056659 JP2009056659W WO2009123193A1 WO 2009123193 A1 WO2009123193 A1 WO 2009123193A1 JP 2009056659 W JP2009056659 W JP 2009056659W WO 2009123193 A1 WO2009123193 A1 WO 2009123193A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
tank
mass
aqueous solution
liquid
Prior art date
Application number
PCT/JP2009/056659
Other languages
English (en)
French (fr)
Inventor
松本 幸治
修二 神▲崎▼
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to EP20090726747 priority Critical patent/EP2261264B1/en
Priority to CN2009801102993A priority patent/CN101977940B/zh
Priority to US12/934,381 priority patent/US8912298B2/en
Priority to JP2010505937A priority patent/JP5421243B2/ja
Publication of WO2009123193A1 publication Critical patent/WO2009123193A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0086Processes carried out with a view to control or to change the pH-value; Applications of buffer salts; Neutralisation reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/50Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/10Aqueous solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • C08F20/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00004Scale aspects
    • B01J2219/00006Large-scale industrial plants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/4673Plural tanks or compartments with parallel flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/4673Plural tanks or compartments with parallel flow
    • Y10T137/469Sequentially filled and emptied [e.g., holding type]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86187Plural tanks or compartments connected for serial flow

Definitions

  • the present invention relates to a method for producing a particulate water-absorbing agent mainly composed of a water-absorbing resin.
  • a particulate water-absorbing agent mainly composed of a water-absorbing resin is used for sanitary materials such as paper diapers, sanitary napkins and incontinence pads.
  • This water absorbent resin absorbs body fluids such as urine and blood.
  • the water-absorbing resin include a crosslinked product of partially neutralized polyacrylic acid, a hydrolyzate of starch-acrylic acid graft polymer, a saponified product of vinyl acetate-acrylic acid ester copolymer, and a hydrolysis of acrylonitrile copolymer.
  • crosslinked products thereof, hydrolysates of acrylamide copolymers and crosslinked products thereof, and crosslinked products of cationic monomers are known. From the viewpoint of performance and cost, a crosslinked product of a partially neutralized polyacrylic acid is particularly preferably used.
  • a method for producing a particulate water-absorbing agent containing a polyacrylic acid (salt) -based water-absorbing resin in particular, a partially neutralized polyacrylic acid
  • a monomer containing an acrylate is polymerized by a polymerization initiator, and a hydrous gel Is obtained.
  • the water-containing gel is dried and pulverized to obtain water-absorbing resin particles.
  • the surface of the water-absorbent resin particles is crosslinked with a surface crosslinking agent.
  • an additive for surface modification is added to the surface of the water-absorbent resin particles to obtain a particulate water-absorbing agent.
  • the polymerization initiator is in an aqueous solution state, And it is necessary to make it a low concentration aqueous solution. Therefore, a large amount of aqueous solution is required, and a tank for storing the aqueous solution is also required to have a large capacity.
  • the supply of the aqueous solution of the polymerization initiator is also stopped.
  • the aqueous solution is stored in the tank for a long time.
  • a chemical reaction occurs in the aqueous solution, and the function of the polymerization initiator may be impaired.
  • the aqueous solution whose function is impaired is discarded, but when the tank capacity is large, the amount of the aqueous solution to be discarded becomes large, which is uneconomical. Furthermore, a great deal of time and money is spent on waste liquid treatment.
  • a method for producing a particulate water-absorbing agent mainly composed of a water-absorbing resin there is a method of mixing an additive or the like by, for example, line mixing.
  • the concentration of the obtained solution varies and is not stable. Therefore, the quality of the obtained particulate water-absorbing agent also varies and is not stable.
  • EP 0873185 discloses a particulate polymer obtained by a reaction between a monomer and a polymerization initiator stored in a tank controlled at a predetermined temperature. ing.
  • US Pat. No. 7,265,190 discloses a method for producing a water-absorbent resin in which a polymerization initiator is added to a monomer liquid in a monomer liquid transport pipe.
  • the physical property value of the water absorbent resin is stabilized by removing the water absorbent resin whose physical property value is outside the predetermined range, but it is necessary to remix the removed water absorbent resin. The process is complicated.
  • US Pat. No. 4,985,518 discloses a method for producing a water-absorbent resin in which a polymerization initiator and a monomer liquid stored in separate tanks are mixed by a line mixer and supplied to a belt polymerization machine.
  • a solid water-absorbing resin is obtained by drying simultaneously with the polymerization by using polymerization heat, but the water-absorbing physical property of the obtained water-absorbing resin is low.
  • WO 2007/028746 pamphlet WO 2007/0287747 pamphlet and WO 2007/028751 pamphlet include a method for producing a water-absorbing resin including a continuous neutralization step of mixing acrylic acid and a base. It is disclosed. In these manufacturing methods, the liquid containing the raw material for the water-absorbent resin (monomer and polymerization initiator) is stored in a tank.
  • the particulate water-absorbing agent mainly composed of a water-absorbing resin controls various physical properties (absorption capacity under no pressure, absorption capacity under pressure, water absorption speed, liquid permeability, gel stability, etc.) according to its application.
  • various physical properties absorption capacity under no pressure, absorption capacity under pressure, water absorption speed, liquid permeability, gel stability, etc.
  • Slight variations in the physical property values of the particulate water-absorbing agent may impair the quality of final products such as paper diapers and sanitary napkins.
  • productivity and a loss of disposal accompanying spec out In a plant that manufactures a large amount of particulate water-absorbing agent, there is still a problem that the physical properties of the obtained particulate water-absorbing agent are not stable even if the production methods disclosed in the above documents are applied.
  • the problem to be solved by the present invention is that a particulate water-absorbing agent mainly composed of a water-absorbing resin is obtained, which does not require a large-capacity tank and is excellent in quality stability. It is to provide a manufacturing method.
  • the present inventors have completed the present invention as a result of intensive studies aimed at stabilizing physical properties in the continuous production of particulate water-absorbing agents. Specifically, first, the present inventors paid attention to a liquid containing a polymerization initiator and a liquid containing a modifier, which were not noted in Patent Documents 1 to 11 and the like. And even if the polymerization process, mixing process, etc. are strictly controlled, the present inventors have found slight variations or changes in the concentration of the liquid containing the polymerization initiator and the liquid containing the modifier (for example, the concentration accompanying decomposition). It has been found that variations in quality of the particulate water-absorbing agent cause variations in the quality of the particulate water-absorbing agent. Furthermore, the inventors have found that the physical properties of the obtained particulate water-absorbing agent can be stabilized or enhanced by adding a specific step to the adjustment of the modifier, and the present invention has been completed.
  • the method for producing a particulate water-absorbing agent mainly comprising the water-absorbent resin according to the present invention is as follows. (1) A step of mixing a liquid containing a polymerization initiator into an aqueous solution of a water-absorbent resin monomer, (2) a step of obtaining a hydrogel (also referred to as a “hydrogel polymer”) by polymerization of the monomer, 3) a step of drying the water-containing gel to obtain a dry polymer; and (4) a step of adding a liquid containing a modifier to the monomer aqueous solution or the polymer.
  • a hydrogel also referred to as a “hydrogel polymer”
  • a liquid containing a liquid or a liquid containing a modifier (a) preparing two or more liquids, and (b) supplying the two or more liquids separately or together to the tank continuously. It is obtained through a step of continuously taking out a mixture of the two or more liquids from the tank.
  • the step (4) of adding a liquid containing a modifier to the monomer aqueous solution or the polymer is not essential, and the steps (a) and (b) are performed a plurality of times. It is preferable.
  • the “polymer to which a modifier is added” refers to a hydrogel polymer obtained by polymerization or a dry polymer thereof, and is preferably a dry polymer. That is, a modifier (preferably a surface cross-linking agent) is added to the dried water absorbent resin particles.
  • the liquid mixture inside the tank is circulated in a circulation loop.
  • the liquid mixture may be cooled or heated.
  • the mixed liquid may be cooled or heated in the tank.
  • one liquid prepared in the step (a) is an aqueous solution.
  • an aqueous solution of one or more polymerization initiators and water may be prepared.
  • the concentration of the aqueous solution of the polymerization initiator prepared in the step (a) is 20% by mass or more and 50% by mass or less, and the concentration of the aqueous solution of the polymerization initiator after dilution after the step (b) Is 1% by mass or more and 25% by mass or less.
  • the amount of the polymerization initiator is 0.001 part by mass or more and 2 parts by mass or less with respect to 1 mol of the monomer.
  • a liquid of one or more surface cross-linking agents and water are prepared as modifiers.
  • the amount of the surface crosslinking agent is 0.001 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the solid content of the polymer.
  • an aqueous solution of a modifier for the polymer after surface cross-linking and a dispersion auxiliary liquid are prepared.
  • the amount of the modifier is 0.0001 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the solid content of the polymer.
  • a surface crosslinking agent as a modifier and a modifier after surface crosslinking are used.
  • the modifier is selected from the group consisting of a surface cross-linking agent, a surfactant, a chelating agent, a deodorant, an antibacterial agent, a reducing agent, and an anti-coloring agent. It is.
  • another method for producing a water-absorbing agent mainly comprising a water-absorbing resin includes (1) a step of mixing a liquid containing a polymerization initiator into an aqueous solution of a monomer of the water-absorbing resin, (2) the above A step of obtaining a water-containing gel (also referred to as a water-containing gel-like polymer) by polymerization of monomers, and (3) a step of drying the water-containing gel to obtain a dry polymer, wherein the liquid containing the polymerization initiator is ( a) a step of preparing two or more liquids; and (b) a mixture of the two or more liquids from the tank while continuously supplying the two or more liquids separately or together to the tank. Can be obtained through a process of continuously taking out.
  • the ratio x / y of the liquid amount x for supplying the two or more liquids to the tank and the liquid amount y for extracting the two or more liquids from the tank is 0.00.
  • the flow rate of the liquid amount x and the liquid amount y is controlled within the range of 95 or more and 1.05 or less, and the retained liquid amount in the tank is within the range of 10% or more and 90% or less of the tank capacity. It is preferable to control.
  • the water absorbent resin is a polyacrylic acid and / or polyacrylate (hereinafter, polyacrylic acid and / or polyacrylate is abbreviated as polyacrylic acid (salt) as appropriate) -based water absorbent resin,
  • the polymerization is continuous kneader polymerization or continuous belt polymerization.
  • the production amount of the water-absorbing agent is continuous production of 1000 kg / hr or more per line or plant.
  • one or more dehydration esterification reactive surface cross-linking agents selected from the group consisting of oxazolidinone compounds, alkylene carbonate compounds, polyhydric alcohol compounds, and oxetane compounds are dried polymers. To be added.
  • a plurality of surface cross-linking agents having a covalent bond or an ionic bond are added to the dry polymer simultaneously or separately as the modifier.
  • the polymerization initiator is a water-soluble thermal decomposition type polymerization initiator using a reducing agent.
  • the particulate water-absorbing agent is a polyacrylic acid (salt) -based water-absorbing resin as a main component, and the absorbency against pressure (AAP) of physiological saline under a load of 4.8 kPa is 15 to 35 g / g, And / or liquid permeability (SFC) is 30 ( ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ) or more.
  • AAP absorbency against pressure
  • SFC liquid permeability
  • FIG. 1 is a conceptual diagram showing a series of devices used in the manufacturing method according to the present invention.
  • FIG. 2 is a conceptual diagram showing another series of apparatuses used in the manufacturing method according to the present invention.
  • FIG. 3 is a conceptual diagram showing still another series of apparatuses used in the manufacturing method according to the present invention.
  • FIG. 4 is a conceptual diagram schematically showing the periphery of a storage tank equipped with a jacket-type cooling / heating facility that can be used in the embodiment of the present invention.
  • FIG. 5 is a conceptual diagram schematically showing the periphery of a storage tank equipped with a coil-type cooling / heating facility that can be used in an embodiment of the present invention.
  • FIG. 6 is a conceptual diagram showing an outline of the periphery of a multi-tubular heat exchanger provided outside a storage tank that can be used in an embodiment of the present invention.
  • the “water-absorbing resin” means a water-swellable, water-insoluble polymer gelling agent, and has the following physical properties. That is, the absorption capacity (CRC / specified in the Examples) is essentially 5 g / g or more, preferably 10 to 100 g / g, more preferably 20 to 80 g / g, and water soluble content (Extractables / ERT470.2). -02 (2002) is essentially 0 to 50% by mass, preferably 0 to 30% by mass, more preferably 0 to 20% by mass, and particularly preferably 0 to 10% by mass. Say.
  • the water-absorbent resin is not limited to a form in which the total amount (100%) is a polymer, and may contain additives, which will be described later, as long as the above performance is maintained.
  • polyacrylic acid (salt) means a polymer having acrylic acid (salt) as a main component as a repeating unit.
  • acrylic acid (salt) as a monomer excluding the crosslinking agent is essentially 50 to 100 mol%, preferably 70 to 100 mol%, more preferably 90 to 100 mol%, particularly preferably A polymer containing substantially 100 mol% is meant.
  • the salt as a polymer essentially contains a water-soluble salt, preferably a monovalent salt, more preferably an alkali metal salt or an ammonium salt. Of these, alkali metal salts are particularly preferred, and sodium salts are more preferred.
  • the “water-absorbing agent” means an aqueous liquid gelling agent mainly composed of a water-absorbing resin.
  • the aqueous liquid is not limited to water, but may be urine, blood, feces, waste liquid, moisture or steam, ice, a mixture of water and an organic solvent and / or an inorganic solvent, rainwater, groundwater, etc. If water is included, there is no particular limitation. Among them, as the aqueous liquid, urine, particularly human urine can be mentioned more preferably.
  • the content of the water-absorbing resin (polyacrylic acid (salt) -based water-absorbing resin) according to the present invention is preferably 70 to 99.9% by weight, more preferably 80 to 99.7% by weight based on the whole. %, More preferably 90 to 99.5% by weight.
  • water is preferable from the viewpoint of water absorption speed and impact resistance of the powder (particles), and if necessary, additives described later are included.
  • particles means solids having fluidity with a particle size defined by sieve classification of 5 mm or less. If it is solid, the water content is not particularly limited, but it is usually less than 30% by weight, more preferably 20% by weight or less. Moreover, as a minimum of a particle size, it is 1 nm, for example. Furthermore, it is sufficient that the powder has a certain fluidity, for example, a solid that can measure Flow Rate (specified in ERT450.2-02 (2002)) or (ERT420.2-02 (2002)). Stipulation) means a solid that can be classified by sieving.
  • the shape of the solid is not particularly limited, and examples thereof include irregular crushed particles, spherical shapes, substantially spherical shapes, and granulated products (aggregates) thereof. Preferably, irregular crushed particles are included.
  • the manufacturing process in the present invention includes a polymerization process, a drying process, a pulverizing process, a classification process, a surface crosslinking process, a cooling process, an additive adding process, a granulating process, and a filling process.
  • a particulate water-absorbing agent is obtained.
  • a hydrogel is obtained by the polymerization reaction of the monomer of the water-absorbent resin.
  • a polymerization method For example, aqueous solution polymerization, reverse phase suspension polymerization, bulk polymerization, precipitation polymerization, etc. are mentioned.
  • aqueous solution polymerization and reverse phase suspension polymerization are more preferable, and aqueous solution polymerization is more preferable.
  • Continuous aqueous polymerization is particularly preferred.
  • continuous aqueous solution polymerization for example, a method of polymerizing while crushing a hydrogel obtained in a kneader of a uniaxial type or a multiaxial type (preferably a double arm type) (hereinafter referred to as “continuous kneader polymerization”), And a method of polymerizing by supplying an aqueous monomer solution in a predetermined container or on a driving belt (hereinafter referred to as “continuous belt polymerization”).
  • the monomer of the water-absorbing resin for obtaining the particulate water-absorbing agent according to the embodiment of the present invention is not particularly limited.
  • polyacrylic acid (salt) -based water-absorbing resin is preferable. Therefore, acrylic acid and / or its salt (for example, sodium, lithium, potassium, ammonium, amines, etc.) It is preferable to use as a main component a salt of these, particularly a sodium salt from the viewpoint of cost.
  • the proportion of acrylic acid and / or salt thereof in the total amount of monomers (excluding the crosslinking agent) is preferably 50 mol% or more, more preferably 80 mol% or more, and particularly preferably 95 mol% (the upper limit is 100 mol%).
  • both “non-neutralized monomer” and “salt resulting from neutralization” are referred to as monomers.
  • the salt By using the salt, the efficiency of the polymerization reaction is increased, and the unreacted monomer (residual monomer) contained in the particulate water-absorbing agent is reduced.
  • the neutralization rate is not particularly limited, and the polymerization gel may be neutralized after polymerization, if necessary. In applications that may come into contact with the human body, such as sanitary products, neutralization after polymerization is not required.
  • This neutralization rate is preferably from 30 to 100 mol%, more preferably from 40 to 95 mol%, still more preferably from 50 to 90 mol%, as a polymer.
  • the monomer concentration in the aqueous solution is not particularly limited, but is preferably 20 to 65% by mass, and preferably 30 to 65% by mass. % Is more preferable, and 40 to 60% by mass is particularly preferable.
  • the monomer concentration is not particularly limited, but is preferably 20 to 65% by mass, and preferably 30 to 65% by mass. % Is more preferable, and 40 to 60% by mass is particularly preferable.
  • an internal crosslinking agent may be added to the aqueous monomer solution as necessary.
  • the internal crosslinking agent By adding the internal crosslinking agent, dissolution of the particulate water absorbing agent can be suppressed when the particulate water absorbing agent absorbs body fluids such as urine and blood.
  • limit especially as said internal crosslinking agent The compound which has 2 or more polymerizable unsaturated groups and reactive groups in 1 molecule is mentioned, Among these, 2 or more polymerizable unsaturated groups are mentioned. The compound which has is preferable.
  • the amount of the internal cross-linking agent used may be appropriately determined depending on the desired physical properties of the particulate water-absorbing agent, but is usually preferably 0.001 to 5 mol%, preferably 0.01 to 5 mol% with respect to the monomer component. More preferred. By making the usage-amount of an internal crosslinking agent 0.001 mol% or more, the water soluble part of a particulate water absorbing agent is suppressed. Moreover, the particulate water absorbing agent excellent in the absorption capacity can be obtained by setting the amount of the internal crosslinking agent used to 5 mol% or less.
  • a foaming agent a hydrophilic polymer, a surfactant, a chain transfer agent, etc.
  • foaming agent include carbonic acid (hydrogen) salts, carbon dioxide, azo compounds, inert organic solvents, and the like.
  • hydrophilic polymer include starch / cellulose, starch / cellulose derivatives, polyvinyl alcohol, polyacrylic acid (salt), cross-linked polyacrylic acid (salt) such as a water absorbent resin, and the like.
  • the chain transfer agent include hypophosphorous acid (salt).
  • the usage-amount of these additives is suitably determined within the range which does not impair the effect of this invention.
  • the foaming agent is preferably 30 parts by mass or less
  • the hydrophilic polymer is preferably 30 parts by mass or less
  • the chain transfer agent is preferably 1 part by mass or less.
  • a polymerization initiator is added to the monomer aqueous solution.
  • the polymerization of the monomer is promoted by the action of the radical of the polymerization initiator.
  • the polymerization initiator is not particularly limited, and one or two or more of those used in normal polymerization of a water-absorbent resin may be used depending on the type of monomer component to be polymerized and polymerization conditions. Select and use. Specifically, a pyrolytic initiator or a photolytic initiator is used.
  • the thermal decomposition type initiator is not particularly limited, but for example, persulfates such as sodium persulfate, potassium persulfate and ammonium persulfate; peroxides such as hydrogen peroxide, t-butyl peroxide and methyl ethyl ketone peroxide; Azonitrile compounds, azoamidine compounds, cyclic azoamidine compounds, azoamide compounds, alkylazo compounds, 2,2'-azobis (2-amidinopropane) dihydrochloride and 2,2'-azobis [2- (2-imidazolin-2-yl) propane And azo compounds such as dihydrochloride.
  • persulfates such as sodium persulfate, potassium persulfate and ammonium persulfate
  • peroxides such as hydrogen peroxide, t-butyl peroxide and methyl ethyl ketone peroxide
  • Azonitrile compounds azoamidine compounds, cyclic azoam
  • the photolytic initiator is not particularly limited, and examples thereof include benzoin derivatives, benzyl derivatives, acetophenone derivatives, benzophenone derivatives, and azo compounds.
  • a thermal decomposition type initiator is preferable because it is low cost and a residual monomer is reduced, and a water-soluble thermal decomposition type polymerization initiator, particularly a persulfate is particularly preferable.
  • Two or more polymerization initiators may be used in combination.
  • the retention amount and storage amount of the polymerization initiator solution can be reduced, degradation and deterioration of the polymerization initiator solution over time are reduced.
  • the physical properties of the obtained particulate water-absorbing agent can be stabilized, and are most effective particularly during continuous production on a huge scale.
  • a water-soluble thermal decomposition type polymerization initiator which is used in combination with a reducing agent as necessary, is most preferable.
  • limit especially as a water-soluble thermal decomposition polymerization initiator For example, a persulfate, hydrogen peroxide, a water-soluble azo initiator, etc. are mentioned, A persulfate is preferable especially.
  • the reducing agent among the following reducing agents, water-soluble ones can be preferably used.
  • the reducing agent can promote the decomposition of these polymerization initiators, they can be combined to form a redox initiator.
  • the reducing agent is not particularly limited. For example, (heavy) sulfurous acid (salt) such as sodium sulfite and sodium hydrogen sulfite; L-ascorbic acid (salt); reducing metal (salt) such as ferrous salt Amines and the like.
  • the amount of the polymerization initiator used in the polymerization step and the reducing agent used as necessary is preferably 0.001 to 2 parts by mass, and 0.01 to 0.5 parts by mass with respect to 1 mol of the monomer. More preferred.
  • a residual monomer is reduced by making the usage-amount of a polymerization initiator and the reducing agent used as needed into 0.001 mass part or more, respectively.
  • the water soluble content in a water absorbing resin is suppressed by making the usage-amount of a polymerization initiator and the reducing agent used as needed into 2 mass parts or less, respectively.
  • the monomer may be polymerized by irradiating with active energy rays such as radiation, electron beam, and ultraviolet ray instead of the above-mentioned polymerization initiator.
  • the polymerization initiator is usually used after being dissolved in water.
  • the concentration of the aqueous solution of the polymerization initiator is preferably 1 to 25% by mass, more preferably 1 to 15% by mass, and particularly preferably 1 to 5% by mass.
  • concentration of a polymerization initiator is lower than 1 mass%, the usage-amount of superposition
  • the aqueous solution concentration of the polymerization initiator is higher than 25% by mass, the diffusion of the polymerization initiator in the aqueous monomer solution becomes insufficient, and the physical properties of the resulting particulate water-absorbing agent become unstable.
  • the polymerization apparatus preferably used is a kneader type polymerization apparatus or a belt type polymerization apparatus.
  • a polymerization method using a kneader type polymerization apparatus is disclosed in US Pat. No. 6,867,269, US Pat. No. 6,987,151 and US Pat. No. 6,710,141.
  • the belt type polymerization apparatus includes an endless belt having a weir on the side. This endless belt is made of steel, and the surface is coated with fluororesin. A liquid mixture of an aqueous monomer solution and an aqueous polymerization initiator solution is continuously supplied to the endless belt to perform aqueous solution polymerization. This method is referred to as a belt polymerization method.
  • Polymerization methods using a belt-type polymerization apparatus are disclosed in US Pat. No. 4,893,999, US Pat. No. 6,241,928, US Patent Application Publication No. 2005/215734, and the like.
  • the polymerization start time (induction time) and the polymerization time vary, which has been a big problem. Therefore, as a result of pursuing factors such as impurities contained in the raw material and temperature unevenness of the raw material, the present inventors caused a slight fluctuation or change in the aqueous solution concentration of the polymerization initiator (for example, a decrease in concentration due to natural decomposition). I found out that there is. By carrying out the present invention, it has become possible to stably operate continuous belt polymerization and continuous kneader polymerization.
  • the temperature at the time of polymerization is appropriately determined according to the type of monomer component, the type of polymerization initiator, etc., and is not particularly limited. Preferably, 20 to 120 ° C is more preferable.
  • the temperature at the time of polymerization is 10 ° C. or higher, the polymerization time can be shortened and the productivity is improved.
  • the physical property of the water absorbing agent obtained improves by making the temperature at the time of superposition
  • the polymerization time is appropriately determined according to the type of monomer component, the type of polymerization initiator, the temperature, etc., and is not particularly limited, but is preferably 0.1 minute to 10 hours, more preferably 1 minute to 1 hour. .
  • the polymerization step may be performed under normal pressure, may be performed under reduced pressure, or may be performed under pressure.
  • the drying step in the present invention is a step of drying the hydrogel (also referred to as hydrogel polymer) obtained in the above-described polymerization step. It is preferable that the hydrogel obtained in the polymerization step is usually subjected to a drying step after being pulverized to a particle state of about 0.1 to 5 mm. In the drying step, various drying methods can be employed. A method using a dryer or a heat furnace such as hot air drying or azeotropic dehydration is employed.
  • the temperature of the drying step is preferably 80 to 300 ° C, more preferably 100 to 250 ° C, still more preferably 120 to 220 ° C, and particularly preferably 150 to 200 ° C.
  • the drying time is not particularly limited, but may be appropriately determined so that the obtained dry polymer has a desired solid content rate.
  • the solid content of the polymer obtained in the drying step is 80% by weight or more, more preferably 90% by weight or more. preferable.
  • the drying time is preferably 15 minutes to 2 hours from the viewpoint of production efficiency.
  • the pulverization step in the present invention is a step of pulverizing the hydrogel or the polymer (also referred to as a dry polymer) obtained in the drying step.
  • a dry polymer water-absorbing resin particles are obtained.
  • the pulverization is preferably performed so that more water-absorbing resin particles having a desired particle diameter (preferably a weight average particle diameter of 200 to 800 ⁇ m) can be obtained.
  • a desired particle diameter preferably a weight average particle diameter of 200 to 800 ⁇ m
  • the classification step in the present invention is a step of classifying the water-absorbent resin particles obtained in the above pulverization step.
  • the water-absorbent resin particles are sieved.
  • the desired particulate water-absorbing agent is obtained by selecting particles having a desired particle size (preferably, a weight average particle size of 200 to 800 ⁇ m).
  • a desired particle size preferably, a weight average particle size of 200 to 800 ⁇ m.
  • a conventionally well-known method is employable.
  • the weight average particle diameter is measured by the method disclosed in US Patent Application Publication No. 2006/0204755.
  • the fine powder recycling step in the present invention is a step of returning fine powder generated during particle size adjustment in the pulverization step or classification step (for example, a sieve passing product having an opening of 150 ⁇ m) to the polymerization step or the drying step.
  • the fine powder recycling step is not essential, and the necessity is determined depending on the physical properties of the intended particulate water-absorbing agent.
  • the surface cross-linking step in the present invention is a step of cross-linking the vicinity of the surface of the water-absorbent resin particles obtained in the classifying step using a surface cross-linking agent.
  • a modifier when a modifier is a surface crosslinking agent, it can apply preferably.
  • the water-absorbent resin particles described above have a cross-linked structure inside, but from the viewpoint of suppressing aggregation, the water-absorbent resin particles are further cross-linked so that the cross-link density on the surface or in the vicinity of the surface is the same as that inside. Higher than.
  • the “surface or the vicinity of the surface” is a surface layer portion, and usually refers to a portion that is several tens of ⁇ m or less, or 1/10 or less of the particle radius, and the thickness is appropriately determined according to the purpose. .
  • the surface crosslinking method in the present invention is not particularly limited, and examples thereof include the following methods. (1) Method using organic surface cross-linking agent and / or water-soluble inorganic surface cross-linking agent (2) Method of cross-linking polymerization of cross-linkable monomer on surface of water-absorbent resin particles (for example, disclosed in US Pat. No. 7,201,941) Method) Or (3) a method of radical crosslinking with persulfate or the like (for example, a method disclosed in US Pat. No. 4,783,510) Further, from the viewpoint of productivity, it is preferable that this crosslinking reaction is accelerated by heating or irradiation with radiation (preferably ultraviolet rays disclosed in EP 1824910).
  • radiation preferably ultraviolet rays disclosed in EP 1824910
  • surface crosslinking means that the surface of the water-absorbent resin particles or a region in the vicinity of the surface is chemically or physically modified to perform surface crosslinking.
  • chemical modification means an organic surface having two or more functional groups capable of reacting with functional groups (particularly carboxyl groups) present in the vicinity of the particle surface. It means a state in which surface crosslinking has been performed by a crosslinking agent (for example, a polyhydric alcohol, a polyvalent glycidyl compound, a polyvalent amine, etc.).
  • surface cross-linking by ion bonding of surface carboxyl groups with a polyvalent metal such as trivalent aluminum is also included.
  • the form of bonding in the surface cross-linking is not particularly limited, and water-absorbing resin particles whose surface or the vicinity of the surface is cross-linked become the particulate water-absorbing agent.
  • the surface crosslinking agent used in the surface crosslinking step is not particularly limited, but ethylene glycol, diethylene glycol, propylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, 1,3-propanediol, dipropylene glycol, 2, 2,4-trimethyl-1,3-pentanediol, polypropylene glycol, glycerin, polyglycerin, 2-butene-1,4-diol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexane Diol, 1,2-cyclohexanedimethanol, 1,2-cyclohexanediol, trimethylolpropane, diethanolamine, triethanolamine, polyoxypropylene, oxyethylene-oxypropylene block Polyhydric alcohol compounds such as coalescence, pentaerythritol, sorbitol; ethylene glycol diglycidyl ether, polyethylene glycol
  • dehydration-reactive surface cross-linking agents selected from the group consisting of oxazolidinone compounds, alkylene carbonate compounds, polyhydric alcohol compounds, and oxetane compounds exemplified as the surface cross-linking agents are used as modifiers.
  • the surface crosslinking step may be used.
  • polyhydric alcohols are preferable, and other surface cross-linking agents (for example, oxazolinone compounds) are used in combination as necessary.
  • the dehydration-reactive surface cross-linking agent described above is highly safe and can provide a particulate water-absorbing agent with high physical properties.
  • the polyhydric alcohol is preferably a polyhydric alcohol having 2 to 10 carbon atoms, more preferably a polyhydric alcohol having 3 to 8 carbon atoms.
  • a dehydration reaction at a high temperature for example, an esterification reaction or amidation reaction between a carboxyl group of a water absorbent resin and a surface crosslinking agent
  • a dehydration reaction at a high temperature for example, an esterification reaction or amidation reaction between a carboxyl group of a water absorbent resin and a surface crosslinking agent
  • the physical properties of the obtained particulate water-absorbing agent are not stable, and the physical properties of the particulate water-absorbing agent are reduced, especially at the actual machine level (continuous production of 1000 kg / hr or more), compared to the small scale or laboratory level.
  • such a problem can be solved and a particulate water-absorbing agent having high physical properties and high safety can be stably obtained.
  • the surface cross-linking step in the present invention it is preferable to add a plurality of surface cross-linking agents simultaneously or separately as a modifier.
  • the combination of the plurality of surface cross-linking agents include a combination of the dehydration-reactive surface cross-linking agents, or a combination of the dehydration-reactive surface cross-linking agent and an ion-binding surface cross-linking agent.
  • These plural surface cross-linking agents may be added simultaneously or separately, and the number of times of addition may be once or plural times.
  • the ion-binding surface cross-linking agent is not particularly limited, but for example, polyvalent metal salts or hydroxides described later are preferable. By using these plural surface cross-linking agents in combination, physical properties such as liquid permeability (SFC) can be improved.
  • SFC liquid permeability
  • the amount of the surface cross-linking agent used is preferably 0.001 to 10 parts by mass and more preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the solid content of the polymer (water absorbent resin particles).
  • the amount of the surface crosslinking agent used is preferably 0.001 to 10 parts by mass and more preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the solid content of the polymer (water absorbent resin particles).
  • the amount of the surface crosslinking agent used exceeds 10 parts by mass, it is not preferable because it is uneconomical.
  • the amount of the surface crosslinking agent used is less than 0.001 parts by mass, the water absorption capacity of the water absorbing agent under pressure is not preferable. In order to improve the performance, etc., it is not preferable because a sufficient improvement effect cannot be obtained.
  • water as a solvent in mixing the water-absorbing resin particles and the surface cross-linking agent.
  • the amount of water used depends on the type of water-absorbent resin particles, the particle diameter of the water-absorbent resin particles, the water content, etc., but is 0.01 to 20 masses per 100 mass parts of the solid content of the water-absorbent resin particles. Part is preferable, and 0.5 to 10 parts by mass is more preferable. If necessary, a hydrophilic organic solvent may be mixed with this aqueous solution.
  • hydrophilic organic solvent to be used examples include lower alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol and t-butyl alcohol; ketones such as acetone; dioxane and tetrahydrofuran Ethers such as N; N-dimethylformamide and the like; sulfoxides such as dimethyl sulfoxide and the like.
  • the amount of the hydrophilic organic solvent used is preferably 20 parts by mass or less and more preferably 10 parts by mass or less with respect to 100 parts by mass of the solid content of the water-absorbent resin particles.
  • the concentration of the aqueous solution of the surface cross-linking agent is preferably 5 to 50% by mass, more preferably 10 to 40% by mass.
  • concentration of the aqueous solution of the surface cross-linking agent is preferably 5 to 50% by mass, more preferably 10 to 40% by mass.
  • the method for adhering the surface cross-linking agent aqueous solution to the surface of the water-absorbent resin particles is not particularly limited, and for example, a method of spraying the surface cross-linking agent aqueous solution or a method of dropping it is employed.
  • a spraying method is preferred because the surface cross-linking agent is uniformly deposited.
  • the average particle diameter of the sprayed droplets is preferably 0.1 to 300 ⁇ m, more preferably 0.1 to 200 ⁇ m.
  • the reaction between the surface cross-linking agent and the water-absorbent resin particles may be performed at room temperature or may be performed at a high temperature. However, it is preferably performed at a high temperature.
  • the treatment in which the reaction is performed at a high temperature is referred to as heat treatment.
  • the atmospheric temperature of the heat treatment is not particularly limited, but is preferably from 80 to 250 ° C, more preferably from 100 to 250 ° C, and particularly preferably from 150 to 250 ° C (particularly preferably applied in the dehydration esterification reactive surface crosslinking agent). )
  • the heat treatment time is preferably 1 minute to 2 hours. The heat treatment may be performed while the particles are left standing, or may be performed while the particles are being stirred.
  • the cooling step in the present invention is a step optionally performed after the surface cross-linking step, for example, a step in which the particulate water-absorbing agent obtained by being heated in the above-mentioned surface cross-linking step and being cross-linked in the vicinity of the surface is cooled. is there.
  • the cooling device used in this cooling step is not particularly limited, but, for example, two shafts in which cooling water is passed through the inner wall and other heat transfer surfaces exemplified in US Pat. No. 6,378,453, etc. A stirring dryer or the like is used.
  • the addition process which adds modifiers (additive) other than the said surface crosslinking agent to a water-absorbent resin particle may be further provided.
  • This addition step is preferably provided after the polymerization step, and more preferably after the drying step.
  • An additive may be added in the surface cross-linking step, the cooling step, or other steps. That is, the modifier (additive) is at least one selected from a surface cross-linking agent, a surfactant, a chelating agent, a deodorant, an antibacterial agent, a reducing agent, and a coloring inhibitor.
  • the above modifier (additive) can be preferably applied when it is added as a solution, particularly an aqueous solution, simultaneously or separately with the surface cross-linking agent. That is, after the modifier (additive) solution is prepared at a predetermined concentration, it may be diluted by the above method.
  • a surface crosslinking agent as a modifier and a modifier after surface crosslinking are further used.
  • the additive examples include (A) deodorizing component, (B) polyvalent metal salt, (C) inorganic particles (including (D) composite hydroxide particles), (E) chelating agent, and (F). Other additives may be mentioned. By adding these additives, various functions are imparted to the water-absorbing agent.
  • the above modifier (additive) is added as a solution or dispersion, particularly as an aqueous solution, as in the case of the polymerization initiator or the surface cross-linking agent, the method of the present invention is preferably applied to obtain a particulate form.
  • the physical properties of the water-absorbing agent are improved or stabilized.
  • the concentration of the solution is appropriately determined including a saturated concentration or more, but is usually preferably 0.1 to 90% by mass, more preferably 1 to 50% by mass.
  • the particulate water-absorbing agent obtained by the production method of the present invention can be blended with a deodorant component, preferably a plant component, in order to exhibit deodorant properties.
  • the plant component is preferably one or more compounds selected from polyphenols, flavones and caffeine, and one or two compounds selected from tannin, tannic acid, pentaploid, gallic acid and gallic acid. The above compounds are particularly preferred.
  • other plant components may be added.
  • Other plant components include components derived from camellia plants such as camellia, hizaki and mokkok; components derived from grasses such as rice, sasa, bamboo, corn and wheat; components derived from rhododendrons such as coffee Can be mentioned.
  • the form of the plant component may be an extract (essential oil) or the plant itself. Plant koji, extracted koji, etc. produced as a by-product in the manufacturing process in the plant processing industry or food processing industry may be added.
  • the particulate water-absorbing agent obtained by the production method of the present invention contains a polyvalent metal salt or hydroxide for the purpose of improving the liquid permeability and fluidity of the water-absorbent resin particles. May contain a polyvalent metal salt. Furthermore, the addition of the polyvalent metal salt suppresses blocking when the water absorbent resin particles absorb moisture.
  • the polyvalent metal also acts as an ion-binding surface cross-linking agent and contributes to improvement of liquid permeability. Therefore, it can be used simultaneously or separately with the above-described covalent surface crosslinking agent. In addition, when a polyvalent metal can react with a water absorbing resin, you may use it as a surface crosslinking agent.
  • polyvalent metal salts examples include polyvalent metal salts of organic acids and inorganic polyvalent metal salts.
  • Preferred inorganic polyvalent metal salts include, for example, aluminum chloride, polyaluminum chloride, aluminum sulfate, aluminum nitrate, potassium aluminum sulfate, sodium aluminum bissulfate, potassium alum, ammonium alum, sodium alum, sodium aluminate, calcium chloride, Examples include calcium nitrate, magnesium chloride, magnesium sulfate, magnesium nitrate, zinc chloride, zinc sulfate, zinc nitrate, zirconium chloride, zirconium sulfate and zirconium nitrate.
  • aluminum compounds aluminum chloride, polyaluminum chloride, aluminum sulfate, aluminum nitrate, potassium bissulfate aluminum, sodium bissulfate aluminum, potassium alum, ammonium alum, sodium alum, sodium aluminate, etc.
  • aluminum sulfate is preferred.
  • Hydrous crystal powders such as aluminum sulfate 18 hydrate and aluminum sulfate 14-18 hydrate can be most preferably used. These may be used alone, or two or more polyvalent metal salts may be used in combination.
  • the polyvalent metal salt is preferably used in a solution state, and particularly preferably in an aqueous solution state, from the viewpoints of handling properties and miscibility with a particulate water-absorbing agent.
  • polyvalent metal salts of organic acids are exemplified in, for example, US Pat. No. 7,282,262 and US Patent Application Publication No. 2006/0073969.
  • a polyvalent metal salt having 7 or more carbon atoms in the molecule is preferably used.
  • long chain fatty acids having 12 or more carbon atoms and having no unsaturated bond are particularly preferable.
  • the fatty acid include lauric acid, myristic acid, palmitic acid, and stearic acid.
  • the polyvalent metal salt is preferably in the form of particles. From the viewpoint of mixing properties, a polyvalent metal salt having a particle size smaller than that of the water-absorbent resin particles is preferable.
  • the mass average particle diameter of the polyvalent metal salt is preferably 500 ⁇ m or less, and more preferably 400 ⁇ m or less.
  • the ratio of particles of 150 ⁇ m or less contained in the polyvalent metal salt is preferably 20% by mass or more, and more preferably 30% by mass or more.
  • the polyvalent metal salt is preferably mixed with water-absorbent resin particles as an aqueous solution.
  • concentration of the aqueous solution is preferably 50% or more, more preferably 60% or more, more preferably 70% or more, more preferably 80% or more, and particularly preferably 90% or more with respect to the saturated concentration.
  • a saturated aqueous solution or a dispersion exceeding the saturated concentration may be used.
  • inorganic particles may be added to the particulate water-absorbing agent obtained by the production method of the present invention.
  • the inorganic particles used in the present invention are not particularly limited, and examples thereof include metal oxides such as silicon dioxide and titanium oxide; silicic acid and salts thereof such as natural zeolite and synthetic zeolite; kaolin; talc; clay; bentonite and the like. Can be mentioned. Among these, particles of silicon dioxide and silicic acid (salt) are more preferable, and silicon dioxide and silicic acid (salt) having an average particle diameter of 0.001 to 200 ⁇ m measured by a Coulter counter method are more preferable.
  • the above inorganic particles may contain a composite hydrous oxide. These particles enhance the fluidity and deodorizing function of the particulate water-absorbing agent.
  • a composite hydrous oxide containing zinc and silicon, a composite hydrous oxide containing zinc and aluminum, or the like can be used.
  • the water-absorbing agent obtained by the production method of the present invention may contain a chelating agent.
  • a chelating agent By adding a chelating agent, the absorption capacity of the water-absorbing agent with respect to body fluids such as urine is increased.
  • limit especially as said chelating agent A polymeric chelating agent and a non-polymeric chelating agent are illustrated.
  • Acid group-containing non-polymeric chelating agents are preferred.
  • the number of acid groups in the acid group-containing non-polymer chelating agent is preferably 2 to 100, more preferably 2 to 50, and particularly preferably 2 to 10. Examples of the preferred acid group include a phosphate group and a carboxylic acid group.
  • aminoalbonic acid chelating agent or aminophosphoric acid chelating agent having nitrogen in the molecule is also preferred.
  • preferred chelating agents include iminodiacetic acid, hydroxyethyliminodiacetic acid, nitrilotriacetic acid, nitrilotripropionic acid, ethylenediaminetetraacetic acid, hydroxyethylenediaminetriacetic acid, hexamethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, triethylenetetramine Hexaacetic acid, trans-1,2-diaminocyclohexanetetraacetic acid, bis (2-hydroxyethyl) glycine, diaminopropanoltetraacetic acid, ethylenediamine-2-propionic acid, glycol etherdiaminetetraacetic acid and bis (2-hydroxybenzyl) ethylenediamine Aminocarboxylic acid-based metal chelating agents such as acetic acid and salts thereof
  • additives In addition to the water-absorbent resin particles, disinfectant, antibacterial agent, fragrance, foaming agent, pigment, dye, hydrophilic short fiber, fertilizer, oxidizing agent, reducing agent, interface, if necessary Additives such as activators, anti-coloring agents, and aqueous salts may be added.
  • the reducing agent an inorganic reducing agent containing sulfur or phosphorus is preferable, and for example, those disclosed in US Patent Application Publication No. 2006/74160 can be used.
  • the surfactant include those disclosed in US Pat. No. 6,599,989.
  • examples of the anti-coloring agent include organic or inorganic anti-coloring agents.
  • the amount of these additives and modifiers used is appropriately determined according to the purpose and the type of additive.
  • the amount of each additive is preferably 10 parts by mass or less, more preferably 0.0001 to 5 parts by mass, and more preferably 0.002 to 3 parts per 100 parts by mass of the solid content of the polymer (water absorbent resin particles). Part by mass is particularly preferred.
  • the amount used thereof is preferably 0.0005 parts by mass or more, more preferably 0.001 parts by mass or more, and further 0.05 parts by mass or more with respect to 100 parts by mass of the water absorbent resin particles.
  • 0.1 mass part or more is especially preferable.
  • 1.0 mass part or less is preferable, as for the usage-amount of a chelating agent, 0.5 mass part or less is more preferable, and 0.2 mass part or less is especially preferable.
  • preferred additives are polymer polyamines and polyvalent metal salts (B). Particularly preferred is a polyvalent metal salt (B). After the addition of the polyvalent metal salt (B), the polyvalent metal salt (B) and the water absorbent resin particles are preferably mixed.
  • the apparatus for mixing include a cylindrical mixer, a screw mixer, a screw extruder, a turbulator, a nauter mixer, a V mixer, a ribbon mixer, a double arm kneader, Examples thereof include a fluid mixer, an airflow mixer, a rotating disk mixer, a roll mixer, a rolling mixer, and a Redige mixer.
  • the polyvalent metal salt is added to the water absorbent resin particles as an aqueous solution.
  • the size of the droplet of the aqueous solution can be adjusted as appropriate.
  • the concentration of the aqueous solution is preferably 50% by mass or more with respect to the saturated concentration. By setting the concentration within the above range, it is possible to suppress permeation and diffusion of polyvalent metal ions (for example, aluminum ions) into the water absorbent resin particles. From this viewpoint, the concentration is more preferably 60% by mass or more, more preferably 70% by mass or more, more preferably 80% by mass or more, and particularly preferably 90% by mass or more.
  • the concentration of the aqueous solution may be a saturated concentration.
  • a sizing step for re-adjusting the particle size of the particulate water-absorbing agent may be provided.
  • the particulate water-absorbing agent after the cooling step contains agglomerates having a large particle diameter, even though the particle-size of the particulate water-absorbing resin was adjusted in the classification step described above. May be. Therefore, it is necessary to crush and classify the aggregate.
  • the method, order, and number of crushing treatment and classification treatment are not particularly limited. For example, after agglomerates having a large particle size are screened by classification treatment, the agglomerates are crushed, and then further processed. A classifying method may be mentioned.
  • a particulate water-absorbing agent having a desired particle size preferably, a weight average particle size of 200 to 800 ⁇ m
  • the sizing step is preferably provided after the cooling step.
  • Such a sizing method is exemplified in US Pat. No. 7,347,330 and US Patent Application Publication No. 2005/0113252.
  • a packaging process may be provided in the above-described sizing process.
  • the packaging process is a process in which the particulate water-absorbing agent sized in the sizing process is packaged.
  • the method of packaging the particulate water-absorbing agent is not particularly limited, and examples thereof include a method of filling the packaging material container with the particulate water-absorbing agent stored in the hopper.
  • Examples of the packaging material container include storage bags such as a flexible container bag. In the manufacturing method according to the present invention, the particulate water-absorbing agent filled in the flexible container bag is shipped after a predetermined inspection.
  • FIGS. 1 to 3 are all schematic explanatory views showing an embodiment of the present invention, and are preferably applied to a process for producing a polymerization initiator solution, a surface cross-linking agent solution, an additive solution, etc. in the production process of the present invention.
  • FIG. 4 to 6 are schematic diagrams for explaining a liquid cooling method or a heating method in the storage tank after passing through the line mixer.
  • the cooling method or heating method is not particularly limited, and may be appropriately determined depending on conditions such as the properties of the target substance, the concentration of the preparation liquid, and the preparation frequency.
  • the apparatus 2 shown in FIG. 1 includes a first tank 4, a line mixer 6, a second tank 8, a first pipe 12, a second pipe 14, a third pipe 16, and a fourth pipe 18 (circulation loop). ing.
  • the first pipe 12 connects the first tank 4 and the line mixer 6.
  • the second pipe 14 connects the line mixer 6 and the second tank 8.
  • the third pipe 16 connects the second tank 8 and the next process.
  • the fourth pipe 18 branches from the middle of the third pipe 16 and is connected to the second tank 8 again.
  • a part of the third pipe 16 and the fourth pipe 18 form a circulation loop (hereinafter simply referred to as “circulation loop 1”).
  • the circulation loop means a piping system in which the start point and the end point of the liquid flow coincide with each other.
  • equipment such as a tank, a heat exchanger, and a pump may be arranged.
  • It may be a curved circulation loop (circular loop in a narrow sense) or a polygonal circulation loop formed by connecting straight pipes.
  • the piping may be arranged three-dimensionally.
  • a polymerization initiator for example, sodium persulfate
  • water supplied in a batch form to prepare an aqueous solution (mother liquid) of the polymerization initiator.
  • the concentration of the aqueous solution (mother liquid) of the polymerization initiator in the first tank 4 is preferably 20 to 50% by mass, and more preferably 25 to 45% by mass.
  • the polymerization initiator is often a solid, and in the production method of the present invention, it is preferable to first treat the aqueous solution of the polymerization initiator as a mother liquor, and the concentration of the aqueous solution of the polymerization initiator (mother liquor) as in the above range. High concentration can be achieved. Thereby, the capacity
  • aqueous solution (mother liquor) prepared in the first tank 4 is continuously taken out through the first pipe 12
  • water is newly added so that the concentration of the aqueous polymerization initiator solution becomes a desired value. It is injected, diluted, and sent to the line mixer 6.
  • the aqueous solution of the polymerization initiator that has passed through the line mixer 6 is continuously charged into the second tank 8 through the second pipe 14, and a predetermined amount of the aqueous solution is stored in the second tank 8. Thereafter, the aqueous solution stored in the second tank 8 is continuously taken out through the third pipe 16 and continuously added to the monomer aqueous solution.
  • the aqueous solution of the polymerization initiator and water were not sufficiently mixed, it was found that the concentration of the aqueous solution passing through the second pipe 14 was not stable. Therefore, conventionally, when an aqueous solution of a polymerization initiator that passes through the second pipe 14 is directly added to an aqueous monomer solution, the quality of the obtained particulate water-absorbing agent is not stable. Therefore, in the present invention, the aqueous solution of the polymerization initiator that has passed through the second pipe 14 is temporarily stored in the second tank 8. Then, the aqueous solution in the second tank 8 is circulated by the circulation loop 1 so that the water and the solute are sufficiently mixed.
  • This method stabilizes the aqueous solution concentration of the polymerization initiator stored in the second tank 8.
  • the concentration of the aqueous solution of the polymerization initiator stored in the second tank 8 is preferably 1 to 25% by mass, and more preferably 5 to 20% by mass.
  • an aqueous solution of a polymerization initiator is prepared in a batch format, the aqueous solution of the polymerization initiator has a low concentration, and thus a large amount of aqueous solution is required. Therefore, a large capacity tank is required, which is not preferable. Further, when a large amount of the polymerization initiator aqueous solution is used, decomposition (concentration decrease) with time is likely to occur during storage, which may cause fluctuation (variation) in polymerization time and the like.
  • the liquid level of the second tank 8 is substantially reduced. It can be operated with constant control.
  • the ratio x / y of the liquid amount x of the aqueous solution of the polymerization initiator charged into the second tank 8 and the liquid amount y taken out from the second tank 8 is in the range of 0.95 to 1.05.
  • the flow rate of the liquid amount x and the liquid amount y is controlled so as to be within this range, and the liquid amount stored in the second tank 8 is 10 to 90% of the capacity of the second tank 8. It is preferable to control within the range. Accordingly, the capacity of the second tank 8 can be reduced, and the residence time in the second tank 8 can be shortened.
  • the liquid amount x and the liquid amount y do not include the amount of circulating fluid that passes through the circulation loop 1. That is, the liquid amount x means the amount of liquid passing through the line mixer 6, and the liquid amount y means the amount supplied to the next process.
  • the above flow rate control can be performed by measuring the amount of liquid passing through each pipe with a flow meter and operating the control valve so that the ratio x / y is within the above range.
  • the capacity of the second tank 8 is not particularly limited, but the optimum capacity is determined from the production amount of the water absorbing agent and the input amount of the aqueous solution of the polymerization initiator.
  • the capacity of the second tank 8 is 0.8 to 1.2 m 3 , Becomes 500L.
  • the capacity of the first tank 4 is not particularly limited, but is 2 to 4 m 3 . This device 2 contributes to space saving.
  • the aqueous solution in order to prevent deterioration of the polymerization initiator, it is desirable to cool the aqueous solution of the polymerization initiator stored in the second tank 8.
  • the method for cooling the aqueous solution is not particularly limited.
  • the aqueous solution is stored in the second tank 8 by a cooling device such as a jacket, a coil, a plate heat exchanger, or a multi-tube heat exchanger installed in the second tank 8.
  • the resulting aqueous solution can be cooled.
  • the aqueous solution can be sufficiently cooled even with a cooling device having a small output. That is, this device 2 also contributes to energy saving.
  • it can replace with a circulation loop and can install a stirrer in the inside of the 2nd tank 8, and can also flow a liquid mixture. In this case, cooling by a jacket or a coil is preferable.
  • the temperature of the aqueous solution of the polymerization initiator in the second tank 8 is preferably 2 to 20 ° C, more preferably 5 to 15 ° C.
  • the ratio (C1 / C2) of the aqueous solution (mother liquor) concentration C1 of the polymerization initiator in the first tank 4 to the aqueous solution concentration C2 of the polymerization initiator in the second tank 8 is preferably 2 to 50. Is particularly preferred. By setting the ratio (dilution ratio) within the above range, the capacity of the first tank 4 and the second tank 8 can be reduced.
  • the apparatus 2 shown in FIG. 1 exhibits a remarkable effect when the concentration of the polymerization initiator aqueous solution is low, in other words, when a large amount of the polymerization initiator aqueous solution is used. That is, even when the induction time of the polymerization reaction is short, since the aqueous solution of the polymerization initiator and the aqueous monomer solution can be sufficiently mixed, the physical properties of the resulting water-absorbing agent are stabilized.
  • the induction time is the time from when the aqueous solution of the polymerization initiator is added to the monomer aqueous solution until the polymerization starts, and the present invention is applicable when the induction time is 5 minutes or less, more preferably 1 minute or less. Is suitable.
  • the apparatus 20 shown in FIG. 2 includes a first tank 22, a second tank 24, a third tank 26, a line mixer 28, a fourth tank 30, a first pipe 32, a second pipe 34, a third pipe 36, It has four pipes 38, a fifth pipe 40, and a sixth pipe 42 (circulation loop).
  • the first pipe 32 connects the first tank 22 and the line mixer 28.
  • the second pipe 34 connects the second tank 24 and the first pipe 32.
  • the third pipe 36 connects the third tank 26 and the second pipe 34.
  • the fourth pipe 38 connects the line mixer 28 and the fourth tank 30.
  • the fifth pipe 40 connects the fourth tank 30 and the next process.
  • the sixth pipe 42 branches off from the middle of the fifth pipe 40 and is connected to the fourth tank 30 again.
  • circulation loop 2 a circulation loop
  • the first tank 22, the second tank 24, and the third tank 26 are tanks for storing raw materials for preparing a mixed liquid containing a surface cross-linking agent. That is, the first tank 22 stores a first surface cross-linking agent (hereinafter referred to as a first surface cross-linking agent), and the second tank 24 stores another surface cross-linking agent (hereinafter referred to as a second surface cross-linking agent).
  • the third tank 26 stores water. Accordingly, since the stock solution of the surface cross-linking agent is stored in each of the first tank 22 and the second tank 24, the amount held can be reduced, and the tank capacity can be reduced.
  • the third tank 26 may not be provided, and water may be poured directly into the second pipe 34.
  • the first surface cross-linking agent stored in the first tank 22 is continuously taken out through the first pipe 32 and sent to the line mixer 28.
  • the second surface cross-linking agent stored in the second tank 24 is continuously taken out through the second pipe 34 and sent to the first pipe 32.
  • the water stored in the third tank 26 is continuously taken out through the third pipe 36 and sent to the second pipe 34.
  • the first surface cross-linking agent, the second surface cross-linking agent and water are mixed in the line mixer 28.
  • the liquid mixture of the surface cross-linking agent that has passed through the line mixer 28 is continuously charged into the fourth tank 30 through the fourth pipe 38, and a predetermined amount of the liquid mixture is stored in the fourth tank 30. Thereafter, the mixed liquid stored in the fourth tank 30 is continuously taken out through the fifth pipe 40 and continuously added to the water-absorbent resin particles made of a polymer of acrylic acid (salt).
  • the mixing ratio of the liquid mixture passing through the fourth pipe 38 is not stable and uniform. Therefore, if the liquid mixture of the surface cross-linking agent that passes through the fourth pipe 38 is directly added to the water absorbent resin particles, the quality of the obtained particulate water absorbent is not stable. Therefore, in the present invention, the mixed liquid of the surface cross-linking agent that passes through the fourth pipe 38 is temporarily stored in the fourth tank 30. Then, the mixed liquid in the fourth tank 30 is circulated by the circulation loop 2 so that the three kinds of liquids are sufficiently mixed.
  • the mixing ratio of the surface cross-linking agent mixed solution stored in the fourth tank 30 is not particularly limited.
  • the first surface cross-linking agent 1 to 30 masses. %
  • Second surface cross-linking agent 1 to 30% by mass
  • water 40 to 98% by mass.
  • the content of the surface cross-linking agent may be appropriately determined so that the water content is 40 to 98% by mass.
  • a particulate water-absorbing agent having excellent quality can be produced.
  • a plurality of surface cross-linking agents a combination of two or more kinds of the above-mentioned covalent bond surface cross-linking agents, or a combination use of the above-mentioned covalent bond surface cross-linking agent and the above-mentioned ion bondable surface cross-linking agent (for example, an aluminum salt). It can be preferably used. Even when a plurality of surface cross-linking agents are used, the physical properties of the obtained particulate water-absorbing agent are stabilized, and the production apparatus becomes compact.
  • the ratio x / y of the liquid amount x of the liquid mixture of the surface cross-linking agent to the fourth tank 30 and the liquid amount y taken out from the fourth tank 30 is in the range of 0.95 to 1.05.
  • the flow rate of the liquid amount x and the liquid amount y is controlled so as to be within this range, and the liquid amount stored in the fourth tank 30 is 10% to 90% of the capacity of the fourth tank 30. It is preferable to control within the range of%. Therefore, the capacity of the fourth tank 30 can be reduced, and the residence time in the fourth tank 30 can also be shortened.
  • the liquid amount x and the liquid amount y do not include the amount of circulating fluid that passes through the circulation loop 2. That is, the liquid amount x means the amount of liquid passing through the line mixer 28, and the liquid amount y means the amount supplied to the next process.
  • the capacity of the fourth tank 30 is not particularly limited, but the optimum capacity is determined from the production amount of the water-absorbing agent and the input amount of the mixed liquid of the surface cross-linking agent.
  • the capacity of the fourth tank 30 is 0.8 to 1.2 m 3 , 500L.
  • the capacities of the first tank 22, the second tank 24, and the third tank 26 are not particularly limited, but are 10 to 40 m 3 . This device 2 contributes to space saving.
  • the apparatus 44 shown in FIG. 3 includes a first tank 46, a second tank 48, a third tank 50, a line mixer 52, a fourth tank 54, a first pipe 58, a second pipe 60, a third pipe 62, a first tank. It has four pipes 64, a fifth pipe 66, and a sixth pipe 68 (circulation loop).
  • the first pipe 58 connects the first tank 46 and the line mixer 52.
  • the second pipe 60 connects the second tank 48 and the first pipe 58.
  • the third pipe 62 connects the third tank 50 and the first pipe 58.
  • the fourth pipe 64 connects the line mixer 52 and the fourth tank 54.
  • the fifth pipe 66 connects the fourth tank 54 and the next process.
  • the sixth pipe 68 branches off from the middle of the fifth pipe 66 and is connected to the fourth tank 54 again. Thereby, a part of the fifth pipe 66 and the sixth pipe 68 form a circulation loop (hereinafter simply referred to as “circulation loop 3”).
  • the first tank 46, the second tank 48, and the third tank 50 are tanks for storing raw materials for preparing a mixed liquid containing additives. That is, the first tank 46 stores an aqueous solution (mother liquid) of the additive, and the second tank 48 stores a first dispersion aid (hereinafter referred to as a first dispersion aid).
  • the three tanks 50 store a second dispersion aid (hereinafter referred to as a second dispersion aid).
  • the first tank 46, the second tank 48, and the third tank 50 store the additive aqueous solution (mother liquor), the stock solution of the dispersion auxiliary agent or the aqueous solution (mother liquor), respectively, and therefore reduce the holding amount.
  • the tank capacity can be reduced.
  • the additive modifies the surface of the water-absorbent resin particles, and the dispersibility of the additive is enhanced by the dispersion aid.
  • the aqueous solution (mother liquor) of the additive stored in the first tank 46 is continuously taken out through the first pipe 58 and sent to the line mixer 52.
  • the first dispersion aid stored in the second tank 48 is continuously taken out through the second pipe 60 and sent to the first pipe 58.
  • the second dispersion aid stored in the third tank 50 is continuously taken out through the third pipe 62 and sent to the first pipe 58.
  • the additive aqueous solution (mother liquor), the first dispersion aid and the second dispersion aid are mixed in the line mixer 52.
  • the additive mixture that has passed through the line mixer 52 is continuously charged into the fourth tank 54 through the fourth pipe 64, and a predetermined amount of the mixture is stored in the fourth tank 54. Thereafter, the mixed liquid stored in the fourth tank 54 is continuously taken out through the fifth pipe 66 and continuously added to the water-absorbent resin particles made of a polymer of acrylic acid (salt).
  • the mixing ratio of the liquid mixture passing through the fourth pipe 64 is not stable. Therefore, if the mixed liquid of the additive passing through the fourth pipe 64 is directly added to the water absorbent resin particles, the quality of the obtained particulate water absorbent is not stable. Therefore, in the present invention, the additive mixture that passes through the fourth pipe 64 is temporarily stored in the fourth tank 54. Then, the mixed liquid in the fourth tank 54 is circulated by the circulation loop 3 so that the three kinds of liquids are sufficiently mixed.
  • the mixing ratio of the additive mixture stored in the fourth tank 54 is stabilized.
  • the mixing ratio of the additive mixture stored in the fourth tank 54 is the kind of agent and its state (solution or neat liquid) when a total of three types of additives and auxiliaries are added as an aqueous solution.
  • Agent A 20 to 95% by mass
  • Agent B 1 to 40% by mass
  • C agent 0.5 to 30% by mass
  • the mixing ratio of the mixed liquid is more stable.
  • the mixing ratio of the additive liquid mixture that passes through the fifth pipe 66 is stabilized, a particulate water-absorbing agent having excellent quality can be produced.
  • the mixing ratio in the case of using one kind of additive or three or more kinds of additives and auxiliaries may be appropriately determined so that water is 40 to 98% by mass.
  • the ratio x / y of the liquid amount x of the additive mixture to the fourth tank 54 and the liquid amount y taken out from the fourth tank 54 is in the range of 0.95 to 1.05.
  • the flow rate of the liquid volume x and the liquid volume y is controlled so as to be within this range, and the liquid volume stored in the fourth tank 54 is 10% to 90% of the capacity of the fourth tank 54. It is preferable to control within the range. Therefore, the capacity of the fourth tank 54 can be reduced, and the residence time in the fourth tank 54 can also be shortened.
  • the liquid amount x and the liquid amount y do not include the amount of circulating fluid that passes through the circulation loop 3. That is, the liquid amount x means the amount of liquid passing through the line mixer 52, and the liquid amount y means the amount supplied to the next process.
  • the capacity of the fourth tank 54 is not particularly limited, but the optimum capacity is determined from the production amount of the particulate water-absorbing agent and the input amount of the additive mixture.
  • the capacity of the fourth tank 54 is 0.8 to 1.2 m 3
  • the retained liquid amount Becomes 300L.
  • the capacities of the first tank 46, the second tank 48, and the third tank 50 are not particularly limited, but are 10 to 40 m 3 . This device 2 contributes to space saving.
  • a method for heating the mixed liquid is not particularly limited, and for example, a heating device such as a jacket, a coil installed in the fourth tank 54, or a plate heat exchanger or a multi-tube heat exchanger installed in the circulation loop 3
  • a heating device such as a jacket, a coil installed in the fourth tank 54, or a plate heat exchanger or a multi-tube heat exchanger installed in the circulation loop 3
  • the liquid mixture stored in the fourth tank 54 can be heated.
  • the device 44 also contributes to energy saving.
  • it can replace with the circulation loop 3 and can install a stirrer inside the 4th tank 54, and can also flow a liquid mixture. In this case, heating by a jacket or a coil is preferable.
  • the temperature of the additive mixture in the fourth tank 54 is preferably 35 to 70 ° C, more preferably 40 to 60 ° C.
  • particulate water absorbing agent In the particulate water-absorbing agent obtained by the production method of the present invention, unpolymerized acid group-containing monomers may remain. From the viewpoint of off-flavor and hygiene, the amount of residual monomer contained in the particulate water-absorbing agent is preferably 0 to 500 ppm, more preferably 0 to 300 ppm, and particularly preferably 0 to 100 ppm. By applying the present invention, a particulate water-absorbing agent having a residual monomer amount within the above range is stably produced.
  • the amount of residual monomer described above For the measurement of the amount of residual monomer described above, first, 1000 g of deionized water is prepared in a plastic container with a lid, 0.5 g of a particulate water-absorbing agent is added thereto, and the mixture is stirred for 2 hours. After stirring, the swollen gelled water-absorbing agent is filtered off using filter paper, and the filtrate is analyzed by liquid chromatography. On the other hand, the same analysis is performed on a solution of a monomer (acrylic acid) having a known concentration, and the obtained calibration curve is used as an external standard. Based on this external standard, the residual monomer amount is calculated in consideration of the dilution ratio of the filtrate.
  • the present invention can be applied to many particulate water-absorbing agents, but can be preferably applied particularly to a method for producing a particulate water-absorbing agent having high physical properties (high AAP / high SFC).
  • the particulate water-absorbing agent is mainly composed of a polyacrylic acid (salt) -based water-absorbing resin, and the absorption capacity under load (AAP) of physiological saline under a load of 4.8 kPa is 15 to 35 g / g, and / or
  • the liquid permeability (SFC) is 30 ( ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ) or more, a more remarkable effect is exhibited.
  • Such a particulate water-absorbing agent is preferably a surface-crosslinked polyacrylic acid (salt) water-absorbing resin, and more preferably surface-crosslinked with the surface-crosslinking agent.
  • the absorption capacity of the particulate water-absorbing agent in the present invention under no pressure with respect to physiological saline is preferably 15 to 60 g / g, and preferably 25 to 50 g / g. More preferred.
  • CRC physiological saline
  • the absorption capacity under load of physiological saline under a load of 4.8 kPa is preferably 15 to 35 g / g, more preferably 22 to 35 g / g. It is more preferably 24 to 35 g / g, particularly preferably 26 to 35 g / g.
  • AAP absorption capacity under load
  • the present invention a particulate water-absorbing agent having an absorption capacity under load (AAP) within the above range is stably produced.
  • the particulate water-absorbing agent obtained has small flare. That is, the standard deviation ⁇ of AAP can be controlled to 0 to 0.25, further to 0 to 0.20, and particularly to 0 to 0.15.
  • the liquid permeability (SFC) of the particulate water-absorbing agent in the present invention is preferably 30 ( ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ) or more, and 60 ( ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g). ⁇ 1 ) or more, more preferably 100 ( ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ) or more.
  • SFC is a value indicating the liquid permeability when the water absorbing agent swells.
  • a particulate water-absorbing agent having liquid permeability (SFC) within the above range is stably produced.
  • the particulate water-absorbing agent obtained has small flare. That is, the standard deviation ⁇ of SFC can be controlled to 0-7, and further to 0-5.
  • a mixing method in which two or more kinds of liquids are continuously supplied to the tank and a mixed liquid of these liquids is continuously taken out from the tank can be used in various steps of manufacturing the water-absorbing agent.
  • a large-scale plant is used in the production of the water absorbing agent. In this large-scale plant, it is necessary to stably produce the water absorbing agent. Furthermore, in this production method, it is necessary to strictly manage the amounts of polymerization initiators, surface cross-linking agents, additives and the like. In such a manufacturing method, the mixing method described above is particularly effective.
  • the mixing method described above is a continuous manufacturing method in which the production amount of the particulate water-absorbing agent per line (one plant) is 1000 kg / hr or more, further 2000 kg / hr or more, and further 4000 kg / hr or more. This mixing method is particularly effective.
  • Mass production can be performed by continuously performing processes such as polymerization, drying, classification, and surface crosslinking. The present invention can solve such problems inherent in mass production (decrease and variation in physical properties).
  • continuous production is performed if the entire flow including the storage process is continuous.
  • steps of polymerization, drying, classification, and surface cross-linking are connected and produced continuously.
  • CRC measurement The absorption capacity (CRC) under no pressure with respect to physiological saline is measured as follows. First, 0.2 g of the particulate water-absorbing agent is accurately weighed (this mass becomes the mass W1 (g) of the particulate water-absorbing agent) and uniformly put into a non-woven bag (60 mm ⁇ 85 mm). Next, the bag is immersed in physiological saline adjusted to 25 ⁇ 2 ° C. and held for 30 minutes. After 30 minutes, the sample was lifted from the saline solution and then centrifuged for 3 minutes under the condition of 250 G (250 ⁇ 9.81 m / s 2 ) using a centrifuge (“H-122 small centrifuge” manufactured by Kokusan Co., Ltd.).
  • the absorption capacity without pressure (CRC) is calculated by the following mathematical formula.
  • AAP absorption capacity under pressure
  • a plastic support cylinder having an inner diameter of 60 mm is prepared.
  • a stainless steel wire mesh is welded to the bottom of the support cylinder.
  • the number of meshes of this wire mesh is 400 mesh (aperture 38 ⁇ m).
  • a piston (cover plate) is prepared which has an outer diameter slightly smaller than 60 mm, does not create a gap with the wall surface of the support cylinder, and can slide up and down.
  • 0.900 g of the particulate water-absorbing agent is uniformly dispersed.
  • the mass W4 of the particulate absorbent is measured.
  • a piston is placed on the particulate water absorbent, and the total mass W5 (g of the support cylinder, the particulate water absorbent and the piston is measured. ).
  • a pressure of 4.8 kPa is uniformly applied to the particulate water-absorbing agent.
  • physiological saline adjusted to a temperature of 25 ⁇ 2 ° C. is poured until it reaches the same level as the upper surface of the glass filter.
  • AAP (g / g) (W6-W5) / W4
  • the measurement is performed in an environment of 23 ⁇ 2 ° C. This measurement method is disclosed in US Pat. No. 6,071,976.
  • SFC measurement Liquid permeability (SFC) is measured as follows. First, 0.900 g of the particulate water-absorbing agent is uniformly put in a container. This particulate water-absorbing agent is immersed in artificial urine and placed under a pressure of 2.07 kPa. After 60 minutes, the height of the swollen water absorbing agent (gel layer) is measured. In a state where the particulate water-absorbing agent is pressurized at 2.07 kPa, 0.69% by mass saline is passed through the gel layer. At this time, the room temperature is adjusted from 20 ° C to 25 ° C.
  • the amount of liquid passing through the gel layer is recorded at intervals of 20 seconds, and the flow velocity Fs (T) of the liquid passing through is calculated.
  • the flow velocity Fs (T) is calculated by dividing the increased mass (g) by the increased time (s).
  • the time when the hydrostatic pressure of the saline solution is constant and a stable flow rate is obtained is defined as Ts, and only data measured for 10 minutes from this Ts is used for the flow rate calculation.
  • Liquid permeability (SFC) is calculated by the following mathematical formula.
  • L0 is the height of the gel layer (cm)
  • is the density of saline (g / cm 3 )
  • A is the cross-sectional area A (cm 2 ) of the gel layer
  • ⁇ P is the gel Hydrostatic pressure (dyne / cm 2 ) applied to the layer.
  • the artificial urine contains calcium chloride dihydrate: 0.025% by mass, potassium chloride: 0.2% by mass, magnesium chloride hexahydrate: 0.05% by mass, sodium sulfate: 2% by mass, phosphorus It is an aqueous solution having a composition of ammonium dihydrogen acid: 0.085% by mass and diammonium hydrogen phosphate: 0.015% by mass. This evaluation is performed according to the SFC test described in the specification of US Pat. No. 5,849,405.
  • Example 1 Polymerization process (including crushing), drying process, pulverization process, classification process, surface crosslinking process (including surface crosslinking agent spraying process and heating process), cooling process, addition process, sizing process and storage / filling process
  • a particulate water-absorbing agent was continuously produced at about 1800 kg / hr using a production facility in which the devices were connected and these steps were continuously performed.
  • a specific manufacturing method is as follows.
  • a reactor was prepared in which a lid was attached to a double-arm kneader (made of stainless steel) having two sigma-type blades and a jacket.
  • a monomer aqueous solution having a concentration of 37% by mass was charged into the reactor.
  • This monomer aqueous solution contains acrylic acid and sodium acrylate as monomers.
  • the neutralization rate of this monomer aqueous solution is 73 mol%.
  • This aqueous monomer solution contains 0.06 mol% (based on monomer) of polyethylene glycol diacrylate (average n number: 9) as an internal cross-linking agent.
  • the monomer aqueous solution was degassed under a nitrogen gas atmosphere.
  • a sodium persulfate aqueous solution was prepared as follows. That is, in the apparatus 2 shown in FIG. 1, when 0.12 g of sodium persulfate is added to 1 mol of the monomer, a 30 mass% sodium persulfate aqueous solution is prepared in the first tank 4 and then continuously. After adding with water and mixing with the line mixer 6, a 2 mass% sodium persulfate aqueous solution was prepared in the second tank 8.
  • the induction time was about 30 seconds and the peak temperature time was about 10 minutes.
  • this hydrous gel was placed on a perforated plate of a continuous ventilation band dryer. This dryer was operated for 30 minutes under the condition of 185 ° C. to dry the hydrogel to obtain a dry polymer.
  • This dry polymer was continuously supplied to a three-stage roll mill and pulverized to obtain water-absorbing resin particles (1).
  • the particles were put into a classifier having a metal sieve mesh having an opening of 850 ⁇ m and a metal sieve mesh having an opening of 150 ⁇ m, and classified. In the particles selected by this classification, the ratio of those having a particle size of 150 ⁇ m to 850 ⁇ m was 98% by mass.
  • the water-absorbent resin particles (1) were continuously supplied to a high-speed continuous mixer (turbulator, rotation speed: 1000 rpm). The supply amount was 1800 kg / hr. With this mixer, an aqueous solution of a surface cross-linking agent was sprayed on the surface of the water-absorbent resin particles (1).
  • This aqueous solution contains 0.3 parts by mass of 1,4-butanediol, 0.5 parts by mass of propylene glycol and 2.7 parts by mass of pure water with respect to 100 parts by mass of the water absorbent resin.
  • This solution was continuously prepared by the apparatus 20 shown in FIG. 2 and continuously supplied to the mixer.
  • 1,4-butanediol, propylene glycol and pure water were continuously supplied to the fourth tank (capacity: 1000 liters).
  • the amount of 1,4-butanediol supplied from the first tank to the fourth tank was 5.4 kg / hr.
  • the amount of propylene glycol supplied from the second tank to the fourth tank was 9.0 kg / hr.
  • the amount of pure water supplied from the third tank to the fourth tank was 48.6 kg / hr.
  • the water-absorbing resin particles were continuously supplied to a paddle dryer and heated at a temperature of 198 ° C. for 40 minutes. Furthermore, the water-absorbent resin particles were forcibly cooled to 60 ° C. with the same paddle dryer. During this cooling, the additive solution was added to the particles in a temperature zone of approximately 90 ° C. This solution contains 0.5 parts by mass of aluminum sulfate 14-18 hydrate, 0.2 parts by mass of sodium lactate and 0.03 parts by mass of propylene glycol with respect to 100 parts by mass of the water-absorbing resin.
  • the particles were taken out from the paddle dryer, and put into a classifier having a metal sieve screen having an opening of 850 ⁇ m for classification.
  • the particles that did not pass through the screen were pulverized and mixed with the particles that passed through the screen.
  • a particulate water-absorbing agent through which all particles pass through a sieve screen having an opening of 850 ⁇ m was obtained.
  • This particulate water-absorbing agent was filled in a packaging material.
  • Example 1 A particulate water-absorbing agent was obtained in the same manner as in Example 1 except that the aqueous solution of the surface cross-linking agent was prepared by batch treatment. In this method, a large tank having a capacity of 2000 liters was charged with 190 liters of propylene glycol, 140 liters of 1,4-butanediol and 1110 liters of pure water. A solution of the surface cross-linking agent was obtained by stirring in this large tank. The solution was appropriately transferred from the large tank to a relay tank having a capacity of 600 liters, and the solution was continuously supplied from the relay tank to the paddle dryer.
  • Example 2 The same operation as in Example 1 was performed except that the polymerization initiator aqueous solution in the polymerization step of Example 1 was prepared by the apparatus 2 shown in FIG. That is, when 0.12 g of sodium persulfate is added to 1 mol of the monomer, a 30 mass% sodium persulfate aqueous solution is prepared in the first tank 4 and then continuously added with water and mixed by the line mixer 6. After that, a 2 mass% sodium persulfate aqueous solution was prepared in the second tank 8. Polymerization was continuously carried out using this 2% by mass aqueous sodium persulfate solution. In the polymerization, the induction time was stable at about 30 seconds and the peak temperature time was about 10 minutes.
  • Example 2 After the polymerization, the same drying as in Example 1 was performed to obtain water-absorbing resin particles (2) having stable water absorption properties.
  • the same drying as in Example 1 was performed to obtain water-absorbing resin particles (2) having stable water absorption properties.
  • the equipment required for the manufacturing method of Example 1 (one tank; total capacity 1000 L) is more compact than the equipment required for the manufacturing method of Comparative Example 1 (two tanks; total capacity 2600 L). And maintenance is easy.
  • the particulate water-absorbing agent obtained by the production method of Example 1 was compared with the particulate water-absorbing agent obtained by the production method of Comparative Example 1 in the same amount of surface crosslinking agent (butanediol / propylene glycol / Despite aluminum sulfate (post-addition)), it is excellent in physical property stability (standard deviation ⁇ of AAP / SFC). From this evaluation result, the superiority of the present invention is clear.
  • the liquid mixture when preparing a liquid containing a polymerization initiator and / or a liquid containing a modifier, the liquid mixture can be uniformly mixed, and the mixed liquid without concentration unevenness can be continuously produced. Is obtained. Therefore, since it can mix uniformly also in mixing with a water absorbing resin, a high quality water absorbing agent can be produced stably and continuously. Furthermore, since the tank capacity for preparing the mixed liquid can be reduced, the plant can be miniaturized and space saving can be achieved.
  • the retention time and storage amount of the liquid containing the polymerization initiator and / or the liquid containing the modifier can be reduced, so that the elapsed time of the liquid containing the polymerization initiator and / or the liquid containing the modifier is reduced.
  • Degradation and degradation are reduced.
  • the physical properties of the obtained particulate water-absorbing agent can be stabilized, and are most effective particularly during continuous production on a huge scale.
  • the disposal amount of the liquid containing the polymerization initiator and / or the liquid containing the modifier remaining at the stop of the production plant is small, and it is friendly to the global environment.
  • the water-absorbing agent obtained by the production method according to the present invention is suitable for sanitary materials such as paper diapers, sanitary napkins and incontinence pads. Furthermore, this water absorbing agent can also be used for agricultural materials, civil engineering materials, and the like.

Abstract

 装置(2)は、第一タンク(4)、ラインミキサー(6)、第二タンク(8)、冷却ジャケット(10)、第一配管(12)、第二配管(14)及び第三配管(16)を備えている。第一タンク(4)に、重合開始剤である過硫酸ナトリウムと水とが供給され、水溶液が得られる。この水溶液は、第一配管(12)を通じて連続的に取り出され、ラインミキサー(6)へと送られる。第一タンク(4)とラインミキサー(6)との間において、第一配管(12)に水が注入される。この水は、ラインミキサー(6)において過硫酸ナトリウム水溶液と攪拌される。攪拌により、水溶液の濃度が下がる。水溶液は、第二配管(14)を通じて第二タンク(8)に連続的に供給される。水溶液は、第三配管(16)を通じて連続的に取り出され、アクリル酸(塩)の水溶液に連続的に添加される。これにより、コンパクトな装置で品質に優れた吸水剤が得られる製造方法を提供することができる。

Description

吸水性樹脂を主成分とする粒子状吸水剤の製造方法
 本発明は、吸水性樹脂を主成分とする粒子状吸水剤の製造方法に関する。
 紙オムツ、生理用ナプキン、失禁パット等の衛生材料に、吸水性樹脂を主成分とする粒子状吸水剤が利用されている。この吸水性樹脂は、尿、血液等の体液を吸収する。かかる吸水性樹脂としては、ポリアクリル酸部分中和物の架橋体、澱粉-アクリル酸グラフト重合体の加水分解物、酢酸ビニル-アクリル酸エステル共重合体の鹸化物、アクリロニトリル共重合体の加水分解物及びその架橋体、アクリルアミド共重合体の加水分解物及びその架橋体、カチオン性モノマーの架橋体等が知られている。性能及びコストの観点から、ポリアクリル酸部分中和物の架橋体が、特に好んで用いられている。
 ポリアクリル酸(塩)系の吸水性樹脂、中でもポリアクリル酸部分中和物を含む粒子状吸水剤の製造方法では、まず、アクリル酸塩を含むモノマーが、重合開始剤によって重合され、含水ゲルが得られる。この含水ゲルが乾燥され、かつ粉砕されて、吸水性樹脂粒子が得られる。必要に応じて、この吸水性樹脂粒子の表面が、表面架橋剤によって架橋される。さらに、必要に応じて、この吸水性樹脂粒子の表面に表面改質のための添加剤が添加され、粒子状吸水剤が得られる。
 従来から、品質に優れた粒子状吸水剤を得るには、例えば、重合工程において、モノマー水溶液と重合開始剤とを十分に混合させる必要があり、そのためには、重合開始剤を水溶液状態とし、かつ、低濃度の水溶液とする必要がある。したがって、多量の水溶液が必要となり、それを貯蔵するタンクも容量の大きいものが必要となる。
 また、製造プラントのトラブルあるいは整備等の理由により、製造プラントの稼動が停止する場合、上記重合開始剤の水溶液等の供給も停止する。この場合、前記水溶液はタンク内で長時間貯蔵されることになるが、この期間中に水溶液中で化学反応が起こり、重合開始剤の機能が損なわれることがある。機能が損なわれた水溶液は廃棄されるが、タンク容量が大きい場合、廃棄される水溶液の量が多量となり不経済である。更に、廃液処理に多大な時間と費用が費やされる。
 更に、吸水性樹脂を主成分とする粒子状吸水剤の別の製造方法として、例えば、ラインミキシングによって、添加剤等を混合する方法がある。しかし、この方法では、得られる溶液の濃度に、ばらつきが生じ、安定しない。したがって、得られる粒子状吸水剤の品質もばらつきが生じ、安定しない。
 また、以下の従来技術が存在しており、欧州特許第0873185号公報には、モノマーと、所定温度に制御されたタンクに貯蔵された重合開始剤との反応によって得られる粒子状ポリマーが開示されている。
 米国特許第7265190号公報には、モノマー液の輸送配管において、このモノマー液に重合開始剤が添加される、吸水性樹脂の製造方法が開示されている。この製造方法では、物性値が所定範囲外である吸水性樹脂を除去することによって、吸水性樹脂の物性値を安定させているが、除去された吸水性樹脂を再混合する必要があり、その工程は複雑である。
 米国特許第4985518号公報には、それぞれ別のタンクに貯蔵された重合開始剤とモノマー液とをラインミキサーで混合し、ベルト重合機に供給する、吸水性樹脂の製造方法が開示されている。この製造方法では、重合熱を利用して、重合と同時に乾燥して固体の吸水性樹脂を得るが、得られる吸水性樹脂の吸水物性は低い。
 国際公開第2007/028746号パンフレット、国際公開第2007/028747号パンフレット及び国際公開第2007/028751号パンフレットには、アクリル酸と塩基とを混合する連続中和工程を含む吸水性樹脂の製造方法が開示されている。これらの製造方法では、吸水性樹脂の原料(モノマー及び重合開始剤)を含む液は、タンクに貯蔵される。
 国際公開第2007/023097号パンフレットには、吸水性樹脂の重合工程が2系列であり、それ以降の製造工程が1系列となる、吸水性樹脂の製造方法が開示されている。この製造方法によって、得られる吸水性樹脂の物性値を安定させているが、この製造方法は複数の重合機が必要となり、工程が複雑である。
 同様の製造方法は、米国特許第6716894号公報、米国特許第6817557号公報、米国特許第7193006号公報、米国特許第6727345号公報、及び国際公開第2007/023097号パンフレットにも開示されている。
欧州特許第0873185号公報 米国特許第7265190号公報 米国特許第4985518号公報 国際公開第2007/028746号パンフレット 国際公開第2007/028747号パンフレット 国際公開第2007/028751号パンフレット 米国特許第6716894号公報 米国特許第6817557号公報 米国特許第7193006号公報 米国特許第6727345号公報 国際公開第2007/023097号パンフレット
 吸水性樹脂を主成分とする粒子状吸水剤は、その用途に応じて、種々の物性値(無加圧下吸収倍率、加圧下吸収倍率、吸水速度、通液性、ゲル安定性等)を制御する必要がある。しかし、多量かつ連続的な粒子状吸水剤の生産においては、物性値の安定に困難が伴う。粒子状吸水剤の物性値のわずかなばらつきによって、紙オムツや生理用ナプキン等の最終製品の品質が損なわれることもある。また、多くの物性を同時に制御するため、生産性の低下や、スペックアウトに伴う廃棄ロスもある。粒子状吸水剤を大量に製造するプラントにおいて、上記各文献に開示された製造方法を適用しても、依然として、得られる粒子状吸水剤の物性は安定しないという問題がある。
 そこで、本発明が解決しようとする課題は、容量の大きいタンクを必要とせず、しかも、品質安定性に優れた粒子状吸水剤が得られる、吸水性樹脂を主成分とする粒子状吸水剤の製造方法を提供することにある。
 本発明者らは、粒子状吸水剤の連続生産における物性の安定を目的とし、鋭意検討の結果、本発明を完成させた。具体的には、まず、本発明者らは、上記特許文献1~11等で着目されなかった、重合開始剤を含む液及び改質剤を含む液に着目した。そして、本発明者らは、重合工程、混合工程等が厳密に管理されても、重合開始剤を含む液及び改質剤を含む液の濃度のわずかなばらつきや変化(例えば、分解に伴う濃度低下等)が、粒子状吸水剤の品質のばらつきを招来することを突き止めた。更に、改質剤の調整に特定の工程を付与することで、得られる粒子状吸水剤の物性が安定化あるいは高物性化できることを見い出し、本発明を完成させた。
 すなわち、本発明に係る吸水性樹脂を主成分とする粒子状吸水剤の製造方法は、
 (1)吸水性樹脂のモノマーの水溶液に、重合開始剤を含む液を混合する工程、(2)上記モノマーの重合によって含水ゲル(「含水ゲル状重合体」とも称する。)を得る工程、(3)上記含水ゲルを乾燥し、乾燥重合体を得る工程、及び、(4)上記モノマーの水溶液又は上記重合体に、改質剤を含む液を添加する工程を含んでおり、上記重合開始剤を含む液又は改質剤を含む液が、(a)2種以上の液を準備する工程及び(b)上記2種以上の液を別個に又は合一して連続的にタンクに供給しつつ、このタンクから上記2種以上の液の混合液を連続的に取り出す工程を経て得られる。この製造方法においては、上記モノマーの水溶液又は上記重合体に、改質剤を含む液を添加する工程(4)は必須ではなく、上記工程(a)及び(b)が、複数回実施されることが好ましい。
 ここで、「改質剤を添加する重合体」とは、重合で得られた含水ゲル状重合体若しくはその乾燥重合体を指すが、好ましくは乾燥重合体である。即ち、乾燥した吸水性樹脂粒子に改質剤(好ましくは表面架橋剤)が添加される。
 好ましくは、上記工程(b)において、タンクの内部の混合液を循環ループにて循環させる。この循環ループにおいて、上記混合液を冷却又は加熱してもよい。また、上記タンクにおいて、上記混合液を冷却又は加熱してもよい。好ましくは、上記工程(a)で準備される1つの液が、水溶液である。
 好ましくは、上記工程(a)において、1種以上の重合開始剤の水溶液と、水とを準備してもよい。好ましくは、上記工程(a)において準備される重合開始剤の水溶液の濃度が20質量%以上、50質量%以下であり、上記工程(b)の後における希釈後の重合開始剤の水溶液の濃度が1質量%以上、25質量%以下である。好ましくは、上記重合開始剤の量が、モノマー1モルに対して0.001質量部以上、2質量部以下である。
 好ましくは、上記工程(a)において、改質剤として、1種以上の表面架橋剤の液と、水とを準備する。好ましくは、上記表面架橋剤の量が、重合体の固形分100質量部に対して0.001質量部以上、10質量部以下である。
 好ましくは、上記工程(a)において、表面架橋後の重合体のための改質剤の水溶液と、分散助剤の液とを準備する。好ましくは、上記改質剤の量が、重合体の固形分100質量部に対して0.0001質量部以上、10質量部以下である。
 好ましくは、上記(a)において、改質剤としての表面架橋剤、及び、表面架橋後の改質剤が使用される。
 好ましくは、改質剤(重合体の表面改質剤)が表面架橋剤、界面活性剤、キレート剤、消臭剤、抗菌剤、還元剤、および、着色防止剤からなる群から選ばれる1種類である。
 また、本発明に係る吸水性樹脂を主成分とする吸水剤の他の製造方法は、(1)吸水性樹脂のモノマーの水溶液に、重合開始剤を含む液を混合する工程、(2)上記モノマーの重合によって含水ゲル(含水ゲル状重合体とも称する)を得る工程及び(3)上記含水ゲルを乾燥し、乾燥重合体を得る工程を含んでおり、上記重合開始剤を含む液が、(a)2種以上の液を準備する工程及び(b)上記2種以上の液を別個に又は合一して連続的にタンクに供給しつつ、このタンクから上記2種以上の液の混合液を連続的に取り出す工程を経て得られる。
 さらに、上記(b)工程において、上記タンクへの上記2種以上の液を供給する液量x、及び、上記タンクから上記2種以上の液を取り出す液量yの比率x/yが0.95以上、1.05以下の範囲内にて液量x及び液量yの流量を制御し、かつ、上記タンク内の保有液量を、タンク容量の10%以上、90%以下の範囲内にて制御することが好ましい。
 好ましくは、上記吸水性樹脂がポリアクリル酸および/またはポリアクリル酸塩(以下、ポリアクリル酸および/またはポリアクリル酸塩をポリアクリル酸(塩)と適宜略す)系吸水性樹脂であり、上記重合が連続ニーダー重合又は連続ベルト重合である。
 好ましくは、上記吸水剤の生産量が、1ラインあるいは1プラント当たり、1000kg/hr以上の連続生産である。
 好ましくは、上記改質剤として、オキサゾリジノン化合物、アルキレンカーボネート化合物、多価アルコール化合物、及びオキセタン化合物からなる群から選ばれる1種又は2種以上の脱水エステル化反応性表面架橋剤が、乾燥重合体に添加される。
 好ましくは、上記改質剤として、共有結合性あるいはイオン結合性を有する複数の表面架橋剤が、乾燥重合体に同時に又は別々に添加される。
 好ましくは、上記重合開始剤が、還元剤を用いた水溶性熱分解型重合開始剤である。
 好ましくは、上記粒子状吸水剤が、ポリアクリル酸(塩)系吸水性樹脂を主成分とし、4.8kPa荷重下での生理食塩水の加圧下吸収倍率(AAP)が15~35g/g、及び/又は、通液性(SFC)が30(×10-7・cm・s・g-1)以上である。
 本発明の他の目的、特徴、及び優れた点は、以下に示す記載によって十分分かるであろう。また、本発明の利点は、添付図面を参照した次の説明によって明白になるであろう。
図1は、本発明に係る製造方法に用いられる一連の装置が示された概念図である。 図2は、本発明に係る製造方法に用いられる他の一連の装置が示された概念図である。 図3は、本発明に係る製造方法に用いられる更に他の一連の装置が示された概念図である。 図4は、本発明の実施形態で使用することができるジャケット式の冷却/加熱設備を備えた貯蔵タンクの周辺の概略を示す概念図である。 図5は、本発明の実施形態で使用することができるコイル式の冷却/加熱設備を備えた貯蔵タンクの周辺の概略を示す概念図である。 図6は、本発明の実施形態で使用することができる貯蔵タンクを、その外部に備えられた多管式熱交換器の周辺の概略を示す概念図である。
符号の説明
 2、20、44・・・装置
 4、22、46・・・第一タンク
 6、28、52・・・ラインミキサー
 8、24、48・・・第二タンク
 26、50・・・第三タンク
 30、54・・・第四タンク
 12、32、58・・・第一配管
 14、34、60・・・第二配管
 16、36、62・・・第三配管
 18、38、64・・・第四配管
 40、66・・・第五配管
 42、68・・・第六配管
 100・・・ジャケット
 101・・・コイル
 102・・・熱交換器
 以下、本発明に係る吸水性樹脂を主成分とする粒子状吸水剤の製造方法について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更、実施し得る。
 (1)用語の定義
 (a)「吸水性樹脂」
 本明細書において、「吸水性樹脂」とは、水膨潤性水不溶性の高分子ゲル化剤を意味し、以下の物性を有するものをいう。即ち、吸収倍率(CRC/実施例で規定)が、必須に5g/g以上、好ましくは10~100g/g、更に好ましくは20~80g/gであり、水可溶分(Extractables/ERT470.2-02(2002)で規定)が、必須に0~50質量%、好ましくは0~30質量%、更に好ましくは0~20質量%、特に好ましくは0~10質量%である高分子ゲル化剤をいう。なお、該吸水性樹脂は、全量(100%)が重合体である形態に限定されず、上記性能を維持する範囲において、後述する添加剤等を含んでいてもよい。
 (b)「ポリアクリル酸(塩)」
 本明細書において、「ポリアクリル酸(塩)」(ポリアクリル酸および/またはポリアクリル酸塩)とは、繰り返し単位として、アクリル酸(塩)を主成分とする重合体を意味する。具体的には、架橋剤を除く単量体として、アクリル酸(塩)を、必須に50~100モル%、好ましくは70~100モル%、更に好ましくは90~100モル%、特に好ましくは、実質100モル%含む重合体を意味する。重合体としての塩は、必須に水溶性塩を含み、好ましくは一価塩、更に好ましくはアルカリ金属塩あるいはアンモニウム塩である。その中でも特にアルカリ金属塩が好ましく、更にはナトリウム塩が好ましい。
 (c)「吸水剤」
 本明細書において、「吸水剤」とは、吸水性樹脂を主成分とする水性液のゲル化剤を意味する。なお、前記水性液としては、水に限らず、尿、血液、糞、廃液、湿気や蒸気、氷、水と有機溶媒及び/又は無機溶媒との混合物、雨水、地下水等であってもよく、水を含めば特定に制限されるものではない。中でも前記水性液としては、より好ましくは、尿、特に人尿を挙げることができる。本発明に係る吸水性樹脂(ポリアクリル酸(塩)系吸水性樹脂)の含有量は、全体に対して、好ましくは70~99.9重量%であり、より好ましくは80~99.7重量%であり、さらに好ましくは90~99.5重量%である。吸水性樹脂以外のその他の成分としては、吸水速度や粉末(粒子)の耐衝撃性の観点から、水が好ましく、必要により後述の添加剤が含まれる。
 (d)「EDANA」および「ERT」
 「EDANA」は、European Disposables and Nonwovens Associationの略称であり、「ERT」は、欧州標準(ほぼ世界標準)の吸水性樹脂の測定法(ERT/EDANA Recomeded Test Methods)の略称である。本明細書においては、特に断りのない限り、ERT原本(公知文献:2002年改定)を参照して、吸水性樹脂の物性を測定している。
 (e)粒子
 本明細書において、「粒子」とは、篩分級で規定される粒径が5mm以下の流動性を有する固体を意味する。固体であれば、含水率について特に制限されないが、通常、30重量%未満、更に好ましくは20重量%以下である。また、粒径の下限としては、例えば、1nmである。更に、粉体として一定の流動性を有していればよく、例えば、Flow Rate(ERT450.2-02(2002)で規定)が測定可能な固体、あるいは(ERT420.2-02(2002)で規定)で篩分級が可能な固体を意味する。固体の形状については、特に制限されず、不定形破砕状粒子、球状、略球状やそれらの造粒物(凝集物)が挙げられるが、好ましくは、不定形破砕状粒子が含まれる。
 なお、本明細書において、範囲を示す「X~Y」は、X以上、Y以下であることを示す。また、重量の単位である「トン(t)」は、「メトリック・トン(Metoric ton)」を意味する。
(2)粒子状吸水剤の製造方法
 本発明における製造工程は、重合工程、乾燥工程、粉砕工程、分級工程、表面架橋工程、冷却工程、添加剤の添加工程、整粒工程及び充填工程を経て粒子状吸水剤が得られる。以下、これらの工程を詳説する。
 [重合工程]
 本発明における重合工程では、吸水性樹脂のモノマーの重合反応により含水ゲルが得られる。重合方法としては、特に限定されないが、例えば、水溶液重合、逆相懸濁重合、バルク重合、沈殿重合等が挙げられる。これらの中でも、重合反応の制御が容易であるとの観点、及び品質に優れた粒子状吸水剤が得られるとの観点から、水溶液重合及び逆相懸濁重合がより好ましく、水溶液重合が更に好ましく、連続水溶液重合が特に好ましい。連続水溶液重合の方法としては、例えば、一軸型又は多軸型(好ましくは双腕型)等のニーダー中で得られる含水ゲルを砕きながら重合する方法(以下、「連続ニーダー重合」と称する)や、所定の容器中や駆動するベルト上にモノマー水溶液を供給して重合する方法(以下、「連続ベルト重合」と称する)等が挙げられる。
 本発明の実施形態に係る粒子状吸水剤を得るための吸水性樹脂のモノマーとしては、特に限定されないが、例えば、(メタ)アクリル酸、(無水)マレイン酸、イタコン酸、ケイ皮酸、ビニルスルホン酸、アリルトルエンスルホン酸、ビニルトルエンスルホン酸、スチレンスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、2-(メタ)アクリロイルエタンスルホン酸及び2-(メタ)アクリロイルプロパンスルホン酸等の酸基含有モノマー及びその塩;メルカプト基含有不飽和単量体;フェノール性水酸基含有不飽和単量体;(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド及びN,N-ジメチル(メタ)アクリルアミド等のアミド基含有不飽和単量体;N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート及びN,N-ジメチルアミノプロピル(メタ)アクリルアミド等のアミノ基含有不飽和単量体等が挙げられる。これらのモノマーは単独で用いてもよく、適宜2種以上を混合して用いてもよい。
 得られる粒子状吸水剤の性能及びコストの点から、ポリアクリル酸(塩)系吸水性樹脂が好ましく、そのため、アクリル酸及び/又はその塩(例えば、ナトリウム、リチウム、カリウム、アンモニウム、アミン類等の塩、中でもコスト面からナトリウム塩が好ましい)を主成分として用いることが好ましい。モノマー(架橋剤を除く)全量に占めるアクリル酸及び/又はその塩の比率は50モル%以上が好ましく、80モル%以上がより好ましく、95モル%が特に好ましい(上限は100モル%である)。
 酸基含有モノマーが用いられる場合、その全部又は一部が中和されることが好ましい。本発明において、「中和されていないモノマー」及び「中和によって生じた塩」の両方が、モノマーと称される。塩を用いることにより、重合反応の効率が高められ、粒子状吸水剤に含まれる未反応モノマー(残存モノマー)が低減される。
 前記モノマーが酸基含有モノマーの場合、その中和率は、特に制限はなく、必要に応じて、重合後に重合ゲルが中和されてもよい。衛生用品など人体に触れる可能性のある用途では、重合後の中和は必要とされない。この中和率は、重合体として30~100モル%が好ましく、40~95モル%がより好ましく、50~90モル%が更に好ましい。中和率がこの範囲に設定されることにより、粒子状吸水剤に含まれる残存モノマー量や残存する塩基性物質の量が抑制されるため、安全性に優れ、更に経済性にも優れる。
 上記重合工程において、前述のモノマーを水溶液として使用する場合、該水溶液(以下、「モノマー水溶液」と称する)中のモノマー濃度は、特に制限されないが、20~65質量%が好ましく、30~65質量%がより好ましく、40~60質量%が特に好ましい。モノマー濃度を上記範囲内とすることで、優れた生産性が達成され得る。また、高品質な粒子状吸水剤が得られる。上記濃度範囲のモノマー水溶液を重合することで、固形分濃度が80質量%未満、更には20~70質量%の含水ゲル状重合体が得られる。
 上記重合工程においては、必要に応じて、モノマー水溶液に内部架橋剤を添加してもよい。内部架橋剤の添加により、粒子状吸水剤が尿や血液等の体液等を吸収したときに、この粒子状吸水剤の溶解を抑制することができる。上記内部架橋剤としては、特に制限されないが、1分子内に、2個以上の重合性不飽和基や反応性基を有する化合物が挙げられ、その中でも、2個以上の重合性不飽和基を有する化合物が好ましい。具体的には、例えば、N,N’-メチレンビス(メタ)アクリルアミド、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、グリセリンアクリレートメタクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、トリアリルホスフェート、トリアリルアミン、ポリアリロキシアルカン、(ポリ)エチレングリコールジグリシジルエーテル、グリセロールジグリシジルエーテル、エチレングリコール、ポリエチレングリコール、プロピレングリコール、グリセリン、1,4-ブタンジオール、ペンタエリスリトール、エチレンジアミン、エチレンカーボネート、プロピレンカーボネート、ポリエチレンイミン、グリシジル(メタ)アクリレート等が挙げられる。これらの中から反応性を考慮して、1種又は2種以上の内部架橋剤を併用してもよい。
 上記内部架橋剤の使用量は、所望する粒子状吸水剤の物性により適宜決定すればよいが、通常、モノマー成分に対して0.001~5モル%が好ましく、0.01~5モル%がより好ましい。内部架橋剤の使用量を0.001モル%以上とすることにより、粒子状吸水剤の水可溶分が抑制される。また、内部架橋剤の使用量を5モル%以下とすることにより、吸収倍率に優れた粒子状吸水剤が得られる。
 上記重合工程において、更に、必要に応じて、発泡剤、親水性高分子、界面活性剤、連鎖移動剤等をモノマー水溶液や重合中のゲルに添加してもよい。上記発泡剤としては、炭酸(水素)塩、二酸化炭素、アゾ化合物、不活性有機溶媒等が挙げられる。上記親水性高分子としては、澱粉・セルロース、澱粉・セルロース誘導体、ポリビニルアルコール、ポリアクリル酸(塩)、吸水性樹脂等のポリアクリル酸(塩)架橋体等が挙げられる。上記連鎖移動剤としては、次亜燐酸(塩)等が挙げられる。これらの添加剤の使用量は、本発明の効果が損なわれない範囲内で適宜決定される。具体的には、モノマー100質量部に対して、発泡剤は30質量部以下が好ましく、親水性高分子は30質量部以下が好ましく、連鎖移動剤は1重量部以下が好ましい。
 上記重合工程において、モノマー水溶液に重合開始剤が添加される。重合開始剤のラジカルの作用により、モノマーの重合が促進される。前記の重合開始剤としては、特に制限はなく、重合させるモノマー成分の種類、重合条件等に応じて、通常の吸水性樹脂の重合において利用されているものの中から、1種又は2種以上を選択して使用すればよい。具体的には、熱分解型開始剤や光分解型開始剤が用いられる。熱分解型開始剤としては、特に制限されないが、例えば、過硫酸ナトリウム、過硫酸カリウム及び過硫酸アンモニウム等の過硫酸塩;過酸化水素、t-ブチルパーオキシド及びメチルエチルケトンパーオキシド等の過酸化物;アゾニトリル化合物、アゾアミジン化合物、環状アゾアミジン化合物、アゾアミド化合物、アルキルアゾ化合物、2,2’-アゾビス(2-アミジノプロパン)ジヒドロクロリド及び2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド等のアゾ化合物等が挙げられる。また、光分解型開始剤としては、特に制限されないが、ベンゾイン誘導体、ベンジル誘導体、アセトフェノン誘導体、ベンゾフェノン誘導体、アゾ化合物等が挙げられる。これらの重合開始剤の中でも、低コストであり、かつ、残存モノマーが低減されるとの理由から、熱分解型開始剤が好ましく、水溶性熱分解型重合開始剤、中でも過硫酸塩が特に好ましい。また、2種以上の重合開始剤を併用してもよい。
 また、本発明では、重合開始剤溶液の滞留量や貯蔵量を削減することができるため、該重合開始剤溶液の経過時間的な分解や劣化が低減される。その結果として、得られる粒子状吸水剤の物性を安定させることができ、特に巨大スケールでの連続生産時に最も効果を発揮する。この観点から、上記重合開始剤のうち、必要により還元剤を併用した、水溶性の熱分解型重合開始剤が最も好ましい。水溶性の熱分解重合開始剤としては、特に制限されないが、例えば、過硫酸塩、過酸化水素、水溶性アゾ開始剤等が挙げられ、中でも過硫酸塩が好ましい。還元剤としは、下記の還元剤のうち、水溶性のものが好適に使用することができる。
 また、還元剤の併用はこれらの重合開始剤の分解を促進しうるので、両者を組み合わせてレドックス系開始剤とすることもできる。前記の還元剤としては、特に限定されないが、例えば、亜硫酸ナトリウム及び亜硫酸水素ナトリウム等の(重)亜硫酸(塩);L-アスコルビン酸(塩);第一鉄塩等の還元性金属(塩);アミン類等が挙げられる。
 上記重合工程に用いられる重合開始剤及び必要により使用される還元剤の使用量は、モノマー1モルに対して、それぞれ0.001~2質量部が好ましく、0.01~0.5質量部がより好ましい。重合開始剤及び必要により使用される還元剤の使用量をそれぞれ0.001質量部以上とすることで、残存モノマーが低減される。また、重合開始剤及び必要により使用される還元剤の使用量をそれぞれ2質量部以下とすることで、吸水性樹脂中の水可溶分が抑制される。
 なお、本発明の重合工程においては、前述の重合開始剤の代わりに、放射線、電子線、紫外線等の活性エネルギー線が照射されて、モノマーが重合されてもよい。
 上記重合開始剤は、通常、水に溶解させて使用する。その際、重合開始剤の水溶液濃度は、1~25質量%が好ましく、1~15質量%がより好ましく、1~5質量%が特に好ましい。重合開始剤の水溶液濃度を上記の範囲内とすることで、得られる粒子状吸水剤の物性が安定する。また、重合開始剤の水溶液濃度が1質量%より低いと、重合開始剤水溶液の使用量が多くなり、得られる含水ゲルの水分濃度も高くなる。その結果として、含水ゲルの乾燥に多大なエネルギーが必要となり、コストアップとなる。更に、重合開始剤の水溶液濃度が25質量%より高いと、モノマー水溶液中での重合開始剤の拡散が不十分となり、得られる粒子状吸水剤の物性が不安定となる。
 本発明において、好ましく使用される重合装置は、ニーダー型重合装置又はベルト型重合装置である。ニーダー型重合装置を用いる重合方法は、米国特許第6867269号公報、米国特許第6987151号公報及び米国特許第6710141号公報に開示されている。また、ベルト型重合装置は、サイドに堰を有するエンドレスベルトを備えている。このエンドレスベルトはスチールからなり、表面にフッ素樹脂がコーティングされている。このエンドレスベルトに、モノマー水溶液と重合開始剤の水溶液との混合液が連続的に供給され、水溶液重合がなされる。この方法は、ベルト重合法と称される。ベルト型重合装置を用いる重合方法は、米国特許第4893999号公報、米国特許第6241928号公報及び米国特許出願公開第2005/215734号公報等に開示されている。
 従来、上記に掲げた重合装置で連続重合を行うと、重合開始時間(誘導時間)や重合時間にバラつきが生じ、大きな問題となっていた。そこで、本発明者らは、原材料に含まれる不純物や原材料の温度ムラ等、要因を追求した結果、重合開始剤の水溶液濃度のわずかなフレや変化(例えば、自然分解による濃度低下等)に原因があることを突き止めた。本発明を実施することで、連続ベルト重合及び連続ニーダー重合を安定的に操業させることを可能にした。
 本発明においては、重合時の温度(重合開始温度及び最高到達温度)は、モノマー成分の種類、重合開始剤の種類等に応じ、適宜決定されるため、特に制限されないが、10~140℃が好ましく、20~120℃がより好ましい。重合時の温度(重合開始温度)を10℃以上とすることで、重合時間の短縮化が図れ生産性が向上する。また、重合時の温度(最高到達温度)を140℃以下とすることで、得られる吸水剤の物性が向上する。重合時間についても、モノマー成分の種類、重合開始剤の種類、温度等に応じ、適宜決定されるため、特に制限されないが、0.1分~10時間が好ましく、1分~1時間がより好ましい。また、重合工程は、常圧下で行われてもよく、減圧下で行われてもよく、加圧下で行われてもよい。
  [乾燥工程]
 本発明における乾燥工程は、前述の重合工程で得られた含水ゲル(含水ゲル状重合体とも称する。)を乾燥する工程である。重合工程で得られた含水ゲルは、通常、解砕処理により0.1~5mm程度の粒子状態にして、乾燥工程に供されることが好ましい。上記乾燥工程では、種々の乾燥法が採用され得る。熱風乾燥又は共沸脱水のような、乾燥機又は熱炉が用いられた方法が採用される。乾燥効率及び含水ゲルの劣化防止という観点から、上記乾燥工程の温度は、80~300℃が好ましく、100~250℃がより好ましく、120~220℃が更に好ましく、150~200℃が特に好ましい。
また、乾燥時間は、特に制限されないが、得られる乾燥重合体が所望の固形分率となるように、適宜決定すればよい。乾燥工程において得られる重合体の固形分率(180℃で3時間加熱した後の残存量)が、80重量%以上、更には90重量%以上であることが、粉砕のし易さの点で好ましい。一般に、含水ゲルの粒子径、乾燥温度、風量等にも拠るが、生産効率の点から、乾燥時間は、15分~2時間とすることが好ましい。
  [粉砕工程]
 本発明における粉砕工程は、含水ゲル又は乾燥工程で得られた重合体(乾燥重合体とも称する。)を粉砕する工程である。この粉砕により、吸水性樹脂粒子が得られる。粉砕は、所望の粒径(好ましくは、重量平均粒子径200~800μm)の吸水性樹脂粒子がより多く得られるように行うことが好ましい。粉砕方法については、特に制限はなく、従来公知の方法を採用することができる。
  [分級工程]
 本発明における分級工程は、前述の粉砕工程で得られた吸水性樹脂粒子を分級する工程である。分級工程において、吸水性樹脂粒子が篩い分けられる。この分級工程において、所望の粒径(好ましくは、重量平均粒子径200~800μm)を有する粒子を選択して目的とする粒子状吸水剤が得られる。分級方法については、特に制限はなく、従来公知の方法を採用することができる。なお、重量平均粒子径は、米国特許出願公開第2006/0204755公報に開示された方法によって、測定される。
  [微粉リサイクル工程]
 本発明における微粉リサイクル工程は、粉砕工程あるいは分級工程での粒度調整時に発生する微粉(例えば、目開き150μmの篩通過物)を、重合工程や乾燥工程に戻す工程である。該微粉リサイクル工程は、必須ではなく、目的とする粒子状吸水剤の物性によって、その要否が決定される。
  [表面架橋工程]
 本発明における表面架橋工程は、前述の分級工程で得られた吸水性樹脂粒子の表面近傍を、表面架橋剤を用いて架橋する工程である。本発明では、改質剤が表面架橋剤である場合に好ましく適用することができる。前記した吸水性樹脂粒子は、内部に架橋構造を有しているが、凝集を抑制するという観点から、この吸水性樹脂粒子が更に架橋されて、その表面あるいは表面近傍の架橋密度が内部のそれよりも高められる。なお、「表面あるいは表面近傍」とは、表層の部分であり、通常は、数10μm以下、又は粒子半径の1/10以下である部分を指すが、その厚みは目的に応じて適宜決定される。
 本発明における表面架橋の方法としては、特に制限されないが、以下の方法を挙げることができる。
(1)有機表面架橋剤及び/又は水溶性無機表面架橋剤による方法
(2)吸水性樹脂粒子の表面において、架橋性モノマーを架橋重合させる方法(例えば、米国特許第7201941号明細書に開示された方法)
又は
(3)過硫酸塩等でラジカル架橋させる方法(例えば、米国特許第4783510号明細書に開示された方法)
 また、生産性の観点から、この架橋反応が、加熱又は放射線(好ましくは欧州特許第1824910号明細書に開示された紫外線)の照射によって促進されることが好ましい。吸水性樹脂粒子の表面あるいは表面近傍が表面架橋されることにより、優れた加圧下吸収倍率、換言すれば、圧力に対する吸収力を高めることができる。
 本発明において「表面架橋」とは、吸水性樹脂粒子の表面あるいは表面近傍の領域が、化学的あるいは物理的に修飾されて表面架橋がなされたことを意味する。部分中和架橋ポリアクリル酸の場合を例にとると、「化学的な修飾」とは、粒子表面近傍に存在する官能基(特にカルボキシル基)と反応し得る官能基を2個以上有する有機表面架橋剤(例えば、多価アルコール、多価グリシジル化合物、多価アミン等)により、表面架橋がなされた状態を意味する。この例以外にも、例えば、3価アルミニウム等の多価金属による表面カルボキシル基のイオン結合による表面架橋も含まれる。本発明においては、表面架橋における結合の形態は、特に限定されず、表面あるいは表面近傍が架橋された吸水性樹脂粒子が、粒子状吸水剤となる。
 上記表面架橋工程で用いられる表面架橋剤としては、特に制限されないが、エチレングリコール、ジエチレングリコール、プロピレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、1,3-プロパンジオール、ジプロピレングリコール、2,2,4-トリメチル-1,3-ペンタンジオール、ポリプロピレングリコール、グリセリン、ポリグリセリン、2-ブテン-1,4-ジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,2-シクロヘキサンジメタノール、1,2-シクロヘキサンジオール、トリメチロールプロパン、ジエタノールアミン、トリエタノールアミン、ポリオキシプロピレン、オキシエチレン-オキシプロピレンブロック共重合体、ペンタエリスリトール、ソルビトール等の多価アルコール化合物;エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、グリシドール等のエポキシ化合物;エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ポリエチレンイミン等の多価アミン化合物及びその無機塩又は有機塩(例えばアジリジニウム塩);2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等の多価イソシアネート化合物;1,2-エチレンビスオキサゾリン等の多価オキサゾリン化合物;1,3-ジオキソラン-2-オン、4-メチル-1,3-ジオキソラン-2-オン、4,5-ジメチル-1,3-ジオキソラン-2-オン、4,4-ジメチル-1,3-ジオキソラン-2-オン、4-エチル-1,3-ジオキソラン-2-オン、4-ヒドロキシメチル-1,3-ジオキソラン-2-オン、1,3-ジオキサン-2-オン、4-メチル-1,3-ジオキサン-2-オン、4,6-ジメチル-1,3-ジオキサン-2-オン、1,3-ジオキソパン-2-オン等のアルキレンカーボネート化合物;エピクロロヒドリン、エピブロムヒドリン、α-メチルエピクロロヒドリン等のハロエポキシ化合物;亜鉛、カルシウム、マグネシウム、アルミニウム、鉄、ジルコニウム等の多価金属の化合物(例えば水酸化物、塩化物等);2-オキサゾリジノン等のオキサゾリジノン化合物(米国特許第6559239号公報に例示);オキセタン化合物;環状尿素化合物等が挙げられる。これらの中でも、多価アルコール化合物、エポキシ化合物、多価アミン化合物(塩)、アルキレンカーボネート化合物及びオキサゾリジノン化合物が好ましい。2種以上の表面架橋剤を併用してもよい。
 また、上記表面架橋剤として例示した、オキサゾリジノン化合物、アルキレンカーボネート化合物、多価アルコール化合物、及びオキセタン化合物からなる群から選ばれる脱水反応性表面架橋剤の1種又は2種以上を、改質剤として、表面架橋工程で使用してもよい。これらのうち、多価アルコールが好ましく、必要により、他の表面架橋剤(例えば、オキサゾリノン化合物)が併用される。前述した脱水反応性表面架橋剤は、安全性が高く、高物性の粒子状吸水剤が得られる。なお、前記多価アルコールとしては、炭素数2~10の多価アルコールが好ましく、炭素数3~8の多価アルコールがより好ましい。
 一方、反応性の低い表面架橋剤を使用した場合、高温での脱水反応(例えば、吸水性樹脂のカルボキシル基と表面架橋剤とのエステル化反応あるいはアミド化反応)を必要とする。そのため、得られる粒子状吸水剤の物性が安定せず、更に小スケールや実験室レベルに比して、特に実機レベル(1000kg/hr以上の連続生産)では、粒子状吸水剤の物性低下が見られ易かったが、本発明では、かかる問題を解決し、高物性で、安全性の高い粒子状吸水剤を安定的に得ることができる。
 本発明における表面架橋工程では、改質剤として、複数の表面架橋剤を同時に又は別々に添加することが好ましい。複数の表面架橋剤の組み合わせとして、上記脱水反応性表面架橋剤同士の組み合わせ、あるいは、上記脱水反応性表面架橋剤とイオン結合性表面架橋剤との組み合わせが挙げられる。これらの複数の表面架橋剤は、同時に又は別々に添加すればよく、また、添加の回数は一度でもよく、複数回でもよい。
 上記イオン結合性表面架橋剤としては、特に制限されないが、例えば、後述の多価金属塩あるいは水酸化物が好ましい。これらの複数の表面架橋剤を併用することで、通液性(SFC)等の物性を向上させることができる。
 従来、複数の表面架橋剤を使用する場合、それぞれ1種のフレが僅かであっても、併用時にはフレが大きくなり物性低下をもたらすことがあった。しかし、本発明では、かかる問題を解決し、高物性の粒子状吸水剤を得ることができる。即ち、本発明では改質剤として、複数の表面架橋剤や脱水反応性表面架橋剤を使用する場合に、効果をより発揮する。
 上記表面架橋剤の使用量は、重合体(吸水性樹脂粒子)の固形分100質量部に対して、0.001~10質量部が好ましく、0.01~5質量部がより好ましい。表面架橋剤の使用量をこの範囲内に設定することにより、吸水性樹脂粒子の表面近傍の架橋密度を内部のそれよりも高くすることができる。また、表面架橋剤の使用量が10質量部を超える場合は、不経済であるため好ましくなく、表面架橋剤の使用量が0.001質量部未満の場合には、吸水剤の加圧下吸水倍率等の性能を向上させる上で、充分な改良効果が得られないので、好ましくない。
 上記表面架橋工程では、吸水性樹脂粒子と表面架橋剤との混合にあたり、溶媒として水を用いることが好ましい。当該水の使用量は、吸水性樹脂粒子の種類、吸水性樹脂粒子の粒径、含水率等にもよるが、吸水性樹脂粒子の固形分100質量部に対して、0.01~20質量部が好ましく、0.5~10質量部がより好ましい。この水溶液に、必要に応じて、親水性有機溶媒が混合されてもよい。用いられる親水性有機溶媒としては、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール及びt-ブチルアルコール等の低級アルコール類;アセトン等のケトン類;ジオキサン及びテトラヒドロフラン等のエーテル類;N,N-ジメチルホルムアミド等のアミド類;ジメチルスルホキシド等のスルホキシド類等が挙げられる。親水性有機溶媒の使用量は、吸水性樹脂粒子の固形分100質量部に対して、20質量部以下が好ましく、10質量部以下がより好ましい。
 本発明において、表面架橋剤の水溶液(表面架橋剤水溶液)の濃度は、5~50質量%が好ましく、10~40質量%がより好ましい。表面架橋剤の水溶液濃度を上記範囲内とすることで、得られる吸水剤の物性が安定し、高い架橋密度のものが得られるとともに、水溶液の粘度が抑制され、表面架橋剤が均一に分散するため、好ましい。また、2種以上の表面架橋剤が用いられる場合、それぞれの濃度の合計が、上記範囲内に設定される。
 上記吸水性樹脂粒子の表面に表面架橋剤水溶液を付着させる方法としては、特に制限されないが、例えば、表面架橋剤水溶液を噴霧させる方法、又は滴下させる方法が採用される。表面架橋剤を均一に付着させることから、噴霧させる方法が好ましい。噴霧される液滴の平均粒径は0.1~300μmが好ましく、0.1~200μmがより好ましい。
 上記表面架橋剤と吸水性樹脂粒子との反応は、常温下で行われてもよく、高温下で行われてもよい。しかしながら、高温下で行われることが好ましい。本発明では、高温下で反応がなされる処理は、加熱処理と称される。加熱処理の雰囲気温度は、特に制限されないが、80~250℃が好ましく、100~250℃がより好ましく、150~250℃が特に好ましい(特に、上記脱水エステル化反応性表面架橋剤において好ましく適用される)。加熱処理の雰囲気温度を上記の範囲とすることで、均一に表面架橋することができ、高い生産性を確保することができる。更に、吸水性樹脂粒子の劣化を防止することもできる。加熱処理時間としては、1分~2時間が好ましい。加熱処理は、粒子が静置された状態で行われてもよく、粒子が撹拌されつつ行なわれてもよい。
  [冷却工程]
 本発明における冷却工程は、表面架橋工程の後、任意に実施される工程であり、例えば、前述の表面架橋工程で加熱され表面近傍が架橋されて得られる粒子状吸水剤が冷却される工程である。この冷却工程で用いられる冷却装置としては、特に制限はないが、例えば、米国特許第6378453号公報等に例示される、内壁その他の伝熱面の内部に冷却水が通水されている2軸撹拌乾燥機等が用いられる。
  [添加剤の添加工程]
 本発明では、上記表面架橋剤以外の改質剤(添加剤)を吸水性樹脂粒子に添加する添加工程が更に設けられてもよい。この添加工程は、上記重合工程以降に設けられることが好ましく、上記乾燥工程以降に設けられることがより好ましい。上記表面架橋工程、上記冷却工程又はその他の工程において、添加剤が添加されてもよい。即ち、上記改質剤(添加剤)は、表面架橋剤、界面活性剤、キレート剤、消臭剤、抗菌剤、還元剤、および、着色防止剤から少なくとも1種類が選ばれる。
 本発明においては、上記改質剤(添加剤)を溶液、特に水溶液として、表面架橋剤と同時又は別々に添加する場合に、好ましく適用することができる。即ち、上記改質剤(添加剤)溶液を所定濃度で作成後、上記の方法で希釈すればよい。上記工程(a)において、改質剤としての表面架橋剤及び表面架橋後の改質剤が更に使用される。
 この添加剤としては、例えば、(A)消臭成分、(B)多価金属塩、(C)無機粒子((D)複合含水酸化物粒子を含む)、(E)キレート剤及び(F)その他の添加剤が挙げられる。これらの添加剤の添加により、吸水剤に種々の機能が付与される。また、上記の改質剤(添加剤)を溶液や分散液、特に水溶液として添加する場合、上記重合開始剤や表面架橋剤と同様に、本発明の方法が好ましく適用されて、得られる粒子状吸水剤の物性が向上あるいは安定化する。当該溶液の濃度は、飽和濃度以上を含め適宜決定されるが、通常、0.1~90質量%が好ましく、1~50質量%がより好ましい。
  (A)消臭成分
 本発明の製造方法で得られる粒子状吸水剤には、消臭性を発揮させるために、消臭成分、好ましくは植物成分を配合することができる。該植物成分としては、好ましくは、ポリフェノール類、フラボン類及びカフェインから選ばれる1種又は2種以上の化合物であり、タンニン、タンニン酸、五倍子、没食子及び没食子酸から選ばれる1種又は2種以上の化合物が、特に好ましい。また、他の植物成分が添加されてもよい。他の植物成分としては、ツバキ、ヒカサキ及びモッコク等のツバキ科植物由来の成分;イネ、ササ、竹、トウモロコシ及び麦等のイネ科植物由来の成分;コーヒー等のアカネ科植物由来の成分等が挙げられる。植物成分の形態は、エキス(精油)であっても植物自体であってもよい。植物加工業や食物加工業における製造工程で副生する植物滓、抽出滓等が添加されてもよい。
  (B)多価金属塩
 本発明の製造方法で得られる粒子状吸水剤には、吸水性樹脂粒子の通液性及び流動性を向上させる目的で、多価金属の塩又は水酸化物、更には多価金属塩を配合することができる。更に、多価金属塩の添加により、吸水性樹脂粒子が吸湿したときのブロッキングが抑制される。多価金属は、イオン結合性表面架橋剤としても作用し、通液性の向上に寄与する。したがって、上記共有結合性表面架橋剤と同時又は別々に併用することもできる。なお、多価金属が吸水性樹脂と反応しうる場合、表面架橋剤として使用してもよい。
 この多価金属塩としては、有機酸の多価金属塩及び無機の多価金属塩が例示される。好ましい無機の多価金属塩として、例えば、塩化アルミニウム、ポリ塩化アルミニウム、硫酸アルミニウム、硝酸アルミニウム、ビス硫酸カリウムアルミニウム、ビス硫酸ナトリウムアルミニウム、カリウムミョウバン、アンモニウムミョウバン、ナトリウムミョウバン、アルミン酸ナトリウム、塩化カルシウム、硝酸カルシウム、塩化マグネシウム、硫酸マグネシウム、硝酸マグネシウム、塩化亜鉛、硫酸亜鉛、硝酸亜鉛、塩化ジルコニウム、硫酸ジルコニウム及び硝酸ジルコニウム等が例示される。これらの中でも、アルミニウム化合物(塩化アルミニウム、ポリ塩化アルミニウム、硫酸アルミニウム、硝酸アルミニウム、ビス硫酸カリウムアルミニウム、ビス硫酸ナトリウムアルミニウム、カリウムミョウバン、アンモニウムミョウバン、ナトリウムミョウバン、アルミン酸ナトリウム等)が好ましく、硫酸アルミニウムが特に好ましい。硫酸アルミニウム18水塩、硫酸アルミニウム14~18水塩等の含水結晶粉末が、最も好適に使用することができる。これらは1種のみ用いてもよいし、2種以上の多価金属塩が併用されてもよい。上記多価金属塩は、ハンドリング性及び粒子状吸水剤との混合性の観点から、溶液状態で用いられることが好ましく、特に水溶液状態で用いられるのが好ましい。
 その他、有機酸の多価金属塩は、例えば、米国特許第7282262号明細書及び米国特許出願公開第2006/0073969号明細書に例示されている。本発明に用いられる有機酸の多価金属塩は、その分子内に炭素数が7個以上有する多価金属塩が、好適に用いられる。その中でも、炭素数が12個以上でかつ不飽和結合を有しない長鎖脂肪酸が、特に好ましい。この脂肪酸としては、例えば、ラウリン酸、ミリスチン酸、パルミチン酸及びステアリン酸が例示される。
 上記多価金属塩は、粒子状であることが好ましい。混合性の観点より、吸水性樹脂粒子の粒子径よりも小さな粒子径を有する多価金属塩が好ましい。多価金属塩の質量平均粒子径は500μm以下が好ましく、400μm以下がより好ましい。多価金属塩に含まれる、150μm以下の粒子の比率は20質量%以上が好ましく、30質量%以上がより好ましい。
 上記多価金属塩は、水溶液として吸水性樹脂粒子と混合されることが好ましい。高濃度の水溶液が用いられることにより、多価金属イオンの吸水性樹脂粒子の内部への浸透と拡散とが抑制される。この観点から、水溶液の濃度は飽和濃度に対して50%以上が好ましく、60%以上がより好ましく、70%以上がより好ましく、80%以上がより好ましく、90%以上が特に好ましい。飽和濃度の水溶液や飽和濃度を超えた分散液が用いられてもよい。
  (C)無機粒子
 本発明の製造方法で得られる粒子状吸水剤に、吸湿時のブロッキング防止のために、無機粒子、特に水不溶性無機粒子を添加してもよい。本発明に使用される無機粒子としては、特に制限されないが、例えば、二酸化珪素や酸化チタン等の金属酸化物;天然ゼオライトや合成ゼオライト等の珪酸及びその塩;カオリン;タルク;クレー;ベントナイト等が挙げられる。これらの中でも、二酸化珪素及び珪酸(塩)の粒子がより好ましく、コールターカウンター法により測定された平均粒子径が0.001~200μmの二酸化珪素及び珪酸(塩)が、更に好ましい。
  (D)複合含水酸化物粒子
 また、上記の無機粒子には、複合含水酸化物が含まれてもよい。この粒子により、粒子状吸水剤の流動性及び消臭機能が高められる。本発明に使用される複合含水酸化物としては、例えば、亜鉛及び珪素を含む複合含水酸化物や、亜鉛及びアルミニウムを含む複合含水酸化物等を用いることができる。
  (E)キレート剤
 本発明の製造方法で得られる吸水剤は、キレート剤を含んでいてもよい。キレート剤の添加により、尿等の体液に対する吸水剤の吸収倍率が高められる。上記キレート剤としては、特に制限されないが、高分子キレート剤及び非高分子キレート剤が例示される。酸基含有非高分子キレート剤が、好ましい。酸基含有非高分子キレート剤における酸基の数は2~100が好ましく、2~50がより好ましく、2~10が特に好ましい。前記の好ましい酸基としては、リン酸基及びカルボン酸基が例示される。分子中に窒素を有する、アミノアルボン酸系キレート剤又はアミノリン酸系キレート剤も好ましい。好ましいキレート剤の具体例としては、イミノ二酢酸、ヒドロキシエチルイミノ二酢酸、ニトリロ三酢酸、ニトリロ三プロピオン酸、エチレンジアミン四酢酸、ヒドロキシエチレンジアミン三酢酸、ヘキサメチレンジアミン四酢酸、ジエチレントリアミン五酢酸、トリエチレンテトラミン六酢酸、trans-1,2-ジアミノシクロヘキサン四酢酸、ビス(2-ヒドロキシエチル)グリシン、ジアミノプロパノール四酢酸、エチレンジアミン-2-プロピオン酸、グリコールエーテルジアミン四酢酸及びビス(2-ヒドロキシベンジル)エチレンジアミン二酢酸並びにこれらの塩等のアミノカルボン酸系金属キレート剤;エチレンジアミン-N,N'-ジ(メチレンホスフィン酸)、エチレンジアミンテトラ(メチレンホスフィン酸)、ニトリロ酢酸-ジ(メチレンホスフィン酸)、ニトリロジ酢酸-(メチレンホスフィン酸)、ニトリロ酢酸-β-プロピオン酸-メチレンホスホン酸、ニトリロトリス(メチレンホスホン酸)、シクロヘキサンジアミンテトラ(メチレンホスホン酸)、エチレンジアミン-N,N'-ジ酢酸-N,N'-ジ(メチレンホスホン酸)、エチレンジアミン-N,N'-ジ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ポリメチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)及び1-ヒドロキシエチリデンジホスホン酸並びにこれらの塩等のリン化合物が挙げられる。キレート剤が、モノマー又はモノマーの水溶液に添加されてもよい。
  (F)その他の添加剤
 その他、吸水性樹脂粒子には、必要に応じて、消毒剤、抗菌剤、香料、発泡剤、顔料、染料、親水性短繊維、肥料、酸化剤、還元剤、界面活性剤、着色防止剤、水性塩類等の添加剤を添加してもよい。上記還元剤としては、硫黄あるいはリンを含有する無機還元剤が好ましく、例えば、米国特許出願公開第2006/74160号公報等に開示されているものが使用できる。また、上記界面活性剤としては、例えば、米国特許第6599989号公報に開示されているものが使用できる。更に、上記着色防止剤としては、有機又は無機の着色防止剤が例示される。
 これらの添加剤や改質剤の使用量は、目的及び添加剤の種類に応じて適宜決定される。通常、それぞれの添加剤の量は、重合体(吸水性樹脂粒子)の固形分100質量部に対して10質量部以下が好ましく、0.0001~5質量部がより好ましく、0.002~3質量部が特に好ましい。キレート剤が添加される場合、その使用量は、吸水性樹脂粒子100質量部に対して0.0005質量部以上が好ましく、0.001質量部以上がより好ましく、0.05質量部以上がさらに好ましく、0.1質量部以上が特に好ましい。キレート剤の使用量は1.0質量部以下が好ましく、0.5質量部以下がより好ましく、0.2質量部以下が特に好ましい。
 通液性の観点から好ましい添加剤は、高分子ポリアミン及び多価金属塩(B)である。特に、多価金属塩(B)が好ましい。多価金属塩(B)の添加後、この多価金属塩(B)と吸水性樹脂粒子とが混合されることが好ましい。混合のための装置の具体例としては、円筒型混合機、スクリュー型混合機、スクリュー型押出機、タービュライザー、ナウター型混合機、V型混合機、リボン型混合機、双腕型ニーダー、流動式混合機、気流型混合機、回転円盤型混合機、ロールミキサー、転動式混合機及びレディゲミキサーが挙げられる。
 好ましくは、多価金属塩は、水溶液として吸水性樹脂粒子に添加される。水溶液の液滴の大きさは適宜調整され得る。水溶液の濃度は、飽和濃度に対して50質量%以上が好ましい。濃度が上記範囲に設定されることにより、多価金属イオン(例えばアルミニウムイオン)が吸水性樹脂粒子の内部に浸透及び拡散することが抑制される。この観点から、濃度は60質量%以上がより好ましく、70質量%以上がより好ましく、80質量%以上がより好ましく、90質量%以上が特に好ましい。水溶液の濃度が飽和濃度であってもよい。
  [整粒工程]
 本発明では、粒子状吸水剤の粒度を再調整する整粒工程を設けてもよい。粒子状吸水剤の製造過程においては、前述した分級工程で粒子状吸水性樹脂の粒径を調整したにも関わらず、冷却工程後の粒子状吸水剤に、大きな粒径を有する凝集物が含まれる場合がある。そのため、前記凝集物を解砕処理及び分級処理する必要がある。この解砕処理及び分級処理の方法、順序及び回数については、特に制限されないが、例えば、分級処理によって粒径の大きい凝集物を篩い分けた後、該凝集物を解砕処理し、その後、更に分級処理する方法が挙げられる。この一連の操作により、所望の粒子径(好ましくは、重量平均粒子径200~800μm)を持った粒子状吸水剤が得られる。なお、生産効率の観点から、該整粒工程は、冷却工程後に設けられることが好ましい。このような整粒方法は、米国特許第7347330号公報、米国特許出願公開第2005/0113252号公報等に例示されている。
  [包装工程]
 本発明では、前述した整粒工程に包装工程を設けてもよい。包装工程は、整粒工程で整粒された粒子状吸水剤が包装される工程である。粒子状吸水剤を包装する方法について、特に制限されないが、例えば、ホッパーに貯蔵された粒子状吸水剤を、充填装置によって包装材容器に充填する方法が挙げられる。前記包装材容器としては、例えば、フレキシブルコンテナバッグ等の貯蔵バッグが挙げられる。本発明に係る製造方法では、フレキシブルコンテナバッグに充填された粒子状吸水剤が、所定の検査を経て出荷される。
 図1~図3は、いずれも本発明の実施の形態を示す概略説明図であり、本発明の製造過程における、重合開始剤溶液、表面架橋剤溶液及び添加剤溶液等の作成工程に好ましく適用できる装置概略図である。また、図4~図6は、ラインミキサー通過後の貯蔵タンクにおける、液の冷却方法又は加熱方法を説明する概略図である。冷却方法又は加熱方法は、特に制限されず、対象とする物質の性質、作成液の濃度、作成頻度等の条件により適宜決定すればよい。
 以下、重合開始剤溶液、表面架橋剤溶液及び添加剤溶液の作成工程について、詳説する。
  [重合開始剤溶液作成工程]
 本発明における重合開始剤溶液の作成は、図1~図3のいずれの装置に対しても適用することができるが、その中でも特に好ましく適用できる図1の装置図を用いて、説明する。
 図1に示された装置2は、第一タンク4、ラインミキサー6、第二タンク8、第一配管12、第二配管14、第三配管16及び第四配管18(循環ループ)を有している。第一配管12は、第一タンク4とラインミキサー6を接続している。第二配管14は、ラインミキサー6と第二タンク8を接続している。第三配管16は、第二タンク8と次工程を接続している。第四配管18は、第三配管16の途中から分岐し、再度、第二タンク8に接続している。これにより、第三配管16の一部及び第四配管18は循環ループ(以後、単に「循環ループ1」と称する。)を形成している。
 なお、本発明において、循環ループ(閉流路)とは、液体の流れの始点と終点とが一致する配管系を意味する。循環ループは、その中間にタンク、熱交換器、ポンプ等の機器を配置してもよい。曲線形状の循環ループ(狭義の循環ループ)であってもよく、直線配管が結合されてなる多角形状の循環ループであってもよい。循環ループにおいて、配管が三次元的に配置されてもよい。
 第一タンク4において、重合開始剤(例えば、過硫酸ナトリウム等)と水とをバッチ形式で供給し、重合開始剤の水溶液(母液)を作成する。
 この際、第一タンク4における重合開始剤の水溶液(母液)濃度は20~50質量%が好ましく、25~45質量%がより好ましい。当該重合開始剤は固体である場合が多く、本発明での製造方法においては、先ず重合開始剤の水溶液を母液として取り扱うことが好ましく、重合開始剤の水溶液(母液)濃度を上記範囲のように高濃度とすることができる。これによって、第一タンク4の容量を小さくすることができ、省スペース化を図ることができる。
 次いで、第一タンク4で作成された重合開始剤の水溶液(母液)は、第一配管12を通じて連続的に取り出された後、所望する重合開始剤の水溶液濃度となるように、新たに水が注入されて希釈され、ラインミキサー6へと送られる。ラインミキサー6を通過した重合開始剤の水溶液は、第二配管14を通じて第二タンク8に連続的に投入され、所定量の水溶液が第二タンク8に貯蔵される。その後、第二タンク8に貯蔵された水溶液は、第三配管16を通じて連続的に取り出され、モノマー水溶液に連続的に添加される。
 上記ラインミキサー6においては、重合開始剤の水溶液と水とが十分に混合されないため、第二配管14を通過する水溶液の濃度が、安定しないことが見いだされた。したがって、従来、仮に上記第二配管14を通過する重合開始剤の水溶液を直接モノマー水溶液に添加した場合、得られる粒子状吸水剤の品質も安定しない。そこで、本発明においては、上記第二配管14を通過した重合開始剤の水溶液を、一旦、第二タンク8に貯蔵する。そして、循環ループ1によって、第二タンク8内部の水溶液を循環させ、水と溶質とが充分に混合するようにする。
 この方法により、第二タンク8に貯蔵される重合開始剤の水溶液濃度が安定する。このとき、第二タンク8に貯蔵される重合開始剤の水溶液濃度は、1~25質量%が好ましく、5~20質量%がより好ましい。該水溶液濃度を上記範囲に設定することで、該水溶液濃度がより安定しやすくなる。更に、第三配管16を通過する重合開始剤の水溶液濃度が安定するため、品質に優れた吸水剤を製造することができる。
 また、仮に、重合開始剤の水溶液をバッチ形式で作成する場合、該重合開始剤の水溶液は低濃度となるため、多量の水溶液が必要となる。したがって、容量の大きいタンクが必要となるため、好ましくない。更に、多量の重合開始剤水溶液が用いられると、その貯蔵時に経時的な分解(濃度低下)を起こしやすく、重合時間等のフレ(変動)の原因となりうる。
 図1に示された装置2では、第二タンク8に重合開始剤の水溶液を連続的に投入し、第二タンク8から水溶液が連続的に取り出されるため、第二タンク8の液面をほぼ一定に制御して稼動させることができる。
 換言すれば、第二タンク8へ投入する重合開始剤の水溶液の液量x、及び、第二タンク8から取り出される液量yの比率x/yは、0.95~1.05の範囲内が好ましく、この範囲内となるように、液量x及び液量yの流量を制御し、かつ、第二タンク8内部に貯蔵される液量を、第二タンク8の容量の10~90%の範囲内で制御することが好ましい。従って、第二タンク8の容量を小さくすることができ、第二タンク8での滞留時間も短くすることができる。なお、上記液量x及び液量yには、循環ループ1を通過する循環液量は含まないものとする。即ち、液量xはラインミキサー6を通過する液量を、液量yは次工程に供給される量を、それぞれ意味するものとする。
 また、上記の流量制御は、各配管を通過する液量を流量計で測定し、上記比率x/yが上記範囲内となるように、コントロールバルブを作動させることによって、行うことができる。
 本発明における、第二タンク8の容量としては特に限定されないが、吸水剤の生産量及び重合開始剤の水溶液の投入量等から、最適な容量が決定される。例えば、粒子状吸水剤の生産量が23,000kg/hr、重合開始剤の水溶液の供給量が600kg/hrの場合、第二タンク8の容量は0.8~1.2m、保有液量は500Lとなる。また、第一タンク4の容量についても、特に限定されないが、2~4m3 となる。この装置2は、省スペースに寄与する。
 本発明においては、重合開始剤の劣化を防止するため、第二タンク8に貯蔵された重合開始剤の水溶液を冷却することが望まれる。該水溶液を冷却する方法は、特に制限されないが、例えば、第二タンク8に設置したジャケット、コイル、プレート式熱交換器、多管式熱交換器等の冷却装置によって、第二タンク8に貯蔵された水溶液を冷却することができる。この際、第二タンク8の容量が小さいため、出力の小さい冷却装置であっても、十分に該水溶液を冷却することができる。すなわち、この装置2は、省エネルギーにも寄与する。また、循環ループに代えて、攪拌機を第二タンク8内部に設置し、混合液を流動させることもできる。この場合、ジャケットあるいはコイルによる冷却が好ましい。
 上記第二タンク8における重合開始剤の水溶液の温度は、2~20℃が好ましく、5~15℃がより好ましい。該水溶液の温度を上記範囲に設定することで、特別な冷媒を用いることもなく、経済的に優位となる。
 本発明において、第一タンク4における重合開始剤の水溶液(母液)濃度C1と、第二タンク8における重合開始剤の水溶液濃度C2との比(C1/C2)は、2~50が好ましく、5~45が特に好ましい。上記比(希釈比)を上記範囲内とすることで、第一タンク4及び第二タンク8の容量を小さくすることができる。
 図1に示された装置2は、重合開始剤の水溶液濃度が低い場合、換言すれば、重合開始剤の水溶液が多量に用いられる場合に、顕著な効果を発揮する。すなわち、重合反応の誘導時間が短い場合においても、重合開始剤の水溶液とモノマー水溶液とが充分に混合されうるため、得られる吸水剤の物性は安定する。なお、誘導時間とは、モノマー水溶液に重合開始剤の水溶液が添加されてから、重合が開始するまでの時間であり、本発明は、誘導時間が5分以下、更には1分以下の場合に適している。
  [表面架橋剤溶液作成工程]
 本発明における表面架橋剤溶液の作成は、図1~図3のいずれの装置に対しても適用することができるが、その中でも特に好ましく適用できる図2の装置図を用いて、説明する。
 図2に示された装置20は、第一タンク22、第二タンク24、第三タンク26、ラインミキサー28、第四タンク30、第一配管32、第二配管34、第三配管36、第四配管38、第五配管40及び第六配管42(循環ループ)を有している。第一配管32は、第一タンク22とラインミキサー28を接続している。第二配管34は、第二タンク24と第一配管32を接続している。第三配管36は、第三タンク26と第二配管34を接続している。第四配管38は、ラインミキサー28と第四タンク30を接続している。第五配管40は、第四タンク30と次工程を接続している。第六配管42は、第五配管40の途中から分岐し、再度、第四タンク30に接続している。これにより、第五配管40の一部及び第六配管42は循環ループ(以後、単に「循環ループ2」と称する。)を形成している。
 本発明において、第一タンク22、第二タンク24、第三タンク26は、それぞれ表面架橋剤を含む混合液を作成するための原材料を貯蔵するタンクである。すなわち、第一タンク22には、第一の表面架橋剤(以後、第一表面架橋剤と称する。)が貯蔵され、第二タンク24には、他の表面架橋剤(以後、第二表面架橋剤と称する。)が貯蔵され、第三タンク26には、水が貯蔵されている。したがって、第一タンク22及び第二タンク24には、それぞれ表面架橋剤の原液が貯蔵されるため、保有量を少なくすることができ、タンク容量を小さくすることができる。なお、第三タンク26を設けず、水を直接、第二配管34に投入してもよい。
 第一タンク22に貯蔵された第一表面架橋剤は、第一配管32を通じて連続的に取り出され、ラインミキサー28へと送られる。第二タンク24に貯蔵された第二表面架橋剤は、第二配管34を通じて連続的に取り出され、第一配管32へと送られる。第三タンク26に貯蔵された水は、第三配管36を通じて連続的に取り出され、第二配管34へと送られる。第一表面架橋剤、第二表面架橋剤及び水は、ラインミキサー28において混合される。ラインミキサー28を通過した表面架橋剤の混合液は、第四配管38を通じて第四タンク30に連続的に投入され、所定量の混合液が第四タンク30に貯蔵される。その後、第四タンク30に貯蔵された混合液は、第五配管40を通じて連続的に取り出され、アクリル酸(塩)の重合体からなる吸水性樹脂粒子に連続的に添加される。
 上記ラインミキサー28においては、表面架橋剤と水とが十分に混合されないため、第四配管38を通過する混合液の混合比が、安定せず、均一にならない。したがって、仮に、上記第四配管38を通過する表面架橋剤の混合液を、直接、吸水性樹脂粒子に添加した場合、得られる粒子状吸水剤の品質も安定しない。そこで、本発明においては、上記第四配管38を通過する表面架橋剤の混合液を、一旦、第四タンク30に貯蔵する。そして、循環ループ2によって第四タンク30内部の混合液を循環させ、3種の液が充分に混ざり合うようにする。
 この方法により、第四タンク30に貯蔵される表面架橋剤混合液の混合比が安定する。このとき、第四タンク30に貯蔵される表面架橋剤混合液の混合比は、特に制限されないが、例えば、2種類の表面架橋剤を併用する場合は、第一表面架橋剤:1~30質量%、第二表面架橋剤:1~30質量%、水:40~98質量%とすることが好ましい。1種の表面架橋剤あるいは3種以上の表面架橋剤を使用する場合であっても、水の含有量が40~98質量%となるように、表面架橋剤の含有量を適宜決定すればよい。該混合液の混合比を上記の範囲に設定することで、該混合液の混合比がより安定しやすくなる。更に、第五配管40を通過する表面架橋剤混合液の混合比が安定するため、品質に優れた粒子状吸水剤を製造することができる。また、複数の表面架橋剤として、2種以上の上記共有結合性表面架橋剤の併用、あるいは、上記共有結合性表面架橋剤と上記イオン結合性表面架橋剤(例えば、アルミニウム塩)との併用が好ましく使用できる。複数の表面架橋剤を使用する場合でも、得られる粒子状吸水剤の物性が安定し、製造装置もコンパクトとなる。
 仮に、上記2種の表面架橋剤と水とをバッチ混合し、吸水性樹脂粒子への添加に適した混合液を作成する場合、多量の混合液が必要となる。従って、大型のタンクが必要となり、好ましくない。
 図2に示された装置20では、第四タンク30に表面架橋剤の混合液を連続的に投入し、第四タンク30から混合液が連続的に取り出されるため、第四タンク30の液面をほぼ一定に制御して稼動させることができる。
 換言すれば、第四タンク30への表面架橋剤の混合液の液量x、及び、第四タンク30から取り出される液量yの比率x/yは、0.95~1.05の範囲内が好ましく、この範囲内となるように、液量x及び液量yの流量を制御し、かつ、第四タンク30内部に貯蔵される液量を、第四タンク30の容量の10%~90%の範囲内で制御することが好ましい。従って、第四タンク30の容量を小さくすることができ、第四タンク30での滞留時間も短くすることができる。なお、上記液量x及び液量yには、循環ループ2を通過する循環液量は含まないものとする。即ち、液量xはラインミキサー28を通過する液量を、液量yは次工程に供給される量を、それぞれ意味するものとする。
 本発明における、第四タンク30の容量としては特に限定されないが、吸水剤の生産量及び表面架橋剤の混合液の投入量等から、最適な容量が決定される。例えば、吸水剤の生産量が23,000kg/hr、表面架橋剤の混合液の投入量が600kg/hrの場合、第四タンク30の容量は0.8~1.2m、保有液量は500Lとなる。また、第一タンク22、第二タンク24、第三タンク26の容量についても、特に限定されないが、10~40m3 となる。この装置2は、省スペースに寄与する。
  [添加剤溶液作成工程]
 本発明における添加剤溶液の作成は、図1~図3のいずれの装置に対しても適用することができるが、その中でも特に好ましく適用できる図3の装置図を用いて、説明する。
 図3に示された装置44は、第一タンク46、第二タンク48、第三タンク50、ラインミキサー52、第四タンク54、第一配管58、第二配管60、第三配管62、第四配管64、第五配管66、及び第六配管68(循環ループ)を有している。第一配管58は、第一タンク46とラインミキサー52を接続している。第二配管60は、第二タンク48と第一配管58を接続している。第三配管62は、第三タンク50と第一配管58を接続している。第四配管64は、ラインミキサー52と第四タンク54を接続している。第五配管66は、第四タンク54と次工程を接続している。第六配管68は、第五配管66の途中から分岐し、再度、第四タンク54に接続している。これにより、第五配管66の一部及び第六配管68は循環ループ(以後、単に「循環ループ3」と称する。)を形成している。
 本発明において、第一タンク46、第二タンク48、第三タンク50は、それぞれ添加剤を含む混合液を作成するための原材料を貯蔵するタンクである。すなわち、第一タンク46には、添加剤の水溶液(母液)が貯蔵され、第二タンク48には、第一の分散助剤(以後、第一分散助剤と称する。)が貯蔵され、第三タンク50には、第二の分散助剤(以後、第二分散助剤と称する。)貯蔵されている。したがって、第一タンク46、第二タンク48、及び第三タンク50には、それぞれ添加剤水溶液(母液)、分散助剤の原液あるいは水溶液(母液)が貯蔵されるため、保有量を少なくすることができ、タンク容量を小さくすることができる。なお、添加剤は、吸水性樹脂粒子の表面を改質し、分散助剤によって、前記添加剤の分散性が高められる。
 第一タンク46に貯蔵された添加剤の水溶液(母液)は、第一配管58を通じて連続的に取り出され、ラインミキサー52へと送られる。第二タンク48に貯蔵された第一分散助剤は、第二配管60を通じて連続的に取り出され、第一配管58へと送られる。第三タンク50に貯蔵された第ニ分散助剤は、第三配管62を通じて連続的に取り出され、第一配管58へと送られる。添加剤の水溶液(母液)、第一分散助剤及び第ニ分散助剤は、ラインミキサー52において混合される。ラインミキサー52を通過した添加剤の混合液は、第四配管64を通じて第四タンク54に連続的に投入され、所定量の混合液が第四タンク54に貯蔵される。その後、第四タンク54に貯蔵された混合液は、第五配管66を通じて連続的に取り出され、アクリル酸(塩)の重合体からなる吸水性樹脂粒子に連続的に添加される。
 上記ラインミキサー52においては、添加剤と分散助剤とが十分に混合されないため、第四配管64を通過する混合液の混合比が、安定しない。したがって、仮に、上記第四配管64を通過する添加剤の混合液を、直接、吸水性樹脂粒子に添加した場合、得られる粒子状吸水剤の品質も安定しない。そこで、本発明においては、上記第四配管64を通過する添加剤の混合液を、一旦、第四タンク54に貯蔵する。そして、循環ループ3によって第四タンク54内部の混合液を循環させ、3種の液が充分に混ざり合うようにする。
 この方法により、第四タンク54に貯蔵される添加剤混合液の混合比が安定する。このとき、第四タンク54に貯蔵される添加剤混合液の混合比は、合計3種類の添加剤や助剤を水溶液で添加する場合、剤の種類やその状態(溶液又はニートの液状物)によって適宜決定されるが、例えば、
  A剤:20~95質量%
  B剤:1~40質量%、
  C剤:0.5~30質量%、
とすることが好ましい。該混合液の混合比を上記の範囲に設定することで、該混合液の混合比がより安定しやすくなる。更に、第五配管66を通過する添加剤混合液の混合比が安定するため、品質に優れた粒子状吸水剤を製造することができる。なお、1種の添加剤あるいは3種以上の添加剤及び助剤を使用する場合の混合比についても、水が40~98質量%となるように、適宜決定すればよい。
 仮に、上記添加剤と2種の分散助剤とをバッチ混合し、吸水性樹脂粒子への添加に適した混合液を作成する場合、多量の混合液が必要となる。従って、大型のタンクが必要となり、好ましくない。
 図3に示された装置44では、第四タンク54に添加剤の混合液を連続的に投入し、第四タンク54から混合液が連続的に取り出されるため、第四タンク54の液面をほぼ一定に制御して稼動させることができる。
 換言すれば、第四タンク54への添加剤の混合液の液量x、及び、第四タンク54から取り出される液量yの比率x/yは、0.95~1.05の範囲内が好ましく、この範囲内となるように、液量x及び液量yの流量を制御し、かつ、第四タンク54内部に貯蔵される液量を、第四タンク54の容量の10%~90%の範囲内で制御することが好ましい。従って、第四タンク54の容量を小さくすることができ、第四タンク54での滞留時間も短くすることができる。なお、上記液量x及び液量yには、循環ループ3を通過する循環液量は含まないものとする。即ち、液量xはラインミキサー52を通過する液量を、液量yは次工程に供給される量を、それぞれ意味するものとする。
 本発明における、第四タンク54の容量としては特に限定されないが、粒子状吸水剤の生産量及び添加剤の混合液の投入量等から、最適な容量が決定される。例えば、粒子状吸水剤の生産量が23,000kg/hr、添加剤の混合液の投入量が200kg/hrの場合、第四タンク54の容量は0.8~1.2m、保有液量は300Lとなる。また、第一タンク46、第二タンク48、第三タンク50の容量についても、特に限定されないが、10~40m3 となる。この装置2は、省スペースに寄与する。
 本発明においては、添加剤の析出を防止するため、第四タンク54に貯蔵された添加剤の混合液を加熱することが望まれる。該混合液を加熱する方法は、特に制限されないが、例えば、第四タンク54に設置したジャケット、コイル、あるいは循環ループ3に設置したプレート式熱交換器、多管式熱交換器等の加熱装置によって、第四タンク54に貯蔵された混合液を加熱することができる。この際、第四タンク54の容量が小さいため、出力の小さい加熱装置であっても、十分に該混合液を加熱することができる。すなわち、この装置44は、省エネルギーにも寄与する。また、循環ループ3に代えて、攪拌機を第四タンク54内部に設置し、混合液を流動させることもできる。この場合、ジャケットあるいはコイルによる加熱が好ましい。
 上記第四タンク54における添加剤の混合液の温度は、35~70℃が好ましく、40~60℃がより好ましい。該水溶液の温度を上記範囲に設定することで、添加剤の析出を抑えることができ、更に、特別な熱媒を用いることもなく、経済的に優位となる。
 (粒子状吸水剤)
 本発明の製造方法により得られる粒子状吸水剤には、未重合の酸基含有モノマーが残存する場合がある。異臭及び衛生の観点から、粒子状吸水剤に含まれる残存モノマー量は、0~500ppmが好ましく、0~300ppmがより好ましく、0~100ppmが特に好ましい。本発明を適用することにより、残存モノマー量が上記範囲内である粒子状吸水剤が、安定して製造される。前述した残存モノマー量の測定は、まず、蓋付きプラスチック容器に、1000gの脱イオン水を用意し、そこに、0.5gの粒子状吸水剤を加え、2時間攪拌する。攪拌後、膨潤ゲル化した吸水剤を、濾紙を用いて濾別し、濾液を液体クロマトグラフィーで分析する。一方、既知濃度のモノマー(アクリル酸)の溶液について同様の分析を行い、得られる検量線を外部標準とする。この外部標準に基づき、濾液の希釈倍率を考慮して残存モノマー量を算出する。
 本発明は、多くの粒子状吸水剤に適用可能であるが、特に高物性(高AAP/高SFC)の粒子状吸水剤の製造方法に好ましく適用することができる。例えば、粒子状吸水剤がポリアクリル酸(塩)系吸水性樹脂を主成分とし、4.8kPa荷重下での生理食塩水の加圧下吸収倍率(AAP)が15~35g/g、及び/又は、通液性(SFC)が30(×10-7・cm・s・g-1)以上である場合に、より顕著な効果を発揮する。このような粒子状吸水剤は、表面架橋されたポリアクリル酸(塩)系吸水性樹脂であることが好ましく、上記表面架橋剤で表面架橋されていることがより好ましい。
 本発明における粒子状吸水剤の、生理食塩水に対する無加圧下吸収倍率(本明細書では、「CRC」と称することもある。)は、15~60g/gが好ましく、25~50g/gがより好ましい。CRCを上記の範囲とすることで、体液等の吸収性能がよく、また、低コストで粒子状吸水剤を製造することができる。更に、本発明を適用することにより、無加圧下吸収倍率(CRC)が上記範囲内である粒子状吸水剤が、安定して製造される。
 本発明における粒子状吸水剤の、4.8kPa荷重下での生理食塩水の加圧下吸収倍率(AAP:Absorbency against Presure)は、15~35g/gが好ましく、22~35g/gがより好ましく、24~35g/gが更に好ましく、26~35g/gが特に好ましい。AAPを上記の範囲とすることで、体液等の吸収性能がよく、また、低コストで粒子状吸水剤を製造することができる。更に、本発明を適用することにより、加圧下吸収倍率(AAP)が上記範囲内である粒子状吸水剤が、安定して製造される。本発明においては、得られる粒子状吸水剤のフレが小さい。即ち、AAPの標準偏差σを、0~0.25に、更には0~0.20に、特に0~0.15に制御することが可能である。
 本発明における粒子状吸水剤の、通液性(SFC)は、30(×10-7・cm3 ・s・g-1)以上が好ましく、60(×10-7・cm3 ・s・g-1)以上がより好ましく、100(×10-7・cm3 ・s・g-1)以上が更に好ましい。SFCを上記の範囲とすることで、体液等の吸収性能がよい粒子状吸水剤を製造することができる。なお、通液性(SFC)は、吸水剤が膨潤したときの液透過性を示す値である。更に、本発明を適用することにより、通液性(SFC)が上記範囲内である粒子状吸水剤が、安定して製造される。本発明においては、得られる粒子状吸水剤のフレが小さい。即ち、SFCの標準偏差σを、0~7に、更には0~5に制御することが可能である。
 2種以上の液が連続的にタンクに供給されつつ、このタンクからこれらの液の混合液が連続的に取り出される混合方法は、吸水剤製造の様々な工程において用いられ得る。吸水剤の製造では、大規模プラントが用いられる。この大規模プラントにおいて、安定的に吸水剤が製造される必要がある。さらに、この製造方法では、重合開始剤、表面架橋剤、添加剤等の使用量が厳格に管理される必要がある。このような製造方法において、前述の混合方法は特に効果を発揮する。前述の混合方法は、1ライン(1プラント)当たりの粒子状吸水剤の生産量が1000kg/hr以上、さらには2000kg/hr以上、さらには4000kg/hr以上である連続的な製造方法において、前述の混合方法は特に効果を発揮する。重合、乾燥、分級、表面架橋等の工程が連続的に行われることにより、大量生産がなされ得る。本発明は、このような大量生産に固有の問題(物性の低下及びばらつき)を解決し得る。
 なお、本発明では、連続生産の中間にバッチ工程(例えば、バッチ重合)が含まれていても、貯蔵工程等を含めて全体のフローが連続化されていれば、連続生産とする。好ましくは、重合、乾燥、分級、表面架橋の各工程は連結され、連続的に生産される。
 以下、実施例によって本発明の効果が明らかにされるが、この実施例の記載に基づいて本発明が限定的に解釈されるべきではない。
 (CRCの測定)
 生理食塩水に対する無加圧下吸収倍率(CRC)は、次のようにして測定される。先ず、0.2gの粒子状吸水剤を正確に量り取り(この質量が粒子状吸水剤の質量W1(g)となる)、不織布製の袋(60mm×85mm)に均一に入れる。次に、上記袋を、25±2℃に調温された生理食塩水中に浸漬し、30分間保持する。30分経過後、食塩水から引き上げ、遠心分離機(株式会社コクサン製の「H-122小型遠心分離機」)を用いて、250G(250×9.81m/s)の条件下で3分間水切りを行う。その後、袋の質量W2(g)を測定する。一方、粒子状吸水剤を含まない袋について同様の測定を行い、その質量W3(g)を測定する。下記の数式により、無加圧下吸収倍率(CRC)を算出する。
  CRC (g/g) = ((W2 - W3) / W1) - 1
 (AAPの測定)
 加圧下吸収倍率(AAP)は、次のようにして測定される。先ず、内径が60mmであるプラスチック製の支持円筒を準備する。この支持円筒の底には、ステンレススチール製の金網が溶着されている。この金網の目数は、400メッシュ(目開き38μm)である。一方、外径が60mmより僅かに小さく、支持円筒の壁面との間に隙間が生じず、かつ上下に摺動し得るピストン(cover plate)を準備する。上記金網の上に、0.900gの粒子状吸水剤を均一に散布する。(このとき、粒子状吸収剤の質量W4を測定しておく。)次に、この粒子状吸水剤の上にピストンを載置し、支持円筒、粒子状吸水剤及びピストンの合計質量W5(g)を測定する。このピストンにおもりを載置することで、該粒子状吸水剤に4.8kPaの圧力が均一に加えられる。次いで、直径150mmのペトリ皿内側に、直径90mm、厚さ5mmのガラスフィルターを配置した後、25±2℃に調温した生理食塩水を、ガラスフィルターの上面と同レベルになるまで注ぐ。このガラスフィルターの上面に、直径9cmの濾紙(トーヨー濾紙(株)製、No.2)を1枚載せ、過剰の食塩水を除く。この濾紙に前述の金網が接触するように、支持円筒及びピストンをペトリ皿に配置する。食塩水の液面がガラスフィルターの上面より下がった場合には、食塩水を補充し、液面のレベルが一定となるように保持する。1時間経過後、ペトリ皿から支持円筒及びピストンを取り除き、おもりを省いた質量W6(g)を測定する。この質量W6(g)には、生理食塩水によって膨潤した吸水剤の質量が含まれる。下記の数式により、加圧下吸収倍率(AAP)を算出する。
  AAP(g/g) = (W6 - W5) / W4
測定は、23±2℃の環境下で行う。また、この測定方法は、米国特許第6071976号に開示されている。
 (SFCの測定)
 通液性(SFC)は、次のようにして測定される。先ず、0.900gの粒子状吸水剤を容器に均一に入れる。この粒子状吸水剤を人工尿に浸漬し、2.07kPaの加圧下におく。60分経過後、膨潤した吸水剤(ゲル層)の高さを測定する。粒子状吸水剤が2.07kPaで加圧された状態で、0.69質量%食塩水を、ゲル層に通する。このとき、室温は20℃から25℃に調整される。コンピューターと天秤とを用いて、ゲル層を通過する液体量を20秒間隔で記録し、通過する液体の流速Fs(T)を算出する。流速Fs(T)は、増加質量(g)を増加時間(s)で割ることにより算出される。食塩水の静水圧が一定となり、安定した流速が得られた時間をTsとし、このTsから10分間に計測されたデータのみを流速計算に使用する。Tsから10分間に計測される流速から、Fs(T=0)の値が得られる。この値は、ゲル層を通過する最初の流速である。Fs(T)を時間に対してプロットし、最小2乗法により得られる結果に基づいてFs(T=0)を計算する。通液性(SFC)は、下記の数式によって算出する。
   SFC = (Fs(t=0) ・ L0) / (ρ ・A ・ΔP)
この数式において、L0はゲル層の高さ(cm)であり、ρは食塩水の密度(g/cm3 )であり、Aはゲル層の断面積A(cm2 )であり、ΔPはゲル層にかかる静水圧(dyne/cm2 )である。また、上記人工尿は、塩化カルシウム二水和物:0.025質量%、塩化カリウム:0.2質量%、塩化マグネシウム六水和物:0.05質量%、硫酸ナトリウム:2質量%、りん酸二水素アンモニウム:0.085質量%、りん酸水素二アンモニウム:0.015質量%の組成を有する水溶液である。この評価は、米国特許第5849405号の明細書に記載されたSFC試験に準じて行われる。
 [実施例1]
 重合工程(解砕を含む)、乾燥工程、粉砕工程、分級工程、表面架橋工程(表面架橋剤の噴霧工程及び加熱工程を含む)、冷却工程、添加工程、整粒工程及び貯蔵・充填工程の装置が連結され、これらの工程が連続的になされる製造設備を用い、粒子状吸水剤を連続的に約1800kg/hrで製造した。具体的な製造方法は、以下の通りである。
 2枚のシグマ型羽根を有しジャケットが装着された双腕型ニーダー(ステンレススチール製)に蓋が取り付けられてなる反応器を準備した。この反応器に、濃度が37質量%であるモノマー水溶液を投入した。このモノマー水溶液は、モノマーとして、アクリル酸及びアクリル酸ナトリウム塩を含む。このモノマー水溶液の中和率は、73モル%である。このモノマー水溶液は、0.06モル%(対モノマー)の、内部架橋剤であるポリエチレングリコールジアクリレート(平均n数:9)を含む。このモノマー水溶液を、窒素ガス雰囲気下で脱気した。一方、重合開始剤である過硫酸ナトリウム水溶液、及びL-アスコルビン酸水溶液をそれぞれ作成した。過硫酸ナトリウム水溶液の以下のようにして作成した。即ち、図1に示した装置2において、モノマー1モルに対して、過硫酸ナトリウム0.12gを添加する際、第一タンク4において30質量%の過硫酸ナトリウム水溶液を作成した後、連続的に水で加え、ラインミキサー6で混合した後、第二タンク8において2質量%の過硫酸ナトリウム水溶液とした。また、同様の方法で、モノマー1モルに対して、L-アスコルビン酸が0.005gとなるように、0.5質量%水溶液を作成した。これらの水溶液を別個にモノマー水溶液に添加することで、重合反応が開始され、ゲルが得られた。このゲルを解砕しつつ、重合反応を進行させた。重合の開始から30分後に、反応器から含水ゲルを取り出した。
 該重合においては、誘導時間は約30秒、ピーク温度時間は約10分で安定した。所望濃度の重合開始剤水溶液を2段階で作成することで、装置がコンパクトとなり、重合も安定する。
 さらに、この含水ゲルを、連続式の通風バンド乾燥機の多孔板の上に載置した。この乾燥機を185℃の条件で30分間運転し、含水ゲルを乾燥させて、乾燥重合体を得た。この乾燥重合体を3段ロールミルに連続的に供給し、粉砕して吸水性樹脂粒子(1)を得た。この粒子を、目開きが850μmである金属製篩網及び目開きが150μmである金属製篩網を有する分級機に投入し、分級を行った。この分級によって選ばれた粒子では、粒度が150μmから850μmであるものの比率は、98質量%であった。この吸水性樹脂粒子(1)を、高速連続混合機(タービュライザー、回転速度:1000rpm)に連続的に供給した。供給量は、1800kg/hrであった。この混合機にて、吸水性樹脂粒子(1)の表面に表面架橋剤の水溶液を噴霧した。この水溶液は、吸水性樹脂100質量部に対し、0.3質量部の1,4-ブタンジオール、0.5質量部のプロピレングリコール及び2.7質量部の純水を含む。この溶液は、図2に示された装置20で連続的に調製され、上記混合機に連続的に供給された。この装置では、第四タンク(容量:1000リッター)に、1,4-ブタンジオール、プロピレングリコール及び純水が連続的に供給された。第一タンクから第四タンクへの1,4-ブタンジオールの供給量は、5.4kg/hrであった。第二タンクから第四タンクへのプロピレングリコールの供給量は、9.0kg/hrであった。第三タンクから第四タンクへの純水の供給量は、48.6kg/hrであった。
 この吸水性樹脂粒子を、パドルドライヤーに連続的に供給し、198℃の温度下で40分間加熱した。さらに、同様のパドルドライヤーにて、吸水性樹脂粒子を60℃まで強制的に冷却した。この冷却のとき、ほぼ90℃の温度ゾーンにおいて、粒子に添加剤の溶液を添加した。この溶液は、吸水性樹脂100質量部に対し、0.5質量部の硫酸アルミニウム14-18水塩、0.2質量部の乳酸ナトリウム及び0.03質量部のプロピレングリコールを含む。
 パドルドライヤーから粒子を取り出し、目開きが850μmである金属製篩網を有する分級機に投入し、分級を行った。この篩網を通過しなかった粒子を粉砕し、この篩網を通過した粒子と混合した。この処理により、目開きが850μmである篩網を全ての粒子が通過する粒子状吸水剤を得た。この粒子状吸水剤を、包装材に充填した。
 [比較例1]
 バッチ処理にて表面架橋剤の水溶液を調製した他は実施例1と同様にして、粒子状吸水剤を得た。この方法では、容量が2000リッターである大型タンクに、190リッターのプロピレングリコール、140リッターの1,4-ブタンジオール及び1110リッターの純水が投入された。この大型タンクでの攪拌により、表面架橋剤の溶液が得られた。この大型タンクから、容量が600リッターである中継タンクにこの溶液が適宜移され、この中継タンクからこの溶液が上記パドルドライヤーに連続的に供給された。
 [実施例2]
 実施例1の重合工程における重合開始剤水溶液を、図1に示した装置2で作成した以外は実施例1と同様の操作を行った。即ち、モノマー1モルに対して、過硫酸ナトリウム0.12gを添加する際、第一タンク4において30質量%の過硫酸ナトリウム水溶液を作成した後、連続的に水で加え、ラインミキサー6で混合した後、第二タンク8において2質量%の過硫酸ナトリウム水溶液とした。この2質量%の過硫酸ナトリウム水溶液を用いて、重合を連続的に実施した。該重合において、誘導時間は約30秒、ピーク温度時間は約10分で安定した。該重合後、実施例1と同様の乾燥を行い、吸水物性が安定した吸水性樹脂粒子(2)を得た。所望濃度の重合開始剤水溶液を2段階で作成することで、装置がコンパクトとなり、重合も安定する。
  [物性値の測定]
 吸水剤の加圧下吸収倍率(AAP)及び通液性(SFC)を測定した。10回のサンプリングと測定とを行い、標準偏差σを算出した。この結果が、下記の表1に示されている。
Figure JPOXMLDOC01-appb-T000001
 上記表1に示される通り、実施例1の製造方法に要する設備(タンク1基;全容量1000L)は、比較例1の製造方法に要する設備(タンク2基;全容量2600L)に比べてコンパクトであり、かつメンテナンスも容易である。さらに、実施例1の製造方法で得られた粒子状吸水剤は、比較例1の製造方法で得られた粒子状吸水剤に比べて、同じ使用量の表面架橋剤(ブタンジオール/プロピレン
グリコール/硫酸アルミニウム(後添加))にも関わらず、物性の安定性(AAP/SFCの標準偏差σ)に優れている。この評価結果から、本発明の優位性は明らかである。
 本発明に係る粒子状吸水剤の製造方法では、重合開始剤を含む液及び/又は改質剤を含む液を作成する際、均一に混合することができ、濃度ムラのない混合液が連続的に得られる。そのため、吸水性樹脂との混合においても、均一に混合することができるため、高品質な吸水剤が安定的にかつ連続的に生産することができる。更に、混合液を作成するタンク容量を小さくすることができるため、プラントの小型化を図ることができ、省スペースが達成される。同時に、重合開始剤を含む液及び/又は改質剤を含む液の滞留量や貯蔵量を削減することができるため、該重合開始剤を含む液及び/又は改質剤を含む液の経過時間的な分解や劣化が低減される。その結果として、得られる粒子状吸水剤の物性を安定させることができ、特に巨大スケールでの連続生産時に最も効果を発揮する。更に、製造プラント停止に残存する重合開始剤を含む液及び/又は改質剤を含む液の廃棄量が少なく、地球環境にもやさしい。
 発明の詳細な説明の項においてなされた具体的な実施形態または実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内において、いろいろと変更して実施することができるものである。
 本発明に係る製造方法で得られた吸水剤は、紙オムツ、生理用ナプキン、失禁パット等の衛生材料に適している。さらにこの吸水剤は、農業資材、土木資材等にも用いられ得る。

Claims (21)

  1.  (1)吸水性樹脂のモノマーの水溶液に、重合開始剤を含む液を混合する工程、
     (2)上記モノマーの重合によって含水ゲルを得る工程、
     (3)上記含水ゲルを乾燥し、乾燥重合体を得る工程、
    及び、
     (4)上記モノマーの水溶液又は上記重合体に、改質剤を含む液を添加する工程
    を含んでおり、
     上記重合開始剤を含む液又は改質剤を含む液が、
     (a)2種以上の液を準備する工程
    及び
     (b)上記2種以上の液を別個に又は合一して連続的にタンクに供給しつつ、このタンクから上記2種以上の液の混合液を連続的に取り出す工程を経て得られる、吸水性樹脂を主成分とする粒子状吸水剤の製造方法。
  2.  上記工程(b)において、タンクの内部の混合液を循環ループにて循環させる請求項1に記載の製造方法。
  3.  上記循環ループにおいて、上記混合液を冷却又は加熱する請求項2に記載の製造方法。
  4.  上記タンクにおいて、上記混合液を冷却又は加熱する請求項1から3のいずれかに記載の製造方法。
  5.  上記工程(a)で準備される1つの液が水溶液である請求項1から4のいずれかに記載の製造方法。
  6.  上記工程(a)において、1種以上の重合開始剤の水溶液と、水とを準備する請求項1から4のいずれかに記載の製造方法。
  7.  上記工程(a)において準備される重合開始剤の水溶液の濃度が20質量%以上、50質量%以下であり、上記工程(b)の後における希釈後の重合開始剤の水溶液の濃度が1質量%以上、25質量%以下である請求項6に記載の製造方法。
  8.  上記重合開始剤の量が、モノマー1モルに対して0.001質量部以上、2質量部以下である請求項6又は7に記載の製造方法。
  9.  上記工程(a)において、改質剤として、1種以上の表面架橋剤の液と、水とを準備する請求項1から4のいずれかに記載の製造方法。
  10.  上記表面架橋剤の量が、重合体の固形分100質量部に対して0.001質量部以上、10質量部以下である請求項9に記載の製造方法。
  11.  上記工程(a)において、改質剤としての表面架橋剤、及び、表面架橋後、改質剤が更に使用される請求項1から4のいずれかに記載の製造方法。
  12.  上記改質剤の量が、重合体の固形分100質量部に対して0.0001質量部以上、10質量部以下である請求項11に記載の製造方法。
  13.  上記改質剤が、表面架橋剤、界面活性剤、キレート剤、消臭剤、抗菌剤、還元剤、および、着色防止剤からなる群から選ばれる少なくとも1種類である請求項1から12のいずれかに記載の製造方法。
  14.  (1)吸水性樹脂のモノマーの水溶液に、重合開始剤を含む液を混合する工程、
     (2)上記モノマーの重合によって含水ゲルを得る工程
    及び
     (3)上記含水ゲルを乾燥し、乾燥重合体を得る工程
    を含んでおり、
     上記重合開始剤を含む液が、
     (a)2種以上の液を準備する工程
    及び
     (b)上記2種以上の液を別個に又は合一して連続的にタンクに供給しつつ、このタンクから上記2種以上の液の混合液を連続的に取り出す工程を経て得られる、吸水性樹脂を主成分とする粒子状吸水剤の製造方法。
  15.  上記(b)工程において、上記タンクへの上記2種以上の液を供給する液量x、及び、上記タンクから上記2種以上の液を取り出す液量yの比率x/yが0.95以上、1.05以下の範囲内にて液量x及び液量yの流量を制御し、かつ、
     上記タンク内の保有液量を、タンク容量の10%以上、90%以下の範囲内にて制御する請求項1から14のいずれかに記載の製造方法。
  16.  上記吸水性樹脂がポリアクリル酸および/またはポリアクリル酸塩系の吸水性樹脂であり、上記重合が連続ニーダー重合又は連続ベルト重合である請求項1から15のいずれかに記載の製造方法。
  17.  上記吸水剤の生産量が、1ラインあるいは1プラント当たり、1000kg/hr以上の連続生産である請求項1から16のいずれかに記載の製造方法。
  18.  上記改質剤として、オキサゾリジノン化合物、アルキレンカーボネート化合物、多価アルコール化合物、及びオキセタン化合物からなる群から選ばれる1種又は2種以上の脱水エステル化反応性表面架橋剤が、乾燥重合体に添加される請求項1から13のいずれかに記載の製造方法。
  19.  上記改質剤として、共有結合性あるいはイオン結合性を有する複数の表面架橋剤が、乾燥重合体に同時に又は別々に添加される請求項1から13のいずれかに記載の製造方法。
  20.  上記重合開始剤が、還元剤を用いた水溶性熱分解型重合開始剤である請求項1から19のいずれかに記載の製造方法。
  21.  上記粒子状吸水剤が、ポリアクリル酸および/またはポリアクリル酸塩系吸水性樹脂を主成分とし、4.8kPa荷重下での生理食塩水の加圧下吸収倍率が15~35g/g、及び/又は、通液性が30(×10-7・cm・s・g-1)以上である請求項1から20のいずれかに記載の製造方法。
PCT/JP2009/056659 2008-03-31 2009-03-31 吸水性樹脂を主成分とする粒子状吸水剤の製造方法 WO2009123193A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20090726747 EP2261264B1 (en) 2008-03-31 2009-03-31 Method of manufacturing particulate water absorbent with water-absorbent resin as main ingredient
CN2009801102993A CN101977940B (zh) 2008-03-31 2009-03-31 以吸水性树脂为主成分的颗粒状吸水剂的制造方法
US12/934,381 US8912298B2 (en) 2008-03-31 2009-03-31 Method for producing particulate water absorbing agent containing water absorbent resin as main component
JP2010505937A JP5421243B2 (ja) 2008-03-31 2009-03-31 吸水性樹脂を主成分とする粒子状吸水剤の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-089425 2008-03-31
JP2008-089389 2008-03-31
JP2008089425 2008-03-31
JP2008089389 2008-03-31

Publications (1)

Publication Number Publication Date
WO2009123193A1 true WO2009123193A1 (ja) 2009-10-08

Family

ID=41135563

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2009/056659 WO2009123193A1 (ja) 2008-03-31 2009-03-31 吸水性樹脂を主成分とする粒子状吸水剤の製造方法
PCT/JP2009/056670 WO2009123197A1 (ja) 2008-03-31 2009-03-31 吸水性樹脂を主成分とする粒子状吸水剤の製造方法及びその製造装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056670 WO2009123197A1 (ja) 2008-03-31 2009-03-31 吸水性樹脂を主成分とする粒子状吸水剤の製造方法及びその製造装置

Country Status (5)

Country Link
US (2) US8420752B2 (ja)
EP (2) EP2261265B8 (ja)
JP (2) JP5421243B2 (ja)
CN (2) CN101977939B (ja)
WO (2) WO2009123193A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102407A1 (ja) 2011-01-28 2012-08-02 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法
EP2546285A1 (en) * 2010-03-12 2013-01-16 Nippon Shokubai Co., Ltd. Method for manufacturing a water-absorbing resin
JP2016139829A (ja) * 2016-04-22 2016-08-04 パイオニア株式会社 有機エレクトロルミネッセンス素子の製造方法
KR20160128350A (ko) 2014-03-03 2016-11-07 가부시키가이샤 닛폰 쇼쿠바이 폴리아크릴산(염)계 흡수성 수지의 제조 방법
US9882176B2 (en) 2012-09-07 2018-01-30 Pioneer Corporation Organic electroluminescence device and manufacturing method thereof
US9976001B2 (en) 2010-02-10 2018-05-22 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin powder
US10493429B2 (en) 2011-01-28 2019-12-03 Nippon Shokubai Co., Ltd. Method for producing polyacrylic acid (salt)-based water absorbent resin powder
WO2021187323A1 (ja) * 2020-03-18 2021-09-23 住友精化株式会社 吸水性樹脂粒子を製造する方法
WO2023228534A1 (ja) * 2022-05-26 2023-11-30 住友精化株式会社 混合装置及び混合液の製造方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102317329B (zh) 2009-02-17 2014-10-08 株式会社日本触媒 聚丙烯酸系吸水性树脂粉末及其制造方法
JP5731390B2 (ja) * 2009-09-30 2015-06-10 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂およびその製造方法
JP5806209B2 (ja) 2010-04-26 2015-11-10 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂及びその製造方法
EP2565212B1 (en) 2010-04-26 2020-05-06 Nippon Shokubai Co., Ltd. Polyacrylate (salt), polyacrylate (salt) water-absorbent resin, and manufacturing method for same
JP5551836B2 (ja) * 2011-11-16 2014-07-16 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂の製造方法
EP2615119B1 (en) * 2012-01-12 2016-10-26 Evonik Degussa GmbH Cooling neutralized acrylic acid by means of an absorption chiller
RU2603765C2 (ru) * 2012-07-06 2016-11-27 Кюппер-Вайссер Гмбх Способ наполнения и опорожнения бака для жидкости рассеивающего агрегата для снегоуборочных автомобилей, а также рассеивающий агрегат
EP2927264B1 (en) 2012-11-27 2020-04-08 Nippon Shokubai Co., Ltd. Method for producing polyacrylic acid (salt)-based water-absorbing resin
JP2017006808A (ja) 2013-11-14 2017-01-12 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂の製造方法
US10696890B2 (en) 2014-09-30 2020-06-30 Nippon Shokubai Co., Ltd. Methods of liquefying and shrinking water-absorbable resins in a water-containing state
EP3009474B1 (de) 2014-10-16 2017-09-13 Evonik Degussa GmbH Herstellverfahren für wasserlösliche Polymere
WO2016111223A1 (ja) 2015-01-07 2016-07-14 株式会社日本触媒 吸水剤及びその製造方法、並びに評価方法及び測定方法
JP6670822B2 (ja) * 2015-02-24 2020-03-25 住友精化株式会社 吸水性樹脂製造装置
CN109070052A (zh) 2016-03-28 2018-12-21 株式会社日本触媒 吸水剂及其制造方法、以及使用了吸水剂的吸收性物品
CN109310984A (zh) 2016-03-28 2019-02-05 株式会社日本触媒 吸水剂的制造方法
CN109310986B (zh) 2016-03-28 2022-03-15 株式会社日本触媒 颗粒状吸水剂
US20200023625A1 (en) 2017-02-22 2020-01-23 Nippon Shokubai Co., Ltd. Water absorbent sheet, elongated water absorbent sheet, and absorbent article
KR102406972B1 (ko) 2017-10-12 2022-06-10 가부시키가이샤 닛폰 쇼쿠바이 입자상 흡수제의 물성의 측정 방법 및 입자상 흡수제
WO2019198821A1 (ja) 2018-04-13 2019-10-17 株式会社日本触媒 吸水性シート、吸水性シートの製造方法および吸収性物品
CN112996825B (zh) 2018-11-07 2023-10-03 株式会社日本触媒 颗粒状吸水剂的制造方法及颗粒状吸水剂
WO2020099154A1 (en) 2018-11-14 2020-05-22 Basf Se Process for producing superabsorbents
KR20210089157A (ko) 2018-11-14 2021-07-15 바스프 에스이 고흡수제의 제조 방법
WO2020099153A1 (en) * 2018-11-14 2020-05-22 Basf Se Process for producing superabsorbents
KR20210137070A (ko) * 2019-03-08 2021-11-17 스미토모 세이카 가부시키가이샤 흡수체, 흡수성 물품, 및 침투 속도의 조정 방법
JP7382493B2 (ja) 2020-03-31 2023-11-16 株式会社日本触媒 粒子状吸水剤
JPWO2022181771A1 (ja) 2021-02-26 2022-09-01

Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4783510A (en) 1986-06-04 1988-11-08 Taiyo Fishery Co., Ltd. Process for improving a water absorbent polyacrylic acid polymer and an improved polymer produced by said process
US4893999A (en) 1985-12-18 1990-01-16 Chemische Fabrik Stockhausen Gmbh Apparatus for the continuous production of polymers and copolymers of water-soluble monomers
US4985518A (en) 1981-10-26 1991-01-15 American Colloid Company Process for preparing water-absorbing resins
EP0873185A1 (en) 1995-06-07 1998-10-28 Clarence S. Freeman A polymerization process, apparatus and polymer
US5849405A (en) 1994-08-31 1998-12-15 The Procter & Gamble Company Absorbent materials having improved absorbent property and methods for making the same
JPH11240903A (ja) * 1997-12-25 1999-09-07 Nippon Shokubai Co Ltd 吸水性樹脂の製造方法および吸水性樹脂の製造装置
US6071976A (en) 1995-12-27 2000-06-06 Nippon Shokubai Co., Ltd. Water absorbing agent, manufacturing method thereof, and manufacturing machine thereof
US6241928B1 (en) 1998-04-28 2001-06-05 Nippon Shokubai Co., Ltd. Method for production of shaped hydrogel of absorbent resin
US6378453B1 (en) 2000-03-14 2002-04-30 Eugene Conway Foldable flexible vehicle locator
JP2003082107A (ja) * 2001-07-03 2003-03-19 Nippon Shokubai Co Ltd 吸水性樹脂粉末の連続製造方法およびこれに用いる粉面検知器
US6559239B1 (en) 1998-11-26 2003-05-06 Basf Aktiengesellschaft Method for the secondary cross-linking of hydrogels with N-acyl-2-oxazolidinones
US6599989B2 (en) 1998-03-03 2003-07-29 Nippon Skokubai Co., Ltd. Water-absorbent agents containing polycarboxylic amine chelating agents
US6710141B1 (en) 1999-11-20 2004-03-23 Basf Aktiengesellschaft Method for continuously producing cross-linked fine-particle geleous polymerizates
US6716894B2 (en) 2001-07-06 2004-04-06 Nippon Shokubai Co., Ltd. Water-absorbent resin powder and its production process and uses
US6727345B2 (en) 2001-07-03 2004-04-27 Nippon Shokubai Co., Ltd. Continuous production process for water-absorbent resin powder and powder surface detector used therefor
JP2004155963A (ja) * 2002-11-07 2004-06-03 Nippon Shokubai Co Ltd 吸水性樹脂の製造方法および製造装置
US6817557B2 (en) 2000-01-20 2004-11-16 Nippon Shokubai Co., Ltd. Process for transporting, storing, and producing a particulate water-absorbent resin
US6867269B2 (en) 2001-12-19 2005-03-15 Nippon Shokubai Co., Ltd. Water-absorbent resin and production process therefor
US20050113252A1 (en) 2003-09-05 2005-05-26 Koji Miyake Method of producing particle-shape water-absorbing resin material
US20050215734A1 (en) 2004-03-24 2005-09-29 Yorimichi Dairoku Method for continuous production of water-absorbent resin
US6987151B2 (en) 2001-09-12 2006-01-17 Dow Global Technologies Inc. Continuous polymerization process for the manufacture of superabsorbent polymers
US20060074160A1 (en) 2002-12-27 2006-04-06 Masayoshi Handa Water-absorbing resin composition
US20060073969A1 (en) 2003-02-10 2006-04-06 Kazushi Torii Vater-absorbent resin composition and its production process
JP2006160846A (ja) * 2004-12-06 2006-06-22 Asahi Kasei Chemicals Corp 吸水性樹脂の製造装置及び製造方法
US20060204755A1 (en) 2003-02-10 2006-09-14 Kazushi Torii Walter-absorbing agent
WO2007023097A1 (de) 2005-08-24 2007-03-01 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
WO2007028751A2 (de) 2005-09-07 2007-03-15 Basf Se Neutralisationsverfahren
WO2007028746A1 (de) 2005-09-07 2007-03-15 Basf Se Neutralisationsverfahren
WO2007028747A1 (de) 2005-09-07 2007-03-15 Basf Se Neutralisationsverfahren
US7193006B2 (en) 2002-12-06 2007-03-20 Nippon Shokubai Co., Ltd. Process for continuous production of water-absorbent resin product
US7201941B2 (en) 2003-08-27 2007-04-10 Nippon Shokubai Co., Ltd. Process for production of surface-treated particulate water-absorbent resin
EP1824910A2 (en) 2004-12-10 2007-08-29 Nippon Shokubai Co.,Ltd. Method for production of modified water absorbent resin
US7282262B2 (en) 2003-02-10 2007-10-16 Nippon Shokubai Co., Ltd. Particulate water absorbent containing water absorbent resin as a main component
US7347330B2 (en) 2003-05-27 2008-03-25 Nippon Shokubai Co., Ltd. Method for sizing of water-absorbent resin

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62117623A (ja) * 1985-11-18 1987-05-29 Inoue Seisakusho:Kk インラインミキサ−
CA2001397A1 (en) * 1988-10-28 1990-04-28 Tadao Shimomura Method for production of acrylate and acrylate-containing polymer
US6252040B1 (en) * 1991-10-22 2001-06-26 The Governors Of The University Of Alberta Peptide specificity of anti-myelin basic protein and the administration of myelin basic protein peptides to multiple sclerosis patients
CA2086031A1 (en) 1992-01-28 1993-07-29 Shigeki Ueda Process for producing improved water absorbing resin and resin made by the same
JPH0674331B2 (ja) * 1992-01-28 1994-09-21 三洋化成工業株式会社 改質された高吸水性樹脂の製法および樹脂
US5522660A (en) * 1994-12-14 1996-06-04 Fsi International, Inc. Apparatus for blending and controlling the concentration of a liquid chemical in a diluent liquid
DE19543368C2 (de) 1995-11-21 1998-11-26 Stockhausen Chem Fab Gmbh Wasserabsorbierende Polymere mit verbesserten Eigenschaften, Verfahren zu deren Herstellung und deren Verwendung
US6444744B1 (en) * 1998-03-11 2002-09-03 Nippon Shokubai Co., Ltd. Hydrophilic resin, absorbent article, and acrylic acid for polymerization
ES2228492T3 (es) 1999-03-12 2005-04-16 Basf Aktiengesellschaft Composicion polimerica super absorbente de color estable.
US6720389B2 (en) * 2000-09-20 2004-04-13 Nippon Shokubai Co., Ltd. Water-absorbent resin and production process therefor
WO2003051940A1 (en) 2001-12-19 2003-06-26 Nippon Shokubai Co., Ltd. Acrylic acid composition and its production process, and process for producing water-absorbent resin using this acrylic acid composition, and water-absorbent resin
JP4204792B2 (ja) * 2002-02-19 2009-01-07 東レ・ダウコーニング株式会社 ラジカル重合性化合物の金属塩の製造方法
US20090036855A1 (en) * 2004-08-06 2009-02-05 Katsuyuki Wada Particulate water-absorbing agent with water-absorbing resin as main component, method for production of the same, and absorbing article
US8481664B2 (en) * 2005-04-12 2013-07-09 Nippon Shokubai Co., Ltd. Particulate water absorbing agent including polyacrylic acid (polyacrylate) based water absorbing resin as a principal component, method for production thereof, water-absorbent core and absorbing article in which the particulate water absorbing agent is used
CN1693320A (zh) * 2005-05-20 2005-11-09 中国科学院长春应用化学研究所 一种高吸水性树脂的制备方法
EP2042521A1 (en) 2006-03-29 2009-04-01 Nippon Shokubai Co., Ltd. Method of producing polyacrylic acid (salt) water-absorbent resin
WO2007120561A2 (en) * 2006-04-10 2007-10-25 The Procter & Gamble Company An absorbent member comprising a modified water absorbent resin
CN100554292C (zh) * 2007-06-29 2009-10-28 上海华谊丙烯酸有限公司 一种高吸水性树脂的快速制备方法
JP5558343B2 (ja) * 2008-03-13 2014-07-23 株式会社日本触媒 吸水性樹脂の製造方法

Patent Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4985518A (en) 1981-10-26 1991-01-15 American Colloid Company Process for preparing water-absorbing resins
US4893999A (en) 1985-12-18 1990-01-16 Chemische Fabrik Stockhausen Gmbh Apparatus for the continuous production of polymers and copolymers of water-soluble monomers
US4783510A (en) 1986-06-04 1988-11-08 Taiyo Fishery Co., Ltd. Process for improving a water absorbent polyacrylic acid polymer and an improved polymer produced by said process
US5849405A (en) 1994-08-31 1998-12-15 The Procter & Gamble Company Absorbent materials having improved absorbent property and methods for making the same
EP0873185A1 (en) 1995-06-07 1998-10-28 Clarence S. Freeman A polymerization process, apparatus and polymer
US6071976A (en) 1995-12-27 2000-06-06 Nippon Shokubai Co., Ltd. Water absorbing agent, manufacturing method thereof, and manufacturing machine thereof
JPH11240903A (ja) * 1997-12-25 1999-09-07 Nippon Shokubai Co Ltd 吸水性樹脂の製造方法および吸水性樹脂の製造装置
US6599989B2 (en) 1998-03-03 2003-07-29 Nippon Skokubai Co., Ltd. Water-absorbent agents containing polycarboxylic amine chelating agents
US6241928B1 (en) 1998-04-28 2001-06-05 Nippon Shokubai Co., Ltd. Method for production of shaped hydrogel of absorbent resin
US6559239B1 (en) 1998-11-26 2003-05-06 Basf Aktiengesellschaft Method for the secondary cross-linking of hydrogels with N-acyl-2-oxazolidinones
US6710141B1 (en) 1999-11-20 2004-03-23 Basf Aktiengesellschaft Method for continuously producing cross-linked fine-particle geleous polymerizates
US6817557B2 (en) 2000-01-20 2004-11-16 Nippon Shokubai Co., Ltd. Process for transporting, storing, and producing a particulate water-absorbent resin
US6378453B1 (en) 2000-03-14 2002-04-30 Eugene Conway Foldable flexible vehicle locator
US6727345B2 (en) 2001-07-03 2004-04-27 Nippon Shokubai Co., Ltd. Continuous production process for water-absorbent resin powder and powder surface detector used therefor
JP2003082107A (ja) * 2001-07-03 2003-03-19 Nippon Shokubai Co Ltd 吸水性樹脂粉末の連続製造方法およびこれに用いる粉面検知器
US6716894B2 (en) 2001-07-06 2004-04-06 Nippon Shokubai Co., Ltd. Water-absorbent resin powder and its production process and uses
US6987151B2 (en) 2001-09-12 2006-01-17 Dow Global Technologies Inc. Continuous polymerization process for the manufacture of superabsorbent polymers
US6867269B2 (en) 2001-12-19 2005-03-15 Nippon Shokubai Co., Ltd. Water-absorbent resin and production process therefor
JP2004155963A (ja) * 2002-11-07 2004-06-03 Nippon Shokubai Co Ltd 吸水性樹脂の製造方法および製造装置
US7265190B2 (en) 2002-11-07 2007-09-04 Nippon Shokubai Co., Ltd. Process and apparatus for production of water-absorbent resin
US7193006B2 (en) 2002-12-06 2007-03-20 Nippon Shokubai Co., Ltd. Process for continuous production of water-absorbent resin product
US20060074160A1 (en) 2002-12-27 2006-04-06 Masayoshi Handa Water-absorbing resin composition
US20060073969A1 (en) 2003-02-10 2006-04-06 Kazushi Torii Vater-absorbent resin composition and its production process
US20060204755A1 (en) 2003-02-10 2006-09-14 Kazushi Torii Walter-absorbing agent
US7282262B2 (en) 2003-02-10 2007-10-16 Nippon Shokubai Co., Ltd. Particulate water absorbent containing water absorbent resin as a main component
US7347330B2 (en) 2003-05-27 2008-03-25 Nippon Shokubai Co., Ltd. Method for sizing of water-absorbent resin
US7201941B2 (en) 2003-08-27 2007-04-10 Nippon Shokubai Co., Ltd. Process for production of surface-treated particulate water-absorbent resin
US20050113252A1 (en) 2003-09-05 2005-05-26 Koji Miyake Method of producing particle-shape water-absorbing resin material
US20050215734A1 (en) 2004-03-24 2005-09-29 Yorimichi Dairoku Method for continuous production of water-absorbent resin
JP2006160846A (ja) * 2004-12-06 2006-06-22 Asahi Kasei Chemicals Corp 吸水性樹脂の製造装置及び製造方法
EP1824910A2 (en) 2004-12-10 2007-08-29 Nippon Shokubai Co.,Ltd. Method for production of modified water absorbent resin
WO2007023097A1 (de) 2005-08-24 2007-03-01 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
WO2007028747A1 (de) 2005-09-07 2007-03-15 Basf Se Neutralisationsverfahren
WO2007028746A1 (de) 2005-09-07 2007-03-15 Basf Se Neutralisationsverfahren
WO2007028751A2 (de) 2005-09-07 2007-03-15 Basf Se Neutralisationsverfahren

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2261264A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9976001B2 (en) 2010-02-10 2018-05-22 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin powder
US10307506B2 (en) 2010-03-12 2019-06-04 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin
US9233186B2 (en) 2010-03-12 2016-01-12 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin
US9272068B2 (en) 2010-03-12 2016-03-01 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin
EP2546285A4 (en) * 2010-03-12 2014-11-19 Nippon Catalytic Chem Ind METHOD FOR MANUFACTURING WATER ABSORBING RESIN
EP2546285A1 (en) * 2010-03-12 2013-01-16 Nippon Shokubai Co., Ltd. Method for manufacturing a water-absorbing resin
US10493429B2 (en) 2011-01-28 2019-12-03 Nippon Shokubai Co., Ltd. Method for producing polyacrylic acid (salt)-based water absorbent resin powder
WO2012102407A1 (ja) 2011-01-28 2012-08-02 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法
US9567414B2 (en) 2011-01-28 2017-02-14 Nippon Shokubai Co., Ltd. Method for producing polyacrylic acid (salt)-based water absorbent resin powder
US10135036B2 (en) 2012-09-07 2018-11-20 Pioneer Corporation Organic electroluminescence device and manufacturing method thereof
US9882176B2 (en) 2012-09-07 2018-01-30 Pioneer Corporation Organic electroluminescence device and manufacturing method thereof
US9896529B2 (en) 2014-03-03 2018-02-20 Nippon Shokubai Co., Ltd. Method for producing polyacrylic acid (salt)-based water-absorbable resin
KR20160128350A (ko) 2014-03-03 2016-11-07 가부시키가이샤 닛폰 쇼쿠바이 폴리아크릴산(염)계 흡수성 수지의 제조 방법
JP2016139829A (ja) * 2016-04-22 2016-08-04 パイオニア株式会社 有機エレクトロルミネッセンス素子の製造方法
WO2021187323A1 (ja) * 2020-03-18 2021-09-23 住友精化株式会社 吸水性樹脂粒子を製造する方法
WO2023228534A1 (ja) * 2022-05-26 2023-11-30 住友精化株式会社 混合装置及び混合液の製造方法

Also Published As

Publication number Publication date
EP2261265A4 (en) 2012-08-08
EP2261264A1 (en) 2010-12-15
CN101977939A (zh) 2011-02-16
JP5410412B2 (ja) 2014-02-05
JP5421243B2 (ja) 2014-02-19
JPWO2009123197A1 (ja) 2011-07-28
EP2261264A4 (en) 2012-12-19
EP2261265A1 (en) 2010-12-15
EP2261264B1 (en) 2013-10-09
CN101977940A (zh) 2011-02-16
US20110021725A1 (en) 2011-01-27
WO2009123197A1 (ja) 2009-10-08
EP2261265B8 (en) 2013-08-21
US8420752B2 (en) 2013-04-16
EP2261265B1 (en) 2013-05-08
JPWO2009123193A1 (ja) 2011-07-28
US20110039961A1 (en) 2011-02-17
CN101977940B (zh) 2013-03-13
US8912298B2 (en) 2014-12-16
CN101977939B (zh) 2012-11-21

Similar Documents

Publication Publication Date Title
JP5421243B2 (ja) 吸水性樹脂を主成分とする粒子状吸水剤の製造方法
JP5635397B2 (ja) 吸水性樹脂を主成分とする粒子状吸水剤の製造方法
JP5847260B2 (ja) 吸水性樹脂の製造方法
JP6385993B2 (ja) ポリアクリル酸(塩)系吸水剤
JP6246746B2 (ja) 吸水剤及びその製造方法
JP5914677B2 (ja) ポリアクリル酸(塩)系吸水剤の製造方法及びその吸水剤
JP5972853B2 (ja) 吸水剤及びその製造方法
JP5090571B2 (ja) 吸水剤の製法
WO2020145384A1 (ja) 吸水性樹脂を主成分とする吸水剤及びその製造方法
JPWO2020145383A1 (ja) 吸水剤、及び吸水剤の製造方法
KR20210041070A (ko) 흡수성 수지 분말의 제조 방법 및 흡수성 수지 분말

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980110299.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09726747

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505937

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12934381

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009726747

Country of ref document: EP