WO2009119390A1 - 重質油水素化分解触媒 - Google Patents

重質油水素化分解触媒 Download PDF

Info

Publication number
WO2009119390A1
WO2009119390A1 PCT/JP2009/055190 JP2009055190W WO2009119390A1 WO 2009119390 A1 WO2009119390 A1 WO 2009119390A1 JP 2009055190 W JP2009055190 W JP 2009055190W WO 2009119390 A1 WO2009119390 A1 WO 2009119390A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
heavy oil
hydrocracking catalyst
crystalline aluminosilicate
catalyst
Prior art date
Application number
PCT/JP2009/055190
Other languages
English (en)
French (fr)
Inventor
明 飯野
和浩 稲村
Original Assignee
財団法人石油産業活性化センター
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人石油産業活性化センター, 出光興産株式会社 filed Critical 財団法人石油産業活性化センター
Priority to JP2010505559A priority Critical patent/JPWO2009119390A1/ja
Priority to EP09726115.0A priority patent/EP2258476A4/en
Priority to US12/934,982 priority patent/US20110086755A1/en
Publication of WO2009119390A1 publication Critical patent/WO2009119390A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/166Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/076Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/106Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • B01J29/146Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/12Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/20Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/16After treatment, characterised by the effect to be obtained to increase the Si/Al ratio; Dealumination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/36Steaming

Definitions

  • the present invention relates to a heavy oil hydrocracking catalyst, and more particularly to a heavy oil hydrocracking catalyst having a good desulfurization function and excellent heavy oil cracking activity.
  • Atmospheric distillation residue oil of crude oil is hydrodesulfurized in a heavy oil direct desulfurization device (hereinafter referred to as “direct desulfurization device”) to produce distillate oil and desulfurized heavy oil such as desulfurized naphtha, desulfurized kerosene and desulfurized light oil .
  • This desulfurized heavy oil is used as boiler fuel for electric power as a low sulfur C heavy oil.
  • desulfurized heavy oil is also used as a raw material for fluid catalytic cracking (FCC) equipment, catalytic cracking gasoline (hereinafter referred to as “FCC gasoline”), catalytic cracking light oil (hereinafter referred to as “LCO”: light cycle oil), LPG Light fractions such as fractions are produced.
  • FCC gasoline catalytic cracking gasoline
  • LCO catalytic cracking light oil
  • LPG Light fractions such as fractions are produced.
  • crude oil that can be used in oil refining has become heavier, and crude oil containing a large amount of heavy oil tends to increase.
  • the amount of heavy oil used is decreasing, such as a decrease in demand for heavy oil for power generation and boilers.
  • the demand for the LCO fraction from the fluid catalytic cracker is also decreasing.
  • desulfurized heavy oil, desulfurized heavy light oil, etc. obtained by hydrodesulfurization treatment of heavy oil in hydrodesulfurization equipment such as direct desulfurization equipment and intermediate desulfurization equipment are further decomposed to obtain desulfurized naphtha
  • Hydrocracking methods have been developed to increase production of desulfurized kerosene and desulfurized light oil.
  • the above-mentioned desulfurized heavy oil and desulfurized heavy gas oil are catalytically cracked at a high cracking rate in a fluid catalytic cracking device to convert them into light fractions such as LPG fraction, FCC gasoline fraction and LCO fraction. It has been broken.
  • the yield of desulfurized kerosene gas oil fraction and desulfurized naphtha fraction is increased to reduce desulfurized heavy oil, and the desulfurized heavy oil is removed by fluid catalytic cracking equipment.
  • a method in which a residual oil is totally reduced and a light oil fraction is increased by producing an LPG fraction, an FCC gasoline fraction, and an LCO fraction see, for example, Patent Document 1.
  • a heavy oil hydrocracking catalyst for example, a catalyst comprising a crystalline aluminosilicate carrier described in Patent Document 2 is used.
  • the present invention has been made under such circumstances, and has a good desulfurization function and has a high decomposing activity for a high-boiling fraction having a boiling point of 525 ° C. or higher such as a vacuum residue oil.
  • An object of the present invention is to provide a quality oil hydrocracking catalyst.
  • the present inventors have obtained a catalyst using a support containing a specific crystalline aluminosilicate and a porous inorganic oxide in a specific ratio, and a specific It has been found that a catalyst having a pore distribution or the like can solve the above problems.
  • the present invention has been completed based on such findings.
  • a heavy oil hydrocracking catalyst in which an active metal is supported on a support containing crystalline aluminosilicate and a porous inorganic oxide excluding the crystalline aluminosilicate (A) When the carrier is based on the total amount of the crystalline aluminosilicate and the porous inorganic oxide excluding the crystalline aluminosilicate, 18% by mass or more and less than 45% by mass of the crystalline aluminosilicate and excluding the crystalline aluminosilicate (B) the active metal is one or more metals selected from molybdenum, tungsten, and nickel, and (c) the heavy metal
  • the pore distribution of the fine oil hydrocracking catalyst is 10% or less, and the pore volume of the pores having a pore diameter of 500 to 10,000 mm is fine relative to the total pore volume of the pores having a pore diameter of 50 to 10,000 mm.
  • a heavy oil hydrocracking catalyst having a pore volume of 100 to 200 mm and a pore volume of 60% or more [2] The heavy oil hydrocracking catalyst according to [1], which is used in a fixed bed hydrodesulfurization apparatus, [3] The heavy oil hydrocracking catalyst according to [1] or [2], wherein the crystalline aluminosilicate is USY zeolite or metal-supported USY zeolite, and the main component of the porous inorganic oxide is alumina. And [4] the heavy oil hydrocracking catalyst according to any one of the above [1] to [3], wherein the crystalline aluminosilicate is an iron-supported USY zeolite, Is to provide.
  • a heavy oil hydrocracking catalyst having a good desulfurization function and having an excellent cracking activity for a high-boiling fraction having a boiling point of 525 ° C. or more like a vacuum residue oil. Can do.
  • the present invention relates to a heavy oil hydrogenation in which an active metal is supported on a carrier containing a crystalline aluminosilicate and a porous inorganic oxide excluding the crystalline aluminosilicate (hereinafter sometimes abbreviated as a porous inorganic oxide).
  • a cracking catalyst, (A) When the carrier is based on the total amount of the crystalline aluminosilicate and the porous inorganic oxide, the crystalline aluminosilicate is 18% by mass or more and less than 45% by mass and the porous inorganic oxide is 55% by mass or more and 82% by mass or less.
  • the active metal is one or more metals selected from molybdenum, tungsten, and nickel
  • the pore distribution of the hydrogen treatment catalyst has a pore diameter of 50 to 10,
  • the pore volume of the pores having a pore diameter of 500 to 10,000 10 is 10% or less and the pore volume of the pores having a pore diameter of 100 to 200 ⁇ is 60% or more with respect to the total pore volume of 000 ⁇ pores. It is a refined oil hydrocracking catalyst.
  • the hydrocracking treatment catalyst of the present invention needs to be a catalyst in which a metal is supported on a support made of a mixture of crystalline aluminosilicate and porous inorganic oxide.
  • Various crystalline aluminosilicates can be used, such as hydrogen-type faujasite, USY zeolite, metal-supported USY zeolite, etc. Among them, USY zeolite and metal-supported USY zeolite are preferable. Supported USY zeolite is preferred.
  • the metal-supported USY zeolite is preferably a metal-supported USY zeolite in which one or more metals selected from Groups 3 to 16 of the periodic table are supported on the USY zeolite, and in particular, an iron-supported USY in which iron is supported as a metal. Zeolite is preferred.
  • the USY zeolite and metal-supported USY zeolite can be produced, for example, by the following method.
  • a raw material for USY zeolite the ratio of silica to alumina (molar ratio), that is, SiO 2 / Al 2 O 3 is 4.5 or more, preferably 5.0 or more, and Na 2 O is 2.4% by mass.
  • Y-type zeolite of 1.8% by mass or less is preferably used.
  • the above Y-type zeolite is steamed to form USY zeolite.
  • the conditions for the steaming treatment may be appropriately selected according to various situations, but the treatment is preferably performed in the presence of water vapor at a temperature of 510 to 810 ° C.
  • Water vapor may be introduced from the outside, or physically adsorbed water or crystal water contained in the Y-type zeolite may be used. Further, by adding a mineral acid to the USY zeolite obtained by the steaming treatment and mixing and stirring, the aluminum falling from the zeolite structure skeleton is washed and removed by the steaming and mineral acid treatment.
  • mineral acids include various types of acids such as hydrochloric acid, nitric acid, and sulfuric acid, but also phosphoric acid, perchloric acid, peroxodisulfonic acid, dithionic acid, sulfamic acid, and nitrososulfonic acid.
  • Inorganic acids such as formic acid, trichloroacetic acid, organic acids such as trifluoroacetic acid, and the like can also be used.
  • the amount of mineral acid to be added is 0.5 to 20 mol, preferably 3 to 16 mol, per kg of USY zeolite.
  • the mineral acid concentration is 0.5 to 50% by mass solution, preferably 1 to 20% by mass solution.
  • the treatment temperature is room temperature to 100 ° C, preferably 50 to 100 ° C.
  • the processing time is 0.1 to 12 hours.
  • a metal salt solution is added to this system to support the metal on the USY zeolite.
  • the supporting method include mixed stirring treatment, dipping method, and impregnation method, and mixed stirring treatment is preferable.
  • the metals include yttria, lanthanum, group 4 zirconium, titanium, group 5 vanadium, niobium, thallium, group 6 chromium, molybdenum, tungsten, group 7 manganese, rhenium, Group 8 iron, ruthenium, osmium, Group 9 cobalt, rhodium, iridium, Group 10 nickel, palladium, platinum, Group 11 copper, Group 12 zinc, cadmium, Group 13 aluminum, gallium , Group 14 tin, Group 15 phosphorus, antimony, Group 16 selenium, and the like.
  • titanium, iron, manganese, cobalt, nickel, palladium, and platinum are preferable, and iron is particularly preferable.
  • the salts of various metals are preferable.
  • the treatment temperature is 30 to 100 ° C., preferably 50 to 80 ° C.
  • the treatment time is 0.1 to 12 hours, preferably 0.
  • the loading of these metals is preferably carried out simultaneously with dealumination from the zeolite structure skeleton, and is appropriately selected and carried out within a pH range of 2.0 or less, preferably 1.5 or less.
  • the iron salt include ferrous sulfate and ferric sulfate, and ferric sulfate is preferable. Although this iron sulfate can be added as it is, it is preferably added as a solution.
  • the solvent at this time may be any solvent that dissolves the iron salt, but water, alcohol, ether, ketone and the like are preferable.
  • the concentration of iron sulfate added is usually 0.02 to 10.0 mol / liter, preferably 0.05 to 5.0 mol / liter.
  • the slurry ratio, ie, the treatment solution volume (liter) / aluminosilicate weight (kg) is in the range of 1-50. Conveniently, 5-30 are particularly preferred.
  • the iron-supporting crystalline aluminosilicate obtained by the above-described treatment is further washed and dried as necessary. As described above, USY zeolite and metal-supported USY zeolite can be produced.
  • porous inorganic oxides mixed with crystalline aluminosilicate to form a carrier include alumina, silica-alumina, silica, alumina-boria, alumina-zirconia, and alumina-titania.
  • alumina boehmite gel is used. Alumina sol and alumina produced from these are used. Of these, alumina is preferable in that the active metal can be supported in a highly dispersed manner.
  • the porous inorganic oxide may be used as a mixture of a plurality of types, but in this case as well, alumina is preferably the main component (the highest alumina content).
  • a mixture of crystalline aluminosilicate and porous inorganic oxide such as the above-mentioned USY zeolite and metal-supported USY zeolite is used.
  • the mixing ratio is based on the total amount of the crystalline aluminosilicate and the porous inorganic oxide, and the crystalline aluminosilicate is 18% by mass or more and less than 45% by mass, and the porous inorganic oxide is 55% by mass or more and 82% by mass or less. It is necessary to be.
  • porous inorganic oxides such as alumina disperse the active metal supported to a high degree, so if the proportion of porous inorganic oxide is large, the hydrogenation activity is high, and desulfurization activity, denitrogenation activity, decarburization activity Although the deasphaltenic activity and the demetallizing activity are improved, the proportion of crystalline aluminosilicate is reduced, the desired decomposition rate cannot be obtained, and it becomes difficult to obtain a light fraction and a middle fraction. Moreover, when the ratio of a porous inorganic oxide is small, there exists a problem that hydrogenation activities, such as desulfurization activity, denitrification activity, decarburization activity, deasphalten activity, demetallation activity, will fall.
  • the mixing ratio of the crystalline aluminosilicate and the porous inorganic oxide is 20% by mass or more and less than 45% by mass of the crystalline aluminosilicate based on the total amount of the crystalline aluminosilicate and the porous inorganic oxide.
  • a composition comprising more than 55% by weight and 80% by weight or less is preferred, and a crystalline aluminosilicate comprising 25% by weight to 43% by weight and a porous inorganic oxide of 57% by weight to 75% by weight is more preferred.
  • Particularly preferred are those composed of crystalline aluminosilicate 30% by mass or more and 40% by mass or less and porous inorganic oxide 60% by mass or more and 70% by mass or less.
  • the carrier of the heavy oil hydrocracking catalyst of the present invention is preferably composed only of the crystalline aluminosilicate and the porous inorganic oxide.
  • a third component such as clay mineral and phosphorus may be mixed. Also good.
  • the content of the third component is 1 to 30% by mass, particularly 3 to 25% by mass, where the total amount of the crystalline aluminosilicate, the porous inorganic oxide and the third component is 100% by mass. . If it exceeds 30% by mass, the surface area of the carrier may be reduced and the catalytic activity may not be sufficiently exhibited. In the case of less than 1% by mass, there is a possibility that the effect by adding the third component cannot be expected.
  • crystalline aluminosilicates such as the above-mentioned USY zeolite and metal-supported USY zeolite may be used as a slurry containing water after washing with water.
  • the crystalline aluminosilicate and the porous inorganic oxide are sufficiently mixed with a kneader (kneader) under a sufficient water content.
  • the porous inorganic oxide is in the form of a gel or sol, but is mixed with the crystalline aluminosilicate in the form of a slurry by adding water in the same manner as in the crystalline aluminosilicate.
  • the water content in each slurry state is preferably 30 to 80% by mass, more preferably 40 to 70% by mass in the crystalline aluminosilicate slurry.
  • the porous inorganic oxide slurry 50 to 90% by mass is preferable, and 55 to 85% by mass is more preferable.
  • the metal belonging to Group 6 of the periodic table is preferably molybdenum or tungsten
  • the metal belonging to Groups 8 to 10 is preferably nickel or cobalt.
  • the combination of the two kinds of metals include nickel-molybdenum, cobalt-molybdenum, nickel-tungsten, cobalt-tungsten and the like. Of these, cobalt-molybdenum and nickel-molybdenum are preferable, and nickel-molybdenum is particularly preferable.
  • the loading amount of the metal as the active ingredient is not particularly limited, and may be appropriately selected according to various conditions such as the type of the raw material oil and the desired yield of the naphtha fraction. Is 0.5 to 30% by mass, preferably 5 to 20% by mass of the total catalyst, and the Group 8-10 metal is 0.1 to 20% by mass, preferably 1 to 10% by mass of the total catalyst.
  • the method for supporting the metal component on the carrier is not particularly limited, and for example, known methods such as an impregnation method, a kneading method, and a coprecipitation method can be employed.
  • the above metal component supported on a carrier is usually dried at 30 to 200 ° C. for 0.1 to 24 hours, and then at 250 to 700 ° C. (preferably 300 to 650 ° C.) for 1 to 10 hours (preferably Is calcined for 2-7 hours and finished as a catalyst.
  • the heavy oil hydrocracking catalyst of the present invention is required to have the following pore distribution. That is, the heavy oil hydrocracking catalyst of the present invention has a pore volume of pores having macropores of 500 to 10,000 ⁇ and fine pores of 50 to 10,000 ⁇ of all pores.
  • the total pore volume of the pores is 10% or less, preferably 5% or less, and the pore volume of the mesopores having a pore diameter of 100 to 200 mm is 60% or more, preferably 70% of the total pore volume. % Or more. More preferably, the ratio of the pore volume of pores having a pore diameter of 100 to 200 mm to the pore volume of pores having a pore diameter of 50 to 500 mm is 70% or more.
  • the catalyst having such a pore distribution can easily control high molecular weight hydrocarbons such as asphaltenes in the residual oil and can easily hydrogenate and decompose heavy oil.
  • the catalyst pore volume having a diameter of 50 mm or more was measured by the mercury intrusion method defined in ASTM D4284-03 according to the catalyst pore diameter.
  • the contact angle of mercury was determined to be 140 degrees, and the surface tension was determined to be 480 dyne / cm.
  • the heavy oil hydrocracking catalyst of the present invention preferably satisfies the following conditions.
  • (1) heavy oil hydrocracking catalyst for use in the specific surface area present invention preferably has a specific surface area of 200 ⁇ 600m 2 / g, more preferably 250 ⁇ 450m 2 / g. If the specific surface area is 200 m 2 / g or more, a sufficient amount of decomposition active sites suitable for heavy oil decomposition can be arranged on the catalyst surface, and if it is 600 m 2 / g or less, it is sufficient for diffusion of heavy oil molecules. Can have large pores.
  • the specific surface area was measured and analyzed according to the BET nitrogen adsorption method (ASTM D4365-95).
  • the total pore volume of the catalyst according to the nitrogen gas adsorption method is preferably 0.50 cc / g or more, more preferably 0.55 cc / g or more.
  • the total pore volume is 0.50 cc / g or more, the diffusion of heavy oil molecules such as vacuum residue oil can be enhanced.
  • the heavy oil hydrocracking catalyst of the present invention improves the hydrogenation activity of the heavy fraction, has a high cracking activity of a fraction having a boiling point of 525 ° C. or higher (VR fraction), and has a boiling point of 343 ° C. or higher.
  • Decomposition activity of the fraction having (AR fraction) is also relatively high.
  • it has high decarburization activity, desulfurization activity, and denitrification activity. Therefore, if hydrocracking using this catalyst, the properties of the obtained desulfurized heavy oil (desulfurized atmospheric residue: DSAR or desulfurized vacuum gas oil: DSVGO) will be preferable as a raw material for fluid catalytic crackers and the like. .
  • the hydrocracking treatment catalyst in the present invention is used for a hydrocracking reaction, and simultaneously with the hydrocracking reaction, hydrodesulfurization reaction, hydrodenitrogenation reaction, hydrodemetallation reaction, and the like are also performed. Perform under the following conditions.
  • a direct desorption device is usually used as a device for performing such a hydrocracking reaction under high pressure.
  • the conditions for hydrocracking using the heavy oil hydrocracking catalyst of the present invention are not particularly limited, and may be performed under the reaction conditions conventionally used in hydrocracking and hydrodesulfurization reactions of heavy oil,
  • the reaction temperature is preferably 320 to 550 ° C., more preferably 350 to 430 ° C.
  • the hydrogen partial pressure is preferably 1 to 30 MPa, more preferably 5 to 17 MPa
  • the hydrogen / oil ratio is preferably 100 to 2000 Nm 3 / kg.
  • liquid hourly space velocity (LHSV) is preferably 0.1 to 5 h ⁇ 1 , more preferably 0.2 to 2.0 h ⁇ 1. .
  • Atmospheric distillation of heavy oil such as vacuum residue oil, coker oil, synthetic crude oil, extracted crude oil, heavy gas oil, vacuum gas oil, LCO, HCO (heavy cycle oil), CLO (clarified oil), GTL oil, wax, etc. It can also be hydrocracked by mixing with residual oil.
  • the heavy oil hydrocracking catalyst of the present invention may be used alone or in combination with a general hydrotreating catalyst.
  • a combination pattern for example, 10 to 40% by volume of the demetallized catalyst in the first stage, 0 to 50% by volume of the desulfurized catalyst in the second stage, and the present invention in the third stage with respect to the total catalyst loading. 10 to 70% by volume of the heavy oil hydrocracking catalyst and 0 to 40% by volume as the finishing desulfurization catalyst in the fourth stage are preferable.
  • These can have various filling patterns depending on the properties of the feedstock.
  • a descaling catalyst for removing scales such as iron powder and inorganic oxide contained in the raw material oil may be filled before the first stage demetallation catalyst.
  • the heavy oil hydrocracking catalyst of the present invention can be used, for example, as follows. Using the heavy oil hydrocracking catalyst of the present invention, hydrocracking the atmospheric distillation residual oil, using the resulting residual oil of the product oil or a mixture of residual oil and distillate as a raw material, Treat with catalytic cracking.
  • the distillate a distillate having a boiling point of 120 to 400 ° C. is preferable, and a distillate having a boiling point of 150 to 350 ° C. is more preferable. If it is in such a boiling range, the decomposition product of a favorable boiling range is obtained, and it has the effect of increasing the amount of FCC gasoline and the like.
  • the mixing ratio of the distillate oil in the raw material for the fluid catalytic cracking treatment is preferably 1 to 30% by volume, and more preferably 3 to 20% by volume. Within such a range, the effect of increasing the amount of LPG fraction or FCC gasoline fraction is recognized.
  • the conditions for the catalytic cracking treatment are not particularly limited, and may be performed by known methods and conditions.
  • an amorphous catalyst such as silica-alumina or silica-magnesia, or a zeolite catalyst such as faujasite type crystal aluminosilicate is used.
  • the reaction temperature is 450 to 650 ° C., preferably 480 to 580 ° C.
  • the regeneration temperature is 550 to 760 ° C.
  • the reaction pressure may be appropriately selected within the range of 0.02 to 5 MPa, preferably 0.2 to 2 MPa.
  • the product of fluid catalytic cracking which is the final process, has a high ratio of FCC gasoline fraction and LPG fraction, which are useful as raw materials for fuel and petrochemical products, and demand is high.
  • the proportion of the small LCO fraction can be lowered.
  • it has a high yield of so-called middle distillate kerosene fraction and light fraction naphtha fraction in hydrocracked product oil by direct desulfurization equipment that is an intermediate process, and is a raw material for fuel and petrochemical products.
  • a part of the alumina cake was pure water and 15% by mass of ammonia water to obtain a slurry having an alumina concentration of 12.0% by mass and a pH of 10.5.
  • the slurry was placed in an aging tank and aged at 95 ° C. for 8 hours with stirring. Subsequently, pure water was added to this aging slurry, diluted to an alumina concentration of 9.0% by mass, transferred to an autoclave equipped with a stirrer, and aged at 145 ° C. for 5 hours. Furthermore, the mixture was heated and concentrated so as to be 20% by mass in terms of Al 2 O 3, and simultaneously deammoniad to obtain alumina slurry A.
  • the pore volume with a pore diameter of 500 to 10,000 mm by the mercury intrusion method is 1% of the total pore volume with a pore diameter of 50 to 10,000 kg, and the pore volume with a pore diameter of 100 to 200 mm is 50 to 10, It was 73% of the total pore volume of 000 kg.
  • the composition and physical properties of the catalyst are shown in Table 2.
  • the solution II was impregnated to 10.5 mass% as MoO 3 and 4.25 mass% as NiO with respect to the entire catalyst, respectively, and then dried and calcined at 550 ° C. for 3 hours.
  • Oil hydrocracking catalyst II was obtained.
  • This catalyst had a specific surface area of 409 m 2 / g and a total pore volume of 0.60 cc / g.
  • the pore volume with a pore diameter of 500 to 10,000 mm by mercury intrusion method is 2% of the total pore volume with a pore diameter of 50 to 10,000 kg, and the pore volume with a pore diameter of 100 to 200 mm is 50 to 10, It was 79% of the total pore volume of 000 kg.
  • the composition and physical properties of the catalyst are shown in Table 2.
  • Heavy oil hydrocracking catalyst III In the preparation of the heavy oil hydrocracking catalyst I, 1,230 g of iron-supported USY zeolite slurry I (30.5 mass% concentration) and 1,876 g of alumina slurry A (20 mass% concentration) were used in a kneader. A carrier III having a 50/50 ratio was prepared in the same manner except that it was added, using iron-supported USY zeolite / alumina (mass ratio in terms of solid content). Subsequently, a suspension of molybdenum trioxide and nickel carbonate in pure water was heated to 90 ° C., and then malic acid was added and dissolved.
  • This solution was impregnated on the carrier III so that the total amount of the catalyst was 10.5% by mass as MoO 3 and 4.25% by mass as NiO, and then dried and calcined at 550 ° C. for 3 hours.
  • Oil hydrocracking catalyst III was obtained.
  • This catalyst had a specific surface area of 473 m 2 / g and a total pore volume of 0.61 cc / g.
  • the pore volume with a pore diameter of 500 to 10,000 mm by mercury intrusion method is 10% of the total pore volume with a pore diameter of 50 to 10,000 kg, and the pore volume with a pore diameter of 100 to 200 mm is 50 to 10, It was 59% of the total pore volume of 000 kg.
  • the composition and physical properties of the catalyst are shown in Table 2.
  • Heavy oil hydrocracking catalyst IV In the preparation of the heavy oil hydrocracking catalyst I, the iron-supported USY zeolite slurry I (30.5 mass% concentration) was 1,476 g, and the alumina slurry A (20 mass% concentration) was 1,500 g. A carrier IV of 60/40 was prepared in the same manner except that it was added, and iron-supported USY zeolite / alumina (solid content equivalent mass ratio). Subsequently, a suspension of molybdenum trioxide and nickel carbonate in pure water was heated to 90 ° C., and then malic acid was added and dissolved.
  • This solution was impregnated on the carrier IV so that the total amount of the catalyst was 10.5% by mass as MoO 3 and 4.25% by mass as NiO, then dried and calcined at 550 ° C. for 3 hours.
  • Oil hydrocracking catalyst IV was obtained.
  • This catalyst had a specific surface area of 517 m 2 / g and a total pore volume of 0.56 cc / g.
  • the pore volume with a pore diameter of 500 to 10,000 mm by the mercury intrusion method is 32% of the total pore volume with a pore diameter of 50 to 10,000 kg, and the pore volume with a pore diameter of 100 to 200 mm is 50 to 10, It was 43% of the total pore volume of 000 kg.
  • the composition and physical properties of the catalyst are shown in Table 2.
  • This catalyst had a specific surface area of 270 m 2 / g and a total pore volume of 0.51 cc / g.
  • the pore volume with a pore diameter of 500 to 10,000 mm by the mercury intrusion method is 1% of the total pore volume with a pore diameter of 50 to 10,000 kg, and the pore volume with a pore diameter of 100 to 200 mm is 50 to 10, It was 73% of the total pore volume of 000 kg.
  • the composition and physical properties of the catalyst are shown in Table 2.
  • Lattice constant Dry iron-supported USY zeolite and silicon internal standard powder are mixed well, pulverized, and X-ray powder diffraction (XRD) The sample holder was filled. This was measured by a step scan with a Cu tube, an applied voltage of 40 KV, and an applied current of 40 mA, and the lattice constant (UD) of the iron-supported USY zeolite was calculated from the obtained peak angle.
  • Crystallinity Evaluated according to ASTM D3906-03, the crystallinity as a Y-type zeolite was calculated as the relative crystallinity expressed with Linde SK-40 as 100%.
  • Pore volume As described above.
  • Specific surface area and total pore volume As described above.
  • Example 1 After 100 cc of heavy oil hydrocracking catalyst I is charged into a high-pressure fixed bed reactor and subjected to sulfidation treatment, hydrocracking treatment is carried out under the following conditions using the Arabian Heavy atmospheric distillation residue oil in Table 1 as the raw oil. went. Hydrocracking conditions Reaction temperature (WAT, Weight Average Temperature, weight average temperature) 400 ° C Liquid space velocity (LHSV) 0.3h -1 Hydrogen partial pressure 12.9 MPa (130 kg / cm 2 ) Hydrogen / oil ratio 1,000 Nm 3 / kiloliter
  • product oil obtained by the above hydrocracking treatment
  • product oil is analyzed by gas chromatography distillation (ASTM D 5307-97), and the boiling point is higher than 343 ° C. and lower than 525 ° C.
  • the boiling point of 525 + ° C. the fraction having a boiling point higher than 525 ° C.
  • the fraction of kerosene oil fraction (boiling point range: 150 to 343 ° C.) as the middle fraction.
  • 343 + ° C / 525 + ° C conversion was determined. The results are shown in Table 3. The larger the middle distillate yield and conversion, the higher the hydrocracking activity of the heavy oil hydrocracking catalyst.
  • product oil The sulfur content in the product oil obtained by the above hydrocracking treatment (hereinafter sometimes referred to simply as “product oil”) is determined by the radiation excitation method (JIS K 2541-4), and the nitrogen content is determined by the chemiluminescence method (JIS K). 2609), vanadium and nickel were measured by fluorescent X-ray method (JPI-5S-62-2000), C7 insoluble matter was measured by UOP 614-80 method, and residual carbon content was measured by micro method (JIS K 2270). .
  • the Arabian heavy atmospheric residue oil of Table 1 (hereinafter sometimes referred to simply as “raw oil”) was also evaluated in the same manner except that the sulfur content was measured by the combustion tube air method (JIS K2541-3). did.
  • Example 2 The hydrocracking treatment was performed in the same manner as in Example 1 except that the heavy oil hydrocracking catalyst I was used instead of the heavy oil hydrocracking catalyst II in Example 1. The results are shown in Table 3.
  • Example 3 The hydrocracking treatment was carried out in the same manner as in Example 1 except that the heavy oil hydrocracking catalyst I was used instead of the heavy oil hydrocracking catalyst V in Example 1. The results are shown in Table 3.
  • Comparative Example 1 The hydrocracking treatment was performed in the same manner as in Example 1 except that the heavy oil hydrocracking catalyst I was used instead of the heavy oil hydrocracking catalyst III in Example 1. The results are shown in Table 3.
  • Comparative Example 2 The hydrocracking treatment was carried out in the same manner as in Example 1 except that the heavy oil hydrocracking catalyst I was used instead of the heavy oil hydrocracking catalyst IV in Example 1. The results are shown in Table 3.
  • Comparative Example 3 The hydrocracking treatment was performed in the same manner as in the first embodiment except that the heavy oil hydrocracking catalyst I in Example 1 was changed to a commercial desulfurization catalyst. The results are shown in Table 3.
  • the atmospheric distillation residue oil cracking method of the present invention (Examples 1 and 2) is more hydrocracking than the method of Comparative Example 1 that does not use the heavy oil hydrocracking catalyst of the present invention.
  • the AR fraction conversion rate is slightly inferior, the VR fraction conversion rate is dramatically improved.
  • the desulfurization activity, denitrogenation activity, and decarburization activity are at the highest levels.
  • the heavy oil hydrocracking catalyst of the present invention has a good desulfurization function, and has an excellent cracking activity for a high boiling fraction having a boiling point of 525 ° C. or more like a vacuum residue oil, and therefore it is used.
  • heavy oil can be effectively converted into light fractions such as kerosene oil fraction and naphtha fraction, and the remaining heavy fraction can be efficiently converted to gasoline fraction etc. with a fluid catalytic cracker. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

 結晶性アルミノシリケートと該結晶性アルミノシリケートを除く多孔性無機酸化物とを含む担体に活性金属を担持した重質油水素化分解触媒であって、(a)前記担体が、結晶性アルミノシリケートと多孔性無機酸化物の合計量基準で、結晶性アルミノシリケート18質量%以上45質量%未満と多孔性無機酸化物55質量%超82質量%以下を含み、(b)前記活性金属が、モリブデン、タングステン、及びニッケルから選ばれる一種又は二種以上の金属であり、かつ、(c)前記重質油水素化分解触媒の細孔分布が、細孔径50~10,000Åの細孔の総細孔容積に対し、細孔径500~10,000Åの細孔の細孔容積が10%以下、細孔径100~200Åの細孔の細孔容積が60%以上である重質油水素化分解触媒は、良好な脱硫機能を有し、かつ減圧残渣油のような沸点が525°C以上の高沸点留分に対し優れた分解活性を有する重質油水素化分解触媒である。

Description

重質油水素化分解触媒
 本発明は、重質油水素化分解触媒に関し、詳しくは、良好な脱硫機能を有し、かつ重質油の分解活性に優れる重質油水素化分解触媒に関するものである。
 原油の常圧蒸留残渣油は、重油直接脱硫装置(以下、「直脱装置」と称する)にて水素化脱硫され、脱硫ナフサ、脱硫灯油、脱硫軽油などの留出油と脱硫重油を生成する。この脱硫重油は、低硫黄C重油として電力用のボイラー燃料などに用いられている。同時に脱硫重油は、流動接触分解(FCC)装置の原料としても使用され、接触分解ガソリン(以下、「FCCガソリン」と称する)、接触分解軽油(以下、「LCO」:ライトサイクルオイルと称する)、LPG留分等の軽質留分が生産されている。
 近年、石油精製において使用できる原油は重質化し、重質油を多量に含む原油が多くなる傾向にある。しかも、発電、ボイラー用の重油の需要が減少するなど重質油の利用量は減少しつつある。また、流動接触分解装置からのLCO留分の需要も減少しつつある。一方、ガソリン需要は拡大し、また、プロピレン、ブテン及びベンゼン、トルエン、キシレンなどのBTX等の多数の石油化学製品の原料として使用されるLPG留分やナフサ留分の需要も増大してきている。したがって、常圧蒸留残渣油などの重質油からガソリンやナフサ留分、LPG留分などの軽質留分を多量に製造する技術開発が重要な課題となっている。
 このような状況から、重質油を直脱装置、間脱装置などの水素化脱硫装置にて水素化脱硫処理して得られる脱硫重油、脱硫重質軽油などをさらに分解して、脱硫ナフサ、脱硫灯油、脱硫軽油を増産する水素化分解法が開発されている。また、流動接触分解装置にて前記脱硫重油、脱硫重質軽油を高い分解率で接触分解することにより、LPG留分、FCCガソリン留分、LCO留分などの軽質留分へ転換することが行われている。
 例えば、常圧蒸留残渣油を水素化分解処理することにより、脱硫灯軽油留分、脱硫ナフサ留分の得率を増大して脱硫重油を低減し、かつその脱硫重油を流動接触分解装置にてLPG留分、FCCガソリン留分、LCO留分を生産することによって、トータル的に残渣油を低減し、軽質油留分を増大させる方法が提案されている(例えば、特許文献1参照)。
 そして、ここでは、重質油水素化分解触媒として、例えば、特許文献2に記載されている結晶性アルミノシリケート担体からなる触媒が使用されている。
 しかしながら、このような触媒を用いると、脱硫機能が低く硫黄分の低下が不充分であり、また、原料中の沸点が525℃以上の減圧残渣油のような高沸点成分に対する分解活性が低く、軽質留分の得率が充分ではないという欠点があった。
 したがって、脱硫機能が良好であり、減圧残渣油のような沸点が525℃以上の高沸点成分に対する分解活性が優れる重質油水素化分解触媒が必要とされている。
特開平5-112785号公報 特許第2908959号公報
 本発明は、このような状況下でなされたものであり、良好な脱硫機能を有し、かつ減圧残渣油のような沸点が525℃以上の高沸点留分に対し優れた分解活性を有する重質油水素化分解触媒を提供することを目的とするものである。
 本発明者らは、前記目的を達成するために、鋭意研究を重ねた結果、特定の結晶性アルミノシリケートと多孔性無機酸化物とを特定の割合で含む担体を用いた触媒で、かつ特定の細孔分布等を有する触媒が、前記課題を解決し得ることを見出した。本発明はかかる知見に基づいて完成されたものである。
 すなわち、本発明は、
〔1〕結晶性アルミノシリケートと該結晶性アルミノシリケートを除く多孔性無機酸化物とを含む担体に活性金属を担持した重質油水素化分解触媒であって、
(a)前記担体が、結晶性アルミノシリケートと該結晶性アルミノシリケートを除く多孔性無機酸化物の合計量基準で、結晶性アルミノシリケート18質量%以上45質量%未満と該結晶性アルミノシリケートを除く多孔性無機酸化物55質量%超82質量%以下を含み、(b)前記活性金属が、モリブデン、タングステン、及びニッケルから選ばれる一種又は二種以上の金属であり、かつ、(c)前記重質油水素化分解触媒の細孔分布が、細孔径50~10,000Åの細孔の総細孔容積に対し、細孔径500~10,000Åの細孔の細孔容積が10%以下、細孔径100~200Åの細孔の細孔容積が60%以上である重質油水素化分解触媒、
〔2〕固定床水素化脱硫装置に用いる前記〔1〕に記載の重質油水素化分解触媒、
〔3〕結晶性アルミノシリケートが、USYゼオライト又は金属担持USYゼオライトであり、多孔性無機酸化物の主要成分がアルミナである前記〔1〕又は〔2〕に記載の重質油水素化分解触媒、及び
〔4〕結晶性アルミノシリケートが鉄担持USYゼオライトである前記〔1〕~〔3〕のいずれかに記載の重質油水素化分解触媒、
を提供するものである。
 本発明によれば、良好な脱硫機能を有し、かつ減圧残渣油のような沸点が525℃以上の高沸点留分に対し優れた分解活性を有する重質油水素化分解触媒を提供することができる。
 本発明は、結晶性アルミノシリケートと該結晶性アルミノシリケートを除く多孔性無機酸化物(以下、多孔性無機酸化物と略記することがある)を含む担体に活性金属を担持した重質油水素化分解触媒であって、
(a)前記担体が、結晶性アルミノシリケートと多孔性無機酸化物の合計量基準で、結晶性アルミノシリケート18質量%以上45質量%未満と多孔性無機酸化物55質量%超82質量%以下を含み、(b)前記活性金属が、モリブデン、タングステン、及びニッケルから選ばれる一種又は二種以上の金属であり、かつ、(c)前記水素処理触媒の細孔分布が、細孔径50~10,000Åの細孔の総細孔容積に対し、細孔径500~10,000Åの細孔の細孔容積が10%以下、細孔径100~200Åの細孔の細孔容積が60%以上である重質油水素化分解触媒である。
 本発明の水素化分解処理触媒は、結晶性アルミノシリケートと多孔性無機酸化物の混合物からなる担体に金属を担持した触媒であることが必要である。
 前記結晶性アルミノシリケートとしては、種々のものが使用できるが、例えば、水素型フォージャサイト、USYゼオライト、金属担持USYゼオライトなどが挙げられ、中でもUSYゼオライト、金属担持USYゼオライトが好ましく、特に、金属担持USYゼオライトが好ましい。
 当該金属担持USYゼオライトとしては、USYゼオライトに周期表第3~16族から選ばれる1種または2種以上の金属を担持した金属担持USYゼオライトが好ましく、特に、金属として鉄を担持した鉄担持USYゼオライトが好適である。
 前記USYゼオライト、金属担持USYゼオライトは、例えば、以下の方法によって製造することができる。
 USYゼオライトの原料として、アルミナに対するシリカの比率(モル比)、つまりSiO2/Al23が4.5以上、好ましくは5.0以上であり、また、Na2Oが2.4質量%以下、好ましくは1.8質量%以下のY型ゼオライトを用いる。
 まず、上記のY型ゼオライトをスチーミング処理してUSYゼオライトとする。ここでスチーミング処理の条件としては様々な状況に応じて適宜選定すればよいが、温度510~810℃の水蒸気の存在下で処理するのが好ましい。水蒸気は、外部から導入してもよいし、Y型ゼオライトに含まれる物理吸着水や結晶水を使用してもよい。また、スチーミング処理して得られたUSYゼオライトに鉱酸を加え、混合攪拌処理することによって、ゼオライト構造骨格からの脱アルミニウムとスチーミングおよび鉱酸処理により脱落アルミニウムの洗浄除去を行う。
 このような鉱酸としては各種のものが挙げられるが、塩酸、硝酸、硫酸などが一般的であり、そのほかリン酸、過塩素酸、ペルオクソ二スルホン酸、二チオン酸、スルファミン酸、ニトロソスルホン酸等の無機酸、ギ酸、トリクロロ酢酸、トリフルオロ酢酸等の有機酸などを用いることもできる。添加すべき鉱酸の量は、USYゼオライト1kgあたり0.5~20モルとし、好ましくは3~16モルとする。鉱酸濃度は0.5~50質量%溶液、好ましくは1~20質量%溶液である。処理温度は、室温~100℃、好ましくは50~100℃である。処理時間は0.1~12時間である。
 続いてこの系に金属塩溶液を加えてUSYゼオライトに金属を担持する。担持する方法としては混合攪拌処理、浸漬法、含浸法が挙げられ、混合撹拌処理が好ましい。金属としては周期表第3族のイットリア、ランタン、第4族のジルコニウム、チタン、第5族のバナジウム、ニオブ、タリウム、第6族のクロム、モリブデン、タングステン、第7族のマンガン、レニウム、第8族の鉄、ルテニウム、オスミウム、第9族のコバルト、ロジウム、イリジウム、第10族のニッケル、パラジウム、白金、第11族の銅、第12族の亜鉛、カドミウム、第13族のアルミニウム、ガリウム、第14族のスズ、第15族のリン、アンチモン、第16族のセレンなどが上げられる。この中で、チタン、鉄、マンガン、コバルト、ニッケル、パラジウム、白金が好ましく、特に鉄が好ましい。
 各種金属の塩としては硫酸塩、硝酸塩が好ましい。金属塩溶液処理を行う場合、状況により異なり一義的に決定することはできないが、通常は処理温度30~100℃、好ましくは50~80℃、処理時間0.1~12時間、好ましくは0.5~5時間とし、これらの金属の担持はゼオライト構造骨格から脱アルミニウムと同時に行うことが好ましく、pH2.0以下、好ましくは1.5以下の範囲で適宜選定し、実施する。鉄の塩の種類は、硫酸第一鉄、硫酸第二鉄を挙げることができるが、硫酸第二鉄が好ましい。この鉄の硫酸塩はそのまま加えることもできるが、溶液として加えることが好ましい。この際の溶媒は鉄塩を溶解するものであればよいが、水、アルコール、エーテル、ケトン等が好ましい。また、加える鉄の硫酸塩の濃度は、通常は0.02~10.0モル/リットル、好ましくは0.05~5.0モル/リットルである。
 なお、この鉱酸と鉄の硫酸塩を加えて結晶性アルミノシリケートを処理するにあたっては、そのスラリー比、すなわち、処理溶液容量(リットル)/アルミノシリケート重量(kg)は、1~50の範囲が好都合であり、特に5~30が好適である。
 上述の処理により得られる鉄担持結晶性アルミノシリケートは、さらに必要に応じて水洗、乾燥を行う。
 以上のようにして、USYゼオライト、金属担持USYゼオライトを製造することができる。
 一方、結晶性アルミノシリケートと混合して担体を構成する多孔性無機酸化物としては、アルミナ、シリカ-アルミナ、シリカ、アルミナ-ボリア、アルミナ-ジルコニア、アルミナ-チタニアが挙げられ、アルミナとしてはベーマイトゲル、アルミナゾルおよびこれらから製造されるアルミナが用いられる。中でも活性金属が高分散担持できる点でアルミナが好適である。
 前記多孔性無機酸化物は複数種混合して用いても良いが、その場合でも好ましくはアルミナが主成分(アルミナ含有量が最も多い)である。
 本発明の重質油水素化分解触媒の担体は、前記のUSYゼオライトおよび金属担持USYゼオライトなどの結晶性アルミノシリケートと多孔性無機酸化物を混合したものを用いる。また、その混合割合は、結晶性アルミノシリケートと多孔性無機酸化物の合計量基準で、結晶性アルミノシリケート18質量%以上45質量%未満と多孔性無機酸化物55質量%超82質量%以下であることが必要である。結晶性アルミノシリケートと多孔性無機酸化物との混合において結晶性アルミノシリケートの割合が少なすぎると、所望の分解率、軽質留分や中間留分を得るのに高い反応温度を必要とし、その結果、触媒の寿命に悪影響を与える。また、結晶性アルミノシリケートの割合が多すぎると、常圧蒸留残渣油(以下、AR(343+℃)留分と称す)の分解活性は向上するが、より重質な減圧蒸留残渣油(以下、VR(525+℃)留分と称す)の分解活性が低下するとともに軽質留分や中間留分の分解選択性が下がる。
 一方、アルミナなどの多孔性無機酸化物は担持される活性金属を高度に分散させるため、多孔性無機酸化物の割合が多いと水素化活性が高く、脱硫活性、脱窒素活性、脱残炭活性、脱アスファルテン活性、脱メタル活性が向上するが、結晶性アルミノシリケートの割合が少なくなり、所望の分解率が得られず、軽質留分や中間留分を得るのが困難になる。また、多孔性無機酸化物の割合が少ないと脱硫活性、脱窒素活性、脱残炭活性、脱アスファルテン活性、脱メタル活性などの水素化活性が低下するという問題がある。そのため結晶性アルミノシリケートと多孔性無機酸化物の混合割合は、結晶性アルミノシリケートと多孔性無機酸化物の合計量基準で、結晶性アルミノシリケート20質量%以上45質量%未満と多孔性無機酸化物55質量%超80質量%以下からなるものが好適であり、結晶性アルミノシリケート25質量%以上43質量%以下と多孔性無機酸化物57質量%以上75質量%以下からなるものがより好適であり、特に結晶性アルミノシリケート30質量%以上40質量%以下と多孔性無機酸化物60質量%以上70質量%以下からなるものが特に好ましい。
 本発明の重質油水素化分解触媒の担体は、前記結晶性アルミノシリケートと多孔性無機酸化物のみから成ることが好ましいが、必要に応じて粘土鉱物、リン等の第3成分を混合してもよい。その場合、第3成分の含有量は、結晶性アルミノシリケート、多孔性無機酸化物及び第3成分の合計量を100質量%として、1~30質量%であり、特に3~25質量%が好ましい。30質量%を超えると、担体の表面積が少なくなって触媒活性が十分に発現しない恐れが有る。1質量%未満の場合は、第3成分を加える事による効果の発現が期待できない恐れが有る。
 また、本発明の重質油水素化分解触媒の担体を製造するためには、上記USYゼオライトおよび金属担持USYゼオライトなどの結晶性アルミノシリケートは水洗後の水を含有したスラリー状態として使用することが好ましい。そして、上記結晶性アルミノシリケートと多孔性無機酸化物を十分な水分量のもとにニーダー(混練機)にて十分に混合する。
 多孔性無機酸化物はゲル状又はゾル状であるが、結晶性アルミノシリケートと同じように水を加えてスラリー状として結晶性アルミノシリケートと混合する。それぞれのスラリー状態での水分量は、結晶性アルミノシリケートスラリーでは30~80質量%が好ましく、40~70質量%がより好ましい。多孔性無機酸化物スラリーでは50質量%~90質量%が好ましく、55~85質量%がより好ましい。
 上記の結晶性アルミノシリケートと多孔性無機酸化物を混合捏和したのち、1/12インチ~1/32インチの径、長さ1.5mm~6mmに成型し、円柱状、三つ葉型、四葉型の形状の成型物を得る。成型物は30~200℃、0.1~24時間乾燥させ、次いで、300~750℃(好ましくは450~700℃)で、1~10時間(好ましくは2~7時間)焼成し担体とする。
 次に、この担体に、周期表第6族、第8族、第9族、第10族金属のうち少なくとも一種の金属を担持する。ここで周期表第6族に属する金属としては、モリブデン、タングステンが好ましく、また第8~10族に属する金属としては、ニッケル、コバルトが好ましい。二種類の金属の組合せとしては、ニッケル-モリブデン、コバルト-モリブデン、ニッケル-タングステン、コバルト-タングステンなどが挙げられ、なかでもコバルト-モリブデン、ニッケル-モリブデンが好ましく、特に、ニッケル-モリブデンが好ましい。
 上記活性成分である金属の担持量は、特に制限はなく原料油の種類や、所望するナフサ留分の得率などの各種条件に応じて適宜選定すればよいが、通常は第6族の金属は触媒全体の0.5~30質量%、好ましくは5~20質量%、第8~10族の金属は、触媒全体の0.1~20質量%、好ましくは1~10質量%である。
 上記金属成分を担体に担持する方法については特に制限はなく、例えば、含浸法,混練法,共沈法などの公知の方法を採用することができる。
 上記の金属成分を担体に担持したものは、通常30~200℃で、0.1~24時間乾燥し、次いで、250~700℃(好ましくは300~650℃)で、1~10時間(好ましくは2~7時間)焼成して、触媒として仕上げられる。
 本発明の重質油水素化分解触媒は、以下に示す細孔分布を有することを要する。すなわち、本発明の重質油水素化分解触媒は、マクロ細孔である細孔径が500~10,000Åの細孔の細孔容積が、全細孔である細孔径50~10,000Åの細孔の総細孔容積の10%以下、好ましくは5%以下であり、メソ細孔である細孔径100~200Åの細孔の細孔容積が、総細孔容積の60%以上、好ましくは70%以上である。
 又、細孔径100~200Åの細孔の細孔容積が、細孔径50~500Åの細孔の細孔容積中に占める割合が70%以上であることが、より好ましい。
 このような細孔分布を有する触媒は、残渣油中のアスファルテン分等の高分子量炭化水素を拡散しやすく制御でき、重質油の水素化および分解を行ない易くすることができる。
 なお、本発明では、直径50Å以上の触媒細孔容積は、触媒細孔直径に応じて、ASTM D4284-03に規定する、水銀圧入法により測定した。本発明では、水銀の接触角(contact angle)は140度、表面張力(surface tension)は480dyne/cmとして求めた。
 さらに、本発明の重質油水素化分解触媒は、以下の条件を満たすものが好ましい。
(1)比表面積
 本発明に用いる重質油水素化分解触媒は、比表面積が200~600m2/gであるも
のが好ましく、250~450m2/gがより好ましい。比表面積が200m2/g以上であれば、重質油分解に適した分解活性点の充分な量を触媒表面に配置でき、600m2/g以下であれば、重質油分子の拡散に充分大きな細孔を有することができる。なお、比表面積は、BET窒素吸着法に従って測定し、解析した(ASTM D4365-95)。結晶性アルミノシリケートおよび触媒体試料に対しては、予備前処理として、400℃、3時間の真空加熱排気処理にて、充分に含有する水分を除去した。また、BETプロットから表面積を算出するP/P0の範囲は、0.01~0.10を間の5点を直線に補間して、算出した。
 なお、この測定方法は、本発明に用いる重質油水素化分解触媒を構成する結晶性アルミノシリケートの比表面積測定にも用いられる。
(2)全細孔容量
また、当該触媒の窒素ガス吸着法による全細孔容量は0.50cc/g以上であることが好ましく、0.55cc/g以上がより好ましい。全細孔容量が0.50cc/g以上であれば減圧残渣油のような重質油分子の拡散を高めることができる。
 尚、結晶性アルミノシリケートおよび触媒全体の全細孔容量は、窒素吸着・脱着等温線から算出した(ASTM D4222-03、D4641-94)。予備前処理として、400℃、3時間の真空加熱排気処理にて、充分に含有する水分を除去した。全細孔容量は、窒素吸着等温線のP/P0=0.99時の窒素吸着量から容量に換算して求めた。
 本発明の重質油水素化分解触媒は、重質留分の水素化活性が向上し、525℃以上の沸点を持つ留分(VR留分)の分解活性が高く、かつ343℃以上の沸点を持つ留分(AR留分)の分解活性も比較的高い。さらに脱残炭活性、脱硫活性、脱窒素活性が高い。したがって、この触媒を用いて水素化分解すれば、得られた脱硫重質油(脱硫常圧残油:DSARや脱硫減圧軽油:DSVGO)の性状が流動接触分解装置等の原料として好ましいものとなる。
 本発明における水素化分解処理触媒は、水素化分解反応に用いられるが、水素化分解反応と同時に水素化脱硫反応、水素化脱窒素反応、水素化脱メタル反応なども行われ、これらは水素高圧下の条件で行う。このような高圧下での水素化分解反応を実施する装置としては、通常、直脱装置が用いられる。
 本発明の重質油水素化分解触媒を用いる水素化分解の条件は、特に制限はなく、従来、重質油の水素化分解や水素化脱硫反応で行われている反応条件で行えばよく、通常は反応温度が好ましくは320~550℃、より好ましくは350~430℃、水素分圧が好ましくは1~30MPa、より好ましくは5~17MPa、水素/油比が好ましくは100~2000Nm3/キロリットル、より好ましくは300~1000Nm3/キロリットル、液空間速度(LHSV)が好ましくは0.1~5h-1、より好ましくは0.2~2.0h-1の範囲で適宜選定すればよい。
 また、減圧残渣油、コーカー油、合成原油、抜頭原油、重質軽油、減圧軽油、LCO、HCO(ヘビーサイクルオイル)、CLO(クラリファイドオイル)、GTL油、ワックス等の重質油を常圧蒸留残渣油と混合して水素化分解処理をすることもできる。
 本発明の重質油水素化分解触媒は、これを単独で用いてもよいが、一般の水素化処理触媒と組み合わせたものを用いてもよい。組み合わせのパターンとしては、例えば全触媒充填量に対して第一段目に脱メタル触媒を10~40容量%、第二段目に脱硫触媒を0~50容量%、第三段目に本発明の重質油水素化分解触媒を10~70容量%、第四段目にフィニシングの脱硫触媒として0~40容量%の充填パターンが好ましい。これらは原料油の性状等によっては種々の充填パターンとすることができる。第一段目の脱メタル触媒の前に原料油中に含まれる鉄粉、無機酸化物等のスケールを除去する脱スケール触媒を充填しても良い。
 本発明の重質油水素化分解触媒は、例えば次のように利用することができる。
 本発明の重質油水素化分解触媒を用いて、常圧蒸留残渣油を水素化分解処理し、得られた生成油の残渣油、若しくは残油と留出油との混合物を原料とし、流動接触分解処理する。
 この場合、留出油としては、沸点120~400℃の留出油が好適であり、150~350℃のものがより好ましい。このような沸点範囲のものであれば、良好な沸点範囲の分解生成物が得られ、FCCガソリンなどを増量する効果がる。また、流動接触分解処理の原料における留出油の混合割合は、1~30容量%であることが好ましく、3~20容量%がより好ましい。このような範囲であれば、良好にLPG留分やFCCガソリン留分を増量する効果が認められる。
 なお、接触分解処理の条件は、特に制限はなく、公知の方法、条件で行えばよい。例えば、シリカ-アルミナ、シリカ-マグネシアなどのアモルファス触媒や、フォージャサイト型結晶アルミノシリケートなどのゼオライト触媒を用い、反応温度450~650℃、好ましくは480~580℃、再生温度550~760℃、反応圧力0.02~5MPa、好ましくは0.2~2MPaの範囲で適宜選定すればよい。
 上記常圧蒸留残渣油の分解処理においては、最終工程である流動接触分解の生成油が、燃料や石油化学製品の原料として有用な、FCCガソリン留分およびLPG留分の割合を高く、需要が少ないLCO留分の割合を低くすることができる。
 さらに、中間工程である直脱装置などによる水素化分解生成油におけるいわゆる中間留分である灯軽油留分や軽質留分であるナフサ留分などの得率が高く、燃料や石油化学製品の原料として活用できる。
 次に、本発明を実施例により具体的に説明するが、これらの実施例になんら制限されるものではない。
 なお、実施例、比較例では、原料として第1表に示す性状を有するアラビアンヘビーの常圧蒸留残渣油を用いた。
Figure JPOXMLDOC01-appb-T000001
 また、実施例で用いた重質油水素化分解触媒の調製及びその物性の評価は、以下のようにして行った。
 1.触媒の調製
 〔重質油水素化分解触媒I〕
(1)結晶性アルミノシリケートの調製
 Na-Y型ゼオライト(Na2O含量:13.3質量%,SiO2/Al23(モル比):5.0)をアンモニウムイオン交換し、NH4-Yゼオライト(Na2O含量:1.3質量%)を得た。これを650℃でスチーミング処理してスチーミングY型ゼオライトとした。10kgのスチーミングY型ゼオライトを純水115リットルに懸濁させた後、該懸濁液を75℃に昇温し30分間攪拌した。次いでこの懸濁液に10質量%硫酸溶液63.7kgを35分間で添加し、更に濃度0.57モル/リットルの硫酸第二鉄溶液11.5kgを10分間で添加し、添加後更に30分間攪拌した後、濾過、洗浄し、固形分濃度30.5質量%の鉄担持USYゼオライトスラリーIを得た。X線回折法により求めた格子定数は24.30Åであった。
 (2)アルミナスラリーの調製
 アルミン酸ナトリウム溶液(Al23換算濃度:5.0質量%)80kg及び50質量%のグルコン酸溶液240gを容器に入れ、60℃に加熱した。次いで硫酸アルミニウム溶液(Al23換算濃度:2.5質量%)88kgを別容器に準備し、15分間でpH7.2になるように該硫酸アルミニウム溶液を添加し水酸化アルミニウムスラリーを得た。60℃に保ったまま、60分間熟成した。次いで、水酸化アルミニウムスラリーをろ過脱水し、アンモニア水で洗浄し、アルミナケーキとした。該アルミナケーキの一部を純水と15質量%のアンモニア水を用い、アルミナ濃度12.0質量%、pH10.5のスラリーを得た。このスラリーを熟成タンクに入れ攪拌しながら95℃で8時間熟成した。次いで、この熟成スラリーに純水を加え、アルミナ濃度9.0質量%に希釈した後、攪拌機付オートクレーブに移し、145℃で5時間熟成した。更にAl23換算濃度で20質量%となるように加熱濃縮すると同時に脱アンモニアし、アルミナスラリーAを得た。
 (3)触媒の調製
 738gの鉄担持USYゼオライトスラリーI(30.5質量%濃度)と2,625gのアルミナスラリーA(20質量%濃度)をニーダーに加え、加熱、攪拌しながら押し出し成形可能な濃度に濃縮した後、1/18インチサイズの四つ葉型ペレット状に押し出し成形した。次いで、110℃で16時間乾燥した後、550℃で3時間焼成し、鉄担持USYゼオライト/アルミナ(固形分換算質量比)で30/70の担体Iを得た。
 次いで、三酸化モリブデンと炭酸ニッケルを純水に懸濁したものを90℃に加熱し、次いでリンゴ酸を加え溶解させた。この溶解液を担体Iにそれぞれ触媒全体に対してMoO3として10.5質量%、NiOとして4.25質量%になるように含浸し、次いで乾燥させ、550℃で3時間焼成し、重質油水素化分解触媒Iを得た。この触媒は比表面積381m2/g、全細孔容量0.62cc/gであった。水銀圧入法による細孔径500~10,000Åの細孔容積が細孔径50~10,000Åの総細孔容積の1%であり、細孔径100~200Åの細孔容積が細孔径50~10,000Åの総細孔容積の73%であった。触媒の組成及び物性を第2表に示す。
 〔重質油水素化分解触媒II〕
重質油水素化分解触媒Iの触媒の調製において、鉄担持USYゼオライトスラリーI(30.5質量%濃度)を1,148gとし、アルミナスラリーA(20質量%濃度)を2,625gとしてニーダーに加えた以外は同様に調製し、鉄担持USYゼオライト/アルミナ(固形分換算質量比)で40/60の担体IIを得た。
 次いで、三酸化モリブデンと炭酸ニッケルを純水に懸濁したものを90℃に加熱し、次いでリンゴ酸を加え溶解させた。この溶解液を担体IIにそれぞれ触媒全体に対してMoO3として10.5質量%、NiOとして4.25質量%になるように含浸し、次いで乾燥させ、550℃で3時間焼成し、重質油水素化分解触媒IIを得た。この触媒は比表面積409m2/g、全細孔容量0.60cc/gであった。水銀圧入法による細孔径500~10,000Åの細孔容積が細孔径50~10,000Åの総細孔容積の2%であり、細孔径100~200Åの細孔容積が細孔径50~10,000Åの総細孔容積の79%であった。触媒の組成及び物性を第2表に示す。
 〔重質油水素化分解触媒III〕
重質油水素化分解触媒Iの触媒の調製において、鉄担持USYゼオライトスラリーI(30.5質量%濃度)を1,230gとし、アルミナスラリーA(20質量%濃度)を1,876gとしてニーダーに加えた以外は同様に調製し、鉄担持USYゼオライト/アルミナ(固形分換算質量比)で50/50の担体IIIを得た。
 引き続き、三酸化モリブデンと炭酸ニッケルを純水に懸濁したものを90℃に加熱し、次いでリンゴ酸を加え溶解させた。この溶解液を担体IIIにそれぞれ触媒全体に対してMoO3として10.5質量%、NiOとして4.25質量%になるように含浸し、次いで乾燥させ、550℃で3時間焼成し、重質油水素化分解触媒III得た。この触媒は比表面積473m2/g、全細孔容量0.61cc/gであった。水銀圧入法による細孔径500~10,000Åの細孔容積が細孔径50~10,000Åの総細孔容積の10%であり、細孔径100~200Åの細孔容積が細孔径50~10,000Åの総細孔容積の59%であった。触媒の組成及び物性を第2表に示す。
 〔重質油水素化分解触媒IV〕
重質油水素化分解触媒Iの触媒の調製において、鉄担持USYゼオライトスラリーI(30.5質量%濃度)を1,476gとし、アルミナスラリーA(20質量%濃度)を1,500gとしてニーダーに加えた以外は同様に調製し、鉄担持USYゼオライト/アルミナ(固形分換算質量比)で60/40の担体IVを得た。
 引き続き、三酸化モリブデンと炭酸ニッケルを純水に懸濁したものを90℃に加熱し、次いでリンゴ酸を加え溶解させた。この溶解液を担体IVにそれぞれ触媒全体に対してMoO3として10.5質量%、NiOとして4.25質量%になるように含浸し、次いで乾燥させ、550℃で3時間焼成し、重質油水素化分解触媒IVを得た。この触媒は比表面積517m2/g、全細孔容量0.56cc/gであった。水銀圧入法による細孔径500~10,000Åの細孔容積が細孔径50~10,000Åの総細孔容積の32%であり、細孔径100~200Åの細孔容積が細孔径50~10,000Åの総細孔容積の43%であった。触媒の組成及び物性を第2表に示す。
 〔重質油水素化分解触媒V〕
 アルミナスラリーAにAl23/B23の質量比で85/15となるようにホウ酸を添加し、アルミナホウ酸スラリーを得た。このアルミナホウ酸スラリーを、アルミナスラリーAに代えて混合した以外は重質油水素化分解触媒Iと同様に調製し、鉄担持USYゼオライト/アルミナ/ボリア(固形分換算質量比)で20/68/12の担体Vを得た。
 引き続き、MoO3として15.0質量%、NiOとして4.2質量%とした以外は重質油水素化分解触媒Iと同様に調製し、重質油水素化分解触媒Vを得た。この触媒は、比表面積積270m2/g、全細孔容量0.51cc/gであった。水銀圧入法による細孔径500~10,000Åの細孔容積が細孔径50~10,000Åの総細孔容積の1%であり、細孔径100~200Åの細孔容積が細孔径50~10,000Åの総細孔容積の73%であった。触媒の組成および物性を第2表に示す。
Figure JPOXMLDOC01-appb-T000002
 2.鉄担持USYゼオライト(結晶性アルミノシリケート)及び触媒の物性評価方法
 (1)格子定数:鉄担持USYゼオライトを乾燥させたものとシリコン内部標準粉末をよく混合、粉砕し、X線粉末回折(XRD)用サンプルホルダーに充填した。これをCu管球、印加電圧40KV、印加電流40mAにてステップスキャンで測定し、得られたピーク角度より鉄担持USYゼオライトの格子定数(UD)を算出した。
 (2)結晶化度:ASTM D3906-03に従って評価し、Y型ゼオライトとしての結晶性を、リンデSK-40を100%として表した相対結晶化度として算出した。
 (3)細孔容積:前述に記載の通り。
 (4)比表面積および全細孔容量:前述に記載の通り。
 〔重質油水素化分解触媒の水素化分解活性評価〕
実施例1
重質油水素化分解触媒Iを高圧固定床反応器に100cc充填し、硫化処理した後、第1表のアラビアンヘビーの常圧蒸留残渣油を原料油として、以下の条件で水素化分解処理を行った。
 水素化分解条件
 反応温度(WAT, Weight Average Temperature,重量平均温度)  400℃
 液空間速度(LHSV)  0.3h-1
 水素分圧         12.9MPa(130kg/cm2
 水素/油比        1,000Nm3/キロリットル
 上記水素化分解処理によって得られた生成油(以下、単に生成油と呼ぶ場合も有る)をガスクロマトグラフィー蒸留法(ASTM D 5307-97)により分析を行い、沸点343℃超525℃以下の留分、沸点525+℃(525℃より高い沸点の留分)、中間留分として灯軽油留分(沸点範囲150~343℃留分)等各留分の収率を求めた。更に下記定義の343+℃/525+℃転化率を求めた。結果を第3表に示す。中間留分得率、転化率は値が大きいほど、重質油水素化分解触媒の水素化分解活性が高いことを意味する。下記定義の原料油は、表1のアラビアンヘビーの常圧蒸留残渣油である。
 343+℃転化率(質量%)=(原料油中の残油留分-生成油中の残油留分)/原料油中の残油留分
 525+℃転化率(質量%)=(原料油中の減圧残油留分-生成油中の残油留分)/原料油中の減圧残油留分
  また、脱硫活性、脱窒素活性、脱残炭活性、脱アスファルテン活性、及び脱メタル活性を下記測定法及び定義に従って評価し、通常の方法にて算出した。結果を第3表に示す。
 上記水素化分解処理によって得られた生成油(以下、単に生成油と呼ぶ場合も有る)中の硫黄分を放射線式励起法(JIS K 2541-4)で、窒素分を化学発光法(JIS K 2609)で、バナジウムとニッケル分を蛍光X線法(JPI-5S-62-2000)で、C7不溶解分をUOP 614-80法で、残留炭素分をミクロ法(JIS K 2270)で測定した。表1のアラビアンヘビーの常圧蒸留残渣油(以下、単に原料油と呼ぶ場合も有る)も、硫黄分を燃焼管式空気法(JIS K 2541-3)で行った以外は、同じ方法で評価した。
 脱硫活性(質量%)=(原料油中の硫黄分-生成油中の硫黄分)/原料油中の硫黄分
 脱窒素活性(質量%)=(原料油中の窒素分-生成油中の窒素分)/原料油中の窒素分
 脱残炭活性(質量%)=(原料油中の残留炭素分-生成油中の残留炭素分)/原料油中の残留炭素分
 脱アスファルテン活性(質量%)=(原料油中のC7不溶解分-生成油中のC7不溶解分)/原料油中のC7不溶解分
 脱メタル活性(質量%)=(原料油中のVとNiの和-生成油中のVとNiの和)/原料油中のVとNiの和
実施例2
 実施例1において重質油水素化分解触媒Iを重質油水素化分解触媒IIに変えて用いた以外は実施例1と同様にして水素化分解処理を行った。結果を第3表に示す。
実施例3
 実施例1において重質油水素化分解触媒Iを重質油水素化分解触媒Vに変えて用いた以外は
実施例1と同様にして水素化分解処理を行った。結果を第3表に示す。
比較例1
 実施例1において重質油水素化分解触媒Iを重質油水素化分解触媒IIIに変えて用いた
以外は実施例1と同様にして水素化分解処理を行った。結果を第3表に示す。
比較例2
 実施例1において重質油水素化分解触媒Iを重質油水素化分解触媒IVに変えて用いた以外は実施例1と同様にして水素化分解処理を行った。結果を第3表に示す。
比較例3
 実施例1において重質油水素化分解触媒Iを市販脱硫触媒に変えた以外は実施例1と同様にして、水素化分解処理を行った。結果を第3表に示す。
Figure JPOXMLDOC01-appb-T000003
 第3表より、本発明の常圧蒸留残渣油の分解方法(実施例1、2)は、本発明の重質油水素化分解触媒を用いない比較例1の方法より、水素化分解処理によるAR留分転化率は
やや劣るもののVR留分転化率が飛躍的に向上している。さらに、脱硫活性、脱窒素活性、脱残炭活性は最高レベルであることが分る。
 これに対し、比較例2のように重質油水素化分解触媒における結晶性アルミノシリケートの割合を60質量%にした方法では、水素化分解処理によるAR留分転化率は高いものの、脱硫活性、脱窒素活性、脱残炭活性に劣り得られる脱硫重油(DSAR、DSVGO)の品質が低くなる。また、比較例3の方法のように、市販脱硫触媒を用いた場合では、VR留分転化率は高く、得られた脱硫重油の性状も良好であるが、AR留分転化率が低く中間留分得率が低い。
 本発明の重質油水素化分解触媒は、良好な脱硫機能を有し、かつ減圧残渣油のような沸点が525℃以上の高沸点留分に対し優れた分解活性を有するため、これを用いれば、重質油を、灯軽油留分やナフサ留分等の軽質留分に効果的に転換すると共に、残りの重質留分は流動接触分解装置で効率的にガソリン留分等に変換できる。

Claims (4)

  1.  結晶性アルミノシリケートと該結晶性アルミノシリケートを除く多孔性無機酸化物とを含む担体に活性金属を担持した重質油水素化分解触媒であって、
    (a)前記担体が、結晶性アルミノシリケートと該結晶性アルミノシリケートを除く多孔性無機酸化物の合計量基準で、結晶性アルミノシリケート18質量%以上45質量%未満と該結晶性アルミノシリケートを除く多孔性無機酸化物55質量%超82質量%以下を含み、(b)前記活性金属が、モリブデン、タングステン、及びニッケルから選ばれる一種又は二種以上の金属であり、かつ、(c)前記重質油水素化分解触媒の細孔分布が、細孔径50~10,000Åの細孔の総細孔容積に対し、細孔径500~10,000Åの細孔の細孔容積が10%以下、細孔径100~200Åの細孔の細孔容積が60%以上である重質油水素化分解触媒。
  2.  固定床水素化脱硫装置に用いる請求項1に記載の重質油水素化分解触媒。
  3.  結晶性アルミノシリケートが、USYゼオライト又は金属担持USYゼオライトであり、多孔性無機酸化物の主要成分がアルミナである請求項1に記載の重質油水素化分解触媒。
  4.  結晶性アルミノシリケートが鉄担持USYゼオライトである請求項1に記載の重質油水素化分解触媒。
PCT/JP2009/055190 2008-03-28 2009-03-17 重質油水素化分解触媒 WO2009119390A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010505559A JPWO2009119390A1 (ja) 2008-03-28 2009-03-17 重質油水素化分解触媒
EP09726115.0A EP2258476A4 (en) 2008-03-28 2009-03-17 Hydrocracking catalyst for heavy oil
US12/934,982 US20110086755A1 (en) 2008-03-28 2009-03-17 Hydrocracking catalyst for heavy oil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008088617 2008-03-28
JP2008-088617 2008-03-28

Publications (1)

Publication Number Publication Date
WO2009119390A1 true WO2009119390A1 (ja) 2009-10-01

Family

ID=41113587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055190 WO2009119390A1 (ja) 2008-03-28 2009-03-17 重質油水素化分解触媒

Country Status (4)

Country Link
US (1) US20110086755A1 (ja)
EP (1) EP2258476A4 (ja)
JP (1) JPWO2009119390A1 (ja)
WO (1) WO2009119390A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036186A1 (ja) * 2010-09-14 2012-03-22 Jx日鉱日石エネルギー株式会社 芳香族炭化水素の製造方法
WO2013140823A1 (ja) * 2012-03-21 2013-09-26 Jx日鉱日石エネルギー株式会社 高芳香族基油及び高芳香族基油の製造方法
WO2013147204A1 (ja) * 2012-03-30 2013-10-03 出光興産株式会社 結晶性アルミノシリケート、重質油水素化分解触媒及びその製造方法
CN104220561B (zh) * 2012-03-21 2016-11-30 吉坤日矿日石能源株式会社 高芳香族基础油以及高芳香族基础油的制造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5547923B2 (ja) 2009-08-03 2014-07-16 出光興産株式会社 重質油水素化分解触媒及びそれを用いた重質油の水素化処理方法
IN2014CN04670A (ja) * 2011-12-23 2015-09-18 Shell Int Research
CN103506106B (zh) * 2012-06-29 2015-08-26 中国石油化工股份有限公司 一种用于加工劣质重油的接触剂及其制备方法和应用
US20160121313A1 (en) * 2014-10-31 2016-05-05 Chevron U.S.A. Inc. Middle distillate hydrocracking catalyst containing highly a stabilized y zeolite with enhanced acid site distribution
US10213772B2 (en) * 2015-04-10 2019-02-26 Chevron U.S.A. Inc. Middle distillate hydrocracking catalyst containing zeolite USY with enhanced acid sites
CN108473879A (zh) * 2016-02-25 2018-08-31 沙特基础工业全球技术有限公司 用于重质烃的联合加氢脱硫和加氢裂化的方法
EP3423548B1 (en) 2016-03-01 2020-11-25 SABIC Global Technologies B.V. Process for producing monoaromatic hydrocarbons from a hydrocarbon feed comprising polyaromatics
CN109513456A (zh) * 2018-11-27 2019-03-26 抚顺亿方新材料有限公司 一种裂解碳九二段加氢催化剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684639A (en) * 1979-12-12 1981-07-10 Shokubai Kasei Kogyo Kk Hydrocracking catalyst composition
JPS59183833A (ja) * 1983-03-31 1984-10-19 Shokubai Kasei Kogyo Kk 重質油の水素化処理触媒
JPH11192437A (ja) * 1997-10-20 1999-07-21 Inst Fr Petrole 炭化水素留分の水素化クラッキング触媒および方法
JPH11349961A (ja) * 1998-04-08 1999-12-21 Idemitsu Kosan Co Ltd 重質炭化水素油の水素化処理方法
JP2000086233A (ja) * 1997-09-30 2000-03-28 Idemitsu Kosan Co Ltd 鉄含有結晶性アルミノシリケート

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5219814A (en) * 1990-12-19 1993-06-15 Mobil Oil Corporation Catalyst for light cycle oil upgrading
JP2908959B2 (ja) * 1993-04-07 1999-06-23 出光興産株式会社 新規触媒組成物
US20020011429A1 (en) * 1997-09-30 2002-01-31 Akira Iino Iron-containing crystalline aluminosilicate
GC0000065A (en) * 1998-09-01 2004-06-30 Japan Energy Corp Hydrocracking catalyst, producing method threof, and hydrocracking method.
WO2006054447A1 (ja) * 2004-11-22 2006-05-26 Idemitsu Kosan Co., Ltd. 鉄含有結晶性アルミノシリケート及び該アルミノシリケートを含む水素化分解触媒並びに該触媒を用いる水素化分解法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684639A (en) * 1979-12-12 1981-07-10 Shokubai Kasei Kogyo Kk Hydrocracking catalyst composition
JPS59183833A (ja) * 1983-03-31 1984-10-19 Shokubai Kasei Kogyo Kk 重質油の水素化処理触媒
JP2000086233A (ja) * 1997-09-30 2000-03-28 Idemitsu Kosan Co Ltd 鉄含有結晶性アルミノシリケート
JPH11192437A (ja) * 1997-10-20 1999-07-21 Inst Fr Petrole 炭化水素留分の水素化クラッキング触媒および方法
JPH11349961A (ja) * 1998-04-08 1999-12-21 Idemitsu Kosan Co Ltd 重質炭化水素油の水素化処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2258476A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036186A1 (ja) * 2010-09-14 2012-03-22 Jx日鉱日石エネルギー株式会社 芳香族炭化水素の製造方法
US9446997B2 (en) 2010-09-14 2016-09-20 Jx Nippon Oil & Energy Corporation Method for producing aromatic hydrocarbons
WO2013140823A1 (ja) * 2012-03-21 2013-09-26 Jx日鉱日石エネルギー株式会社 高芳香族基油及び高芳香族基油の製造方法
JP2013224401A (ja) * 2012-03-21 2013-10-31 Jx Nippon Oil & Energy Corp 高芳香族基油及び高芳香族基油の製造方法
CN104220561A (zh) * 2012-03-21 2014-12-17 吉坤日矿日石能源株式会社 高芳香族基础油以及高芳香族基础油的制造方法
US9476006B2 (en) 2012-03-21 2016-10-25 Jx Nippon Oil & Energy Corporation Highly aromatic base oil and method for producing highly aromatic base oil
CN104220561B (zh) * 2012-03-21 2016-11-30 吉坤日矿日石能源株式会社 高芳香族基础油以及高芳香族基础油的制造方法
US9988583B2 (en) 2012-03-21 2018-06-05 Jx Nippon Oil & Energy Corporation Highly aromatic base oil and method for producing highly aromatic base oil
WO2013147204A1 (ja) * 2012-03-30 2013-10-03 出光興産株式会社 結晶性アルミノシリケート、重質油水素化分解触媒及びその製造方法
JP2013212449A (ja) * 2012-03-30 2013-10-17 Idemitsu Kosan Co Ltd 結晶性アルミノシリケート、重質油水素化分解触媒及びその製造方法

Also Published As

Publication number Publication date
JPWO2009119390A1 (ja) 2011-07-21
EP2258476A1 (en) 2010-12-08
EP2258476A4 (en) 2017-02-22
US20110086755A1 (en) 2011-04-14

Similar Documents

Publication Publication Date Title
JP5547923B2 (ja) 重質油水素化分解触媒及びそれを用いた重質油の水素化処理方法
WO2009119390A1 (ja) 重質油水素化分解触媒
US10030202B2 (en) Mesoporous composite of molecular sieves for hydrocracking of heavy crude oils and residues
JP5231735B2 (ja) 鉄含有結晶性アルミノシリケート及び該アルミノシリケートを含む水素化分解触媒並びに該触媒を用いる水素化分解法
JP5396008B2 (ja) アルキルベンゼン類の製造方法
US7713407B2 (en) Production of low sulfur fuels using improved hydrocracker post-treatment catalyst
JP2008297471A (ja) 接触改質ガソリンの製造方法
JP5420826B2 (ja) 超低硫黄燃料油の製造方法
KR100738294B1 (ko) 중압 수소화 분해에 의한 디젤 연료의 제조 방법
JP5220456B2 (ja) 常圧蒸留残渣油の分解方法
EP3212329A2 (en) Middle distillate hydrocracking catalyst containing highly a stabilized y zeolite with enhanced acid site distribution
JP6267414B2 (ja) 結晶性アルミノシリケート、重質油水素化分解触媒及びその製造方法
EP3212327A1 (en) Middle distillate hydrocracking catalyst containing highly nanoporous stabilized y zeolite
JP2000086233A (ja) 鉄含有結晶性アルミノシリケート
JP5852892B2 (ja) 重質油の水素化処理方法
JP5296404B2 (ja) 超低硫黄燃料油の製造方法およびその製造装置
JP2008297436A (ja) 超低硫黄燃料油の製造方法とその製造装置
JP6565048B2 (ja) 重質油の水素化処理方法
JP5357584B2 (ja) 高オクタン価ガソリン留分の製造方法
JP2013213107A (ja) 水素化分解触媒を用いた水素化脱硫装置及び重質油の水素化処理方法
JP2022011038A (ja) 触媒システム、これを用いた重質軽油留分を含む原料油の水素化分解方法及び水素化分解装置
JPS6128718B2 (ja)
JPH06190278A (ja) 炭化水素油の水素化分解用触媒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09726115

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505559

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009726115

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12934982

Country of ref document: US