WO2009119175A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2009119175A1
WO2009119175A1 PCT/JP2009/052377 JP2009052377W WO2009119175A1 WO 2009119175 A1 WO2009119175 A1 WO 2009119175A1 JP 2009052377 W JP2009052377 W JP 2009052377W WO 2009119175 A1 WO2009119175 A1 WO 2009119175A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
semiconductor
semiconductor device
thermoelectric conversion
seebeck
Prior art date
Application number
PCT/JP2009/052377
Other languages
English (en)
French (fr)
Inventor
雅史 川中
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2010505434A priority Critical patent/JPWO2009119175A1/ja
Priority to US12/919,460 priority patent/US20110006388A1/en
Publication of WO2009119175A1 publication Critical patent/WO2009119175A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/38Cooling arrangements using the Peltier effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N19/00Integrated devices, or assemblies of multiple devices, comprising at least one thermoelectric or thermomagnetic element covered by groups H10N10/00 - H10N15/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a semiconductor device.
  • Patent Document 1 discloses a technique for thermally bonding a Peltier element to an IGBT for heat dissipation of an insulated gate bipolar transistor (IGBT).
  • Patent Document 2 discloses a technique of embedding a Peltier element in an IGBT element in order to actively dissipate the power element from the inside.
  • the amount of heat generation or the amount of heat storage and the in-plane distribution change greatly with time according to the operating state.
  • An object of the present invention is to provide a semiconductor device that can actively dissipate heat corresponding to its operation.
  • the semiconductor device of the present invention is a semiconductor device having one or more semiconductor elements, wherein one end is disposed at a position close to the heat generating portion of the semiconductor element and the other end is disposed on the distal side of the heat generating portion.
  • the thermoelectric conversion element is provided inside the semiconductor element in a state and generates a thermoelectromotive force according to a temperature difference between the one end and the other end, and one end is disposed at a position close to the heat generating portion.
  • the other end is provided inside the semiconductor element in a state of being disposed on the distal side of the heat generating part, and the current according to the thermoelectromotive force generated in the thermoelectric conversion element is applied to the semiconductor element.
  • a heat dissipating element that moves heat from one end side to the other end side.
  • the present invention it is possible to actively dissipate heat from the heat generating portion according to the temperature at a position close to the heat generating portion of the semiconductor element. As a result, it is possible to provide a semiconductor device in which element operation is stabilized by actively performing heat dissipation corresponding to the operation.
  • FIG. 4 (a) shows a Seebeck element
  • FIG.4 (b) shows a Peltier element.
  • SYMBOLS 20 Semiconductor element part, 31 ... Seebeck element (thermoelectric conversion element), 32 ... Peltier element (heat dissipation element), 200 ... Semiconductor element part, 201 ... Silicon substrate, 202 ... High concentration n-type subcollector layer, 203 ... n-type Collector layer, 204 ... selective ion implantation collector, 205 ... n-type collector layer, 206 ... p-type base layer, 207 ... n-type emitter layer, 208, 209 ... element isolation layer, 210, 211 ... interlayer insulating layer, 212 ... DTI (deep trench isolation), 213... Silicon oxide film, 300... Thermal countermeasure, 310...
  • Seebeck element 311... N-type semiconductor, 312... P-type semiconductor, 313.
  • Circuit, 400... Thermal response means 410. Seebeck element, 411... N-type semiconductor, 412... P-type semiconductor, 413.
  • FIG. 1 is a diagram showing a configuration of a first embodiment according to a semiconductor device of the present invention.
  • a bipolar transistor is described as an example of the semiconductor device.
  • the present invention is not limited to this.
  • CMOS Complementary Metal Oxide Semiconductor
  • SiLDMOS Silicon Laterally Diffused MOS
  • compound FET Field Effect Transistor
  • the present invention can be applied to SiBT (Silicon Bipolar Transistor), SiGe HBT (Silicon Germanium Heterojunction Bipolar Transistor), compound HBT, IGBT, and the like.
  • the semiconductor device (bipolar transistor) 100 corresponds to a semiconductor element portion 200 that functions as a semiconductor element, and heat that is contained in the semiconductor element portion and is generated in accordance with the operation of the semiconductor element portion.
  • the heat response means 300 is provided.
  • the semiconductor element unit 200 includes a silicon substrate 201, a high concentration n-type subcollector layer 202, an n-type collector layer 203, a selective ion implantation collector 204, and an n-type collector.
  • a layer 205, a p-type base layer 206, an n-type emitter layer 207, element isolation layers 208 and 209, and interlayer insulating layers 210 and 211 are provided, which is a so-called NPN transistor structure.
  • the SIC (selective ion implantation collector) 204 and the n-type collector layer 205 generate the most heat during operation.
  • the heat handling means 300 includes a Seebeck element 310 as a thermoelectric conversion element, a Peltier element 320 as a heat dissipation element, and an amplifier circuit 330 that applies a current to the Peltier element 320 in accordance with a current value from the Seebeck element 310. .
  • FIG. 2 is an enlarged sectional view of the Seebeck element 310
  • FIG. 3 is an enlarged sectional view of the Peltier element 320.
  • the Seebeck element 310 and the Peltier element 320 are embedded in an element isolation layer (STI; Shallow Trench Isolation) 208 adjacent to the n-type collector layer 203.
  • STI Shallow Trench Isolation
  • the Seebeck element 310 and the Peltier element 320 have basically the same configuration, and have an n-type semiconductor 311 and a p-type semiconductor 312 connected in series, and the same number of n-type semiconductors 311 and p-type semiconductors 312 are alternately arranged. Are stacked. Then, one end and the other end are alternately opened so that the junction is formed only at one end and the other end while maintaining electrical series, and the interlayer insulating film 313 is formed with the n-type semiconductor 311 and the p-type semiconductor 312. Between the layers.
  • Such Seebeck element 310 and Peltier element 320 can be formed by CVD (Chemical Vavor Deposition).
  • n-type semiconductor and the p-type semiconductor examples include SiGe or Bi 2 Te 3 .
  • SiGe When SiGe is used as a material, it has a high affinity with the silicon process, and a semiconductor device in which Seebeck elements and Peltier elements are embedded can be made into one chip.
  • Seebeck device 310 is embedded in device isolation layer (STI) 208, with one end proximal to selective ion implantation collector 204 and n-type collector layer 205 and the other end to selective ion implantation collector 204 and The n-type collector layer 205 is disposed distally. And it is preferable that the other end side is a fixed temperature. The other end side may be made constant by being distal from the heat source, or may be cooled to be constant temperature by a radiating fin or a refrigerant.
  • STI device isolation layer
  • electrodes are formed at respective ends corresponding to the beginning and the end of the connection between the n-type semiconductor 311 and the p-type semiconductor 312, and are connected to the amplifier circuit 330.
  • FIG. 2 the symbol of resistance is also shown in order to show the generation of the thermoelectromotive force in an easy-to-understand manner.
  • a Peltier element 320 is embedded in an element isolation layer (STI) 208, with one end proximal to the selective ion implantation collector 204 and the n-type collector layer 205 and the other end selective ion implantation collector 204. And disposed in a state distant from the n-type collector layer 205.
  • STI element isolation layer
  • electrodes are formed at respective ends corresponding to the beginning and the end of the connection between the n-type semiconductor 311 and the p-type semiconductor 312 and connected to the amplifier circuit 330.
  • the DC power source in the amplifier circuit is connected to the Peltier element 320 so that a current flows in the np direction on one end side and a current flows in the pn direction on the other end side.
  • the semiconductor element unit 200 operates in response to a predetermined signal. Then, heat is generated in the selective ion implantation collector 204 and the n-type collector layer 205. The generated heat is instantaneously transferred to one end of the adjacent Seebeck element 310. In this way, heat is transferred to one end of the Seebeck element 310 so that one end side becomes high temperature, while the other end side is kept at a constant temperature. Then, a thermoelectromotive force is generated in which current flows in the np direction (direction from the n-type semiconductor to the p-type semiconductor) at one end of the Seebeck element 310 and current flows in the pn direction at the other end. The current i due to the thermoelectromotive force generated in this way is input to the amplifier circuit 330.
  • the amplifier circuit 330 amplifies the current i caused by the thermoelectromotive force and applies the current I to the Peltier element 320. Then, heat absorption occurs at one end side of the Peltier element 320 and heat dissipation occurs at the other end side.
  • One end side of the Peltier element 320 is proximal to the selective ion implantation collector 204 and the n-type collector layer 205, which are heat generating portions, and heat from the heat generating portions is instantaneously absorbed, and the temperature of the heat generating portions is lowered. .
  • the Seebeck element 310 is embedded with one end thereof being proximal to the heat generating part in the semiconductor element part. Since one end of the Seebeck element is very close to the heat generating part in this way, if the temperature rises even slightly in the heat generating part of the semiconductor element part, a temperature difference occurs between one end and the other end of the Seebeck element. As a result, a thermoelectromotive force is immediately generated in the Seebeck element. This thermoelectromotive force can apply a current to the Peltier element to dissipate the heat of the heat generating portion. Thus, since it is sensitive to the temperature rise of the heat generating portion, it is possible to immediately react to the operation of the semiconductor element to dissipate heat and to store heat in the semiconductor.
  • the heat generating part is instantaneously cooled by heat absorption by the Peltier element 320, and heat storage of the semiconductor element can be prevented.
  • FIG. 4 (a) and 4 (b) are cross-sectional views of one semiconductor element taken along different planes parallel to each other, FIG. 4 (a) shows a Seebeck element, and FIG. 4 (b) shows a Peltier element. Indicates.
  • the second embodiment also includes a thermoelectric conversion element (Seebeck element) 410, a heat radiating element (Peltier element) 420, and an amplifier circuit 430 as the heat handling means 400.
  • a thermoelectric conversion element Seebeck element
  • a heat radiating element Peltier element
  • an amplifier circuit 430 as the heat handling means 400.
  • a plurality of DTI (deep trench isolation) 212 are formed on the silicon substrate 201, and the n-type semiconductor 411 and the p-type semiconductor 412 are alternately embedded in the DTI trench 212.
  • an interlayer insulating layer 413 is interposed between the inner wall of the DTI cage 212 and the n-type semiconductor 411 / p-type semiconductor 412.
  • the metal electrode 414 is provided in the upper part and the lower part so that the n-type semiconductor 411 and the p-type semiconductor 412 may be connected in series.
  • a silicon oxide film 213 is disposed on the upper electrode 414 to form an SOI (Silicon-on-Insulator) substrate.
  • SOI Silicon-on-Insulator
  • an SOI substrate in which the Seebeck element 410 and the Peltier element 420 are embedded is obtained.
  • the remaining semiconductor element portion is formed on the SOI layer immediately above the Seebeck element 410 and the Peltier element 420.
  • the selective ion implantation collector 204 and the n-type collector layer 205 which are heat generating portions, are arranged so as to be directly above the Seebeck element 410 and the Peltier element 420.
  • the current due to the thermoelectromotive force generated in the Seebeck element 410 is input to the amplifier circuit 430, and the direct current from the amplifier circuit 430 is applied to the Peltier element 420.
  • the heat generating part (the selective ion implantation collector 204 and the n-type collector layer 205) of the semiconductor element is formed immediately above the Seebeck element 410 and the Peltier element 420 embedded in the silicon substrate 201.
  • the heat generating portion and the Seebeck element 410 and the Peltier element 420 are extremely close to each other. Therefore, there exists an effect similar to the said 1st Embodiment.
  • the semiconductor device 500 according to the third embodiment is an example in which the present invention is applied to a multi-finger type transistor.
  • a large number of bipolar transistors 510 are arranged in a matrix on one semiconductor substrate 501. Even in such a case, as shown in FIG. 5, a set of a plurality of Seebeck elements 520 and Peltier elements 530 are arranged at predetermined positions in the chip.
  • the heat handling means is concentrated on the part that is assumed to generate a large amount of heat in accordance with the operation characteristics of the multi-cell device. It is preferable that the arrangement of the heat response means is coarsely and densely arranged.
  • the high and low arrangement density is not particularly limited by numerical values or the like. However, the arrangement is within the meaning of the present invention as long as the arrangement is dense and dense when viewed on a plane.
  • FIG. 6 and 7 show a multi-finger device having a plurality of elongated fingers 540.
  • the Peltier element (heat dissipating element) 530 and the Seebeck element (thermoelectric conversion element) 520 described in the above embodiment are arranged at predetermined positions.
  • FIG. Reference numeral 540 denotes a gate serving as a finger, which represents a heat generating portion of the multi-finger device.
  • FIG. 6 the arrangement of the Peltier element (heat dissipating element) and the Seebeck element (thermoelectric conversion element) described in the first embodiment is applied, and in FIG. 7, the Peltier element (heat dissipating element) described in the second embodiment is applied. And the arrangement of Seebeck elements (thermoelectric conversion elements) is applied.
  • the Peltier element 530 and the Seebeck element are concentrated in the central region as shown in FIGS. 520 is arranged.
  • the Seebeck element 520 and the Peltier element 530 may not be a one-to-one pair, and the Peltier element 530 may be driven by a current obtained from the plurality of Seebeck elements 520.
  • one Seebeck element 520 may be used as a temperature monitor to control the operation of a plurality of Peltier elements 530.
  • this invention is not limited only to the said embodiment, Of course, a various change can be added in the range which does not deviate from the summary of this invention.
  • the amplifier circuit is provided between the Seebeck element and the Peltier element, and the current from the Seebeck element is input to the amplifier circuit and the amplified direct current is applied to the Peltier element. Is not an essential element.
  • thermoelectric conversion element Seebeck element
  • Any device may be used as long as it is driven in correlation with the current from the element 31.
  • thermoelectric conversion element Seebeck element
  • Heat dissipation element Peltier element
  • the Seebeck element 31 since one end of the Seebeck element 31 is very close to the heat generating portion, a very large temperature can be obtained. Thereby, since a large electromotive force is obtained by the Seebeck element 31, even if the current from the Seebeck element 31 is directly applied to the Peltier element 32, a sufficient cooling effect can be obtained. Then, there is an epoch-making effect that the semiconductor element can be cooled effectively and effectively without requiring a complicated configuration such as an amplifier circuit.
  • a temperature control unit is provided between the thermoelectric conversion element (Seebeck element) and the heat dissipation element (Peltier element), and this temperature control unit detects a temperature rise in the heat generating part of the semiconductor element by a current from the thermoelectric conversion element.
  • You may comprise by the temperature rising detection part and the current control part which controls the electric current applied to a thermal radiation element (Peltier element) based on the temperature rising detection by this temperature rising detection part.
  • the present invention can be used for semiconductor devices. It is particularly suitable for a semiconductor device that generates a large amount of heat.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

 動作に対応して放熱を積極的に行うことができる半導体装置を提供する。熱電変換素子としてゼーベック素子310が埋設されている。ゼーベック素子310は、一端が半導体素子の発熱部に近接した位置に配置されるとともに他端が発熱部の遠位側に配置された状態で半導体素子の内部に設けられている。さらに、放熱素子としてのペルチエ素子320が埋設されている。ペルチエ素子320は、一端が発熱部に近接した位置に配置されるとともに他端が発熱部の遠位側に配置された状態で半導体素子の内部に設けられている。ゼーベック素子310にて生じた熱起電力に応じた電流がペルチエ素子320に印加される。

Description

半導体装置
 本発明は、半導体装置に関する。
 コンピュータ制御用、電力増幅器用、大電流用の半導体装置は、極めて大量の熱を発生する。そこで、このような半導体装置から放熱するための手段が種々知られている。例えば、特許文献1では、絶縁ゲートバイポーラトランジスタ(IGBT)の放熱のためにペルチエ素子をIGBTに熱的に接合させる技術が開示されている。また、特許文献2では、パワー素子を内部から積極的に放熱するためにIGBT素子にペルチエ素子を埋め込む技術が開示されている。
特開2000-340723号公報 特開2007-227615号公報
 しかしながら、特許文献1に開示される技術では、IGBTの外部にペルチエ素子を熱的に接合させている。すると、IGBTとペルチエ素子との間に絶縁基板と導電体部とが介在するので、IGBTとペルチエ素子間の熱抵抗が高くなる。その結果、放熱効率が低くなるので、素子内部で高温状態が長く続き、最悪の場合、素子破壊が生じてしまうという問題が生じる。
 特許文献2では、IGBT素子にペルチエ素子を埋め込む構成をとるので、発熱する半導体装置を内部から積極的に放熱することが可能となる。また、埋め込むペルチエ素子の配列に疎密をつけることにより、一様に発熱しない半導体装置において発熱量または蓄熱量の大きい部分から積極的に放熱させることが可能となる。
 しかしながら、半導体装置では動作状態に伴って発熱量または蓄熱量の大きさと面内分布が時間とともに大きく変化する。
 特許文献2の構成にあってはペルチエ素子の配置によって放熱効率の面内分布が一義的に決まってしまうため、半導体装置の動作に全く対応できず、素子内部に熱がこもってしまうことが避けられない。
 本発明の目的は、動作に対応して放熱を積極的に行うことができる半導体装置を提供することにある。
 本発明の半導体装置は、一または複数の半導体素子を有する半導体装置において、一端が前記半導体素子の発熱部に近接した位置に配置されるとともに他端が前記発熱部の遠位側に配置された状態で前記半導体素子の内部に設けられており、前記一端と前記他端との温度差に応じて熱起電力を発生する熱電変換素子と、一端が前記発熱部に近接した位置に配置されるとともに他端が前記発熱部の遠位側に配置された状態で前記半導体素子の内部に設けられており、前記熱電変換素子にて生じた熱起電力に応じた電流が印加されることにより前記一端側から前記他端側へ熱を移動させる放熱素子と、を備えていることを特徴とする。
 本発明によれば、半導体素子の発熱部に近接した位置の温度に応じて積極的に発熱部から放熱させることができる。その結果、動作に対応した放熱を積極的に行うことで素子動作が安定する半導体装置を提供することができる。
第1実施形態の構成を示す図。 第1実施形態において、ゼーベック素子の拡大断面図。 第1実施形態において、ペルチエ素子の拡大断面図。 第2実施形態において、一の半導体素子を互いに平行な異なる面で断面した図であり、図4(a)はゼーベック素子を示し、図4(b)はペルチエ素子を示す。 第3実施形態の構成を示す図。 第3実施形態の構成を示す図。 第3実施形態の構成を示す図。 本発明を最小限の要素で実現した構成を示す図。
符号の説明
20…半導体素子部、31…ゼーベック素子(熱電変換素子)、32…ペルチエ素子(放熱素子)、200…半導体素子部、201…シリコン基板、202…高濃度n型サブコレクタ層、203…n型コレクタ層、204…選択的イオン注入コレクタ、205…n型コレクタ層、206…p型ベース層、207…n型エミッタ層、208、209…素子分離層、210、211…層間絶縁層、212…DTI(deep trench isolation)、213…シリコン酸化膜、300…熱対応手段、310…ゼーベック素子、311…n型半導体、312…p型半導体、313…層間絶縁膜、320…ペルチエ素子、330…増幅回路、400…熱対応手段、410…ゼーベック素子、411…n型半導体、412…p型半導体、413…層間絶縁層、414…電極、420…ペルチエ素子、430…増幅回路、500…半導体装置、501…半導体基板、510…バイポーラトランジスタ、520…ゼーベック素子、530…ペルチエ素子、540…マルチフィンガーデバイスの発熱部
 本発明の実施の形態を図示するとともに図中の各要素に付した符号を参照して説明する。
(第1実施形態)
 図1は、本発明の半導体装置に係る第1実施形態の構成を示す図である。
 第1実施形態においては半導体装置としてバイポーラトランジスタを例にして説明するが、これに限定されず、例えば、CMOS(Complementary Metal Oxide Semiconductor)、SiLDMOS(Silicon Laterally Diffused MOS)、化合物FET(Field Effect Transistor)、SiBT(Silicon Bipolar Transistor)、SiGeHBT(Silicon Germanium Heterojunction Bipolar Transistor)、化合物HBT、IGBTなどにも本発明は適用できることはもちろんである。
 本実施形態に係る半導体装置(バイポーラトランジスタ)100は、半導体素子として機能するための半導体素子部200と、この半導体素子部内に内蔵されて半導体素子部の動作に応じて発せられる熱に対応するための熱対応手段300と、を備えている。
 半導体素子部200は、図1の断面図に示されるように、シリコン基板201と、高濃度n型サブコレクタ層202と、n型コレクタ層203と、選択的イオン注入コレクタ204と、n型コレクタ層205と、p型ベース層206と、n型エミッタ層207と、素子分離層208、209と、層間絶縁層210、211と、を備えており、いわゆるNPN型のトランジスタの構造である。そして、このような構造において、動作時に最も発熱するのは、SIC(選択的イオン注入コレクタ)204およびn型コレクタ層205である。
 熱対応手段300は、熱電変換素子としてのゼーベック素子310と、放熱素子としてのペルチエ素子320と、ゼーベック素子310からの電流値に応じてペルチエ素子320に電流を印加する増幅回路330と、を備える。
 図2は、ゼーベック素子310の拡大断面図であり、図3はペルチエ素子320の拡大断面図である。
 ゼーベック素子310およびペルチエ素子320は、n型コレクタ層203に隣接する素子分離層(STI;Shallow Trench Isolation)208に埋設されている。
 ゼーベック素子310およびペルチエ素子320は基本的に同じ構成であり、直列に接続されたn型半導体311とp型半導体312とを有し、同じ枚数のn型半導体311とp型半導体312とが交互に積層されている。そして、電気的な直列を保ちつつ接合部が一端と他端とにのみ形成されるように互い違いに一端と他端とを開放して層間絶縁膜313がn型半導体311とp型半導体312との層間に設けられている。
 このようなゼーベック素子310およびペルチエ素子320は、CVD(Chemical Vavor Deposition)により形成することができる。
 なお、n型半導体、p型半導体としては、SiGeまたはBiTeが例として挙げられる。
 SiGeを材料とした場合、シリコンプロセスと親和性が高く、ゼーベック素子およびペルチエ素子を埋設した半導体装置をワンチップ化できる。
 また、BiTeを材料とした場合、400K近辺で最も性能が高くでるので、半導体装置の熱対応手段を構成するのに効率的で好適である。
 図2において、ゼーベック素子310は素子分離層(STI)208に埋設されており、一端を選択的イオン注入コレクタ204およびn型コレクタ層205に近位させ、他端を選択的イオン注入コレクタ204およびn型コレクタ層205から遠位させた状態で配設されている。そして、他端側は一定温度であることが好ましい。他端側は、熱源から遠位していることによって温度が一定となるようにしてもよく、あるいは、放熱フィンや冷媒などによって一定温度になるように冷却されてもよい。
 また、他端においてn型半導体311とp型半導体312との接続の先頭と最後尾にあたるそれぞれの端部には電極が形成され、増幅回路330に接続されている。
 なお、図2中においては、熱起電力の発生をわかりやすく示すために抵抗の記号を合わせて示している。
 図3において、ペルチエ素子320は、素子分離層(STI)208に埋設されており、一端を選択的イオン注入コレクタ204およびn型コレクタ層205に近位させ、他端を選択的イオン注入コレクタ204およびn型コレクタ層205から遠位させた状態で配設されている。
 他端においてn型半導体311とp型半導体312との接続の先頭と最後尾にあたるそれぞれの端部には電極が形成され、増幅回路330に接続されている。
 このとき、一端側においてはnp方向に電流が流れ、他端側においてはpn方向に電流が流れるように増幅回路内の直流電源がペルチエ素子320に接続されている。
 なお、図3中においては、電流の正負の接続をわかりやすく示すために直流電源の記号を合わせて示している。
 このような構成を備える第1実施形態の動作を説明する。
 所定の信号が与えられて半導体素子部200が動作を行う。すると、選択的イオン注入コレクタ204およびn型コレクタ層205に熱が生じる。生じた熱は近位しているゼーベック素子310の一端に瞬時に伝熱する。このようにゼーベック素子310の一端に伝熱して一端側が高温になる一方、他端側が一定温度に保たれている。すると、ゼーベック素子310の一端においてはnp方向(n型半導体からp型半導体に向かう方向)に電流が流れ、他端においてはpn方向に電流が流れる熱起電力が生じる。このように生じた熱起電力による電流iは増幅回路330に入力される。
 増幅回路330はこの熱起電力による電流iを増幅してペルチエ素子320に電流Iを印加する。すると、ペルチエ素子320の一端側では吸熱が生じ、他端側では放熱が生じる。ペルチエ素子320の一端側は発熱部である選択的イオン注入コレクタ204およびn型コレクタ層205に近位しているところ、この発熱部からの熱が瞬時に吸収されて、発熱部の温度が下がる。
 このような構成を備える第1実施形態によれば、次の効果を奏することができる。
(1)ゼーベック素子310が半導体素子部のなかの発熱部に対して一端を近位させた状態で埋設されている。このようにゼーベック素子の一端が発熱部に極めて近いため、半導体素子部の発熱部でわずかでも昇温があれば、ゼーベック素子の一端と他端とで温度差が生じる。すると、すぐにゼーベック素子に熱起電力が生じる。この熱起電力によりペルチエ素子に電流を印加して発熱部の熱を放熱させることができる。このように発熱部の昇温に対して鋭敏であるため、半導体素子の動作にすぐに反応して放熱させ、半導体内に蓄熱することが防止される。
(2)ペルチエ素子320の一端が半導体素子部の発熱部に近位して配置されているので、ペルチエ素子320による吸熱によって瞬時に発熱部が冷却され、半導体素子の蓄熱を防止することができる。
 (第2実施形態)
 次に、本発明の第2実施形態について図4を参照して説明する。
 図4(a)と図4(b)とは、一の半導体素子を互いに平行な異なる面で断面した図であり、図4(a)はゼーベック素子を示し、図4(b)はペルチエ素子を示す。
 第2実施形態においても、熱対応手段400として、熱電変換素子(ゼーベック素子)410と、放熱素子(ペルチエ素子)420と、増幅回路430と、を備えている。
 第2実施形態においては、シリコン基板201にDTI(deep trench isolation)212が複数本形成され、これらDTI 212にn型半導体411とp型半導体412とが交互に埋め込まれている。
 なお、DTI 212の内壁とn型半導体411/p型半導体412との間には層間絶縁層413が介在配置されている。
 そして、n型半導体411とp型半導体412とが直列に接続されるように上部と下部に金属電極414が設けられている。
 上部の電極414の上にシリコン酸化膜213が配置され、SOI(Silicon on Insulator)基板が形成される。これにより、ゼーベック素子410とペルチエ素子420とが埋め込まれたSOI基板が得られる。そして、ゼーベック素子410およびペルチエ素子420の直上においてSOI層の上に残りの半導体素子部を形成する。特に、発熱部である選択的イオン注入コレクタ204およびn型コレクタ層205がゼーベック素子410およびペルチエ素子420の直上にくるように配置する。
 なお、第1実施形態と同様に、ゼーベック素子410に生じた熱起電力による電流は増幅回路430に入力され、増幅回路430からの直流電流はペルチエ素子420に印加される。
 このような構成によれば、シリコン基板201に埋設されたゼーベック素子410およびペルチエ素子420の直上に半導体素子の発熱部(選択的イオン注入コレクタ204およびn型コレクタ層205)が形成されているので、発熱部とゼーベック素子410およびペルチエ素子420とが極めて近接する。よって、上記第1実施形態と同様の作用効果を奏する。
 (第3実施形態)
 次に、本発明の第3実施形態について図5、図6、図7を参照して説明する。
 第3実施形態に係る半導体装置500は、本発明をマルチフィンガータイプのトランジスタに適用した場合を示す例である。
 図5では、一の半導体基板501に多数のバイポーラトランジスタ510が行列をなして配置されている。このような場合にあっても、図5に示すように、チップ内において複数のゼーベック素子520およびペルチエ素子530の組を所定の位置に配設する。
 このような構成によれば、広い範囲での半導体素子の動作に対して能動的放熱が可能となるので、チップ内において局所的に蓄熱されるなど温度の不均一な偏りを防止し、全体を適切な温度に管理することができる。
 上記第3実施形態のごとく多数の半導体素子と多数の熱対応手段とを組み合わせる場合には、マルチセルデバイスの動作の特徴に合わせて、発熱が大きいと想定される部分に集中的に熱対応手段を配置するなど、熱対応手段の配置に粗密をつけることが好ましい。
 配置密度の高い低いについては特に数値等で限定するものではないが、平面的に見たときに配置に粗密が生じている状態であれば、本発明の趣旨に入る。
 ここで、図6、図7は、細長い形状のフィンガー540を複数有するマルチフィンガーデバイスにおいて、前記実施形態で説明したペルチエ素子(放熱素子)530およびゼーベック素子(熱電変換素子)520を所定位置に配置した様子を示す図である。540は、フィンガーとなるゲートであり、マルチフィンガーデバイスの発熱部を表す。
 図6では前記第1実施形態にて説明したペルチエ素子(放熱素子)およびゼーベック素子(熱電変換素子)の配置を適用し、図7では前記第2実施形態にて説明したペルチエ素子(放熱素子)およびゼーベック素子(熱電変換素子)の配置を適用している。
 長い形状のフィンガー540を複数本有する半導体装置においては、中央の領域で発熱が多く昇温しやすいため、図6、図7に示すように、中央の領域に集中的にペルチエ素子530およびゼーベック素子520を配置した構成とする。
 このような構成によれば、広い範囲での半導体素子の動作に対して能動的放熱が可能となり、特に、発熱が大きい領域において集中的に放熱を行うので、チップ内において局所的に蓄熱されるなど温度の不均一な偏りを防止し、全体を適切な温度に管理することができる。
 なお、ゼーベック素子520とペルチエ素子530とは一対一の組でなくてもよく、複数のゼーベック素子520から得られる電流によってペルチエ素子530を駆動させてもよい。
 あるいは、一のゼーベック素子520を温度モニターとし、複数のペルチエ素子530の動作を制御してもよい。
 なお、本発明は上記実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加えうることはもちろんである。
 上記実施形態においては、ゼーベック素子とペルチエ素子との間に増幅回路を備え、ゼーベック素子からの電流を増幅回路に入力させるとともに増幅された直流電流をペルチエ素子に印加する構成としたが、増幅回路は必須の要素ではなく無くてもよい。
 すなわち、図8に示すように、放熱素子(ペルチエ素子)32と熱電変換素子(ゼーベック素子)31とが半導体素子部20に埋設されており、放熱素子(ペルチエ素子)32が熱電変換素子(ゼーベック素子)31からの電流に相関して駆動される構成であればよい。
 このとき、熱電変換素子(ゼーベック素子)31からの電流をそのまま放熱素子(ペルチエ素子)32の入力としてもよい。
 本発明においては、ゼーベック素子31の一端が発熱部に極めて近位しているため非常に大きな温度が得られる。これにより、ゼーベック素子31によって大きな起電力が得られるので、ペルチエ素子32にそのままゼーベック素子31からの電流を印加しても十分な冷却効果を奏することができる。すると、増幅回路等の複雑な構成を必要とすることなく、能動的かつ効果的に半導体素子を冷却できるという画期的な効果を奏する。
 または、熱電変換素子(ゼーベック素子)と放熱素子(ペルチエ素子)との間に温度制御部を設け、この温度制御部は、熱電変換素子からの電流によって半導体素子の発熱部における昇温を検出する昇温検出部と、この昇温検出部による昇温検知に基づいて放熱素子(ペルチエ素子)に印加する電流を制御する電流制御部と、によって構成してもよい。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2008年3月26日に出願された日本出願特願2008-080743を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明は、半導体装置に利用できる。特に発熱が大きい半導体装置に好適である。

Claims (7)

  1.  一または複数の半導体素子を有し、
     一端が前記半導体素子の発熱部に近接した位置に配置されるとともに他端が前記発熱部の遠位側に配置された状態で前記半導体素子の内部に設けられており、前記一端と前記他端との温度差に応じて熱起電力を発生する熱電変換素子と、
     一端が前記発熱部に近接した位置に配置されるとともに他端が前記発熱部の遠位側に配置された状態で前記半導体素子の内部に設けられており、前記熱電変換素子にて生じた熱起電力に応じた電流が印加されることにより前記一端側から前記他端側へ熱を移動させる放熱素子と、を備えている
     ことを特徴とする半導体装置。
  2.  請求項1に記載の半導体装置において、
     前記熱電変換素子の熱起電力に基づいて求められる前記発熱部の温度に応じて前記放熱素子に入力される電流値が制御される
     ことを特徴とする半導体装置。
  3.  請求項1に記載の半導体装置において、
     前記熱電変換素子の熱起電力から得た電流をそのまままたは増幅して前記放熱素子に通電させる
     ことを特徴とする半導体装置。
  4.  請求項1から請求項3のいずれかに記載の半導体装置において、
     当該半導体装置を構成する前記半導体素子の動作量に基づく発熱量に応じて、発熱が大きい前記半導体素子の付近に前記熱電変換素子および前記放熱素子を集中的に配置するとともに動作量および発熱量が高くない前記半導体素子の付近では前記熱電変換素子および前記放熱素子の密度を小さくする
     ことを特徴とする半導体装置。
  5.  請求項1から請求項4のいずれかに記載の半導体装置において、
     前記熱電変換素子はゼーベック素子であり、
     前記放熱素子はペルチエ素子である
     ことを特徴とする半導体装置。
  6.  請求項1から請求項5のいずれかに記載の半導体装置において、
     前記熱電変換素子および前記放熱素子の少なくとも一方はSiGeを構成材料に含む
     ことを特徴とする半導体装置。
  7.  請求項1から請求項5のいずれかに記載の半導体装置において、
     前記熱電変換素子および前記放熱素子の少なくとも一方はBiTeを構成材料に含む
     ことを特徴とする半導体装置。
PCT/JP2009/052377 2008-03-26 2009-02-13 半導体装置 WO2009119175A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010505434A JPWO2009119175A1 (ja) 2008-03-26 2009-02-13 半導体装置
US12/919,460 US20110006388A1 (en) 2008-03-26 2009-02-13 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-080743 2008-03-26
JP2008080743 2008-03-26

Publications (1)

Publication Number Publication Date
WO2009119175A1 true WO2009119175A1 (ja) 2009-10-01

Family

ID=41113383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052377 WO2009119175A1 (ja) 2008-03-26 2009-02-13 半導体装置

Country Status (3)

Country Link
US (1) US20110006388A1 (ja)
JP (1) JPWO2009119175A1 (ja)
WO (1) WO2009119175A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107293583A (zh) * 2017-07-10 2017-10-24 东南大学 面向物联网的具有自供电功能的bjt管放大器
JP2021174862A (ja) * 2020-04-24 2021-11-01 Necプラットフォームズ株式会社 冷却システム及び冷却方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012110021A1 (de) * 2012-10-19 2014-04-24 Bpe E.K. Multifunktions-Mikroelektronikbauteil und Herstellungsverfahren dafür
WO2014204447A1 (en) * 2013-06-18 2014-12-24 Intel Corporation Integrated thermoelectric cooling
CN103985811B (zh) * 2014-05-29 2016-07-27 赣南师范学院 一种场效应管片上阵列热电转换器及其全自对准制造工艺
DE102014222706B4 (de) 2014-11-06 2018-05-03 Dialog Semiconductor B.V. Thermoelektrische Vorrichtung auf einem Chip
CN110571206B (zh) * 2019-09-12 2022-05-27 芯盟科技有限公司 半导体结构及其形成方法和芯片的形成方法
CN110571205B (zh) * 2019-09-12 2021-12-07 芯盟科技有限公司 半导体结构及其形成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243731A (ja) * 2001-12-12 2003-08-29 Yaskawa Electric Corp 半導体基板、半導体装置の製造方法およびその駆動方法
JP2003332641A (ja) * 2002-05-16 2003-11-21 Seiko Instruments Inc ペルチェ素子駆動回路
JP2004056054A (ja) * 2002-07-24 2004-02-19 Toshiba Elevator Co Ltd 半導体スイッチ装置
JP2007227615A (ja) * 2006-02-23 2007-09-06 Toyota Central Res & Dev Lab Inc 半導体装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USH1095H (en) * 1991-05-08 1992-08-04 The United States Of America As Represented By The United States Department Of Energy Cooled, temperature controlled electrometer
JPH11135692A (ja) * 1997-10-31 1999-05-21 Sony Corp 集積回路
JP2003101082A (ja) * 2001-09-27 2003-04-04 Mitsubishi Electric Corp 半導体装置およびその製造方法
US7205675B2 (en) * 2003-01-29 2007-04-17 Hewlett-Packard Development Company, L.P. Micro-fabricated device with thermoelectric device and method of making
US20050045702A1 (en) * 2003-08-29 2005-03-03 William Freeman Thermoelectric modules and methods of manufacture
JP2006294783A (ja) * 2005-04-08 2006-10-26 Toyota Motor Corp 電気部品冷却装置
US20070084497A1 (en) * 2005-10-19 2007-04-19 Richard Strnad Solid state direct heat to cooling converter
JP2008198928A (ja) * 2007-02-15 2008-08-28 Sony Corp 冷却構造及びこの構造を内蔵した電子機器
US20080236643A1 (en) * 2007-04-02 2008-10-02 Li John H Thermoelectric composite semiconductor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243731A (ja) * 2001-12-12 2003-08-29 Yaskawa Electric Corp 半導体基板、半導体装置の製造方法およびその駆動方法
JP2003332641A (ja) * 2002-05-16 2003-11-21 Seiko Instruments Inc ペルチェ素子駆動回路
JP2004056054A (ja) * 2002-07-24 2004-02-19 Toshiba Elevator Co Ltd 半導体スイッチ装置
JP2007227615A (ja) * 2006-02-23 2007-09-06 Toyota Central Res & Dev Lab Inc 半導体装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107293583A (zh) * 2017-07-10 2017-10-24 东南大学 面向物联网的具有自供电功能的bjt管放大器
JP2021174862A (ja) * 2020-04-24 2021-11-01 Necプラットフォームズ株式会社 冷却システム及び冷却方法
JP7036454B2 (ja) 2020-04-24 2022-03-15 Necプラットフォームズ株式会社 冷却システム及び冷却方法

Also Published As

Publication number Publication date
JPWO2009119175A1 (ja) 2011-07-21
US20110006388A1 (en) 2011-01-13

Similar Documents

Publication Publication Date Title
WO2009119175A1 (ja) 半導体装置
US8785931B2 (en) Semiconductor device
TWI773732B (zh) 電子設備及用於封裝半導體裝置之方法
JP2016167539A (ja) 半導体装置
US8166769B2 (en) Self-cooled vertical electronic component
JP2008016822A (ja) 負荷駆動装置
JP2009188178A (ja) 半導体装置
US7825324B2 (en) Spreading thermoelectric coolers
TW557558B (en) Semiconductor device
US7342294B2 (en) SOI bipolar transistors with reduced self heating
JP2006324412A (ja) 半導体装置
KR101088937B1 (ko) 플립-칩 반도체 장치들을 위한 열전기 냉각기
US10103083B2 (en) Integrated circuits with Peltier cooling provided by back-end wiring
JP6874443B2 (ja) 半導体装置および半導体装置の製造方法
CN102157465A (zh) 半导体装置及其制造方法
JP2007227615A (ja) 半導体装置
JPH11214598A (ja) 大規模集積回路(lsi)チップの冷却方法
JP2017168579A (ja) 半導体装置
US20160254207A1 (en) Directional Heat Dissipation Assembly and Method
JP5845804B2 (ja) 半導体デバイス
JP2008182122A (ja) 半導体装置
JP2022051466A (ja) 半導体装置
JP2010010401A (ja) 横型igbtとそれを用いたモータ制御装置
JP7513553B2 (ja) 半導体装置
WO2014091545A1 (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09726215

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12919460

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010505434

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09726215

Country of ref document: EP

Kind code of ref document: A1