WO2009118993A1 - 単結晶製造装置及び単結晶の製造方法 - Google Patents

単結晶製造装置及び単結晶の製造方法 Download PDF

Info

Publication number
WO2009118993A1
WO2009118993A1 PCT/JP2009/000626 JP2009000626W WO2009118993A1 WO 2009118993 A1 WO2009118993 A1 WO 2009118993A1 JP 2009000626 W JP2009000626 W JP 2009000626W WO 2009118993 A1 WO2009118993 A1 WO 2009118993A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
single crystal
crucible
hot zone
pipe
Prior art date
Application number
PCT/JP2009/000626
Other languages
English (en)
French (fr)
Inventor
阿部孝夫
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to DE112009000526.8T priority Critical patent/DE112009000526B4/de
Priority to CN200980109099.6A priority patent/CN101970728B/zh
Priority to US12/866,402 priority patent/US8741059B2/en
Publication of WO2009118993A1 publication Critical patent/WO2009118993A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling
    • Y10T117/1068Seed pulling including heating or cooling details [e.g., shield configuration]

Definitions

  • the present invention provides a single crystal manufacturing apparatus and a single crystal manufacturing apparatus capable of cooling a hot zone component after pulling up a single crystal having a large diameter of about 200 mm (8 inches) or more by the Czochralski method (hereinafter also referred to as CZ method).
  • the present invention relates to a method for producing a crystal.
  • FIG. 2 is a schematic view showing a general single crystal production apparatus used in the CZ method.
  • This general single crystal manufacturing apparatus 20 is for growing a single crystal 31 from a raw material melt 30 by a CZ method, and contains a raw material melt 30 in which a polycrystalline raw material is melted in a main chamber 21. 23, a heater 25 around the crucible 23, and a heat insulating material 26 around the heater 25. Parts such as the crucible 23, the heater 25, and the heat insulating material 26 that are particularly hot are called hot zone parts.
  • a pull chamber 22 for storing and removing the pulled single crystal 31 is connected to the upper end of the main chamber 21.
  • a gate valve 28 that opens and closes an opening at the upper end of the main chamber 21 is provided between the upper end of the main chamber 21 and the pull chamber 22.
  • a single crystal pulling mechanism (not shown) for winding the wire 34 having the seed holder 33 attached to the tip is provided.
  • the seed crystal 32 is held at the tip of the seed holder 33, the seed crystal 32 is immersed in the raw material melt 30, and is gently rotated.
  • the rod-shaped single crystal 31 is grown by pulling it upward.
  • an inert gas such as Ar is circulated in the chamber while evacuating in order to exhaust oxide evaporated from the melt surface.
  • the heater When the pulling of the single crystal is finished, the heater is turned off, the gate valve is closed, and the single crystal stored in the pull chamber is taken out. Then, after the hot zone components are cooled, the inside of the chamber is returned to normal pressure, and the hot zone components in the main chamber are disassembled. After the hot zone parts are disassembled, they are cleaned, replaced, etc., and then the hot zone parts are reassembled, the chamber is assembled, the raw material is filled, the vacuum is drawn, and the polycrystalline raw material is melted to pull the single crystal again Do.
  • the operation cycle for producing a single crystal by the CZ method includes a single crystal pulling process and a number of processes other than the pulling process as described above. At present, it is difficult to significantly shorten the pulling time. Therefore, it is considered that shortening the time required for the process other than the pulling of the single crystal is effective in improving the operation efficiency, that is, improving the operating rate of the single crystal manufacturing apparatus and increasing the productivity.
  • the ratio of the melting time of the raw material polycrystal before the single crystal pulling and the cooling time of the hot zone parts is large.
  • the cooling time of the hot zone parts is determined from the condition that when the inside of the main chamber is returned to normal pressure, the temperature is such that the carbon member such as a heater is cooled to such an extent that it does not deteriorate even when it comes into contact with oxygen in the air. .
  • the cooling time reaches about 8 hours for natural cooling and is about half the time required for processes other than pulling. It has become weak.
  • the cooling time for hot zone parts is nothing but the suspension period of single crystal manufacturing equipment. Therefore, this cooling time results in a significant decrease in the operating rate of the single crystal manufacturing apparatus.
  • There is no limit to the demand for increasing the diameter of single crystals and many large single crystals having a size of 300 mm (12 inches) or more are also being manufactured. In that case, the heat capacity of the hot zone components has become much larger than the present one, and accordingly, the cooling time has become longer, and the operation rate of the apparatus has been increasingly problematic due to the extended cooling time.
  • a cooling cylinder and a cooling auxiliary member for cooling the single crystal immediately after being pulled up are disclosed so as to surround the pulled single crystal. Since the cylinder is separated from the raw material melt remaining in the crucible, it hardly contributes to shortening the cooling time of the hot zone parts after the completion of the pulling of the single crystal.
  • the cooling time of the hot zone component is shortened by circulating an inert gas at room temperature or lower in the main chamber.
  • the operating rate of the single crystal manufacturing apparatus is improved.
  • the single crystal produced by the technology at that time had a diameter of about 200 mm and the length of the straight body part was about 70 cm, and the polycrystalline raw material required for the production of the single crystal was about 200 kg.
  • the length of the straight body of the single crystal to be manufactured is also increased, and the required polycrystalline raw material is about 300 kg and its weight has become heavier.
  • the present invention has been made in view of such problems, and a single crystal manufacturing apparatus and a single crystal manufacturing system that can cool hot zone components in a main chamber in a short time after pulling up a single crystal having a large diameter, for example, about 200 mm or more. It aims to provide a method.
  • the present invention includes at least a main chamber for storing a hot zone component including a crucible, and a pull chamber for storing and taking out a single crystal pulled from a raw material melt stored in the crucible.
  • a Czochralski method single crystal manufacturing apparatus comprising: a cooling pipe disposed on the crucible and through which a cooling medium flows; and a moving mechanism for moving the cooling pipe up and down.
  • a single crystal manufacturing apparatus which cools the hot zone part by lowering the cooling pipe toward the crucible by the moving mechanism after the crystal is grown.
  • At least a step of melting a raw material charged into the crucible, a step of growing a single crystal from the raw material melt and storing it in a pull chamber, and a step of cooling a hot zone component in the main chamber including the crucible A method for producing a single crystal by the Czochralski method, wherein the step of cooling the hot zone component circulates a cooling medium through a cooling pipe disposed on the crucible and directs the cooling pipe toward the crucible.
  • a method for producing a single crystal, comprising lowering and cooling the hot zone part is provided.
  • the cooling medium is circulated through the cooling pipe arranged on the crucible, and the cooling pipe is lowered toward the crucible. Cooling the hot zone components by radiative cooling, for example, natural cooling, cooling with a cooling cylinder for single crystal cooling, and circulating gas below room temperature in the main chamber
  • the hot zone component can be cooled more powerfully than the cooling described above. For example, even for a hot zone component after pulling up a large-diameter single crystal of about 200 mm or more, the cooling time can be greatly shortened. Therefore, the operating rate of the single crystal manufacturing apparatus is overwhelmingly improved, and the productivity of the single crystal is improved.
  • the cooling pipe is preferably one in which a large number of seamless pipes are wound in a ring shape, and the cooling pipe may be one in which a number of seamless pipes are wound in a ring shape.
  • the cooling pipe used for cooling the hot zone parts is composed of a large number of seamless pipes wound in a ring shape, the cooling medium is difficult to leak from the cooling pipe, and the inside of the main chamber is covered with the cooling medium. The risk of contamination is reduced.
  • the pipe is preferably a copper pipe, and a copper pipe is preferably used as the pipe.
  • the copper pipe As the pipe constituting the cooling pipe in this way, the copper has good thermal conductivity, so the atmosphere in the main chamber in contact with the cooling pipe can be quickly cooled, and the hot zone parts It can be cooled in a short time.
  • the cooling pipe may be installed in a cooling chamber that can replace the pull chamber, and is replaced with the pull chamber in the cooling process of the hot zone component. Accordingly, a cooling chamber in which the cooling pipe is installed can be disposed on the main chamber, and the cooling pipe can be lowered toward the crucible.
  • the cooling pipe is installed in a cooling chamber that can replace the pull chamber.
  • the pulling pipe is pulled. Since the cooling pipe is installed in a chamber separate from the chamber, there is no possibility that it will hinder the pulling of the single crystal or cause contamination of the single crystal.
  • the cooling chamber preferably includes a gas introduction port for introducing a cooling gas, and it is preferable that the cooling gas is circulated through the main chamber in the cooling process of the hot zone component.
  • the cooling chamber that can replace the pull chamber is provided with a gas inlet, and in addition to cooling with the cooling pipe in the cooling process, cooling gas is circulated in the main chamber, thereby further accelerating the cooling of the hot zone components. Can be made.
  • a heat exchanger for forcibly cooling the cooling medium is preferably attached, and the cooling medium is preferably forcibly cooled by the heat exchanger.
  • the cooling medium circulating in the cooling pipe absorbs the heat released from the hot zone components when passing through the main chamber. Therefore, the cooling medium is circulated by forcibly cooling the cooling medium warmed by the heat exchanger.
  • the cooling time of the hot zone parts can be further shortened, and the cost can be reduced.
  • the cooling pipe is lowered until it enters the crucible.
  • the cooling pipe is lowered until it enters the crucible, so that the radiation cooling effect from the cooling pipe can be exhibited to the maximum.
  • hot zone components can be cooled more powerfully than conventional cooling methods, and the heat capacity after pulling up a large-diameter single crystal of, for example, about 200 mm or more is large. Even for hot zone parts, the time required for cooling can be greatly reduced, the operating rate of the single crystal manufacturing apparatus can be improved, and the productivity of single crystal manufacturing can be improved.
  • the growth time for growing the single crystal is 24 hours.
  • the raw material polycrystal must be melted before growing the single crystal, and the time required for this is about 12 hours.
  • the conventional cooling method cannot cope with the increase in the heat capacity of the hot zone parts, and further reduction of the cooling time has been demanded.
  • the present inventor has studied a conventional cooling method for hot zone parts.
  • a hot zone component in a red hot state for example, about 800 ° C. if the temperature of the crucible
  • the cooling cylinder for this purpose is kept in the state of being arranged on the upper part of the quartz crucible even after the growth of the single crystal.
  • convection cooling such as flowing a gas at room temperature or lower into the main chamber.
  • either method is a passive method for dramatically cooling hot zone components.
  • the present inventor conducted extensive research to find a method for actively promoting cooling of hot zone components in addition to natural cooling and convection cooling methods. As a result, it was conceived that the cooling speed of the hot zone parts was accelerated by installing the radiation cooling means in the hot zone, and a cooling medium such as cooling water was circulated through the cooling pipe, and this cooling pipe was connected to the hot zone parts.
  • the present invention has been completed by conceiving cooling by placing the cooling pipe close to the hot zone part by lowering to a dense part.
  • FIG. 1 is a schematic diagram showing a first embodiment of a single crystal manufacturing apparatus according to the present invention, in which FIG. 1 (A) is when a single crystal is grown and FIG. 1 (B) is when a hot zone component is cooled.
  • This single crystal manufacturing apparatus 10 is used in the Czochralski method, and is roughly divided into a main chamber 11 and a pull chamber 12, and an opening at the upper end of the main chamber 11 is opened and closed between these chambers.
  • a gate valve 18 serving as a lid is provided.
  • the vicinity of a high temperature due to heat radiation from the heater during single crystal growth is referred to as a hot zone, and a part that becomes red hot in the hot zone is referred to as a hot zone part.
  • Typical examples of the hot zone part include a crucible 13 and a heater 15. , And a heat insulating material 16.
  • the pull chamber 12 is a chamber for storing and taking out the single crystal 6 pulled up from the raw material melt 9 stored in the crucible 13.
  • a single crystal pulling mechanism 19 having a wire is disposed above the pull chamber 12, and the seed crystal 5 can be held by a seed crystal holder 17 at the tip of the pulling mechanism 19.
  • the single crystal manufacturing apparatus 10 further includes a cooling pipe 1 through which a cooling medium is circulated as shown in FIG. 1B and a moving mechanism 3 that moves the cooling pipe 1 up and down.
  • a cooling pipe 1 through which a cooling medium is circulated as shown in FIG. 1B and a moving mechanism 3 that moves the cooling pipe 1 up and down.
  • the cooling pipe 1b is connected to the cooling pipe 1 by connecting the pipe 1a communicating from the outside to the inside of the pull chamber 12 with the flexible pipe 1b. Can be moved up and down.
  • the moving mechanism 3 that moves the cooling pipe up and down may also serve as the pulling mechanism 19 that pulls up the single crystal.
  • the operation of the single crystal manufacturing apparatus 10 is as follows. After the single crystal is grown, the pulled single crystal 6 and the cooling pipe 1 are replaced, the cooling medium flows through the cooling pipe 1, and the cooling pipe 1 is moved by the moving mechanism 3. It stops on the raw material melt which descend
  • the cooling pipe 1 and the moving mechanism 3 may be installed in advance in the pull chamber.
  • the cooling means for the hot zone parts is further installed in the single crystal manufacturing apparatus, so that the conventional cooling method, for example, natural cooling, cooling with a cooling cylinder for single crystal cooling, and below normal temperature Rather than cooling the gas through the main chamber, the radiant cooling effect of the cooling pipe placed in the hot zone can strongly cool the hot zone components.
  • the cooling time can be greatly shortened. Therefore, the operating rate of the single crystal manufacturing apparatus is overwhelmingly improved, and the productivity of the single crystal is improved.
  • the cooling pipe 1 is a thing with many seamless pipes wound by the ring shape.
  • the cooling pipe used for cooling the hot zone parts is made up of a large number of seamless pipes wound in a ring shape, so that the cooling medium is unlikely to leak from the cooling pipe and the main chamber may be contaminated with the cooling medium. Decrease.
  • the pipe of the cooling pipe 1 is preferably a copper pipe.
  • the cooling pipe has a good thermal conductivity, the heat removal effect is enhanced, and the atmosphere in the main chamber in contact with the cooling pipe can be quickly cooled.
  • the cooling medium to be circulated through the cooling pipe is not particularly limited, and may be cooling water such as pure water. Further, in order to forcibly cool the cooling medium and further promote the cooling of the hot zone components, it is preferable to install a heat exchanger (not shown) in the single crystal manufacturing apparatus. If the cooling medium can be forcibly cooled through the cooling pipe by the heat exchanger installed in the single crystal manufacturing apparatus in this way, the cooling effect can be reduced during the cooling process, regardless of how many times the cooling medium is circulated and passed through the hot zone. Can last. Therefore, the total amount of cooling water used can be reduced, which is advantageous in terms of cost.
  • FIG. 4 is a schematic view showing a second embodiment of the single crystal manufacturing apparatus according to the present invention.
  • FIG. 4A shows a single crystal growing time
  • FIG. 4B shows a hot zone component cooling time.
  • FIG. 5 is a plan view of FIG. 4, and FIGS. 5A and 5B correspond to FIGS. 4A and 4B, respectively.
  • the single crystal manufacturing apparatus 10 includes a cooling chamber 2 separate from the pull chamber 12, and a cooling pipe 1 is installed in the cooling chamber 2. It has been done.
  • the pull chamber 12 and the cooling chamber 2 can be driven by a hydraulic unit 8, for example.
  • the gate valve 18 is closed so that the main chamber 11 is not in contact with the outside air, the pull chamber and the cooling chamber are replaced, the gate valve is opened, and the cooling pipe is lowered.
  • the cooling process can be performed. Further, since the cooling pipe 1 is not installed in the pull chamber 12, the cooling pipe is not disturbed during pulling of the single crystal, and further, the grown single crystal is not contaminated. Furthermore, the trouble of replacing the grown single crystal and the cooling pipe can be saved.
  • the cooling chamber 2 is provided with a moving mechanism 3 so that the cooling pipe 1 can be moved up and down. Moreover, it is preferable that the gas inlet 4 for introducing the cooling gas is formed. As described above, since the gas inlet 4 is formed in the cooling chamber 2 including the cooling pipe 1, the cooling gas introduced from the gas inlet 4 in addition to the radiation cooling effect of the hot zone components by the cooling pipe 1. Thus, a convective cooling effect can also be desired. Therefore, the cooling of the hot zone component can be further accelerated.
  • a gas discharge port 14 for discharging the introduced gas is provided at the bottom of the main chamber.
  • raw material polycrystal is put into a crucible 13, and the raw material polycrystal is melted by a heater 15 to obtain a raw material melt 9.
  • a heater 15 for example, when the diameter is about 200 mm and the length of the straight body portion is about 1 m, about 300 kg of the raw material polycrystal is used.
  • the seed crystal 5 is brought into contact with the melted raw material melt 9 as shown in FIG. 1A, and the single crystal 6 is grown by the Czochralski method.
  • the growing single crystal 6 is cooled by the cooling cylinder 7 while being accommodated in the pull chamber 12 from the main chamber 11.
  • the single crystal 6 having a desired length is completely accommodated in the pull chamber 12, the gate valve 18 is closed to seal the main chamber 11, and the single crystal 6 grown from the pull chamber 12 is taken out.
  • the cooling pipe 1 is installed in the pull chamber 12, and the cooling medium is circulated through the cooling pipe 1 disposed on the crucible 13.
  • the cooling pipe 1 is connected to the pipe 1 a communicating from the outside to the inside of the pull chamber 12 by the flexible tube 1 b and can be moved up and down by the moving mechanism 3.
  • the cooling pipe 1 is moved down toward the crucible 13 by the moving mechanism 3 to cool the hot zone components in the main chamber 11.
  • a cooling medium is circulated through a cooling pipe disposed on the crucible, and the cooling pipe is lowered toward the crucible and left to stand.
  • the conventional cooling methods for example, natural cooling, cooling by a cooling cylinder for single crystal cooling, and cooling by circulating a gas below room temperature in the main chamber
  • the hot zone component can be strongly cooled, and the cooling time can be greatly shortened even for a hot zone component after pulling up a large-diameter single crystal of, for example, about 200 mm or more. Therefore, the operating rate of the single crystal manufacturing apparatus is overwhelmingly improved, and the productivity of the single crystal is improved.
  • the cooling pipe 1 in which a large number of seamless pipes are wound in a ring shape.
  • the cooling pipe used for cooling the hot zone parts is made of a ring in which a large number of seamless pipes are wound in a ring shape, so that the cooling medium is difficult to leak from the cooling pipe, and the inside of the main chamber is cooled. This reduces the risk of contamination.
  • the heat conductivity of the cooling pipe is improved, the heat removal effect is improved, and the atmosphere in the main chamber in contact with the cooling pipe can be efficiently radiated and cooled.
  • the zone parts can be cooled in a short time.
  • the cooling pipe 1 When the cooling pipe 1 is lowered by the moving mechanism 3, it is preferable that the cooling pipe is lowered until it enters the crucible 13 as shown in FIG. Thus, when the hot zone component is cooled, the cooling pipe is lowered until it enters the crucible, so that the radiation cooling effect from the cooling pipe can be exhibited to the maximum.
  • the cooling process when the pull chamber and the cooling chamber are exchanged as shown in FIGS.
  • the cooling pipe is not installed in the pull chamber but is installed in a new cooling chamber, after the growth of the single crystal, the gate valve 18 is closed and the single crystal 6 accommodated in the pull chamber 12 is taken out.
  • the pull chamber 12 is removed from the main chamber 11 by the hydraulic unit 8, the cooling chamber 2 is swung to the position where the pull chamber 12 is placed, and the cooling chamber 2 is arranged on the main chamber 11.
  • the cooling pipe 1 is installed on the crucible 13 (see FIG. 5).
  • the cooling pipe 1 is lowered toward the crucible 13 by the moving mechanism 3.
  • the cooling pipe can be easily arranged on the crucible, and since the cooling pipe 1 is not installed in the pull chamber 12, the single crystal is pulled up. There is no risk that the cooling pipe will get in the way, and there is no risk of contaminating the grown single crystal.
  • the cooling gas In order to further promote the cooling of the hot zone components, it is preferable to circulate the cooling gas into the main chamber 11 from the gas inlet 4 provided in the cooling chamber replaceable with the pull chamber.
  • the cooling of the hot zone component can be further accelerated by combining the convection cooling by the cooling gas.
  • Such convection cooling with a cooling gas in addition to radiation cooling can naturally be performed even when the cooling chamber as shown in FIG. 1 is not provided, and the effect can be exhibited.
  • the cooling gas introduced from the gas inlet 4 is discharged from a gas outlet 14 provided at the bottom of the main chamber 11 of the single crystal manufacturing apparatus.
  • the type of the cooling gas is not particularly limited as long as it does not contaminate the inside of the single crystal manufacturing apparatus.
  • the same gases as those circulated during the growth of the single crystal can be used.
  • An inert gas such as argon gas or nitrogen gas can be used.
  • the introduced gas may be cooled to room temperature or lower.
  • the cooling pipe 1 is pulled up by the moving mechanism 3, the hot zone parts are cleaned and replaced, the raw material is filled in the crucible, and the process returns to the raw material polycrystal melting step.
  • a cooling chamber is used in the cooling process, the next single crystal is grown by replacing the pull chamber.
  • a refrigerator and an antifreeze liquid can be combined to cool the cooling medium flowing through the cooling pipe and promote the cooling of the hot zone components.
  • Example 1 With the single crystal manufacturing apparatus 10 shown in FIG. 1 of the present invention, the cooling time of the hot zone components was measured as follows. As the crucible of the single crystal manufacturing apparatus used in Example 1, a crucible having a diameter of about 600 mm for pulling up a single crystal having a diameter of 200 mm was used. Then, using the quartz crucible of this size, the raw material polycrystal was melted over 12 hours, and a single crystal having a diameter of about 200 mm and a length of the straight body portion of about 1 m was grown over 24 hours. After the growth of the single crystal was completed, the heater was turned off and the crystal was taken out of the pull chamber, and then the temperature of the graphite crucible supporting the quartz crucible was measured and found to be about 800 ° C.
  • FIG. 3 shows the results of measuring the temperature of the graphite crucible 13, which is a representative hot zone component. As a result, the temperature of the crucible became about 50 ° C. in about 4 hours, and the cooling of the hot zone components was completed.
  • Example 2 The melting time and amount of the raw material, the diameter of the grown single crystal, the length of the straight body portion, and the growing time were performed under the same conditions as in Example 1. Next, the cooling water of about 20 ° C. is circulated through the cooling pipe, lowered to the barely touching position of the raw material melt remaining in the crucible, and the normal temperature argon gas is circulated from the gas inlet. The hot zone parts were cooled by combining radiation cooling by a tube and convection cooling by a cooling gas. The single crystal production apparatus used was the same as in Example 1, and cooling with the cooling cylinder for cooling the single crystal was continued.
  • FIG. 3 shows the results of measuring the temperature of the graphite crucible 13, which is a representative hot zone component. As a result, the temperature of the crucible reached about 50 ° C. in about 2 hours, and the cooling of the hot zone components was completed.
  • Example 1 Comparative Example 1
  • the raw material melting time and amount, the diameter of the grown single crystal, the length of the straight body, and the growing time were the same as those in Example 1.
  • the natural cooling of the hot zone component is performed under the same conditions as in Example 1 except that the cooling pipe is not used, the cooling gas is not circulated, and the cooling cylinder for cooling the single crystal is also stopped. Went.
  • the results of measuring the temperature of a graphite crucible, which is a representative hot zone component, are shown in FIG. As a result, the temperature of the crucible became about 50 ° C. in about 8 hours, and the cooling of the hot zone components was completed.
  • Example 2 Comparative Example 2
  • the raw material melting time and amount, the diameter of the grown single crystal, the length of the straight body, and the growing time were the same as those in Example 1.
  • the hot zone component was cooled under the same conditions as in Example 1 except that the cooling pipe was not used. That is, only cooling by a cooling cylinder for single crystal cooling was performed.
  • the results of measuring the temperature of a graphite crucible, which is a representative hot zone component, are shown in FIG. As a result, the temperature of the crucible became about 50 ° C. in about 6 hours, and the cooling of the hot zone parts was completed.
  • the cooling of the hot zone parts can be shortened to 4 hours by adopting the cooling method of the first embodiment, that is, the radiation cooling by the cooling pipe.
  • the cooling of the hot zone components can be shortened to 2 hours by combining the cooling method, that is, the radiation cooling by the cooling pipe and the convection cooling by the cooling gas. Therefore, the production cost can be reduced by shortening the total operating time by 8 to 10%.
  • the present invention is not limited to the above embodiment.
  • the above embodiment is merely an example, and the present invention has the same configuration as that of the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical idea of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 本発明は、ルツボ13を含むホットゾーン部品を収容するメインチャンバー11と、ルツボ13に収容された原料融液から引上げられる単結晶を収納して取り出すためのプルチャンバー12とを具備するチョクラルスキー法による単結晶製造装置10であって、さらに、ルツボ上に配置され冷却媒体が流通される冷却管1と、該冷却管1を上下動させる移動機構3とを具備し、単結晶の育成後に、移動機構3により冷却管1がルツボ13に向けて降下することでホットゾーン部品を冷却するものである単結晶製造装置10及び単結晶の製造方法である。これにより、大口径例えば約200mm以上の単結晶を引上げた後にメインチャンバー内のホットゾーン部品を短時間で冷却できる単結晶製造装置及び単結晶の製造方法が提供される。

Description

単結晶製造装置及び単結晶の製造方法
 本発明は、チョクラルスキー法(Czochralski Method、以下CZ法とも称する)により例えば直径約200mm(8インチ)以上といった大口径の単結晶を引上げた後にホットゾーン部品を冷却できる単結晶製造装置及び単結晶の製造方法に関する。
 
 近年、太陽電池や、MOS(Metal Oxide Semiconductor)トランジスタ等の半導体デバイスは、その性能向上と製造コスト低減のため、基板として使用されるシリコン等のウェーハの大直径化が進んでいる。そのため、CZ法等により育成される単結晶インゴットも例えば直径200mm(8インチ)や直径300mm(12インチ)といったものが製造されるようになっており、大口径化、高重量化の一途をたどっている。
 このような単結晶インゴットは、例えば図2に示すような単結晶製造装置により製造される。図2は、CZ法で使用されている一般的な単結晶製造装置を示す概略図である。
 この一般的な単結晶製造装置20は、CZ法によって原料融液30から単結晶31を成長させるものであって、メインチャンバー21内に、多結晶原料を溶融した原料融液30を収容するルツボ23と、該ルツボ23の周囲にヒーター25と、該ヒーター25の周囲に断熱材26とを収納して構成されている。
 特に熱を帯びるルツボ23、ヒーター25、断熱材26といった部品は、ホットゾーン部品と呼ばれている。
 メインチャンバー21の上端には引上げられた単結晶31を収納して取り出すためのプルチャンバー22が接続されている。そして、メインチャンバー21の上端部とプルチャンバー22との間には、メインチャンバー21の上端の開口部を開閉するゲートバルブ28が設けられている。さらに、プルチャンバー22の上方には、先端に種ホルダ33が取りつけられたワイヤ34を巻き上げるための単結晶引き上げ機構(不図示)が設けられている。
 このような単結晶製造装置20を用いて単結晶31を製造するには、種ホルダ33の先端に種結晶32を保持させ、該種結晶32を原料融液30に浸漬し、回転させながら静かに上方に引上げて棒状の単結晶31を育成する。
 このとき、チャンバー内には、融液表面から蒸発した酸化物を排気するために真空排気を行いながらAr等の不活性ガスを流通させる。
 単結晶の引上げが終わると、ヒーターをオフにし、ゲートバルブを閉めて、プルチャンバーに収納された単結晶を取り出す。そして、ホットゾーン部品の冷却を待ってチャンバー内を常圧に戻し、メインチャンバー内のホットゾーン部品を解体する。ホットゾーン部品の解体が終わると、その清掃、交換等を行った後、再びホットゾーン部品を組み立て、チャンバーの組み立て、原料の充填、真空引き、多結晶原料の溶融を経て再び単結晶の引き上げを行う。
 このようなCZ法による単結晶の製造は、生産性の向上を図り、コストを低減させるために、単結晶成長速度を高速化することが一つの大きな手段としてこれまでも多くの改良がなされてきた。しかし、CZ法による単結晶製造の操業サイクルは、単結晶の引上げと、上記のような引上げ以外の多くの工程とからなり、現状では引上げ時間のこれ以上の大幅な短縮が困難である。そのため、単結晶の引上げ以外の工程所要時間を短縮することが操業効率の向上、すなわち単結晶製造装置の稼働率を向上して生産性を上げることに有効であると考えられる。
 単結晶引上げ工程以外では、単結晶引き上げ前の原料多結晶の溶融と、ホットゾーン部品の冷却時間の占める割合が大きい。ホットゾーン部品の冷却時間はメインチャンバー内を常圧に戻したときにヒーター等のカーボン部材が空気中の酸素と接しても劣化しない程度にまで冷却された温度になるという条件から決められている。現在主流の直径200mm(8インチ)、直胴部の長さが1mという単結晶の製造の場合でも、この冷却時間は自然放冷では約8時間に達し、引上げ以外の工程所要時間の約半分弱を占めるに至っている。
 ホットゾーン部品の冷却時間は単結晶製造装置の休止期間に他ならない。そのため、この冷却時間は結果的に単結晶製造装置の稼働率を著しく低下させる原因になる。単結晶の大径化の要求はとどまるところがなく、300mm(12インチ)以上の大型単結晶の製造も多く実施されている。その場合、ホットゾーン部品の熱容量は現在より格段に大きくなり、これに応じて冷却時間もより長くなり、冷却時間の延長による装置の稼働率低下がますます問題となっていた。
 国際公開WO 01/057293号パンフレットでは、引上げられた直後の単結晶を冷却するための冷却筒及び冷却補助部材が引上げられた単結晶を取り囲むように配置されたものが開示されているが、冷却筒はルツボ内に残留した原料融液から離れているため、単結晶引上げ終了後のホットゾーン部品の冷却時間の短縮にはほとんど寄与しない。
 また、特開平9-235173号公報では、単結晶の引上げ後のホットゾーン部品の冷却方法として、メインチャンバー内に常温以下の不活性なガスを流通させることにより、ホットゾーン部品の冷却時間を短くして、単結晶製造装置の稼働率の向上を図っている。
 しかし、当時の技術で製造する単結晶は、直径が約200mm、直胴部の長さが約70cm程度であり、単結晶製造に要する多結晶原料は約200kg程度であったが、現在では、引上げ効率の向上のため製造する単結晶の直胴長さも長くなり、必要とする多結晶原料は約300kgとその重量が重くなってきている。
 上述したように、原料融液として溶融する多結晶原料の量が多ければ多いほど、ルツボを含むホットゾーン部品は大型化し、その熱容量も大きくなる一方である。
 そのため、特開平9-235173号公報のように常温以下のガスをチャンバー内に流通させる方法だけでは、熱容量がさらに増加したホットゾーン部品を短時間で冷却するには充分とは言えず、冷却時間の更なる短縮が求められていた。
 
 本発明はこのような問題に鑑みてなされたもので、大口径例えば約200mm以上の単結晶を引上げた後にメインチャンバー内のホットゾーン部品を短時間で冷却できる単結晶製造装置及び単結晶の製造方法を提供することを目的とする。
 上記課題を解決するため、本発明は、少なくとも、ルツボを含むホットゾーン部品を収容するメインチャンバーと、前記ルツボに収容された原料融液から引上げられる単結晶を収納して取り出すためのプルチャンバーとを具備するチョクラルスキー法による単結晶製造装置であって、さらに、前記ルツボ上に配置され冷却媒体が流通される冷却管と、該冷却管を上下動させる移動機構とを具備し、前記単結晶の育成後に、前記移動機構により前記冷却管が前記ルツボに向けて降下することで前記ホットゾーン部品を冷却するものであることを特徴とする単結晶製造装置を提供する。
 また、少なくとも、ルツボに投入した原料を溶融する工程と、該原料融液から単結晶を育成し、プルチャンバーに収納する工程と、前記ルツボを含むメインチャンバー内のホットゾーン部品を冷却する工程とを含むチョクラルスキー法による単結晶の製造方法であって、前記ホットゾーン部品の冷却工程は、前記ルツボ上に配置された冷却管に冷却媒体を流通させ、該冷却管を前記ルツボに向けて降下させて前記ホットゾーン部品を冷却することを含むことを特徴とする単結晶の製造方法を提供する。
 このように本発明は、チョクラルスキー法において単結晶の育成後にホットゾーン部品を冷却する際、ルツボ上に配置された冷却管に冷却媒体を流通させ、該冷却管をルツボに向けて降下させて放置し、輻射冷却によりホットゾーン部品を冷却することで、今までの冷却方法、例えば、自然冷却や、単結晶冷却用の冷却筒による冷却、そして常温以下のガスをメインチャンバー内に流通させるという冷却よりも、強力にホットゾーン部品を冷却でき、例えば約200mm以上といった大口径単結晶を引上げた後のホットゾーン部品であっても、大幅に冷却時間を短縮することができる。従って、単結晶製造装置の稼働率が圧倒的に向上し、単結晶の生産性が向上する。
 この場合、前記冷却管は、継ぎ目のないパイプがリング状に多数巻きされたものであることが好ましく、また前記冷却管として継ぎ目のないパイプがリング状に多数巻きされたものを使用することが好ましい。
 このように、ホットゾーン部品の冷却に使用する冷却管が、継ぎ目のないパイプがリング状に多数巻きされたものであることにより、冷却媒体が冷却管から漏れにくく、メインチャンバー内を冷却媒体で汚染する恐れが減少する。
 さらに、前記パイプは、銅パイプであることが好ましく、また前記パイプとして銅パイプを使用することが好ましい。
 このように冷却管を構成するパイプとして銅パイプを使用することにより、銅は熱伝導率が良好であるため、冷却管と接するメインチャンバー内の雰囲気をすばやく冷却することができ、ホットゾーン部品を短時間で冷却することができる。
 また本発明において、前記冷却管は、前記プルチャンバーと置換可能なクーリングチャンバーに設置されたものであることとすることができ、そして、前記ホットゾーン部品の冷却工程において、前記プルチャンバーと置換することにより前記冷却管が設置されたクーリングチャンバーを前記メインチャンバー上に配置して、前記ルツボに向かって前記冷却管を降下させることができる。
 このように、冷却管は、プルチャンバーと置換可能なクーリングチャンバー内に設置されたものであり、このクーリングチャンバーをメインチャンバー上に配置して、冷却管をルツボに向かって降下させることで、プルチャンバーとは別個のチャンバー内に冷却管が設置されているため、単結晶引き上げの邪魔となったり、または単結晶への汚染の原因となる恐れがない。
 このとき、前記クーリングチャンバーは、冷却ガスを導入するガス導入口を具備するものであることが好ましく、さらに前記ホットゾーン部品の冷却工程で、前記メインチャンバーに冷却ガスを流通させることが好ましい。
 このように、プルチャンバーと置換可能なクーリングチャンバーにガス導入口を設け、冷却工程において冷却管による冷却に加えて、冷却ガスをメインチャンバー内に流通させることにより、ホットゾーン部品の冷却をさらに加速させることができる。
 そして本発明は、さらに、前記冷却媒体を強制冷却するための熱交換器が取付けられたものであることとすることが好ましく、また、前記冷却媒体を熱交換器により強制冷却することが好ましい。
 冷却管の中を流通する冷却媒体は、メインチャンバー内を通過するとホットゾーン部品から放出される熱を吸収するため、熱交換器により温まった冷却媒体を強制冷却することで、冷却媒体を循環させてもさらにホットゾーン部品の冷却時間を短縮することができ、コストの低減も図れる。
 また、前記ホットゾーン部品の冷却工程において、前記冷却管を前記ルツボの内部に入り込むまで降下させることが好ましい。
 このように、ホットゾーン部品の冷却時に、冷却管をルツボの内部に入り込むまで降下させることで、冷却管からの輻射冷却効果を最大限に発揮することができる。
 本発明の単結晶製造装置及び単結晶の製造方法であれば、従来の冷却方法よりも、強力にホットゾーン部品を冷却でき、例えば約200mm以上といった大口径単結晶を引上げた後の熱容量の大きいホットゾーン部品であっても、冷却に要する時間を大幅に短縮することができ、単結晶製造装置の稼働率を向上させ、単結晶製造の生産性を向上させることができる。
 
本発明にかかる単結晶製造装置の第1実施形態を示す概略図であり、(A)は単結晶の育成時、(B)はホットゾーン部品の冷却工程時。 CZ法で使用されている一般的な単結晶製造装置を示す概略図である。 実施例、比較例においてホットゾーン部品のルツボの温度を測定した結果を示す図である。 本発明にかかる単結晶製造装置の第2の実施形態を示す概略図であり、(A)は単結晶の育成時、(B)はホットゾーン部品の冷却工程時。 図4の平面図であり、(A)及び(B)は、それぞれ図4(A)及び図4(B)に対応する図である。
 例えば育成する単結晶の直胴部の長さが約1mで直径が約200mmであるとき、単結晶を成長させるための成長時間は24時間であるとする。このような単結晶の製造には、単結晶育成前に原料多結晶を溶融しなければならず、そのために要する時間は約12時間である。さらに単結晶を育成した後に、メインチャンバー内に設置されているホットゾーン部品の冷却、ホットゾーン部品の解体と清掃、そして次の単結晶育成のための原料の充填という工程があり、合計約12時間が必要である。そのうちホットゾーン部品の冷却には自然放冷では約8時間を要する。
 前述したように、単結晶の大口径化、大重量化に伴い、溶融する原料多結晶の量も増加した。そのため、ホットゾーン部品の熱容量の増加に従来の冷却方法では対応できず、冷却時間の更なる短縮が求められていた。
 本発明者は、従来からなされてきたホットゾーン部品の冷却方法について検討した。通常、単結晶の育成後、赤熱状態のホットゾーン部品(例えばルツボの温度であれば約800℃)は、自然に約50℃程度まで冷却されるまで放置したり、成長中の単結晶を冷却するための冷却筒を単結晶の育成後にも石英ルツボの上部に配置した状態のままとしたりしてホットゾーン部品の冷却を促していた。また、メインチャンバー内に常温以下のガスを流す等の対流冷却を利用した冷却方法もあった。しかし、いずれの方法もホットゾーン部品を劇的に冷却するには消極的な方法である。
 そこで本発明者は、自然放冷や対流冷却の方法以外に積極的にホットゾーン部品の冷却を促進するための方法を見つけるべく、鋭意研究を重ねた。その結果、輻射冷却手段をホットゾーンに設置することで、ホットゾーン部品の冷却速度を促進させることに想到し、冷却水等の冷却媒体を冷却管に流通させ、この冷却管をホットゾーン部品の密集する部分へ降ろして、ホットゾーン部品の近くに冷却管を配置することによって冷却することを発想し、本発明を完成させた。
 以下、本発明の実施形態について図面を参照しながら具体的に説明するが、本発明はこれらに限定されるものではない。
 まず、本発明の単結晶製造装置について説明する。
 図1は、本発明にかかる単結晶製造装置の第1実施形態を示す概略図であり、図1(A)は単結晶育成時、図1(B)はホットゾーン部品の冷却時である。
 この単結晶製造装置10はチョクラルスキー法で使用されるものであり、大きく分けてメインチャンバー11とプルチャンバー12を具備し、これらのチャンバーの間にはメインチャンバー11の上端の開口部を開閉するための蓋となるゲートバルブ18が設けられている。
 メインチャンバー11内には、図1(A)のように多結晶原料を溶融した原料融液9を収容するルツボ13と、該ルツボ13の周囲に原料多結晶を溶融し該原料融液の温度を保つためのヒーター15と、該ヒーター15の周囲にヒーターから放出される熱を遮蔽してメインチャンバー11を保護するための断熱材16とを収納して構成されている。
 特に単結晶成長中にヒーターからの放熱により高温となる付近をホットゾーンと呼び、ホットゾーンで赤熱状態となる部品をホットゾーン部品と呼び、このホットゾーン部品の代表は、例えばルツボ13、ヒーター15、そして断熱材16である。
 プルチャンバー12は、ルツボ13に収容された原料融液9から引上げられた単結晶6を収納して取り出すためのチャンバーである。
 このプルチャンバー12の上部には、ワイヤを具備する単結晶の引上げ機構19が配置され、引上げ機構19の先端には種結晶ホルダ17により種結晶5を保持させることができる。
 そして、単結晶製造装置10はさらに、図1(B)のように冷却媒体が流通される冷却管1がルツボ13上に配置され、また、冷却管1を上下動させる移動機構3とを具備する。
 冷却管1を移動機構3により上下動可能とするためには、例えば、プルチャンバー12の外から中へと通じている管1aと冷却管1とをフレキシブルチューブ1bで接続することにより、冷却管を上下動させることができる。
 尚、冷却管を上下動させる移動機構3は単結晶を引上げる引上げ機構19と兼務させてもよい。
 このような単結晶製造装置10の動作は、単結晶の育成後に、引上げた単結晶6と冷却管1を付け替えて、冷却管1に冷却媒体が流通し、移動機構3により冷却管1がルツボ13に向けて降下して残った原料融液の上で停止して、冷却を開始する。もちろん、この冷却管1と、移動機構3は、予めプルチャンバー内に設置しておくようにしてもよい。
 このように、単結晶製造装置にさらにホットゾーン部品の冷却手段が設置されていることにより、今までの冷却方法、例えば、自然冷却や、単結晶冷却用の冷却筒による冷却、そして常温以下のガスをメインチャンバー内に流通させるという冷却よりも、ホットゾーンに配置した冷却管の輻射冷却効果により、強力にホットゾーン部品を冷却でき、例えば約200mm以上といった大口径単結晶を引上げた後のホットゾーン部品であっても、大幅に冷却時間を短縮することができる。従って、単結晶製造装置の稼働率が圧倒的に向上し、単結晶の生産性が向上する。
 そして、上記単結晶装置10において、冷却管1は継ぎ目のないパイプがリング状に多数巻きされたものであることが好ましい。
 ホットゾーン部品の冷却に使用する冷却管が、継ぎ目のないパイプがリング状に多数巻きされたものであることにより、冷却媒体が冷却管から漏れにくく、メインチャンバー内を冷却媒体で汚染する恐れが減少する。
 さらに冷却管1のパイプは、銅パイプであることが好ましい。このように、冷却管の材質が銅であることにより、熱伝導率が良好な冷却管となり、除熱効果が高くなり、冷却管と接するメインチャンバー内の雰囲気をすばやく冷却することができる。
 なお、冷却管に流通させる冷却媒体については特に限定されず、例えば純水等の冷却水であってもよい。また、この冷却媒体を強制冷却してさらにホットゾーン部品の冷却を促進させるには、単結晶製造装置に熱交換器(不図示)を設置することが好ましい。このように単結晶製造装置に設置された熱交換器により冷却管を介して冷却媒体を強制冷却できれば、冷却媒体を循環させてホットゾーンを何度通過したとしても、冷却工程の間、冷却効果を持続することができる。従って、冷却水のトータル使用量を低減でき、コスト的に有利である。
 また、冷却管1は、図4のようにプルチャンバー12と置換可能なクーリングチャンバー2に設置されたものであってもよい。
 図4は、本発明にかかる単結晶製造装置の第2の実施形態を示す概略図である。図4(A)は単結晶の育成時、図4(B)はホットゾーン部品の冷却時を示している。また、図5は、図4の平面図であり、図5(A)及び図5(B)は、それぞれ図4(A)及び図4(B)と対応している。
 本発明の第2の実施形態は、図4、図5に示すように、単結晶製造装置10がプルチャンバー12とは別個のクーリングチャンバー2を具備し、該クーリングチャンバー2に冷却管1が設置されたものである。このプルチャンバー12とクーリングチャンバー2は、例えば油圧ユニット8により駆動するものとすることができる。
 これにより、単結晶の育成後、ゲートバルブ18を閉めてメインチャンバー11を外気と接しないようにして、プルチャンバーとクーリングチャンバーを入れ替えて、ゲートバルブを開き、冷却管を降下させるといった簡単な操作で冷却工程を行うことができるようになる。
 また、プルチャンバー12内に冷却管1を設置しないため、単結晶引き上げ中に冷却管が邪魔となる恐れがなく、さらに、育成した単結晶を汚染する恐れもない。さらに、育成の終了した単結晶と、冷却管を付け替えるといった手間も省ける。
 そしてこのクーリングチャンバー2は、冷却管1を上下動できるように移動機構3が設置されている。また、冷却ガスを導入するためのガス導入口4が形成されたものであることが好ましい。このように、冷却管1を具備するクーリングチャンバー2にガス導入口4が形成されていることによって、冷却管1によるホットゾーン部品の輻射冷却効果に加えて、ガス導入口4から導入した冷却ガスにより、対流冷却効果も望むことができる。そのため、ホットゾーン部品の冷却をさらに加速させることができる。なお、メインチャンバーの底部には導入したガスを排出するためのガス排出口14が設けられている。
 次に上記に説明した単結晶製造装置を用いて単結晶を製造する方法について説明する。
 まず、図1に示す単結晶製造装置10において、ルツボ13に原料多結晶を投入し、ヒーター15により原料多結晶を溶融して原料融液9とする。これには、原料多結晶の溶融量にもよるが、例えば直径約200mm、直胴部の長さが約1mの場合、約300kgの原料多結晶を使用する。
 次に図1(A)のように溶融した原料融液9に種結晶5を接触させて、チョクラルスキー法により単結晶6を育成する。このとき成長中の単結晶6は、メインチャンバー11からプルチャンバー12に収容されていく間に、冷却筒7により冷却される。そして所望の長さとなった単結晶6は、プルチャンバー12に完全に収容され、ゲートバルブ18を閉めてメインチャンバー11を密閉し、プルチャンバー12から育成された単結晶6を取出す。
 続いてプルチャンバー12内に冷却管1を設置し、ルツボ13上に配置された冷却管1に冷却媒体を流通させる。このとき冷却管1は、プルチャンバー12の外から中へと通じている管1aと、フレキシブルチューブ1bで接続されており、移動機構3により上下動可能である。
 そして、冷却管1をルツボ13に向けて移動機構3により降下させ、メインチャンバー11内のホットゾーン部品を冷却する。
 このように、チョクラルスキー法において単結晶の育成後にホットゾーン部品を冷却する際、ルツボ上に配置された冷却管に冷却媒体を流通させ、該冷却管をルツボに向けて降下させて放置し、輻射冷却によりホットゾーン部品を冷却することで、今までの冷却方法、例えば、自然冷却や、単結晶冷却用の冷却筒による冷却、そして常温以下のガスをメインチャンバー内に流通させるという冷却よりも、強力にホットゾーン部品を冷却でき、例えば約200mm以上といった大口径単結晶を引上げた後のホットゾーン部品であっても、大幅に冷却時間を短縮することができる。従って、単結晶製造装置の稼働率が圧倒的に向上し、単結晶の生産性が向上する。
 このとき、冷却管1として継ぎ目のないパイプがリング状に多数巻きされたものを使用することが好ましい。
 このように、ホットゾーン部品の冷却に使用する冷却管が、継ぎ目のないパイプがリング状に多数巻きされたものを使用することにより、冷却媒体が冷却管から漏れにくく、メインチャンバー内を冷却媒体で汚染する恐れが減少する。
 さらに、上記パイプとして銅パイプを使用することで、冷却管の熱伝導率が良好となり、除熱効果が向上して冷却管と接するメインチャンバー内の雰囲気を効率よく輻射冷却することができ、ホットゾーン部品を短時間で冷却することができる。
 そして、このような冷却管1を移動機構3により降下させるとき、図1(B)のように冷却管をルツボ13の内部に入り込むまで降下させることが好ましい。
 このように、ホットゾーン部品の冷却時に、冷却管をルツボの内部に入り込むまで降下させることで、冷却管からの輻射冷却効果を最大限に発揮することができる。
 さらにホットゾーン部品の冷却を促進したい場合は、冷却管に流通する冷却媒体を熱交換器で強制冷却しつつ循環させることにより、冷却媒体がホットゾーンを何度通過しても、冷却工程の間、冷却媒体による冷却効果を持続することができる上に、コスト的にも有利である。
 ここで、図4、5のようにプルチャンバーとクーリングチャンバーを入れ替えたときの、冷却工程について説明する。
 冷却管をプルチャンバーに設置せずに、新たなクーリングチャンバーに設置してある場合、単結晶の育成後、ゲートバルブ18を閉めてプルチャンバー12に収容された単結晶6を取り出す。そして、図5のように油圧ユニット8によりプルチャンバー12をメインチャンバー11の上からはずし、プルチャンバー12が載っていた位置にクーリングチャンバー2をスイングし、メインチャンバー11上にクーリングチャンバー2を配置してプルチャンバーと置換することにより冷却管1がルツボ13上に設置される(図5参照)。
 次に、移動機構3によりルツボ13に向かって冷却管1を降下する。
 このように、クーリングチャンバーをメインチャンバー上でプルチャンバーと置換することにより冷却管をルツボ上に簡単に配置することができ、また、プルチャンバー12内に冷却管1を設置しないため、単結晶引き上げ中に冷却管が邪魔となる恐れがなく、さらに、育成した単結晶を汚染する恐れもない。
 そして更にホットゾーン部品の冷却を促進するには、プルチャンバーと置換可能なクーリングチャンバーに設けられたガス導入口4から冷却ガスをメインチャンバー11内に流通させることが好ましい。このように冷却管による輻射冷却に加えて、冷却ガスによる対流冷却を組み合わせることで、ホットゾーン部品の冷却をさらに加速させることができる。このような、輻射冷却に加えて冷却ガスによる対流冷却することは、図1のようなクーリングチャンバーを有しない場合でも、当然に行うことができ、効果を発揮できる。
 なお、ガス導入口4から導入された冷却ガスは、単結晶製造装置のメインチャンバー11の底部に設けられたガス排出口14から排出されるようになっている。また、冷却ガスの種類は、単結晶製造装置内を汚染しないガスであれば特に限定されず、例えば単結晶の成長中に流通させるガスと同様のものを使用することができ、列挙するならば、不活性ガスのアルゴンガス、又は窒素ガスを使用することができる。導入するガスを室温以下に冷却したものとしてもよい。
 単結晶育成時に使用するガスと同様のガスを使用することで、冷却ガスの用意の手間やそのための別途の装置の設置を省ける。
 また、冷却工程において、銅の冷却管1がルツボ13中に残った原料融液9に接触しても、原料融液は急速に固化するため、銅の冷却管1と反応することはない。
 そして、ホットゾーン部品の冷却が終了したら、冷却管1を移動機構3により引き上げ、ホットゾーン部品の清掃、交換を行い、原料をルツボに充填して、原料多結晶の溶融工程に戻る。冷却工程でクーリングチャンバーを使用した場合は、プルチャンバーに置き換えて次の単結晶の育成を始める。
 なお、さらに冷却効果を上げるために冷凍機と不凍液を組み合わせて、冷却管に流通する冷却媒体を冷却してホットゾーン部品の冷却の促進を行うこともできる。
 
 以下に本発明の実施例を挙げて、本発明をさらに詳細に説明するが、これらは本発明を限定するものではない。
 (実施例1)
 本発明の図1に示す単結晶製造装置10で以下のようにホットゾーン部品の冷却時間の測定を行った。
 この実施例1で使用した単結晶製造装置のルツボは、直径200mmの単結晶を引上げるための直径約600mmのルツボを使用した。そして、この大きさの石英ルツボを使用して、原料多結晶を12時間かけて溶融し、直径約200mm、直胴部の長さが約1mである単結晶を24時間かけて育成した。単結晶の育成終了後、ヒーターを切電し、プルチャンバーから結晶を取出した後、石英ルツボを支持する黒鉛ルツボの温度を測定したところ、約800℃であった。
 次に、冷却管に約20℃の冷却水を流通させ、ルツボに残った原料融液の直上の接しないぎりぎりの位置まで降下させてホットゾーン部品の輻射冷却を行った。このとき、単結晶冷却用の冷却筒による冷却は続行した。
 ホットゾーン部品の代表である黒鉛ルツボ13の温度を測定した結果を図3に示す。
 この結果、約4時間でルツボの温度が約50℃となり、ホットゾーン部品の冷却を終了することができた。
 
 (実施例2)
 原料の溶融時間と溶融量、育成した単結晶の直径、直胴部の長さ、育成時間は実施例1と同じ条件で行った。
 次に、冷却管に約20℃の冷却水を流通させ、ルツボに残った原料融液の直上の接しないぎりぎりの位置まで降下させ、ガス導入口より常温のアルゴンガスを流通させることで、冷却管による輻射冷却と冷却ガスによる対流冷却を組み合わせてホットゾーン部品の冷却を行った。単結晶製造装置は、実施例1と同様のものを使用し、単結晶冷却用の冷却筒による冷却は続行した。
 ホットゾーン部品の代表である黒鉛ルツボ13の温度を測定した結果を図3に示す。
 この結果、約2時間でルツボの温度が約50℃となり、ホットゾーン部品の冷却を終了することができた。
 
 (比較例1)
 比較のため、原料の溶融時間と溶融量、育成した単結晶の直径、直胴部の長さ、育成時間は実施例1と同じ条件で行った。
 次に冷却管を使用せず、また、冷却ガスを流通させず、さらに単結晶冷却用の冷却筒も冷却を停止した事以外は、実施例1と同様の条件でホットゾーン部品の自然放冷を行った。
 ホットゾーン部品の代表である黒鉛ルツボの温度を測定した結果を図3に示す。
 この結果、約8時間でルツボの温度が約50℃となり、ホットゾーン部品の冷却を終了した。
 
 (比較例2)
 比較のため、原料の溶融時間と溶融量、育成した単結晶の直径、直胴部の長さ、育成時間は実施例1と同じ条件で行った。
 次に、冷却管を使用しなかったこと以外は実施例1と同一の条件でホットゾーン部品の冷却を行った。すなわち、単結晶冷却用の冷却筒による冷却のみとした。
 ホットゾーン部品の代表である黒鉛ルツボの温度を測定した結果を図3に示す。
 この結果、約6時間でルツボの温度が約50℃となり、ホットゾーン部品の冷却を終了した。
 
 この実施例1、2、比較例1、2の結果より、これまでの全操業時間は単結晶の育成24時間+ホットゾーン部品の冷却時間(自然放冷)8時間+清掃交換、原料の充填4時間+原料の溶融12時間=48時間は、実施例1の冷却方法を採用することにより、すなわち、冷却管による輻射冷却で、ホットゾーン部品の冷却を4時間に短縮でき、実施例2の冷却方法、すなわち、冷却管による輻射冷却と冷却ガスによる対流冷却を組み合わせで、ホットゾーン部品の冷却を2時間に短縮できる。従って、全操業時間に対して、8~10%短縮して生産コストを圧縮することができる。
 尚、本発明は上記実施形態に限定されるものではない。上記実施形態は単なる例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的思想に包含される。

Claims (13)

  1.  少なくとも、ルツボを含むホットゾーン部品を収容するメインチャンバーと、
     前記ルツボに収容された原料融液から引上げられる単結晶を収納して取り出すためのプルチャンバーとを具備するチョクラルスキー法による単結晶製造装置であって、
     さらに、前記ルツボ上に配置され冷却媒体が流通される冷却管と、該冷却管を上下動させる移動機構とを具備し、
     前記単結晶の育成後に、前記移動機構により前記冷却管が前記ルツボに向けて降下することで前記ホットゾーン部品を冷却するものであることを特徴とする単結晶製造装置。
     
  2.  前記冷却管は、継ぎ目のないパイプがリング状に多数巻きされたものであることを特徴とする請求項1に記載の単結晶製造装置。
     
  3.  前記パイプは、銅パイプであることを特徴とする請求項2に記載の単結晶製造装置。
     
  4.  前記冷却管は、前記プルチャンバーと置換可能なクーリングチャンバーに設置されたものであることを特徴とする請求項1乃至請求項3のいずれか1項に記載の単結晶製造装置。
     
  5.  前記クーリングチャンバーは、冷却ガスを導入するガス導入口を具備するものであることを特徴とする請求項4に記載の単結晶製造装置。
     
  6.  前記冷却媒体を強制冷却するための熱交換器が取付けられたものであることを特徴とする請求項1乃至請求項5のいずれか1項に記載の単結晶製造装置。
     
  7.  少なくとも、ルツボに投入した原料を溶融する工程と、
     該原料融液から単結晶を育成し、プルチャンバーに収納する工程と、
     前記ルツボを含むメインチャンバー内のホットゾーン部品を冷却する工程とを含むチョクラルスキー法による単結晶の製造方法であって、
     前記ホットゾーン部品の冷却工程は、前記ルツボ上に配置された冷却管に冷却媒体を流通させ、該冷却管を前記ルツボに向けて降下させて前記ホットゾーン部品を冷却することを含むことを特徴とする単結晶の製造方法。
     
  8.  前記冷却管として継ぎ目のないパイプがリング状に多数巻きされたものを使用することを特徴とする請求項7に記載の単結晶の製造方法。
     
  9.  前記パイプとして銅パイプを使用することを特徴とする請求項8に記載の単結晶の製造方法。
     
  10.  前記ホットゾーン部品の冷却工程において、前記プルチャンバーと置換することにより前記冷却管が設置されたクーリングチャンバーを前記メインチャンバー上に配置して、前記ルツボに向かって前記冷却管を降下させることを特徴とする請求項7乃至請求項9のいずれか1項に記載の単結晶の製造方法。
     
  11.  前記ホットゾーン部品の冷却工程で、前記メインチャンバーに冷却ガスを流通させることを特徴とする請求項7乃至請求項10のいずれか1項に記載の単結晶の製造方法。
     
  12.  前記冷却媒体を熱交換器により強制冷却することを特徴とする請求項7乃至請求項11のいずれか1項に記載の単結晶の製造方法。
     
  13.  前記ホットゾーン部品の冷却工程において、前記冷却管を前記ルツボの内部に入り込むまで降下させることを特徴とする請求項7乃至請求項12のいずれか1項に記載の単結晶の製造方法。
PCT/JP2009/000626 2008-03-24 2009-02-17 単結晶製造装置及び単結晶の製造方法 WO2009118993A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112009000526.8T DE112009000526B4 (de) 2008-03-24 2009-02-17 Einkristallherstellungsvorrichtung und Verfahren zur Herstellung eines Einkristalls
CN200980109099.6A CN101970728B (zh) 2008-03-24 2009-02-17 单晶制造装置及单晶的制造方法
US12/866,402 US8741059B2 (en) 2008-03-24 2009-02-17 Single-crystal manufacturing apparatus and method for manufacturing single crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008075611A JP5186970B2 (ja) 2008-03-24 2008-03-24 単結晶製造装置及びその方法
JP2008-075611 2008-03-24

Publications (1)

Publication Number Publication Date
WO2009118993A1 true WO2009118993A1 (ja) 2009-10-01

Family

ID=41113211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000626 WO2009118993A1 (ja) 2008-03-24 2009-02-17 単結晶製造装置及び単結晶の製造方法

Country Status (6)

Country Link
US (1) US8741059B2 (ja)
JP (1) JP5186970B2 (ja)
KR (1) KR101540225B1 (ja)
CN (1) CN101970728B (ja)
DE (1) DE112009000526B4 (ja)
WO (1) WO2009118993A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116697753A (zh) * 2023-08-10 2023-09-05 四川杉杉新材料有限公司 一种坩埚转移装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102220627B (zh) * 2011-05-23 2012-12-05 西安西光机械制造有限公司 单电机宽调速范围的坩埚杆运行调速系统及调速方法
KR101466061B1 (ko) * 2013-06-14 2014-11-28 한국생산기술연구원 분리형 씨드 투입 장치
CN107227487B (zh) * 2017-07-19 2023-08-18 天津环际达科技有限公司 一种真空炉内复合冷却提速成晶设备
CN110067018A (zh) * 2018-01-22 2019-07-30 上海新昇半导体科技有限公司 一种拉晶系统
CN108315811A (zh) * 2018-04-13 2018-07-24 内蒙古中环光伏材料有限公司 一种随动冷却装置
JP6825728B1 (ja) * 2020-01-10 2021-02-03 信越半導体株式会社 単結晶製造装置
CN117098877A (zh) * 2022-03-21 2023-11-21 洛阳长缨新能源科技有限公司 人工晶体炉及包括人工晶体炉的人工晶体炉系统
CN115449893A (zh) * 2022-08-24 2022-12-09 晶澳太阳能有限公司 单晶炉冷却系统
CN116005248A (zh) * 2022-12-29 2023-04-25 青海高景太阳能科技有限公司 一种具备吸热器的40吋热场装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001278694A (ja) * 1999-05-11 2001-10-10 Komatsu Electronic Metals Co Ltd 単結晶インゴット製造装置及び方法
JP2002201090A (ja) * 2000-12-28 2002-07-16 Shin Etsu Handotai Co Ltd 単結晶育成方法および単結晶育成装置
WO2007037052A1 (ja) * 2005-09-27 2007-04-05 Komatsu Denshi Kinzoku Kabushiki Kaisha 単結晶シリコン引き上げ装置、シリコン融液の汚染防止方法及びシリコン融液の汚染防止装置
JP2007314375A (ja) * 2006-05-26 2007-12-06 Shin Etsu Handotai Co Ltd 単結晶製造装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3008846B2 (ja) 1996-03-01 2000-02-14 住友金属工業株式会社 単結晶製造方法及びその装置
JP4195738B2 (ja) * 1998-04-08 2008-12-10 Sumco Techxiv株式会社 単結晶製造装置
TW505710B (en) 1998-11-20 2002-10-11 Komatsu Denshi Kinzoku Kk Production method for silicon single crystal and production device for single crystal ingot, and heat treating method for silicon single crystal wafer
US6632280B2 (en) 2000-01-31 2003-10-14 Shin-Etsu Handotai Co., Ltd. Apparatus for growing single crystal, method for producing single crystal utilizing the apparatus and single crystal
US6733585B2 (en) * 2000-02-01 2004-05-11 Komatsu Denshi Kinzoku Kabushiki Kaisha Apparatus for pulling single crystal by CZ method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001278694A (ja) * 1999-05-11 2001-10-10 Komatsu Electronic Metals Co Ltd 単結晶インゴット製造装置及び方法
JP2002201090A (ja) * 2000-12-28 2002-07-16 Shin Etsu Handotai Co Ltd 単結晶育成方法および単結晶育成装置
WO2007037052A1 (ja) * 2005-09-27 2007-04-05 Komatsu Denshi Kinzoku Kabushiki Kaisha 単結晶シリコン引き上げ装置、シリコン融液の汚染防止方法及びシリコン融液の汚染防止装置
JP2007091493A (ja) * 2005-09-27 2007-04-12 Sumco Techxiv株式会社 単結晶シリコン引き上げ装置、シリコン融液の汚染防止方法及びシリコン融液の汚染防止装置
JP2007314375A (ja) * 2006-05-26 2007-12-06 Shin Etsu Handotai Co Ltd 単結晶製造装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116697753A (zh) * 2023-08-10 2023-09-05 四川杉杉新材料有限公司 一种坩埚转移装置
CN116697753B (zh) * 2023-08-10 2023-10-10 四川杉杉新材料有限公司 一种坩埚转移装置

Also Published As

Publication number Publication date
CN101970728B (zh) 2013-01-30
US8741059B2 (en) 2014-06-03
DE112009000526T5 (de) 2011-02-17
KR101540225B1 (ko) 2015-07-29
KR20110003322A (ko) 2011-01-11
JP2009227520A (ja) 2009-10-08
DE112009000526B4 (de) 2017-02-09
CN101970728A (zh) 2011-02-09
JP5186970B2 (ja) 2013-04-24
US20100319610A1 (en) 2010-12-23

Similar Documents

Publication Publication Date Title
JP5186970B2 (ja) 単結晶製造装置及びその方法
KR101488124B1 (ko) n형 SiC 단결정의 제조 방법
US9217208B2 (en) Apparatus for producing single crystal
WO2010024390A1 (ja) SiC単結晶膜の製造方法および装置
JP2017149641A (ja) 液冷式熱交換機
JP4815003B2 (ja) シリコン結晶成長用ルツボ、シリコン結晶成長用ルツボ製造方法、及びシリコン結晶成長方法
TWI422716B (zh) 長晶方法
JP5152328B2 (ja) 単結晶製造装置
JP4650520B2 (ja) シリコン単結晶の製造装置及び製造方法
JP2012106870A (ja) 結晶成長方法
JP2008222481A (ja) 化合物半導体の製造方法及び装置
JP2010285331A (ja) 結晶成長方法
JP2015140291A (ja) サファイア単結晶育成用坩堝およびこの坩堝を用いたサファイア単結晶の製造方法
JP2012101972A (ja) 結晶半導体の製造方法及び製造装置
JP4569090B2 (ja) 単結晶の製造方法及び単結晶、並びに単結晶の製造装置
KR101439023B1 (ko) 잉곳 성장 장치용 배기 슬리브
TW201300584A (zh) 用於屏蔽拉晶裝置之一部分之進料工具
JP2005200279A (ja) シリコンインゴットの製造方法、太陽電池
JP2002201094A (ja) シリコン単結晶の製造方法
TWI567253B (zh) 長晶裝置
JP2004043211A (ja) SiC単結晶の製造方法及び製造装置
JP2012126601A (ja) シリコン原料の再利用方法
WO2013035498A1 (ja) 多結晶シリコンインゴットの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980109099.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09724657

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12866402

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120090005268

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20107020534

Country of ref document: KR

Kind code of ref document: A

RET De translation (de og part 6b)

Ref document number: 112009000526

Country of ref document: DE

Date of ref document: 20110217

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 09724657

Country of ref document: EP

Kind code of ref document: A1