WO2009122747A1 - iPS細胞からの血小板の調製方法 - Google Patents

iPS細胞からの血小板の調製方法 Download PDF

Info

Publication number
WO2009122747A1
WO2009122747A1 PCT/JP2009/001542 JP2009001542W WO2009122747A1 WO 2009122747 A1 WO2009122747 A1 WO 2009122747A1 JP 2009001542 W JP2009001542 W JP 2009001542W WO 2009122747 A1 WO2009122747 A1 WO 2009122747A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
platelets
cell
ips
blood
Prior art date
Application number
PCT/JP2009/001542
Other languages
English (en)
French (fr)
Inventor
中内啓光
江藤浩之
錦井秀和
高山直也
山中伸弥
高橋和利
Original Assignee
国立大学法人東京大学
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学, 国立大学法人京都大学 filed Critical 国立大学法人東京大学
Priority to EP09727938.4A priority Critical patent/EP2277995B1/en
Priority to US12/935,380 priority patent/US8546141B2/en
Priority to CN2009801115207A priority patent/CN101981181B/zh
Priority to JP2010505402A priority patent/JP5617631B2/ja
Publication of WO2009122747A1 publication Critical patent/WO2009122747A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0644Platelets; Megakaryocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/125Stem cell factor [SCF], c-kit ligand [KL]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/145Thrombopoietin [TPO]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/165Vascular endothelial growth factor [VEGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/90Polysaccharides
    • C12N2501/91Heparin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/13Coculture with; Conditioned medium produced by connective tissue cells; generic mesenchyme cells, e.g. so-called "embryonic fibroblasts"
    • C12N2502/1394Bone marrow stromal cells; whole marrow
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells

Definitions

  • the present invention relates to a method for preparing platelets from iPS cells (induced primitive stem cells).
  • hematopoietic stem cells For the treatment of blood-related diseases represented by leukemia, it is extremely important to stably amplify and supply the amount of blood cells necessary for the treatment. For this reason, many researchers have attempted to efficiently amplify hematopoietic stem cells or hematopoietic progenitor cells.
  • megakaryocytes are platelet precursor cells and cells that produce platelets and occupy an important position for treatment.
  • platelets are essential cells for blood coagulation (hemostasis), the demand for platelets is extremely high in leukemia, bone marrow transplantation, anticancer treatment and the like. So far, platelets have been supplied by a method of collecting by donating blood from a donor.
  • Non-Patent Document 3 reports that megakaryocyte differentiation was successfully induced from monkey ES cells
  • Non-Patent Document 4 reports that megakaryocyte differentiation was successfully induced from human ES cells
  • HLA human leukocyte antigen
  • iPS cells are also referred to as induced pluripotent stem cells or induced pluripotent stem cells.
  • somatic cells such as fibroblasts
  • somatic cells such as fibroblasts
  • fibroblasts A cell that has acquired pluripotency.
  • Mouse iPS cells are introduced by Yamanaka et al. Using four genes of Oct3 / 4, Sox2, Klf4, and c-Myc into mouse fibroblasts using the expression of the Nanog gene important for maintaining pluripotency as an index. was established for the first time (Non-Patent Document 5). Thereafter, the establishment of mouse iPS cells by the same method has been reported (Non-patent Documents 6 and 7).
  • Non-patent Document 8 Regard human iPS cells, Thomson et al. Established human iPS cells by introducing OCT3 / 4, SOX2, NANOG, and LIN28 into human fibroblasts (Non-patent Document 9). Yamanaka et al. Also established iPS cells by introducing OCT3 / 4, SOX2, KLF4, and c-MYC into human fibroblasts (Non-patent Document 10).
  • the present inventors have already established a method for efficiently obtaining megakaryocytes and platelets from ES cells.
  • the efficiency of inducing megakaryocytes and platelets for each ES cell used. are different. If ES cells with excellent megakaryocyte and platelet induction efficiency can be selected at an early stage, it will be possible to stabilize the acquisition efficiency of megakaryocytes and platelets and further improve the efficiency. It was difficult to identify excellent ES cells until obtaining megakaryocytes and platelets. Therefore, in view of the above circumstances, the present inventors firstly aimed to establish a method for obtaining megakaryocytes and platelets from iPS cells, and further a method for stabilizing the acquisition efficiency of megakaryocytes and platelets. Establishing
  • the inventors of the present invention have made extensive studies to solve the above problems, tried to induce megakaryocytes and platelets from iPS cells, and established the induction method.
  • iPS cells found that cells from the same lot had heterogeneous characteristics, and from this heterogeneous cell population, cells capable of inducing efficient megakaryocytes and platelets at an early stage were selected. I also tried to do it.
  • cell clones that exhibit certain characteristics, such as clones that form more net-like structures are superior in the induction efficiency of megakaryocytes and platelets, and by selecting the cells and inducing differentiation It has become possible to induce megakaryocytes or platelets stably and efficiently.
  • the present invention relates to a method for preparing megakaryocytes and platelets from iPS cells, and specifically relates to the following (1) to (16).
  • the first aspect of the present invention is as follows: “Net-like encapsulating hematopoietic progenitor cells obtained by seeding human-derived iPS cells on feeder cells and culturing under conditions suitable for induction of hematopoietic progenitor cell differentiation” It is a “structure”.
  • a second aspect of the present invention is as follows: “The net-like structure according to the above (1), wherein the condition suitable for inducing differentiation of the hematopoietic progenitor cells is culturing for 14 to 17 days in the presence of VEGF. It is.
  • a third aspect of the present invention is “the net-like structure according to (1) or (2) above, wherein the feeder cells are C3H10T1 / 2 cells or OP9 cells”. .
  • the fourth aspect of the present invention is that an iPS cell clone having a high production ability of the net-like structure according to any one of (1) to (3) above is selected and the iPS cell clone is produced.
  • a method for producing hematopoietic cells by separating the cells forming the septum of the net-like structure and hematopoietic progenitor cells, seeding the obtained hematopoietic progenitor cells on feeder cells, and culturing them under conditions suitable for induction of blood cell differentiation It is.
  • a fifth aspect of the present invention is “the method according to (4) above, wherein the blood cells are megakaryocytes and platelets”.
  • a sixth aspect of the present invention is “the method according to (5) above, wherein the conditions suitable for inducing differentiation of blood cells are culture for 7 to 9 days in the presence of TPO”.
  • a seventh aspect of the present invention is as follows: “The method suitable for inducing differentiation of blood cells is culturing for 7 to 9 days in the presence of TPO, SCF and Heparin” It is.
  • the eighth aspect of the present invention is “megakaryocytes and / or platelets produced by the method according to any one of (5) to (7) above”.
  • a ninth aspect of the present invention is “a blood product comprising platelets produced by the method according to any one of (5) to (7) as an active ingredient”.
  • a mouse-derived iPS cell is subjected to liquid culture so that hematopoietic progenitor cells are formed inside the embryoid body, and the embryoid body is further cultured to obtain blood cells.
  • a method of producing (11) The eleventh aspect of the present invention is “the method according to (10) above, wherein the blood cells are megakaryocytes and platelets”.
  • a twelfth aspect of the present invention is “the method according to (10) or (11) above, wherein the period for further culturing the embryoid body is 5 to 7 days”.
  • a thirteenth aspect of the present invention is that any of the above (10) to (12), wherein the conditions for further culturing the embryoid body are culturing for 3 to 5 days in the presence of TPO and SCF. Is the method described in the above.
  • a fourteenth aspect of the present invention is “megakaryocytes and / or platelets produced by the method according to any one of (10) to (13)”.
  • a fifteenth aspect of the present invention is “a blood product comprising platelets produced by the method according to any one of (10) to (13) as an active ingredient”.
  • a sixteenth aspect of the present invention is “a kit for preparing platelets by the method according to any one of (4) to (7) and (10) to (13)”.
  • megakaryocytes and platelets can be induced more stably and efficiently than when ES cells are used. It becomes possible.
  • a patient-specific blood cell that retains the genetic characteristics of a patient who needs blood transfusion or the like can be prepared, thereby overcoming the compatibility problem of human leukocyte antigen (HLA). It becomes possible to do. Further, it is possible to avoid the production of anti-platelet antibodies due to contamination of HLA blood other than self, which is a problem in clinical practice.
  • HLA human leukocyte antigen
  • desired blood cells can be efficiently obtained in vitro.
  • the production of platelets dedicated to specific individuals can be performed in a relatively large amount and efficiently.
  • phase contrast micrograph (A) of the platelet precursor on the 14th day of culture derived from mouse iPS cells and the result of secondary staining with Alexa647 for immunostaining with Alexa 488-phalloidin, anti-CD41 antibody and anti-GPIb ⁇ (B) are shown.
  • CD41 / F-actin is the result of double staining with anti-CD41 antibody (Alexa647, red) / Alexa 488 (green) -phalloidin
  • GPIb ⁇ / F-actin is anti-GPIb ⁇ antibody (Alexa647, red) / Alexa
  • the result of double staining with 488 (green) -phalloidin is shown.
  • the results showed images stained with anti- ⁇ IIb antibody (secondary staining with Alexa647) and Alexa 488-phalloidin (lower figure).
  • the process of forming a Sac structure from human iPS cells (201B6 strain) and further inducing megakaryocytes and platelets is shown.
  • the upper diagram schematically shows the progress of the culture, and the lower photographs show iPS-Sac and megakaryocytes that are induced in the culture process.
  • the lower photo shows, from the left, undifferentiated iPS cells on day 0 of culture (image observed with a phase contrast microscope), iPS-Sac derived from iPS cells (image observed on day 17 after culture), megakaryocytes ( (Observed images after Giemsa staining on culture day 23-24) are shown. An immunostained image of iPS-sac is shown. IPS-sac was composed of CD31-positive and VEGF-R2-positive endothelial cells, similar to ES-sac. The result of comparing the induction efficiency of iPS-sac among human iPS cell clones is shown.
  • TkDA3-1, 2, 4, 5, 9, 20 human iPS cell lines derived from the same lot skin.
  • TkDA3-1, 2, 4, 5, 9, and 20 established at the University of Tokyo
  • TkDN4- human iPS cells, TkDN4-, prepared from the same 4 factors derived from skin cells (Oct3 / 4, Sox2, Klf4, c-Myc).
  • FIG. 10 shows the results of analyzing the platelet inducing ability using clones having different Sac forming ability from the iPS cells shown in FIG.
  • the blood progenitor cells derived from human ES cells (upper) and blood progenitor cells derived from TkDN4-M (3 factors; middle) and TkDA3-4 (4 factors; lower) having high differentiation potential were compared.
  • the frequency of CD31 positive / CD34 positive cells which are common markers for undifferentiated blood / vascular endothelium, and CD34 positive / CD41a positive cells, which are markers for megakaryocyte progenitor cells, were expressed in the same manner as ES cells.
  • the left figure is a representative Giemsa-stained image of each blood cell lineage.
  • the right figure shows the frequency of colony forming cells (the vertical axis is the number of colonies derived from 1 ⁇ 10 4 blood cell progenitor cells). Only TkDA3-4 formed a blast-like colony (lower right panel in the left panel), but the ability to differentiate into other blood cells was similar.
  • the result of analyzing the floating cell components in the culture solution on the 17th to 18th day after the culture with a flow cytometer is shown.
  • X-axis is CD41a
  • Y-axis is CD42b, CD42a, CD9, respectively.
  • KhES-3 human ES cells
  • 253G4 (3-factor human iPS cells)
  • TkDN4-M (3-factor human iPS cells)
  • TkDA3-4 (4-factor human iPS cells) are shown.
  • CD42a and CD42b which are markers of mature megakaryocytes, were expressed in the same manner as human ES cell-derived megakaryocytes.
  • the surface antigen analysis result of a human iPS cell origin platelet is shown. Platelets released into the culture supernatant on the 24th day of culture were analyzed using a flow cytometer.
  • X-axis is CD41a
  • Y-axis is CD42b, CD42a, CD9, respectively.
  • human peripheral blood platelets platelets derived from KhES-3 (human ES cells), platelets derived from 253G4 (three factor human iPS cells), platelets derived from TkDN4-M (three factor human iPS cells), TkDA3-4 (four factor human iPS) Cell) derived platelets.
  • CD41a, CD42a, and CD9 which are important functional molecules of platelets, were expressed in the same manner as peripheral blood-derived platelets.
  • CD42b the expression of human ES cells and human iPS cell-derived platelets was partially reduced (upper panel). The observation image of the platelet release form from a megakaryocyte is shown.
  • the floating cells 17 to 18 days after the culture were stained with Alexa 488-conjugated anti-CD41a antibody and observed with a fluorescence microscope (right figure).
  • the left figure is an observation image in bright field using differential interference method. Electron microscopic images of human peripheral blood, human ES cells and human iPS cell-derived platelets and human iPS cell-derived megakaryocytes are shown. In the platelets derived from human ES cells and human iPS cells, the granules containing various bioactive substances of platelets and the microtubule structure of platelets were retained in the same manner as peripheral blood. The function analysis (inside out signal) result of the platelet derived from a human iPS cell is shown. Upper panel: Typical FACS image.
  • Human iPS cell-derived platelets showed integrin activation (increased PAC1 antibody-positive platelets) by an important in vivo platelet-activating substance ADP, similar to human ES cell-derived platelets (upper).
  • Lower panel Similar to human ES cell-derived platelets (white bar graph), human iPS cell-derived platelets (black bar graph) reacted from a low concentration of ADP (5 ⁇ M), and the response increased in a dose-dependent manner. Reaction to thrombin, another activator, was also confirmed. no agonist; results without ADP.
  • One embodiment of the present invention is a net-like structure (sac) containing hematopoietic progenitor cells obtained by seeding iPS cells on feeder cells and culturing them under conditions suitable for induction of differentiation of hematopoietic cells. is there. Since the hematopoietic progenitor cells are concentrated and present in the net-like structure, various blood cells can be efficiently induced to differentiate in vitro.
  • the “net-like structure” is a three-dimensional sac-like structure (with space inside) derived from ES or iPS cells, which is formed by an endothelial cell population and the like and contains blood precursor cells inside. That is.
  • the “iPS cell” is also referred to as an induced pluripotent stem cell or an induced pluripotent stem cell, and by introducing several types of transcription factor genes into somatic cells such as fibroblasts, differentiation differentiation equivalent to that of ES cells is achieved. It is a cell that has acquired the ability.
  • transcription factor genes necessary for obtaining pluripotency for example, Nanog, Oct3 / 4, Sox2, Klf4, c-Myc, Lin28 and the like are known.
  • iPS cells By introducing into somatic cells such as blasts, iPS cells can be established.
  • the iPS cell used in the present invention is not limited to the method of its establishment, but in addition to the cell established by the method of introducing the above gene, an establishment method by introduction of a gene different from the above, a protein, a low molecular compound, etc. The iPS cell by the establishment method used may be sufficient.
  • any cell can be used as the “feeder cell” as long as it contributes to differentiation induction of ES cells and iPS cells.
  • mouse embryo fibroblasts preferably C3H10T1 / 2 cell line, OP9 cells, etc. Can be used.
  • feeder cells it is preferable to suppress the proliferation of cells, for example, by irradiating with radiation.
  • iPS-Sac conditions suitable for preparing a net-like structure
  • the culture conditions vary depending on the iPS cell species used.
  • the medium used is IMDM supplemented with 15% FBS at the final concentration, and in the case of other serum-free media, the growth factor and supplements are added as appropriate. can do.
  • VEGF is added at about 0 to 100 ng / ml, more preferably at about 20 ng / ml.
  • the culture environment varies depending on the iPS cells to be used, but for example, 5% CO 2 , 36 to 38 ° C., preferably 37 ° C. can be used.
  • the culture period until the net-like structure is formed varies depending on the human iPS cells to be used, but for example, the presence can be confirmed about 14 to 17 days after seeding on feeder cells.
  • the formed net-like structure has a follicular structure and is one of mesoderm cell markers, Flk1 (fetal liver kinase 1), CD31, CD34, or UEA-I lectin (Ulex europaeuus.agglutinin- 1)
  • a septum is constituted by positive cells.
  • hematopoietic progenitor cells are present in a concentrated state.
  • This separation is preferably performed by physical means.
  • septal cells and hematopoietic progenitor cells can be separated by passing them through a sterilized sieve device (for example, a cell strainer).
  • a further embodiment of the invention is a method of producing various blood cells from hematopoietic progenitor cells isolated from a net-like structure.
  • the obtained hematopoietic progenitor cells are seeded on feeder cells and cultured under conditions suitable for inducing differentiation of desired blood cells.
  • the “condition suitable for inducing differentiation of blood cells” refers to, for example, TPO, IL-1 ⁇ , IL-3, IL-4, IL-5, IL-6, depending on the type of the target blood cell. Examples include IL-9, IL-11, EPO, GM-CSF, SCF, G-CSF, Flt3 ligand, Heparin, etc., or a condition in which two or more of these are added in combination.
  • TPO 10 to 200 ng / mL, preferably about 100 ng / mL
  • TPO 10 to 200 ng / mL, preferably about 100 ng / mL
  • SCF 10 to 200 ng / mL, preferably about 50 ng / mL
  • Heparin 10 to 100 U / mL, preferably about 25 U / ml
  • the culture environment may be any environment suitable for inducing differentiation of blood cells in vitro.
  • the culture is performed under conditions of 5% CO 2 , 36 to 38 ° C., preferably 37 ° C.
  • iPS cell clone with high net-like structure production efficiency is selected.
  • a clone in which the number of net-like structure formation is, for example, 10 or more per 1 ⁇ 10 5 cells, preferably 15 or more may be selected. it can.
  • Another embodiment of the present invention is a method of forming embryoid bodies (a cell population containing differentiation-induced mesodermal undifferentiated cells) from mouse-derived iPS cells, and further inducing megakaryocytes and platelets.
  • embryoid bodies a cell population containing differentiation-induced mesodermal undifferentiated cells
  • mouse ES cells it is possible to form embryoid bodies and induce differentiation into mesodermal undifferentiated cells without co-culture with feeder cells such as OP9 cells.
  • feeder cells such as OP9 cells.
  • mouse iPS cells it is possible to induce mesodermal undifferentiated cells under the same conditions as in mouse ES cells.
  • the medium varies depending on the iPS cells to be used.
  • IMDM to which FBS, human transferrin and the like are added, and other supplements and the like as appropriate can be used.
  • the culture environment varies depending on the iPS cells to be used, but for example, 5% CO 2 , 36 to 38 ° C., preferably 37 ° C. can be used.
  • the culture period until the embryoid body is formed varies depending on the iPS cells used, but the presence can be confirmed, for example, after about 6 to 9 days.
  • the embryoid body can be cultured under conditions suitable for induction of blood cell differentiation to induce megakaryocytes and platelets.
  • conditions suitable for inducing differentiation of blood cells include, for example, TPO, IL-1 ⁇ , IL-3, IL-4, IL-5, IL-6, IL-9, IL-11, EPO, Examples include GM-CSF, SCF, G-CSF, Flt3 ligand, Heparin and the like, or a combination of two or more of these.
  • TPO 10 to 200 ng / mL
  • SCF 1 to 200 ng / mL
  • IL-6 about 1 to 100 ng / ml
  • IL-11 1 to 1 About 100 ng / ml
  • the culture environment may be any environment suitable for inducing differentiation of blood cells in vitro.
  • the culture is performed under conditions of 5% CO 2 , 36 to 38 ° C., preferably 37 ° C. To do.
  • an embodiment of the present invention includes a kit for preparing platelets.
  • the kit includes a medium for cell culture, serum, supplements such as growth factors (eg, TPO, SCF, Heparin, IL-6, IL-11), antibiotics, and the like.
  • growth factors eg, TPO, SCF, Heparin, IL-6, IL-11
  • antibiotics eg, antibiotics, and the like.
  • an antibody for confirming a marker present in the net-like structure for example, an antibody against Flk1, CD31, CD34, UEA-I lectin, etc.
  • Reagents, antibodies, and the like contained in the kit are supplied into any type of container in which the constituents are kept active for a long period of time, are not adsorbed by the material of the container, and do not undergo alteration.
  • a sealed glass ampoule includes a buffer packaged under a neutral and non-reactive gas such as nitrogen gas.
  • Ampoules are composed of glass, polycarbonate, organic polymers such as polystyrene, ceramics, metals, or any other suitable material commonly used to hold reagents.
  • Platelet produced by the method of the present invention is a fraction of a culture solution that is released from megakaryocytes and is rich in platelets (for example, in the case of human-derived platelets, about 22 to 28 days after culturing iPS cells). And remove components other than platelets by excluding megakaryocytes and other blood cells using a leukocyte removal filter (available from Terumo, Asahi Kasei Medical, etc.). can do.
  • the obtained platelets (human ES cell-derived washed platelets) can be formulated, for example, by the following method.
  • ACD-A solution FFP (fresh frozen plasma; prepared from whole blood obtained by blood donation, including all components other than blood components such as albumin and coagulation factors) is adjusted at a ratio of 1:10, and 15-50 Gy After irradiation, store at 20-24 ° C with shaking.
  • ACD-A solution 22 g of sodium citrate / 8 g of citric acid / 22 g of glucose are adjusted to a total of 1 L with water for injection.
  • the platelet concentration is preferably about 1 ⁇ 10 9 platelets / mL, for example.
  • GM6001 a broad-range hydrologic acid-based metalloprotease inhibitor
  • the platelet function molecule GPIb-V-V-VI which occurs during cryopreservation and room temperature storage is added. Inactivation associated with GPVI cleavage can be prevented.
  • the present inventors have confirmed that inactivation of mouse ES cell-derived platelets can be prevented by this method.
  • Nanog-iPS cells (Nature, 448, 313-317 (2007)) (provided by Dr. Shinya Yamanaka, Kyoto University) were transferred to 15% FBS, 300 ⁇ g / mL human transferrin (Sigma).
  • TkDA3-1, TkDA3-2, TkDA3-4, TkDA3-5, TkDA3-9, TkDA3-20 in the strains newly established at the University of Tokyo (Oct3 / 4, Klf4, Sox2 and c-Myc were added to skin cells).
  • TkDN4-M in which Oct3 / 4, Klf4 and Sox2 were introduced into skin cells; established by the University of Tokyo
  • the feeder cells were mouse embryo-derived cells, C3H10T1 / 2 cell line.
  • Human iPS cells consist of 15% FBS (JRH BIOSCIENCES, USA), 2 mM L-glutamine (Invitrogen), ITS supplements (10 ⁇ g / ml insulin, 5.5 mg / ml transferrin, 5 ng / ml sodium selenite) (Sigma), Inoculated on OP9 cells or C3H10T1 / 2 cells in IMDM (IMDM; Invitrogen / GIBCO) supplemented with 50 ⁇ g / ml ascorbic acid (Sigma), 0.45 mM MTG (Sigma), 20 ng / ml VEGF (R & D systems). did.
  • iPS-Sac A large number of net-like structures containing blood cell-like cells were confirmed around 15 to 17 days after culturing (FIG. 7, iPS-Sac).
  • the iPS cell line clone is a heterogeneous cell line established using, for example, four factors, the differentiation ability varies even if it is prepared from the same skin cell. It was. Therefore, in the case of human iPS cells, it is possible to select clones suitable for differentiation by prior screening (for example, selection of clones that form more net-like structures), and the blood cell lineage can be more efficiently A clone that induces differentiation of cells can be easily selected (see FIG. 9). Actually, clones having different Sac-forming ability were selected from the iPS cells shown in FIG.
  • FIG. 10 suggests that iPS cells with high Sac-forming ability (TkDA3-4, TkDN4-M) can easily form Sac containing many blood progenitor cells, and the final platelet count also increases.
  • IMDM Invitrogen / GIBCO
  • the present invention it is possible to provide platelets that can overcome the problem of HLA compatibility. Accordingly, since it is possible to supply platelets exclusively for patients who require blood transfusion, problems such as platelet destruction due to production of antiplatelet antibodies can be solved.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Diabetes (AREA)
  • Oncology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

 本発明は、iPS細胞からインビトロの培養系により、成熟巨核細胞、血小板などの血球細胞を効率的に調製する方法の提供を目的とする。  本発明は、iPS細胞をフィーダー細胞上に播き、造血前駆細胞の分化誘導に適した条件で培養して得られる、造血前駆細胞を内包するネット様構造物を提供する。また、該ネット様構造物に内包される造血前駆細胞を、血球細胞の分化誘導に適した条件でさらに培養し、各種血球細胞を産生する方法を提供する。さらに、ネット様構造物を介さずに各種血球細胞、特に、巨核球及び血小板を産生する方法を提供する。

Description

iPS細胞からの血小板の調製方法
 本発明は、iPS細胞(induced pluripotent stem cells)から血小板を調製する方法に関する。
 白血病に代表される血液関連疾患の治療に対し、治療に必要な量の血球細胞を安定に増幅し、供給することは極めて重要なことである。このため、これまで多くの研究者によって、造血幹細胞又は造血前駆細胞の効率的な増幅が試みられてきた。血球細胞の中でも、巨核球は、血小板前駆細胞(proplatelet)、さらには、血小板を産生する細胞であり、治療上、重要な位置を占めている。
 血球細胞のなかでも血小板は血液凝固(止血)に必須の細胞であるため、白血病、骨髄移植、抗癌治療などにおいて、血小板の需要は極めて高い。これまでに、血小板は、ドナーからの献血により採取する方法により供給されてきた。しかし、ドナーからの献血により採取する方法では、慢性的なドナー不足や、採取した血小板を凍結することができないことなどから、安定に血小板を供給することが困難である。また、ドナーからの献血により採取する方法以外に、TPOを患者に投与する方法、臍帯血又は骨髄細胞から巨核球を分化させる方法などが試みられたが、TPOを患者に投与する方法は、TPOの投与後TPOに対する無力化抗体が産生されてしまうため、この方法は、実用化には至っていない。さらに、臍帯血又は骨髄細胞からの巨核球分化による方法も、巨核球のソースとなる造血幹細胞を極めて少数しか得ることができないため、安定した血小板の提供に適した方法ではない。
 近年、血小板を生体外で調製する方法として、ES細胞から誘導した造血幹細胞又は造血前駆細胞を効率的に巨核球及び血小板へ分化させる方法などが報告されている。Etoらは、マウスES細胞をOP9ストローマ細胞と共培養することで巨核球へ分化誘導することを明らかにした(非特許文献1)。Fujimotoらは、Etoらと同様の方法を用いて血小板の誘導を確認したとの報告を行っている(非特許文献2)。また、サルのES細胞から巨核球の分化誘導に成功したとの報告(非特許文献3)、ヒトのES細胞から巨核球の分化誘導に成功したとの報告(非特許文献4)もある。しかし、いずれも、血小板の放出を確認していない。また、ES細胞からの血小板の取得方法が、臨床的上利用し得る程度に確立した場合であっても、ES細胞から誘導した血小板を輸血により患者に適用する場合(特に初回輸血では問題視されないが、同一患者が、頻回に輸血を受けるような場合には)、ヒト白血球型抗原(HLA)の適合性の問題は依然として残ることになる。
 iPS細胞(induced pluripotent stem cells)は、人工多能性幹細胞若しくは誘導多能性幹細胞とも称され、線維芽細胞などの体細胞へ数種類の転写因子遺伝子を導入することにより、ES細胞と同等の分化多能性を獲得した細胞である。
 マウスのiPS細胞は、Yamanakaらによって、分化万能性の維持に重要なNanog遺伝子の発現を指標にし、マウス線維芽細胞へOct3/4、Sox2、Klf4、c-Mycの4つの遺伝子を導入することにより、初めて樹立された(非特許文献5)。その後も同様の方法によるマウスiPS細胞の樹立が報告されている(非特許文献6、非特許文献7)。さらに、iPS細胞の癌化の問題を克服するために、c-Myc遺伝子以外の3つの遺伝子(Oct3/4、Sox2、Klf4)のみでも、iPS細胞の樹立が可能であることが報告された(非特許文献8)。
 一方、ヒトのiPS細胞に関しては、Thomsonらが、ヒトの線維芽細胞にOCT3/4、SOX2、NANOG、LIN28を導入してヒトiPS細胞を樹立した(非特許文献9)。また、Yamanakaらは、OCT3/4、SOX2、KLF4、c-MYCをヒトの線維芽細胞に導入して、同じくiPS細胞を樹立した(非特許文献10)。
Etoら,Proc.Acad.Sci.USA 2002,99:12819-12824. Fujimotoら,Blood 2003,102:4044-4051. Hiroyamaら,Exp.Hematol. 2006,34:760-769. Gaurら,J Thromb Haemost.2005,4:436-442. Okitaら,Nature 2007,448:313-317. Wernigら,Nature 2007,448:318-324. Maheraliら,Cell Stem Cell 2007,1:55-70. Nakagawaら,Nat Biotechnol 2008,26:101-106. Yuら,Science 2007,318:1917-1920. Takahashiら,Cell 2007,131:861-872.
 本発明者らは、すでにES細胞から効率的に巨核球及び血小板を取得する方法を確立しているが、ES細胞を使用した場合には、使用するES細胞毎に巨核球及び血小板の誘導効率が異なっている。巨核球及び血小板の誘導効率の優れたES細胞の選定を早期に行うことができれば、巨核球及び血小板の取得効率の安定化、効率の一層の向上を図ることが可能になるが、現状では最終的に巨核球、血小板を得るまで優れたES細胞を見極めるのが難しかった。
 そこで、本発明者らは、上記事情に鑑み、第一にiPS細胞から巨核球及び血小板を取得する方法を確立することを課題とし、さらには、巨核球及び血小板の取得効率を安定化し得る方法を確立することを課題とする。
 今回、発明者らは、上記課題を解決するために鋭意研究を重ね、iPS細胞から巨核球及び血小板の誘導を試み、その誘導方法を確立した。その試みの中でiPS細胞では、同じロット由来の細胞がヘテロな特徴を有していることを見出し、このヘテロな細胞集団から、早期に効率のよい巨核球及び血小板の誘導し得る細胞を選択することをも試みた。その結果、一定の特徴を示す細胞クローン、例えば、ネット様構造をより多く形成するクローンが巨核球、血小板の誘導効率に優れていることを見出し、当該細胞を選別し、分化誘導を行うことにより、安定的に効率よく巨核球又は血小板の誘導し得ることが可能になった。
 すなわち、本発明は、iPS細胞から巨核球及び血小板を調製する方法に関し、具体的には、以下の(1)~(16)に関する。
(1)本発明の第1の態様は、「ヒト由来のiPS細胞をフィーダー細胞上に播き、造血前駆細胞の分化誘導に適した条件で培養して得られる、造血前駆細胞を内包するネット様構造物」である。
(2)本発明の第2の態様は、「前記造血前駆細胞の分化誘導に適した条件が、VEGF存在下、14~17日間培養することである上記(1)に記載のネット様構造物」である。
(3)本発明の第3の態様は、「前記フィーダー細胞がC3H10T1/2細胞、又はOP9細胞であることを特徴とする上記(1)又は(2)に記載のネット様構造物」である。
(4)本発明の第4の態様は、「上記(1)乃至(3)のいずれかに記載のネット様構造物の産生能力の高いiPS細胞クローンを選択し、該iPS細胞クローンが産生するネット様構造物の隔壁を形成する細胞と造血前駆細胞を分離し、得られた造血前駆細胞をフィーダー細胞上に播き、血球細胞の分化誘導に適した条件で培養し、血球細胞を産生する方法」である。
(5)本発明の第5の態様は、「前記血球細胞が巨核球及び血小板であることを特徴とする上記(4)に記載の方法」である。
(6)本発明の第6の態様は、「前記血球細胞の分化誘導に適した条件が、TPO存在下、7~9日間培養することである上記(5)に記載の方法」である。
(7)本発明の第7の態様は、「前記血球細胞の分化誘導に適した条件が、TPO、SCF及びHeparin存在下、7~9日間培養することである上記(5)に記載の方法」である。
(8)本発明の第8の態様は、「上記(5)乃至(7)のいずれかに記載の方法により産生された巨核球及び/又は血小板」である。
(9)本発明の第9の態様は、「上記(5)乃至(7)のいずれかに記載の方法により産生された血小板を有効成分とする血液製剤」である。
(10)本発明の第10の態様は、「マウス由来のiPS細胞を液体培養することで、胚様体の内部に造血前駆細胞を形成させ、該胚様体をさらに培養して、血球細胞を産生する方法」である。
(11)本発明の第11の態様は、「前記血球細胞が巨核球及び血小板であることを特徴とする上記(10)に記載の方法」である。
(12)本発明の第12の態様は、「前記胚様体をさらに培養する期間が、5~7日間である上記(10)又は(11)に記載の方法」である。
(13)本発明の第13の態様は、「前記胚様体をさらに培養する条件が、TPO及びSCFの存在下、3~5日間培養することである上記(10)乃至(12)のいずれかに記載の方法」である。
(14)本発明の第14の態様は、「上記(10)乃至(13)のいずれかに記載の方法により産生された巨核球及び/又は血小板」である。
(15)本発明の第15の態様は、「上記(10)乃至(13)のいずれかに記載の方法により産生された血小板を有効成分とする血液製剤」である。
(16)本発明の第16の態様は、「上記(4)乃至(7)及び上記(10)乃至(13)のいずれかに記載の方法により血小板を調製するためのキット」である。
 本発明のiPS細胞(特に、ヒトiPS細胞)からの巨核球及び血小板の誘導方法を使用することで、ES細胞を使用した場合よりも、安定的に効率よく巨核球及び血小板を誘導することが可能となる。
 本発明の方法によれば、輸血等を必要とする患者の遺伝的特徴を保持した、患者専用の血球細胞を調製することができるため、ヒト白血球型抗原(HLA)の適合性の問題を克服することが可能となる。また、臨床現場で問題となっている自己以外のHLA型血液の混入による抗血小板抗体の産生を回避することができる。
 また、発明の方法を用いると、生体外において所望の血球を効率的に取得することができる。特に、ヒトに関し、特定個人専用の血小板の産生を、比較的大量かつ効率的に行うことができる。
 さらに、本発明の方法を用いると、血小板を有効成分とする血液製剤の安定的な供給を実現することができる。
マウスiPS細胞から血小板を誘導する過程を模式的に示した図である。 マウスiPS細胞由来の培養10日目の血小板前駆細胞である巨核球細胞をサイトスピン後、ギムザ染色(A)、及びAlexa 488-ファロイジン、DAPI、抗CD41抗体及び抗GPIbα抗体による免疫染色(Alexa647による2次染色法)(B)を行った結果を示す。(B)のCD41はCD41陽性細胞の、GPIbαはGPIbα陽性細胞の染色像であることを示す。 マウスiPS細胞由来の培養14日目の血小板前駆体の位相差顕微鏡像(A)及びAlexa 488-ファロイジン、抗CD41抗体及び抗GPIbαによる免疫染色(B)をAlexa647により2次染色した結果を示す。(B)のCD41/F-actinは抗CD41抗体(Alexa647,赤)/Alexa 488(緑)-ファロイジンによる二重染色の結果を、GPIbα/F-actinは抗GPIbα抗体(Alexa647,赤)/Alexa 488(緑)-ファロイジンによる二重染色の結果を示す。 マウスiPS細胞から培養14日目に誘導された血小板の電子顕微鏡像を示す。 マウスiPS細胞由来の培養10日目(上図)及び培養14日目(下図)の細胞を、フローサイトメーターにより解析した結果を示す。 トロンビンに対するマウスiPS細胞由来血小板の形態変化を観察した。培養14日目の上清を回収し、フィブリノーゲンでコートしディッシュに添加した後、血小板活性刺激薬(トロンビン)を加えて刺激を行った(上図)。トロンビンにより、iPS細胞から作製した血小板はきれいに伸展して安定血栓に寄与できうる形態を示した(下図)。結果は、抗αIIb抗体(Alexa647による2次染色)及びAlexa 488-ファロイジンによる染色像を示した(下図)。 ヒトiPS細胞(201B6株)からSac構造物を形成させ、さらに、巨核球及び血小板を誘導する過程を示す。上図は、培養の経過を模式的に示し、下の各写真は、培養過程で誘導される、iPS-Sac、巨核球を示す。下の写真は、左から、培養0日目の未分化状態のiPS細胞(位相差顕微鏡による観察像)、iPS細胞から誘導したiPS-Sac(培養後17日目の観察像)、巨核球(培養23~24日目、ギムザ染色後の観察像)を各々示す。 iPS-sacの免疫染色像を示す。 iPS-sacは、ES-sac同様CD31陽性、VEGF-R2陽性の内皮細胞により構成されていた。 ヒトiPS細胞クローン間でのiPS-sacの誘導効率を比較した結果を示す。 培養15日目の血球前駆細胞を含むSacの数(グラフ縦軸)を計測した。同じロット皮膚由来のヒトiPS細胞株(TkDA3-1、2、4、5、9、20)でも分化能力に差を認めた。TkDA3-1、2、4、5、9、20(東京大学で樹立)は同じ皮膚細胞由来の4因子(Oct3/4、Sox2、Klf4、c-Myc)から作成されたヒトiPS細胞、TkDN4-M(東京大学で樹立)は皮膚細胞由来の3因子(c-Myc以外)から作成されたヒトiPS細胞、201B6、201B7(京都大学で樹立)は皮膚細胞由来の4因子から作成されたヒトiPS細胞、253G1、253G4(京都大学で樹立)は皮膚細胞由来の3因子から作成されたヒトiPS細胞である。また、KhES-3はコントロールとして用いた血球分化能力の高いヒトES細胞株である。 図9に示されるiPS細胞の中からSac形成能の異なるクローンを用いて、血小板誘導能を解析した結果を示す。 ヒトES細胞及びヒトiPS細胞由来造血前駆細胞の表面抗原解析結果。 ヒトES細胞(上段)由来血液前駆細胞と分化能力の高いTkDN4-M(3因子;中段)、TkDA3-4(4因子;下段)由来の血液前駆細胞を比較した。未分化な血液/血管内皮の共通マーカーとされるCD31陽性/CD34陽性細胞の頻度や巨核球前駆細胞のマーカーとされるCD34陽性/CD41a陽性細胞はES細胞同様に発現していた。 ヒトiPS細胞由来血球コロニーの解析。 TkDN4-M(3因子)、TkDA3-4(4因子)由来の血液前駆細胞の血球分化能をメチルセルロース半固形培地に播いて比較した。左図は代表的な各血球系のギムザ染色像である。右図はコロニー形成細胞の頻度を示す(縦軸は、1×10血球前駆細胞由来のコロニー数)。TkDA3-4のみ芽球様(左図の右下パネル)コロニーを形成したが、他の血球への分化能は同様であった。 培養後17~18日目の培養液中の浮遊細胞成分を、フローサイトメーターで解析した結果を示す。X軸はCD41a、Y軸はそれぞれCD42b、CD42a、CD9。左からKhES-3(ヒトES細胞)、253G4(3因子ヒトiPS細胞)、TkDN4-M(3因子ヒトiPS細胞)、TkDA3-4(4因子ヒトiPS細胞)を示す。成熟巨核球のマーカーとされるCD42a、CD42bはヒトES細胞由来巨核球と同様に発現していた。 ヒトiPS細胞由来血小板の表面抗原解析結果を示す。 培養24日目に培養上清中に放出される血小板を、フローサイトメーターを用いて解析した。X軸はCD41a、Y軸はそれぞれCD42b、CD42a、CD9。左からヒト末梢血血小板、KhES-3(ヒトES細胞)由来血小板、253G4(3因子ヒトiPS細胞)由来血小板、TkDN4-M(3因子ヒトiPS細胞)由来血小板、TkDA3-4(4因子ヒトiPS細胞)由来血小板を示す。血小板の重要な機能分子であるCD41aやCD42a、CD9は末梢血由来血小板同様に発現していた。一方、CD42bに関してはヒトES細胞及びヒトiPS細胞由来血小板は一部で発現が低下していた(上段パネル)。 巨核球からの血小板放出形態の観察像を示す。培養後17~18日目の浮遊細胞を、Alexa 488結合抗CD41a抗体で染色し蛍光顕微鏡により観察した(右図)。左図は、微分干渉法を使用した明視野による観察像である。 ヒト末梢血、ヒトES細胞及びヒトiPS細胞由来の血小板とヒトiPS細胞由来の巨核球の電子顕微鏡像を示す。 ヒトES細胞及びヒトiPS細胞由来の血小板では、様々な血小板の生理活性化物質を含む顆粒や血小板の微小管構造は末梢血と同様に保持していた。 ヒトiPS細胞由来の血小板の機能解析(インサイドアウトシグナル)結果を示す。 上パネル;代表的なFACS像。ヒトiPS細胞由来血小板(下段)はヒトES細胞由来血小板(上段)同様、生体内の重要な血小板活性化物質ADPによりインテグリンの活性化(PAC1抗体陽性血小板の増加)を認めた。 下パネル;ヒトES細胞由来血小板(白い棒グラフ)同様、ヒトiPS細胞由来血小板(黒い棒グラフ)は低濃度のADP(5μM)から反応し、用量依存的に反応が増加した。他の活性化物質であるトロンビンへの反応も確認できた。no agonist;ADPなしの結果。
 本発明の実施形態の1つは、iPS細胞をフィーダー細胞上に播き、造血系細胞の分化誘導に適した条件で培養して得られる、造血前駆細胞を内包するネット様構造物(sac)である。該ネット様構造物には、造血前駆細胞が濃縮されて存在しているため、各種血球細胞を生体外において効率的に分化誘導することができる。ここで「ネット様構造物」とは、ES又はiPS細胞由来の立体的な嚢状(内部に空間を伴うもの)構造体で、内皮細胞集団などで形成され、内部に血液前駆細胞を含むもののことである。ネット様構造物の詳細については、例えば、TAKAYAMAら,BLOOD 2008,111:5298-5306、を参照のこと。ここで「iPS細胞」とは、人工多能性幹細胞若しくは誘導多能性幹細胞とも称され、線維芽細胞などの体細胞へ数種類の転写因子遺伝子を導入することにより、ES細胞と同等の分化多能性を獲得した細胞である。ここで、分化多能性の獲得に必要な転写因子遺伝子としては、例えば、Nanog、Oct3/4、Sox2、Klf4、c-Myc、Lin28などが知られている。これらの遺伝子のうち、例えば、Oct3/4、Sox2、Klf4、c-Mycの組合せ、Oct3/4、Sox2、Nanog、Lin28の組合せ、Oct3/4、Sox2、Klf4の組合せで、選択した遺伝子を線維芽細胞などの体細胞に導入することにより、iPS細胞の樹立が可能となる。本発明で使用するiPS細胞は、その樹立の手法は問わず、上記の遺伝子を導入する手法で樹立された細胞以外にも、上記と異なる遺伝子の導入による樹立方法、タンパク質や低分子化合物などを用いた樹立方法によるiPS細胞であってもよい。
 また、「フィーダー細胞」として、ES細胞やiPS細胞の分化誘導に寄与する細胞であればいずれも使用可能であり、例えば、マウス胚線維芽細胞、好ましくは、C3H10T1/2細胞株、OP9細胞などを用いることができる。「フィーダー細胞」を用いるときには、例えば、放射線を照射するなどして、細胞の増殖を抑止しておくのがよい。
 iPS細胞の培養条件としては、ネット様構造物(以下、iPS-Sacとも記載する。)を調製するために適した条件を選択することができる。この培養条件は、用いるiPS細胞の生物種によって異なる。一例を挙げるならば、ヒト由来のiPS細胞の場合、培地としては、最終濃度15%のFBSを添加したIMDMを用い、その他無血清の場合においても適宜増殖因子およびサプリメント等を加えたものを使用することができる。さらに、ヒト由来のiPS細胞からネット様構造物を効率的に形成させるためには、例えば、VEGFを、0~100ng/ml程度、より好ましくは、20ng/ml程度加えるのがよい。また、培養の環境としては、用いるiPS細胞によって異なるが、例えば、5% CO、36~38℃、好ましくは37℃の条件を用いることができる。ネット様構造物が形成されるまでの培養期間は、用いるヒトiPS細胞によって異なるが、例えば、フィーダー細胞上に播いてから、14~17日後くらいにその存在を確認することができる。
 形成されたネット様構造物は、濾胞状構造になっており、中胚葉細胞のマーカーの一つであるFlk1(fetal liver kinase 1)、CD31、CD34、又はUEA-Iレクチン(Ulex europaeus.agglutinin-1)陽性細胞によって隔壁が構成されている。このネット様構造物の内部には、造血前駆細胞が濃縮された状態で存在している。ネット様構造物の内部に存在する造血前駆細胞から各種血球細胞を分化誘導する場合には、隔壁を構成している細胞などから造血前駆細胞を分離する必要がある。この分離は、物理的な手段により行うのが望ましい。例えば、滅菌済みの篩状器具(例えば、セルストレイナーなど)に通すことにより、隔壁細胞と造血前駆細胞を分離することができる。
 本発明のさらなる実施形態は、ネット様構造物から分離した造血前駆細胞から各種血球細胞を産生する方法である。得られた造血前駆細胞をフィーダー細胞上に播き、所望の血球細胞の分化誘導に適した条件で培養を行う。ここで「血球細胞の分化誘導に適した条件」とは、目的の血球細胞の種類に応じて、例えば、TPO、IL-1α、IL-3、IL-4、IL-5、IL-6、IL-9、IL-11、EPO、GM-CSF、SCF、G-CSF、Flt3リガンド、Heparinなどのいずれか又はこれらのうちの2つ以上を組合せて添加した条件を挙げることができる。巨核球及び血小板を分化誘導する場合には、例えば、TPO(10~200ng/mL、好ましくは100ng/mL程度)の存在下で、あるいは、TPO(10~200ng/mL、好ましくは100ng/mL程度)、SCF(10~200ng/mL、好ましくは50ng/mL程度)及びHeparin(10~100U/mL、好ましくは25U/ml程度)の存在下で、7~15日間程度培養することができる。培養環境としては、生体外で血球細胞の分化誘導を行うにあたり適した環境であればよいが、例えば、5% CO、36~38℃、好ましくは37℃の条件下で培養を実施する。
 また、iPS細胞、特にヒト由来のiPS細胞から巨核球、血小板を産生させる場合、上記ネット様構造物の産生効率がiPS細胞クローンによって異なるため、ネット様構造物の産生効率の高いiPS細胞クローンを予め選択し、該iPS細胞クローンの産生するネット様構造物から、巨核球や血小板などの各種血球細胞を産生することで、より効率的に多くの血球細胞を調製することができる(図9を参照のこと)。ここで、ネット様構造物の産生効率の「高い」iPS細胞クローンとして、ネット様構造物の形成数が、例えば、1×10細胞あたり10以上、好ましくは15以上のクローンを選択することができる。
 本発明の他の実施形態は、マウス由来のiPS細胞から胚様体(分化誘導した中胚葉系未分化細胞を含む細胞集団)を形成させ、さらに巨核球及び血小板を誘導する方法である。マウスES細胞の場合、OP9細胞などのフィーダー細胞との共培養を行わなくても胚様体を形成し、中胚葉系未分化細胞へ分化誘導させることが可能である。マウスiPS細胞の場合にも、マウスES細胞の場合と同様の条件で中胚葉系未分化細胞を誘導することが可能である。この場合の培養条件としては、例えば、培地としては、用いるiPS細胞によって異なるが、例えば、FBS、ヒトトランスフェリンなどを添加したIMDMを用い、その他適宜サプリメント等を加えたものを使用することができる。また、培養の環境としては、用いるiPS細胞によって異なるが、例えば、5% CO、36~38℃、好ましくは37℃の条件を用いることができる。胚様体が形成されるまでの培養期間は、用いるiPS細胞によって異なるが、例えば、6~9日後くらいにその存在を確認することができる。
 次に、胚様体を血球細胞の分化誘導に適した条件で培養し、巨核球及び血小板を誘導することができる。ここで「血球細胞の分化誘導に適した条件」とは、例えば、TPO、IL-1α、IL-3、IL-4、IL-5、IL-6、IL-9、IL-11、EPO、GM-CSF、SCF、G-CSF、Flt3リガンド、Heparinなどのいずれか又はこれらのうちの2つ以上を組合せて添加した条件を挙げることができる。巨核球及び血小板を分化誘導する場合には、例えば、TPO(10~200ng/mL)、SCF(1~200ng/mL)、IL-6(1~100ng/ml程度)、IL-11(1~100ng/ml程度)などを、単独又は適宜組合せて、適切な時期に培地に添加する。胚様体からの培養後、3~5日後くらいに巨核球が誘導され、7~9日後くらいに血小板が誘導される。培養環境としては、生体外で血球細胞の分化誘導を行うにために適した環境であればよいが、例えば、5% CO、36~38℃、好ましくは37℃の条件下で培養を実施する。
 さらに、本発明の実施形態には、血小板を調製するためのキットが含まれる。当該キットには、細胞培養のための培地、血清、増殖因子などのサプリメント(例えば、TPO、SCF、Heparin、IL-6、IL-11など)、抗生物質などが含まれる。その他、例えば、ヒト由来の血小板の調製用に、ネット様構造物に存在するマーカーを確認するための抗体(例えば、Flk1、CD31、CD34、UEA-Iレクチンなどに対する抗体)なども含まれる。キット中に含まれる試薬、抗体等は、構成成分が活性を長期間有効に持続し、容器の材質によって吸着されず、変質を受けないような何れかの種類の容器中に供給される。例えば、封着されたガラスアンプルは、窒素ガスのような中性で不反応性ガスの下において包装されたバッファーを含む。アンプルは、ガラス、ポリカーボネート、ポリスチレンなどの有機ポリマー、セラミック、金属、又は試薬を保持するために通常用いられる他の何れかの適切な材料などから構成される。
 血小板は、白血病、骨髄移植、抗ガン剤治療の際の血小板減少の予防又は改善に有効であるため、本発明により得られたヒト血小板を製剤の形態で安定的に供給することも可能である。本発明の方法によって産生される血小板は、巨核球から放出されて血小板が豊富に存在する培養液の画分(例えば、ヒト由来の血小板の場合、iPS細胞の培養後22~28日目程度)を回収し、白血球除去フィルター(例えば、テルモ社、旭化成メディカル社などから購入可能)などを使用して巨核球、その他の血液細胞の除外を行うことにより、血小板以外の成分を除去して、調製することができる。血液製剤を調製するにあたっては、血小板が保存に対して不安定であることなどを考慮して、血小板の安定化に資する他の成分を含有せしめることもできる。血小板を安定化させる条件は、当該技術分野の専門家において周知の方法を選択することが可能である。より具体的には、取得した血小板(ヒトES細胞由来洗浄血小板)は、例えば、以下の方法により製剤化することができる。
 ACD-A液:FFP(fresh frozen plasma;献血で得られた全血液から調整したもの、アルブミン、凝固因子など血液成分以外のものをすべて含む)を1:10の比率で調整し、15-50Gyの放射線照射後に20-24℃にて振とうしながら保存する。ACD-A液;クエン酸ナトリウム22g/クエン酸8g/ブドウ糖22gを注射用水で全体を1Lとするように調整する。
 以上の方法を使用する場合、血小板の濃度としては、例えば、1×10血小板/mL程度が望ましい。
 また、GM6001(a broad-range hydroxamic acid-based metalloprotease inhibitor) (Calbiochem社、La Jolla,CA,USA)を添加しておくと、冷凍保存および室温保存中に起きる血小板機能分子GPIb-V-IXやGPVIの切断に伴う不活化を予防できる。本発明者らは、この方法により、マウスES細胞由来血小板に関し不活性化の予防が可能であることを確認している。なお、ヒト血小板を使用したこの血小板不活性化に関する機序の参考論文として、Bergmeier,W et al.,Cir Res 95:677-683,2004及び Gardiner,EE et al.,J Thrombosis and Haemostasis,5:1530-1537,2007を参照のこと。
 なお、血小板を含む製剤を収納する容器は、ガラスのように血小板を活性化する材質のものを避けるのが好ましい。
 以下に実施例を示してさらに詳細に説明するが、本発明は実施例により何ら限定されるものではない。
1.マウスiPS細胞からの巨核球及び血小板の誘導
 1-1.マウスストロマ細胞株OP9細胞の培養
 OP9細胞は15% FBS、2mM L-グルタミン、100U ペニシリン、0.1mg/mL ストレプトマイシンを添加した、α-Minimum Essential Medium(α-MEM;Invitrogen/GIBCO)で継代培養した。培地は一日ごとに交換し、細胞の形質を変化させない為に、初代培養から継代培養数30回以内の細胞を実験に用いた。
 1-2.マウスNanog-iPS細胞の培養
 Nanog-iPS細胞(Nature,448,313-317(2007))(京都大学、山中伸弥博士より供与を受けた)を、15% FBS、300μg/mL ヒトトランスフェリン(Sigma)、4.5mM モノチオグリセロール(Sigma)、50μg/mL アスコルビン酸(Sigma)、0.1mM 2-メルカプトエタノール(Invitrogen/GIBCO)、2mM L-グルタミン、100U ペニシリン、0.1mg/mL ストレプトマイシンを添加したIscove’s Modified Dulbecco’s Medium(IMDM;Invitrogen/GIBCO)を用いてペトリ皿(Sterilin、米国)で培養した。10cmペトリ皿に10mLの培養液に対して2×10個の細胞数で培養を開始し、胚様体形成を試みた。
 1-3.巨核球、血小板の誘導
 培養6~7日目に産生された胚様体は0.25% トリプシンで処理した後、コンフルエントなOP9細胞上に、1×10個/ウェルとなるように播き直し、20ng/ml マウス TPO(peprotec)、10ng/ml SCFを添加したαMEM中で培養を行った(図1)。
 培養10日後には、CD41GPIbαの成熟巨核球が誘導され(図2及び図5上図)、さらに、培養を継続した培養14日後には、CD41GPIbαの血小板が誘導された(図3及び図5下図)。このようにして誘導された血小板は、末梢血由来の血小板と同様の形態的特徴を有していた(図4)。
 ここで得られた血小板の機能について検討を行った。フィブリノーゲンでコートしたディッシュに血小板が放出された培養上清を添加し、トロンビンで刺激を行ったところ(図6上図)、血小板に特徴的な細胞伸展を示した(図6下図)。この結果から、本発明方法により、マウスiPS細胞から、生体内の血小板と同じ特徴を備えた血小板を誘導できることが明らかとなった。
2.ヒトiPS細胞からの巨核球及び血小板の誘導
 2-1.ネット様構造物(iPS-Sacs)の調製
 本実施例で使用した細胞株、201B6(皮膚細胞にOct3/4,Klf4,Sox2及びc-Mycを導入したもの、Cell,131,861-872(2007))及び253G1(皮膚細胞にOct3/4,Klf4及びSox2を導入したもの、Nature Biotech.,26,101-106(2008))は、京都大学、山中伸弥博士より供与を受けた。さらに、TkDA3-1、TkDA3-2、TkDA3-4、TkDA3-5、TkDA3-9、TkDA3-20(東京大学で新しく樹立した株で(皮膚細胞にOct3/4,Klf4,Sox2及びc-Mycを導入したもの)及びTkDN4-M(皮膚細胞にOct3/4,Klf4及びSox2を導入したもの;東京大学樹立)を使用した。また、フィーダー細胞は、マウス胎児由来細胞、C3H10T1/2細胞株をつくば理研BioResource centerより供与を受けて使用し、又はOP9細胞株を大阪大学医学部、仲野徹教授から供与を受けて使用した。分化実験を行う前日に、0.1% ゼラチンコート化ディッシュにC3H10T1/2細胞を6×10/10cm ディッシュの密度となるように播き、分化実験の当日に、C3H10T1/2細胞の増殖を止めるため50Gyの放射線照射を行い、フィーダー細胞として用いた。また、OP9細胞株をフィーダー細胞として使用する場合には、分化実験の前日に50Gyの放射線照射を行い、播き直しを行った後に使用した。
 ヒトiPS細胞は、15% FBS(JRH BIOSCIENCES、米国)、2mM L-グルタミン(Invitrogen)、ITSサプリメント(10μg/ml インスリン、5.5mg/ml トランスフェリン、5ng/ml 亜セレン酸ナトリウム)(Sigma)、50μg/ml アスコルビン酸(Sigma)、0.45mM MTG(Sigma)、20ng/ml VEGF(R&D systems)を添加したIMDM(IMDM;Invitrogen/GIBCO)中、OP9細胞又はC3H10T1/2細胞上に播いて培養した。
 培養後、15~17日前後に内部に血球様細胞を含んだネット様構造物が多数確認された(図7、iPS-Sac)。
 iPS細胞株クローンは、例えば、4因子を使用して樹立しているにもかかわらず、ヘテロ(heterogeneity)な細胞株であることから、同一の皮膚細胞から作成しても分化能力は様々であった。従って、ヒトiPS細胞の場合、事前のスクリーニング(例えば、より多くのネット様構造物を形成するクローンを選択するなど)により分化に適したクローンを選択することが可能で、より効率的に血球系細胞を分化誘導するクローンを容易に選択することが可能となる(図9参照)。実際に、図9に示されるiPS細胞の中からSac形成能の異なるクローンを選択して血小板誘導能を比較した。具体的には、iPS細胞(TkDA3-4、TkDN4-M及び253G1)及びES細胞(KhES3)を1×10細胞用い、最終的に得られる血小板の数を計測した(図10)。図10より、Sac形成能の高いiPS細胞(TkDA3-4、TkDN4-M)は、血液前駆細胞を多く含むSacを形成しやすく、最終的な血小板数も増えることが示唆された。
 2-2.コロニーアッセイ
 ネット様構造物中の造血前駆細胞の細胞表面分子について調べたところ、未分化な血液/血管内皮の共通マーカーとされるCD31陽性/CD34陽性細胞の頻度がES細胞と同様であり、巨核球前駆細胞のマーカーとされるCD34陽性/CD41a細胞についても、ES細胞の場合と同様に発現していることが分かった(図11)。また、コロニー形成能については、ヒトES細胞と同様であり(図12)、4因子によるヒトiPS細胞株TkDA3-4では芽球様コロニー(blast-like、図12)が観察され、ガン化(白血病化)の危険が示唆された。
 2-3.巨核球/血小板の誘導
 次に、P-1000 ピペットを用いて、位相差顕微鏡下でネット様構造物をピックアップし、70μm セルストレイナーを用いて、血球細胞とネット様構造物を分離した。新たに、6ウェルプレートに用意した放射線照射済みのC3H10T1/2細胞(6×10/6ウェルプレート1枚)上に血球細胞を2~3×10/ウェルで播き、15% FBS(JRH BIOSCIENCES、米国)、2mM L-グルタミン(Invitrogen)、ITSサプリメント(10μg/ml インスリン、5.5mg/ml トランスフェリン、5ng/ml 亜セレン酸ナトリウム)(Sigma)、50μg/ml アスコルビン酸(Sigma)、0.45mM MTG(Sigma)、100ng/ml ヒトTPO(Peprotec)、50ng/ml SCF及び25U/ml Heparinを添加したIMDM(IMDM;Invitrogen/GIBCO)中でさらに培養し、巨核球/血小板を誘導した(図7、図8及び図15)。
 253G1(京都大学株)、201B6(京都大学株)、TkDA3-4(東京大学株)、TkDN4-M(東京大学株)細胞株の培養後23~24日目の浮遊細胞成分をフローサイトメーターで解析し、細胞表面抗原の特徴を調べたところ、巨核球、血小板特異的な表面分子抗原であるヒトCD41a(integrin αIIb)及びヒトCD42b(GPIbα)、CD42a(GPIX)、CD9陽性細胞が観察された(図13;巨核球、図14;血小板)。また、巨核球から血小板が放出される際に示される形態的な特徴も確認された(図15及び図16)。
 次に、血小板活性化物質によるインテグリンの活性化について検討したところ、ヒトiPS細胞由来血小板(図17上パネル、下段)は、ヒトES細胞由来血小板(図17下パネル、上段)同様、生体内の重要な血小板活性化物質ADPによりインテグリンの活性化(PAC1抗体陽性血小板の増加)を認めた。また、ヒトES細胞由来血小板(図17下パネル、白い棒グラフ)同様、ヒトiPS細胞由来血小板(図17下パネル、黒い棒グラフ)は低濃度のADP(5μM)から反応し、用量依存的に反応が増加した。さらに、他の活性化物質であるトロンビンへの反応も確認できた(図17下パネル、6)。これらの結果から、iPS細胞から作製された血小板は、ヒトES細胞由来血小板と同様に機能性を発揮することが明らかとなった。
 以上の結果から、本発明の方法により、ヒトiPS細胞から巨核球及び血小板を効率的に誘導できることが明らかとなった。
 本発明によれば、HLA適合性の問題を克服可能な血小板を提供することができる。従って、輸血が必要な患者専用の血小板の供給が可能となることから、抗血小板抗体の産生による血小板の破壊などの問題も解決することができる。

Claims (16)

  1.  ヒト由来のiPS細胞をフィーダー細胞上に播き、造血前駆細胞の分化誘導に適した条件で培養して得られる、造血前駆細胞を内包するネット様構造物。
  2.  前記造血前駆細胞の分化誘導に適した条件が、VEGF存在下、14~17日間培養することである請求項1に記載のネット様構造物。
  3.  前記フィーダー細胞がC3H10T1/2細胞、又はOP9細胞であることを特徴とする請求項1又は2に記載のネット様構造物。
  4.  請求項1乃至3のいずれかに記載のネット様構造物の産生能力の高いiPS細胞クローンを選択し、該iPS細胞クローンが産生するネット様構造物の隔壁を形成する細胞と造血前駆細胞を分離し、得られた造血前駆細胞をフィーダー細胞上に播き、血球細胞の分化誘導に適した条件で培養し、血球細胞を産生する方法。
  5.  前記血球細胞が巨核球及び血小板であることを特徴とする請求項4に記載の方法。
  6.  前記血球細胞の分化誘導に適した条件が、TPO存在下、7~9日間培養することである請求項5に記載の方法。
  7.  前記血球細胞の分化誘導に適した条件が、TPO、SCF及びHeparin存在下、7~9日間培養することである請求項5に記載の方法。
  8.  請求項5乃至7のいずれかに記載の方法により産生された巨核球及び/又は血小板。
  9.  請求項5乃至7のいずれかに記載の方法により産生された血小板を有効成分とする血液製剤。
  10.  マウス由来のiPS細胞を液体培養することで、胚様体の内部に造血前駆細胞を形成させ、該胚様体をさらに培養して、血球細胞を産生する方法。
  11.  前記血球細胞が巨核球及び血小板であることを特徴とする請求項10に記載の方法。
  12.  前記胚様体をさらに培養する期間が、5~7日間である請求項10又は11に記載の方法。
  13.  前記胚様体をさらに培養する条件が、TPO及びSCFの存在下、3~5日間培養することである請求項10乃至12のいずれかに記載の方法。
  14.  請求項10乃至13のいずれかに記載の方法により産生された巨核球及び/又は血小板。
  15.  請求項10乃至13のいずれかに記載の方法により産生された血小板を有効成分とする血液製剤。
  16.  請求項4乃至7および請求項10乃至13のいずれかに記載の方法により血小板を調製するためのキット。
PCT/JP2009/001542 2008-04-01 2009-04-01 iPS細胞からの血小板の調製方法 WO2009122747A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09727938.4A EP2277995B1 (en) 2008-04-01 2009-04-01 Method for preparation of platelet from ips cell
US12/935,380 US8546141B2 (en) 2008-04-01 2009-04-01 Method for preparation of platelet from iPS cell
CN2009801115207A CN101981181B (zh) 2008-04-01 2009-04-01 由iPS细胞制备血小板的方法
JP2010505402A JP5617631B2 (ja) 2008-04-01 2009-04-01 iPS細胞からの血小板の調製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008094584 2008-04-01
JP2008-094584 2008-04-01

Publications (1)

Publication Number Publication Date
WO2009122747A1 true WO2009122747A1 (ja) 2009-10-08

Family

ID=41135147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001542 WO2009122747A1 (ja) 2008-04-01 2009-04-01 iPS細胞からの血小板の調製方法

Country Status (5)

Country Link
US (1) US8546141B2 (ja)
EP (1) EP2277995B1 (ja)
JP (1) JP5617631B2 (ja)
CN (1) CN101981181B (ja)
WO (1) WO2009122747A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012033186A1 (ja) 2010-09-10 2012-03-15 国立大学法人東京大学 多能性幹細胞からの血液細胞分化に関する培養方法
WO2012036257A1 (ja) 2010-09-17 2012-03-22 国立大学法人東京大学 血小板の機能を維持するための組成物
WO2012157586A1 (ja) 2011-05-13 2012-11-22 国立大学法人東京大学 多核化巨核球細胞、及び血小板の製造方法
WO2013051625A1 (ja) 2011-10-03 2013-04-11 日産化学工業株式会社 多能性幹細胞からの巨核球及び/又は血小板の製造方法
WO2014123242A1 (ja) 2013-02-08 2014-08-14 国立大学法人京都大学 巨核球及び血小板の製造方法
WO2014189144A1 (ja) * 2013-05-23 2014-11-27 国立大学法人京都大学 骨髄異形成症候群等の治療/予防薬のスクリーニング方法
WO2014196624A1 (ja) 2013-06-07 2014-12-11 科研製薬株式会社 血小板の機能を維持するための組成物
JP2016504339A (ja) * 2012-12-21 2016-02-12 オカタ セラピューティクス, インコーポレイテッド 多能性幹細胞から血小板を生産するための方法およびその組成物
WO2017047492A1 (ja) * 2015-09-15 2017-03-23 株式会社メガカリオン 回転式撹拌培養法による血小板の製造方法
WO2017077964A1 (ja) * 2015-11-02 2017-05-11 株式会社メガカリオン 往復動撹拌装置を用いた血小板の製造方法
JPWO2017038958A1 (ja) * 2015-08-28 2018-06-14 学校法人自治医科大学 造血系細胞の作製方法
WO2018169060A1 (ja) 2017-03-16 2018-09-20 富士フイルム株式会社 巨核球と血小板とを分離する方法および血小板分離キット
WO2018169061A1 (ja) 2017-03-16 2018-09-20 富士フイルム株式会社 巨核球と血小板とを分離する方法および巨核球と血小板とを分離するための器具
WO2021117886A1 (ja) 2019-12-12 2021-06-17 国立大学法人千葉大学 巨核球および血小板を含む凍結乾燥製剤
WO2023277153A1 (ja) 2021-06-30 2023-01-05 国立大学法人千葉大学 骨髄系共通前駆細胞(cmp)又は骨髄球系前駆細胞の増殖性を向上させる方法
US11566228B2 (en) 2006-04-14 2023-01-31 Astellas Institute For Regenerative Medicine Hemangio-colony forming cells
US12121543B2 (en) 2015-11-02 2024-10-22 Megakaryon Corporation Method for producing platelets using reciprocating stirring device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201210857D0 (en) 2012-06-19 2012-08-01 Cambridge Entpr Ltd Transcription factor mediated programming towards megakaryocytes
CN105238757A (zh) * 2015-09-24 2016-01-13 深圳爱生再生医学科技有限公司 用诱导性多能干细胞诱导制备造血干细胞的方法
JP7017008B2 (ja) 2015-10-15 2022-02-08 国立大学法人京都大学 多能性幹細胞からcd4陽性t細胞を製造する方法
KR102592176B1 (ko) 2018-01-05 2023-10-20 플레이틀렛 바이오제네시스, 인크. 거핵구 생성을 위한 조성물 및 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005019441A1 (ja) * 2003-08-25 2005-03-03 Tanabe Seiyaku Co., Ltd. 霊長類動物の胚性幹細胞から造血系細胞への分化方法
JP2005511084A (ja) * 2001-12-07 2005-04-28 ジェロン コーポレイション ヒト胚性幹細胞に由来する造血細胞
JP2005287479A (ja) * 2004-03-31 2005-10-20 Kazuhisa Maeda 組織幹細胞採取方法及びそれを利用した装置
US20060099198A1 (en) * 2004-11-01 2006-05-11 Thomson James A Platelets from stem cells
JP2007089432A (ja) * 2005-09-27 2007-04-12 Reprocell Inc 幹細胞由来血小板産生増加法
WO2007069666A1 (ja) * 2005-12-13 2007-06-21 Kyoto University 核初期化因子
WO2008041370A1 (fr) * 2006-10-04 2008-04-10 The University Of Tokyo Structure renfermant des cellules progénitrices hématopoïétiques issues de cellules es et procédé de préparation de cellules sanguines faisant appel à ladite structure

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004350601A (ja) 2003-05-29 2004-12-16 Tanabe Seiyaku Co Ltd 霊長類動物の胚性幹細胞から造血系細胞への分化方法
JP2005287478A (ja) 2004-03-31 2005-10-20 Kazuhisa Maeda ヒト脂肪前駆細胞株及びその利用方法
JP4706208B2 (ja) 2004-08-27 2011-06-22 株式会社アイル 造血幹細胞の製造方法
US20070077654A1 (en) * 2004-11-01 2007-04-05 Thomson James A Platelets from stem cells
JP2006141356A (ja) 2004-11-24 2006-06-08 Institute Of Physical & Chemical Research Es細胞から樹立された造血幹細胞
WO2009119105A1 (ja) 2008-03-28 2009-10-01 国立大学法人東京大学 GPIbα+GPV+GPVI+血小板のインビトロ調製法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005511084A (ja) * 2001-12-07 2005-04-28 ジェロン コーポレイション ヒト胚性幹細胞に由来する造血細胞
WO2005019441A1 (ja) * 2003-08-25 2005-03-03 Tanabe Seiyaku Co., Ltd. 霊長類動物の胚性幹細胞から造血系細胞への分化方法
JP2005287479A (ja) * 2004-03-31 2005-10-20 Kazuhisa Maeda 組織幹細胞採取方法及びそれを利用した装置
US20060099198A1 (en) * 2004-11-01 2006-05-11 Thomson James A Platelets from stem cells
JP2007089432A (ja) * 2005-09-27 2007-04-12 Reprocell Inc 幹細胞由来血小板産生増加法
WO2007069666A1 (ja) * 2005-12-13 2007-06-21 Kyoto University 核初期化因子
WO2008041370A1 (fr) * 2006-10-04 2008-04-10 The University Of Tokyo Structure renfermant des cellules progénitrices hématopoïétiques issues de cellules es et procédé de préparation de cellules sanguines faisant appel à ladite structure

Non-Patent Citations (24)

* Cited by examiner, † Cited by third party
Title
"Blood (ASH Annual Meeting Abstracts)(2006)", vol. 108, 2006, article NAOYA TAKAYAMA ET AL.: "Human Embryonic Stem Cell-Derived ''NET-Like'' Structure Serves as a Hematopoietic Progenitor Niche and Favors Generation of Matur", pages: 474A - AB1665, XP008143951 *
BERGMEIER, W ET AL., CIR RES, vol. 95, 2004, pages 677 - 683
CELL, vol. 131, 2007, pages 861 - 872
ETO ET AL., PROC. ACAD. SCI. USA, vol. 99, 2002, pages 12819 - 12824
FUJIMOTO ET AL., BLOOD, vol. 102, 2003, pages 4044 - 4051
GARDINER, EE ET AL., J THROMBOSIS AND HAEMOSTASIS, vol. 5, 2007, pages 1530 - 1537
GAUR ET AL., J THROMB HAEMOST., vol. 4, 2005, pages 436 - 442
HIROYAMA ET AL., EXP. HEMATOL., vol. 34, 2006, pages 760 - 769
HIROYAMA T ET AL.: "Long-lasting in vitro hematopoiesis derived from primate embryonic stem cells.", EXPERIMENTAL HEMATOLOGY, vol. 34, 2006, pages 760 - 769, XP027879575 *
JIANG J ET AL.: "High dose chemotherapy and transplantation of hematopoietic progenitors from murine D3 embryonic stem cells.", JOURNAL OF CHEMOTHERAPY, vol. 17, no. 3, 2005, pages 302 - 308, XP003022112 *
MAHERALI ET AL., CELL STEM CELL, vol. 1, 2007, pages 55 - 70
NAKAGAWA ET AL., NAT BIOTECHNOL., vol. 26, 2008, pages 101 - 106
NAOYA TAKAYAMA ET AL.: "Hito ES Saibo Yurai Zoketsu Shiji Kozotai: Nojo Kozobutsu (ES-Sac) Karano Ketsueki Saibo no Bunka Yudo", RINSHO KETSUEKI, vol. 48, no. 9, 2007, pages 936, XP008143939 *
NATURE BIOTECH., vol. 26, 2008, pages 101 - 106
NATURE, no. 448, 2007, pages 313 - 317
OKITA ET AL., NATURE, vol. 448, 2007, pages 313 - 317
See also references of EP2277995A4
TAKAHASHI ET AL., CELL, vol. 131, 2007, pages 861 - 872
TAKAYAMA ET AL., BLOOD, vol. 111, 2008, pages 5298 - 5306
TAKAYAMA N ET AL.: "Generation of functional platelets from human embryonic stem cells in vitro via ES-sacs, VEGF-promoted structures that concentrate hematopoietic progenitors.", BLOOD, vol. 111, no. 11, June 2008 (2008-06-01), pages 5298 - 5306, XP008143960 *
WERNIG ET AL., NATURE, vol. 448, 2007, pages 318 - 324
YU ET AL., SCIENCE, vol. 318, 2007, pages 1917 - 1920
YUKA NAGATA: "Thrombopoietin ni yoru Tabaitaika o Tomonau Kyokakukyu Tokuiteki na Bunka Seijuku Katei no Kaiseki", RESEARCH REPORTS OF UEHARA MEMORIAL FOUNDATION, vol. 13, 1999, pages 89 - 91, XP003022113 *
YUNYING YU ET AL.: "Induced pluripotent stem cell lines derived from human somatic cells.", SCIENCE, vol. 318, no. 5858, 2007, pages 1917 - 1920, XP009105055 *

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11566228B2 (en) 2006-04-14 2023-01-31 Astellas Institute For Regenerative Medicine Hemangio-colony forming cells
WO2012033186A1 (ja) 2010-09-10 2012-03-15 国立大学法人東京大学 多能性幹細胞からの血液細胞分化に関する培養方法
JP5597904B2 (ja) * 2010-09-10 2014-10-01 国立大学法人 東京大学 多能性幹細胞からの血液細胞分化に関する培養方法
US8778681B2 (en) 2010-09-10 2014-07-15 University Of Tokyo Culture method related to differentiation of pluripotent stem cells into blood cells
WO2012036257A1 (ja) 2010-09-17 2012-03-22 国立大学法人東京大学 血小板の機能を維持するための組成物
US9034922B2 (en) 2010-09-17 2015-05-19 The University Of Tokyo Composition for maintaining function of platelets
US10533185B2 (en) 2011-05-13 2020-01-14 The University Of Tokyo Method for producing polyploidized megakaryocyte and platelets
US9738906B2 (en) 2011-05-13 2017-08-22 The University Of Tokyo Method for producing polyploidized megakaryocyte and platelets
WO2012157586A1 (ja) 2011-05-13 2012-11-22 国立大学法人東京大学 多核化巨核球細胞、及び血小板の製造方法
KR20140082673A (ko) 2011-10-03 2014-07-02 닛산 가가쿠 고교 가부시키 가이샤 다능성 간세포로부터의 거핵구 및/또는 혈소판의 제조 방법
WO2013051625A1 (ja) 2011-10-03 2013-04-11 日産化学工業株式会社 多能性幹細胞からの巨核球及び/又は血小板の製造方法
JPWO2013051625A1 (ja) * 2011-10-03 2015-03-30 日産化学工業株式会社 多能性幹細胞からの巨核球及び/又は血小板の製造方法
JP2016005474A (ja) * 2011-10-03 2016-01-14 日産化学工業株式会社 多能性幹細胞からの巨核球及び/又は血小板の製造方法
JP2021130661A (ja) * 2012-12-21 2021-09-09 アステラス インスティテュート フォー リジェネレイティブ メディシン 多能性幹細胞から血小板を生産するための方法およびその組成物
US11400118B2 (en) 2012-12-21 2022-08-02 Astellas Institute For Regenerative Medicine Methods for production of platelets from pluripotent stem cells and compositions thereof
JP2019205448A (ja) * 2012-12-21 2019-12-05 アステラス インスティテュート フォー リジェネレイティブ メディシン 多能性幹細胞から血小板を生産するための方法およびその組成物
US12109239B2 (en) 2012-12-21 2024-10-08 Astellas Institute For Regenerative Medicine Methods for production of human hemogenic endothelial cells from pluripotent stem cells and compositions thereof
US12076347B2 (en) 2012-12-21 2024-09-03 Astellas Institute For Regenerative Medicine Methods for production of platelets from pluripotent stem cells and compositions thereof
JP2016504339A (ja) * 2012-12-21 2016-02-12 オカタ セラピューティクス, インコーポレイテッド 多能性幹細胞から血小板を生産するための方法およびその組成物
US10426799B2 (en) 2012-12-21 2019-10-01 Astellas Institute For Regenerative Medicine Methods for production of platelets from pluripotent stem cells and compositions thereof
US10894065B2 (en) 2012-12-21 2021-01-19 Astellas Institute For Regenerative Medicine Methods for production of platelets from pluripotent stem cells and compositions thereof
JP7432554B2 (ja) 2012-12-21 2024-02-16 アステラス インスティテュート フォー リジェネレイティブ メディシン 多能性幹細胞から血小板を生産するための方法およびその組成物
WO2014123242A1 (ja) 2013-02-08 2014-08-14 国立大学法人京都大学 巨核球及び血小板の製造方法
JPWO2014189144A1 (ja) * 2013-05-23 2017-02-23 国立大学法人京都大学 骨髄異形成症候群等の治療/予防薬のスクリーニング方法
WO2014189144A1 (ja) * 2013-05-23 2014-11-27 国立大学法人京都大学 骨髄異形成症候群等の治療/予防薬のスクリーニング方法
KR20160018517A (ko) 2013-06-07 2016-02-17 가껭세이야꾸가부시기가이샤 혈소판의 기능을 유지하기 위한 조성물
WO2014196624A1 (ja) 2013-06-07 2014-12-11 科研製薬株式会社 血小板の機能を維持するための組成物
JPWO2017038958A1 (ja) * 2015-08-28 2018-06-14 学校法人自治医科大学 造血系細胞の作製方法
JPWO2017047492A1 (ja) * 2015-09-15 2018-07-05 株式会社メガカリオン 回転式撹拌培養法による血小板の製造方法
US10570372B2 (en) 2015-09-15 2020-02-25 Megakaryon Corporation Method for manufacturing platelets by rotary stirring culture method
WO2017047492A1 (ja) * 2015-09-15 2017-03-23 株式会社メガカリオン 回転式撹拌培養法による血小板の製造方法
JPWO2017077964A1 (ja) * 2015-11-02 2018-10-11 株式会社メガカリオン 往復動撹拌装置を用いた血小板の製造方法
WO2017077964A1 (ja) * 2015-11-02 2017-05-11 株式会社メガカリオン 往復動撹拌装置を用いた血小板の製造方法
US12121543B2 (en) 2015-11-02 2024-10-22 Megakaryon Corporation Method for producing platelets using reciprocating stirring device
WO2018169061A1 (ja) 2017-03-16 2018-09-20 富士フイルム株式会社 巨核球と血小板とを分離する方法および巨核球と血小板とを分離するための器具
WO2018169060A1 (ja) 2017-03-16 2018-09-20 富士フイルム株式会社 巨核球と血小板とを分離する方法および血小板分離キット
WO2021117886A1 (ja) 2019-12-12 2021-06-17 国立大学法人千葉大学 巨核球および血小板を含む凍結乾燥製剤
JPWO2021117886A1 (ja) * 2019-12-12 2021-12-09 国立大学法人千葉大学 巨核球および血小板を含む凍結乾燥製剤
JP7058431B2 (ja) 2019-12-12 2022-04-22 国立大学法人千葉大学 巨核球および血小板を含む凍結乾燥製剤
WO2023277153A1 (ja) 2021-06-30 2023-01-05 国立大学法人千葉大学 骨髄系共通前駆細胞(cmp)又は骨髄球系前駆細胞の増殖性を向上させる方法

Also Published As

Publication number Publication date
EP2277995A4 (en) 2012-08-22
JP5617631B2 (ja) 2014-11-05
EP2277995B1 (en) 2017-09-27
CN101981181A (zh) 2011-02-23
US20110053267A1 (en) 2011-03-03
EP2277995A1 (en) 2011-01-26
CN101981181B (zh) 2013-05-29
JPWO2009122747A1 (ja) 2011-07-28
US8546141B2 (en) 2013-10-01

Similar Documents

Publication Publication Date Title
JP5617631B2 (ja) iPS細胞からの血小板の調製方法
JP5283120B2 (ja) Es細胞からの造血前駆細胞を内包する構造物、及び該構造物を用いた血球細胞の調製方法。
Alatyyat et al. Umbilical cord stem cells: Background, processing and applications
CA2774193C (en) Novel method for producing differentiated cells
Robinson et al. Mesenchymal stem cells in ex vivo cord blood expansion
KR102292843B1 (ko) 역분화줄기세포(iPSC) 유래 자연 살해 세포 및 이의 용도
EP3000876B1 (en) Method for preparing nk cells
WO2021049617A1 (ja) ヒト造血幹細胞を培養するために適したアルブミンフリーの無血清培地およびアルブミンフリーの培養方法
Klein et al. Ex vivo expansion of hematopoietic stem-and progenitor cells from cord blood in coculture with mesenchymal stroma cells from amnion, chorion, Wharton's jelly, amniotic fluid, cord blood, and bone marrow
JP5597904B2 (ja) 多能性幹細胞からの血液細胞分化に関する培養方法
CN117321190A (zh) 包含用于条件性永生化的可控转基因的诱导多能细胞
WO2009119105A1 (ja) GPIbα+GPV+GPVI+血小板のインビトロ調製法
Maslova et al. Enrichment of umbilical cord blood mononuclears with hemopoietic precursors in co-culture with mesenchymal stromal cells from human adipose tissue
JP6164650B2 (ja) Nk細胞の調製方法
RU2360965C1 (ru) СПОСОБ УВЕЛИЧЕНИЯ КОЛИЧЕСТВА ГЕМОПОЭТИЧЕСКИХ НЕДИФФЕРЕНЦИРОВАННЫХ СТВОЛОВЫХ КЛЕТОК ПАЦИЕНТА ex vivo
Luo et al. Specific blood cells derived from pluripotent stem cells: an emerging field with great potential in clinical cell therapy
KR101707387B1 (ko) 적혈구의 인 비트로 대량 생산방법 및 이의 저장 방법
Khaseb et al. Expression analysis of genes involved in the expansion of hematopoietic stem cells (SCF, Flt3-L, TPO, IL-3, and IL-6) in unrestricted somatic stem cells cultured on fibrin
Manfiolli et al. Stem cells, organoids, and cellular therapy
Jahan Multi-stage endothelial differentiation and expansion of human pluripotent stem cells
Rogovaya et al. Study of the viability of cultured human cells in suspensions
Rebulla et al. New horizons in Cellular Therapies
EA026459B1 (ru) Способ экспансии ex vivo кроветворных клеток человека

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980111520.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09727938

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505402

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009727938

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009727938

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12935380

Country of ref document: US