WO2009116553A1 - スパークプラグ - Google Patents

スパークプラグ Download PDF

Info

Publication number
WO2009116553A1
WO2009116553A1 PCT/JP2009/055232 JP2009055232W WO2009116553A1 WO 2009116553 A1 WO2009116553 A1 WO 2009116553A1 JP 2009055232 W JP2009055232 W JP 2009055232W WO 2009116553 A1 WO2009116553 A1 WO 2009116553A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulator
spark plug
center electrode
tip
metal shell
Prior art date
Application number
PCT/JP2009/055232
Other languages
English (en)
French (fr)
Inventor
鈴木 彰
加藤 友聡
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to KR1020107020988A priority Critical patent/KR101522057B1/ko
Priority to US12/933,745 priority patent/US8215277B2/en
Priority to CN200980110243.8A priority patent/CN101978566B/zh
Priority to EP09722093.3A priority patent/EP2264843B1/en
Publication of WO2009116553A1 publication Critical patent/WO2009116553A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/02Details
    • H01T13/14Means for self-cleaning

Definitions

  • the present invention relates to a spark plug that is assembled in an internal combustion engine and ignites an air-fuel mixture.
  • a general spark plug includes a center electrode, an insulator that holds the center electrode in the shaft hole, a metal shell that surrounds and holds the periphery of the insulator in the radial direction, and one end part joined to the metal shell.
  • the other end portion includes a ground electrode that forms a spark discharge gap (spark discharge gap) with the center electrode. Then, by performing spark discharge in the spark discharge gap, the air-fuel mixture is ignited.
  • the distance between the insulator and the center electrode at the tip of the insulator is X
  • the creepage distance of the surface of the insulator outside the metal shell is Y
  • the protrusion amount of the insulator from the metal shell is Y1
  • the pocket gap is (X + 0.3Y + Z) where Z is the size of the spark discharge gap, G is W
  • the length of the insulator surface to the portion where the distance between the insulator and the metal shell is G or less inside the metal shell is W.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a spark plug that can quickly burn out carbon adhering to an insulator.
  • a spark plug includes a center electrode extending in an axial direction and an axial hole extending in the axial direction, and the central electrode is disposed on a distal end side in the axial hole.
  • An insulator to be held, a metal shell that surrounds and holds the periphery of the insulator in the assembly formed by holding the center electrode in the shaft hole of the insulator, and one end portion are joined to the metal shell.
  • the volume of a portion of the insulator corresponding to a range of 1.5 mm from the front end to the rear end side of the insulator in the axial direction is Vi, and in the axial direction, the 1..
  • the volume of a portion of the center electrode which corresponds to the range of mm is taken as Vc, fulfills H ⁇ 1.8mm, 4.02mm 3 ⁇ Vi ⁇ 12.51mm 3, 2.10mm 3 ⁇ Vc ⁇ 6 .42 mm 3 and Vc / Vi ⁇ 1.03 are satisfied.
  • the spark plug of the invention according to claim 2 includes, in addition to the configuration of the invention of claim 1, 4.22 mm 3 ⁇ Vi ⁇ 8.77 mm 3 , 2.10 mm 3 ⁇ Vc ⁇ 5.36 mm 3 , Vc. /Vi ⁇ 0.84 is satisfied.
  • the metal shell is threaded to be screwed into the mounting screw hole of the internal combustion engine on its outer peripheral surface.
  • the outer diameter of the mounting screw portion is a nominal diameter and is M10 or less.
  • H ⁇ 1.8 mm is satisfied, 4.02 mm 3 ⁇ Vi ⁇ 12.51 mm 3 , 2.10 mm 3 ⁇ Vc ⁇ 6.42 mm 3 , Vc / Vi ⁇ 1. Since 03 is satisfied, the temperature of the insulator can be quickly raised. In general, the smaller the insulator volume Vc is, the more effective the carbon contamination is. However, since the temperature of the insulator around the ignition portion increases, the durability of the insulator decreases.
  • the durability of the insulator by the engine is evaluated, and further, the durability of the center electrode is evaluated, so that H, Vi, The optimum numerical range of Vc and Vc / Vi was found.
  • the temperature of an insulator can be raised rapidly, the carbon adhering to an insulator can be burned out rapidly. And by burning out carbon more quickly, it is possible to prevent the occurrence of creeping discharge such as side fire and to secure a high effect in securing the insulation resistance necessary for automobile travel.
  • the temperature range of the insulator is rapidly increased by further limiting the numerical range defined in claim 1. Can do. Therefore, the carbon adhering to the insulator can be burned out more quickly.
  • the insulator with improved temperature rise performance as described above is provided with the outer diameter of the thread of the mounting screw portion.
  • the carbon adhering to the insulator can be burned out quickly. Therefore, it is possible to prevent the occurrence of creeping discharge that ignites from the center electrode to the metal shell through the insulator, so that it is possible to stably ensure normal ignition of the air-fuel mixture.
  • FIG. 1 is a partial cross-sectional view of a spark plug 100.
  • FIG. 2 is an enlarged view of the vicinity of a tip 22 of a center electrode 20 of a spark plug 100.
  • FIG. It is a figure which shows the position of the front end side volume Vi of the insulator 10, and the position of the front end side volume Vc of the center electrode 20.
  • FIG. 3 is a table showing the results of test section 1 of Example 1.
  • 3 is a table showing the results of test section 2 of Example 1.
  • 3 is a table showing the results of test section 3 of Example 1.
  • 4 is a table showing the results of test section 4 in Example 1.
  • 10 is a table showing the results of Example 2.
  • 10 is a table showing the results of Example 3.
  • 10 is a graph showing the results of Example 3.
  • FIG. 1 is a partial cross-sectional view of the spark plug 100
  • FIG. 2 is a partial enlarged view of the vicinity of the tip 22 of the center electrode 20 of the spark plug 100.
  • the axis O direction of the spark plug 100 will be described as the vertical direction in the drawing
  • the lower side will be described as the front end side
  • the upper side will be described as the rear end side.
  • the spark plug 100 includes an insulator 10, a metal shell 50 that holds the insulator 10, a center electrode 20 that is held in the insulator 10 in the direction of the axis O, and a metal shell 50.
  • the base 32 is welded to the front end surface 57, and one side surface of the front end 31 is provided with the ground electrode 30 facing the front end 22 of the center electrode 20, and the terminal fitting 40 provided at the rear end of the insulator 10. Yes.
  • the insulator 10 is formed by firing alumina or the like, and has a cylindrical shape in which an axial hole 12 extending in the direction of the axis O is formed at the axial center.
  • a flange portion 19 having the largest outer diameter is formed substantially at the center in the direction of the axis O, and a rear end body portion 18 is formed on the rear end side (upper side in FIG. 1).
  • a front end side body portion 17 having a smaller outer diameter than the rear end side body portion 18 is formed on the front end side from the flange portion 19 (lower side in FIG.
  • a leg length portion 13 having an outer diameter smaller than that of the distal end side body portion 17 is formed.
  • the long leg portion 13 is reduced in diameter toward the tip side, and is exposed to the combustion chamber when the spark plug 100 is attached to the engine head 200 of the internal combustion engine.
  • a step portion 15 is formed between the leg length portion 13 and the front end side body portion 17.
  • the center electrode 20 is heated more than the electrode base material 21 inside the electrode base material 21 formed of nickel or an alloy containing nickel as a main component, such as Inconel (trade name) 600 or 601.
  • This is a rod-shaped electrode having a structure in which a core material 25 made of copper having excellent conductivity or an alloy containing copper as a main component is embedded.
  • the center electrode 20 is manufactured by filling a core material 25 inside an electrode base material 21 formed in a bottomed cylindrical shape, and extruding it from the bottom side and stretching it.
  • the core member 25 has a substantially constant outer diameter at the body portion, but is formed in a tapered shape at the distal end side.
  • the front end portion 22 of the center electrode 20 protrudes from the front end portion 11 of the insulator 10 and is formed so as to have a smaller diameter toward the front end side.
  • An electrode tip 90 made of a noble metal is joined to the distal end surface of the distal end portion 22 in order to improve spark wear resistance. The both are joined by laser welding that goes around the outer periphery aiming at the mating surface between the electrode tip 90 and the tip portion 22 of the center electrode 20.
  • the electrode chip 90 and the center electrode 20 are firmly joined by melting and mixing the two materials by laser irradiation.
  • the center electrode 20 extends in the shaft hole 12 toward the rear end side, and passes through the seal body 4 and the ceramic resistor 3 (see FIG. 1) to the terminal fitting 40 on the rear side (upper side in FIG. 1). Electrically connected.
  • a high voltage cable (not shown) is connected to the terminal fitting 40 via a plug cap (not shown) so that a high voltage is applied.
  • an assembly 60 (see FIGS. 2 and 3) is formed by holding the center electrode 20 in the shaft hole 12 of the insulator 10.
  • the ground electrode 30 is made of a metal having high corrosion resistance.
  • a nickel alloy such as Inconel (trade name) 600 or 601 is used.
  • the ground electrode 30 has a substantially rectangular cross section in the longitudinal direction, and the base 32 is joined to the front end surface 57 of the metal shell 50 by welding. Further, the tip portion 31 of the ground electrode 30 is bent so that one side surface faces the tip portion 22 of the center electrode 20.
  • a metal shell 50 shown in FIG. 1 is a cylindrical metal fitting for fixing the spark plug 100 to the engine head 200 of the internal combustion engine. And the insulator 10 is hold
  • the metal shell 50 is made of a low carbon steel material, and a thread engaging with a tool engaging portion 51 into which a spark plug wrench (not shown) is fitted and a mounting screw hole 201 of the engine head 200 provided at the upper part of the internal combustion engine. And a mounting screw portion 52 formed with the.
  • a bowl-shaped seal portion 54 is formed between the tool engaging portion 51 and the mounting screw portion 52 of the metal shell 50.
  • An annular gasket 5 formed by bending a plate is fitted into a screw neck 59 between the mounting screw portion 52 and the seal portion 54.
  • the gasket 5 is crushed and deformed between the seat surface 55 of the seal portion 54 and the opening peripheral edge portion 205 of the attachment screw hole 201, and seals between the two. This is to prevent airtight leakage in the engine via the mounting screw hole 201.
  • a thin caulking portion 53 is provided on the rear end side of the metal fitting 50 from the tool engaging portion 51, and a thin wall is provided between the seal portion 54 and the tool engaging portion 51 in the same manner as the caulking portion 53.
  • the buckling portion 58 is provided.
  • annular ring members 6, 7 are provided between the inner peripheral surface of the metal shell 50 from the tool engaging portion 51 to the caulking portion 53 and the outer peripheral surface of the rear end side body portion 18 of the insulator 10.
  • a powder of talc (talc) 9 is filled between the ring members 6 and 7.
  • the step portion 15 of the insulator 10 is supported on the step portion 56 formed at the position of the mounting screw portion 52 on the inner periphery of the metal shell 50 via the annular plate packing 8, so that it is insulated from the metal shell 50.
  • the insulator 10 is integrated. At this time, the airtightness between the metal shell 50 and the insulator 10 is maintained by the plate packing 8, and the outflow of combustion gas is prevented.
  • the buckling portion 58 is configured to bend outwardly and deform with the addition of a compressive force during caulking, and the main metal fitting 50 is made to have a longer compression length in the direction of the axis O of the talc 9. The airtightness inside is increased.
  • the insulation resistance value is lowered, and further, the voltage generated by the ignition coil is lowered. If the generated voltage becomes lower than the required voltage of the spark plug (voltage at which spark discharge occurs between the spark gaps), spark discharge cannot be performed, causing misfire. In order to prevent such misfire, the tip temperature of the insulator 10 is raised to about 450 ° C. Thereby, since the carbon adhering to the insulator 10 can be burned out, misfire can be prevented. Such a phenomenon is called “self-cleaning”.
  • FIG. 3 is a diagram showing the position of the tip side volume Vi of the insulator 10 and the position of the tip side volume Vc of the center electrode 20.
  • the protrusion amount (length) of the insulator 10 protruding from the front end surface 57 of the metal shell 50 toward the front end side in the axis O direction is set to H (mm).
  • a plane P (a cross section is indicated by a two-dot chain line PP) passing through a position 1.5 mm away from the tip of the insulator 10 toward the rear end side in the axis O direction and orthogonal to the axis O is assumed.
  • the assembly 60 is cut along the plane P.
  • the volume on the tip side of the insulator 10 cut along the plane P at that time is defined as Vi (mm 3 ). Further, the volume on the tip side of the center electrode 20 cut along the plane P is defined as Vc (mm 3 ).
  • H is defined as 1.8 mm or more.
  • Vi is made too small, the temperature of the insulator rises around the ignition part, which may cause the insulator to break through.
  • the tip side volume Vi is increased, the tip temperature is unlikely to rise. Therefore, in this embodiment, it is defined as 4.02 mm 3 ⁇ Vi ⁇ 12.51 mm 3 (preferably 8.77 mm 3 ).
  • the durability of the electrode tip 90 welded to the front end portion 22 of the center electrode 20 is drastically lowered. Therefore, in this embodiment, it is defined as 2.10 mm 3 ⁇ Vc ⁇ 6.42 mm 3 (preferably 5.36 mm 3 ). Thereby, while the temperature rising performance of the insulator 10 can be maintained, durability of the electrode tip 90 can be maintained. That is, the consumption of the electrode tip 90 can be prevented.
  • the insulator and the center electrode with improved temperature rise performance as described above are used for a spark plug having a small thread diameter of M10 or less in nominal diameter of the mounting screw, the inner periphery of the metal shell 50 is insulated. Even if the clearance with the outer periphery of the insulator 10 is narrow, the carbon adhering to the insulator 10 can be burned out quickly. Therefore, it is possible to prevent the occurrence of a side fire that ignites from the center electrode 20 to the metal shell 50 through the insulator 10, so that it is possible to stably ensure normal ignition of the air-fuel mixture.
  • Example 1 a carbon fouling recovery test will be described.
  • Example 2 a dielectric strength test of an insulator will be described.
  • Example 3 a durability test of the electrode tip of the center electrode will be described.
  • the amount of protrusion of the insulator is “H”
  • the tip side volume of the insulator is “Vi”
  • the tip side volume of the center electrode is abbreviated as “Vc”.
  • the engine used in this test is a 2L, 4-cylinder engine. Under such test conditions, each sample of the spark plug described above was evaluated for each test section. The evaluation was performed in three stages based on the occurrence rate of side fire, and “No” was determined as “O”, less than 5% was “ ⁇ ”, and 5% or more was determined as “X”.
  • FIG. 4 is a table showing the results of test section 1 of Example 1.
  • H 0.8 mm
  • Vi was appropriately changed within the range of 3.91 to 13.63 (mm 3 )
  • Vc was appropriately changed within the range of 2.10 to 6.98 (mm 3 ).
  • Nineteen samples (Sample Nos. 1-1 to 1-19) were evaluated. As shown in the table, all 19 samples were evaluated as “x”.
  • FIG. 5 is a table showing the results of the test section 2 of Example 1.
  • H 1.8 mm
  • Vi was appropriately changed within the range of 1.74 to 16.51 (mm 3 )
  • Vc within the range of 2.10 to 8.17 (mm 3 ).
  • Twenty-two samples were evaluated (Sample Nos. 2-1 to 2-22).
  • each parameter of the sample corresponding to “ ⁇ ” or “ ⁇ ” is within the range of Vi of 4.02 to 12.51 (mm 3 ) and Vc of 2.10 to 6.42 (mm 3 ). Of these, Vc / Vi was in the range of 0.28 to 1.03 (mm 3 ).
  • the range of each parameter of the sample corresponding only to “ ⁇ ” is as follows: Vi is in the range of 4.02 to 8.77 (mm 3 ), Vc is in the range of 2.10 to 5.36 (mm 3 ), Vc / Vi was in the range of 0.40 to 0.84 (mm 3 ).
  • FIG. 6 is a table showing the results of test section 3 of Example 1.
  • H 2.8 mm
  • Vi within the range of 4.02 to 13.63 (mm 3 )
  • Vc 2.10 to.
  • a sample having an evaluation of “x” and a sample having an evaluation of “ ⁇ ” in order from the top. They are arranged in the order of the samples whose evaluation was “ ⁇ ”.
  • each parameter of the sample corresponding to “ ⁇ ” or “ ⁇ ” is within the range of Vi of 4.02 to 12.51 (mm 3 ) and Vc of 2.10 to 6.42 (mm 3 ). Of these, Vc / Vi was in the range of 0.28 to 1.03 (mm 3 ).
  • the range of each parameter of the sample corresponding only to “ ⁇ ” is as follows: Vi is in the range of 4.02 to 8.77 (mm 3 ), Vc is in the range of 2.10 to 5.36 (mm 3 ), Vc / Vi was in the range of 0.40 to 0.84 (mm 3 ).
  • FIG. 7 is a table showing the results of test section 4 in Example 1.
  • H 3.8 mm
  • Vi within the range of 4.02 to 13.63 (mm 3 )
  • Vc 2.10 to.
  • a sample with an evaluation “x” and a sample with an evaluation “ ⁇ ” in order from the top. They are arranged in the order of the samples whose evaluation was “ ⁇ ”.
  • each parameter of the sample corresponding to “ ⁇ ” or “ ⁇ ” is within the range of Vi of 4.02 to 12.51 (mm 3 ) and Vc of 2.10 to 6.42 (mm 3 ). Of these, Vc / Vi was in the range of 0.28 to 1.03 (mm 3 ).
  • the range of each parameter of the sample corresponding only to “ ⁇ ” is as follows: Vi is in the range of 4.02 to 8.77 (mm 3 ), Vc is in the range of 2.10 to 5.36 (mm 3 ), Vc / Vi was in the range of 0.40 to 0.84 (mm 3 ).
  • Example 1 the results of Example 1 are summarized.
  • H, Vi, Vc, and Vc / Vi are defined by the following numerical ranges.
  • Example 2 the dielectric strength test of the insulator was performed in the numerical range defined in Example 1.
  • restoration property at the time of pollution was favorable in Example 1 was produced as a sample.
  • three types of 1.8, 2.8, and 3.8 are set for H, and Vi is appropriately changed within the range of 2.47 to 12.51 (mm 3 ).
  • a sample of the book was made.
  • the spark discharge gap was adjusted to 1.3 mm in consideration of electrode consumption.
  • the engine used was a 660cc, 3-cylinder, turbocharger engine.
  • the test pattern consisted of idling (800 rpm) for 1 minute and full opening for 3 minutes, which was repeated for 10 hours. And about each sample 10 hours after that, while evaluating the recovery
  • FIG. 8 is a table showing the results of Example 2.
  • Example Nos. 21, 22, and 23 all three samples (sample Nos. 21, 22, and 23) with Vi of 12.51 (mm 3 ) were “ ⁇ ”, but all other cases were “ ⁇ ”. “ ⁇ ” and no “ ⁇ ”.
  • the presence / absence of penetration breakage of the insulator regardless of H, all samples in which Vi is in the range of 2.47 to 4.02 (mm 3 ) were “x”, but Vi was 4. All the samples in the range of 22 to 12.51 (mm 3 ) were “ ⁇ ”.
  • Example 2 When the result of Example 2 was reflected in the numerical range defined in Example 1, Vi was 4.02 (mm 3 ), and through breakdown occurred in the insulator, so Vi was at least 4.02. It must be exceeded. Therefore, the numerical value range of Vi defined in Example 1 is further defined as follows. 4.02 mm 3 ⁇ Vi ⁇ 12.51 (preferably 8.77) mm 3
  • Example 3 In Example 3, the effect of Vc on the durability of the electrode tip welded to the tip of the center electrode was examined.
  • the remaining rate of the electrode tip after the endurance test for 100 hours was calculated with the spark plug attached to the engine.
  • the engine used was a 2L, 4-cylinder engine. Then, a durability test was performed continuously for 100 hours at WOT (5000 rpm), and the remaining rate of the electrode tip after the durability test was calculated. Two types of electrode tips, iridium (Ir) alloy and platinum (Pt) alloy, were examined. Then, Vc of the center electrode to which these electrode tips are welded is appropriately changed within a range of 0.64 to 8.17, and 12 spark plugs provided with an electrode tip made of iridium alloy, and an electrode made of platinum alloy Twelve spark plugs with tips were prepared as samples.
  • Ir iridium
  • Pt platinum
  • FIG. 9 is a table showing the results of Example 3, and FIG. 10 is a graph showing the results of Example 3.
  • Vc is the residual rate gradually increased from 22% to 49%. Then, Vc rises sharply exceeds 1.52 mm 3, Vc is the residual ratio at 1.79 mm 3 was increased once to 90%. After that, the residual rate changed to 98%.
  • a similar result was obtained with an electrode tip made of platinum alloy. That is, when Vc was 0.64 mm 3 to 1.52 mm 3 , the remaining rate gradually increased from 56% to 70%. Then, Vc rises sharply exceeds 1.52 mm 3, Vc is the residual ratio at 1.79 mm 3 was increased once to 85%. After that, the remaining rate was 93%.
  • H, Vi, Vc, and Vc / Vi are defined in the following numerical ranges. ⁇ H ⁇ 1.8mm 4.02 mm 3 ⁇ Vi ⁇ 12.51 (preferably 8.77) mm 3 2.10 mm 3 ⁇ Vc ⁇ 6.42 (preferably 5.36) mm 3 Vc / Vi ⁇ 1.03 (preferably 0.84)
  • the lower limit value of Vc / Vi is a value that is automatically determined by the lower limit value of Vc and the lower limit value of Vi.
  • the protrusion amount H (mm) of the insulator 10 and the tip-side volume Vi of the insulator 10 are improved in order to improve the temperature rise performance on the tip side of the insulator 10. (mm 3), the distal end side volume Vc (mm 3) of the center electrode 20 defined respectively.
  • the recoverability of carbon fouling can be improved while maintaining the voltage resistance of the insulator 10 and the durability of the center electrode 20.
  • the recovery property of the carbon fouling is improved, it is possible to suppress the occurrence of side sparks that ignite from the center electrode 20 to the metal shell 50 through the insulator 10, so that normal ignition of the air-fuel mixture can be secured stably. it can.
  • the present invention can be modified in various ways.
  • the material of the electrode base material 21 and the core material 25 constituting the center electrode 20 is made of nickel or an alloy containing nickel as a main component and copper or an alloy containing copper as a main component.
  • Other metals may be used as long as it is a combination of a metal (Fe alloy or the like) excellent in flower wear and a metal (Ag alloy or the like) superior in thermal conductivity than the electrode base material 21.

Landscapes

  • Spark Plugs (AREA)

Abstract

 絶縁碍子に付着したカーボンを速やかに焼き切ることのできるスパークプラグを提供する。このスパークプラグでは、絶縁碍子10の先端側の昇温性能を向上するために、絶縁碍子10の突出量H(mm)、絶縁碍子10の先端側体積Vi(mm)、中心電極20の先端側体積Vc(mm)を各々規定した。これにより、絶縁碍子10の耐電圧性および中心電極20の耐久性を保持しつつ、カーボン汚損の回復性を向上できる。そして、カーボン汚損の回復性が向上することから、中心電極20から絶縁碍子10を介して主体金具50へ飛火する横飛火の発生を抑制できるので、混合気への正常な着火を安定して確保できる。

Description

スパークプラグ
 本発明は、内燃機関に組み付けられて混合気への点火を行うためのスパークプラグに関するものである。
 従来、内燃機関には点火のためのスパークプラグが用いられている。一般的なスパークプラグは、中心電極と、その中心電極を軸孔内に保持する絶縁碍子と、この絶縁碍子の径方向周囲を取り囲んで保持する主体金具と、一端部が主体金具に接合され、他端部が中心電極との間で火花放電ギャップ(火花放電間隙)を形成する接地電極とを備えている。そして、その火花放電ギャップで火花放電が行われることによって、混合気への点火が行われる。
 近年、エンジン高出力化のためにエンジンに設けられるインテークバルブやエキゾーストバルブのバルブ径の拡大や、水廻り改善のためにエンジンに対してより大きなウォータージャケットを確保することが必要となってきている。これにより、エンジンに取付けられるスパークプラグの設置スペースが小さくなるため、スパークプラグの細径化が要求されている。ところが、スパークプラグを細径化すると、絶縁碍子と主体金具との間の絶縁距離が狭くなる。そのため、正規の火花放電ギャップで放電せず、中心電極から絶縁碍子を介して主体金具へ飛火する横飛火が発生し易くなる。さらに、燻り状態になると、奥飛火が発生し易くなる。これは、絶縁碍子の表面に堆積した導電性のカーボンなどが、絶縁碍子と主体金具との間の絶縁性低下をもたらすためである。この場合、絶縁碍子の先端温度を上昇させることによって、絶縁碍子に付着したカーボンを焼き切り、その都度絶縁性を確保する必要がある。
 そこで、例えば、絶縁碍子の先端部における絶縁碍子と中心電極との距離をX、主体金具外部の絶縁碍子の表面の沿面距離をY、主体金具からの絶縁碍子の突出量をY1、ポケット隙間をZ、火花放電ギャップの大きさをG、主体金具の内部において絶縁碍子と主体金具との距離がG以下となる部位までの絶縁碍子の表面の長さをWとした場合に、(X+0.3Y+Z)/G≧2、Y1(mm)≧1、W/Z≧4、1.25≦Z(mm)≦1.55としたスパークプラグが提案されている(例えば、特許文献1参照)。このスパークプラグでは、構成部品間の上記各種距離をそれぞれ規定することによって、細径化されたスパークプラグにおいても、燻っていない場合は安定して正規の火花放電ギャップへ飛火させ、燻って横飛火や奥飛火等の沿面放電が発生した場合でも、着火性を確保できる点に優れている。
特開2005-116513号公報
 しかしながら、特許文献1に記載のスパークプラグのように、燻って沿面放電が発生した状態で着火できたとしても、絶縁碍子に付着したカーボンをすぐに焼き切らなければ、絶縁碍子の表面に大量のカーボンが付着してしまう。この場合、カーボンを全て焼き切るまでに相当時間を要するため、絶縁碍子からカーボンを完全に除去できない事態を生じ、正常な着火現象が得られる状態にまで回復できないという問題点があった。よって、例えば、絶縁碍子に付着したカーボンを速やかに焼き切ることによって、燻った状態から正常な状態にまで速やかに回復できるような方法が望まれていた。
 本発明は、上記問題点を解決するためになされたものであり、絶縁碍子に付着したカーボンを速やかに焼き切ることのできるスパークプラグを提供することを目的とする。
 上記目的を達成するために、請求項1に係る発明のスパークプラグは、軸線方向に延びる中心電極と、前記軸線方向に延びる軸孔を有し、前記中心電極を前記軸孔内の先端側に保持する絶縁碍子と、前記中心電極を前記絶縁碍子の前記軸孔内に保持してなる組立体における前記絶縁碍子の周囲を取り囲んで保持する主体金具と、一端部が、前記主体金具に接合され、他端部が、前記中心電極との間で火花放電間隙を形成する接地電極とを備えたスパークプラグにおいて、前記軸線方向において、前記主体金具の先端面から先端側に突き出る前記絶縁碍子の長さをHとし、前記軸線方向において、前記絶縁碍子の先端から後端側に向かって1.5mmの範囲内に相当する前記絶縁碍子の部分の体積をViとし、前記軸線方向において、前記1.5mmの範囲内に相当する前記中心電極の部分の体積をVcとしたときに、H≧1.8mmを満たすと共に、4.02mm<Vi≦12.51mm、2.10mm≦Vc≦6.42mm、Vc/Vi≦1.03を満たしている。
 また、請求項2に係る発明のスパークプラグは、請求項1に記載の発明の構成に加え、4.22mm≦Vi≦8.77mm、2.10mm≦Vc≦5.36mm、Vc/Vi≦0.84を満たしている。
 また、請求項3に係る発明のスパークプラグは、請求項1又は2に記載の発明の構成に加え、前記主体金具は、自身の外周面に、内燃機関の取付ねじ孔に螺合するねじ山が形成された取付ねじ部を有し、前記取付ねじ部の外径は、呼び径で、M10以下である。
 請求項1に係る発明のスパークプラグでは、H≧1.8mmを満たすと共に、4.02mm<Vi≦12.51mm、2.10mm≦Vc≦6.42mm、Vc/Vi≦1.03を満たしているので、絶縁碍子の温度を速やかに上昇させることができる。一般的に、絶縁碍子の体積Vcは小さければ小さいほど、カーボン汚損に対する効果は認められるが、発火部周りでの絶縁碍子の温度が上がることから絶縁碍子の耐久性が低下する。本発明では、カーボン汚損の回復が良好であったVcを有するスパークプラグを用いて、エンジンによる絶縁碍子の耐久性を評価し、さらに中心電極の耐久性の評価を行うことによって、H、Vi、Vc、Vc/Viの最適な数値範囲を見い出した。これにより、絶縁碍子の温度を速やかに上昇させることができるので、絶縁碍子に付着したカーボンを速やかに焼き切ることができる。そして、カーボンをより速やかに焼き切ることによって、横飛火等の沿面放電の発生の防止と共に、自動車走行に必要な絶縁抵抗の確保に高い効果を発揮できる。
 また、請求項2に係る発明のスパークプラグでは、請求項1に記載の発明の効果に加え、請求項1で限定した数値範囲をさらに限定することによって、絶縁碍子の温度を速やかに上昇させることができる。よって、絶縁碍子に付着したカーボンをより速やかに焼き切ることができる。
 また、請求項3に係る発明のスパークプラグでは、請求項1又は2に記載の発明の効果に加え、上記のような昇温性能を高めた絶縁碍子を、取付ねじ部のねじ山の外径が呼び径でM10以下の細径のスパークプラグに用いれば、主体金具の内周と絶縁碍子の外周との間のクリアランスが狭くても、絶縁碍子に付着したカーボンを速やかに焼き切ることができる。よって、中心電極から絶縁碍子を介して主体金具へ飛火する沿面放電の発生を防止できるので、混合気への正常な着火を安定して確保できる。
スパークプラグ100の部分断面図である。 スパークプラグ100の中心電極20の先端部22付近の拡大図である。 絶縁碍子10の先端側体積Viの位置と、中心電極20の先端側体積Vcの位置とを示す図である。 実施例1の試験区1の結果を示す表である。 実施例1の試験区2の結果を示す表である。 実施例1の試験区3の結果を示す表である。 実施例1の試験区4の結果を示す表である。 実施例2の結果を示す表である。 実施例3の結果を示す表である。 実施例3の結果を示すグラフである。
符号の説明
 10  絶縁碍子
 11  先端部
 12  軸孔
 20  中心電極
 22  先端部
 30  接地電極
 50  主体金具
 57  先端面
 60  組立体
 90  電極チップ
 100 スパークプラグ
  H  絶縁碍子の突出量
  Vi 絶縁碍子の先端側体積
  Vc 中心電極の先端側体積
 以下、本発明を具体化したスパークプラグの一実施形態について、図面を参照して説明する。まず、図1,図2を参照して、一例としてのスパークプラグ100の構造について説明する。図1は、スパークプラグ100の部分断面図であり、図2は、スパークプラグ100の中心電極20の先端部22付近の部分拡大図である。なお、図1において、スパークプラグ100の軸線O方向を図面における上下方向とし、下側をスパークプラグ100の先端側、上側を後端側として説明する。
 図1に示すように、スパークプラグ100は、絶縁碍子10と、この絶縁碍子10を保持する主体金具50と、絶縁碍子10内に軸線O方向に保持された中心電極20と、主体金具50の先端面57に基部32を溶接され、先端部31の一側面が中心電極20の先端部22に対向する接地電極30と、絶縁碍子10の後端部に設けられた端子金具40とを備えている。
 まず、絶縁碍子10について説明する。絶縁碍子10は周知のようにアルミナ等を焼成して形成され、軸中心に軸線O方向へ延びる軸孔12が形成された筒形状を有する。軸線O方向の略中央には外径が最も大きな鍔部19が形成されており、それより後端側(図1における上側)には後端側胴部18が形成されている。鍔部19より先端側(図1における下側)には、後端側胴部18よりも外径の小さな先端側胴部17が形成され、さらにその先端側胴部17よりも先端側に、先端側胴部17よりも外径の小さな脚長部13が形成されている。脚長部13は先端側ほど縮径され、スパークプラグ100が内燃機関のエンジンヘッド200に取り付けられた際には、その燃焼室に曝される。そして、脚長部13と先端側胴部17との間は段部15として形成されている。
 次に、中心電極20について説明する。図2に示すように、中心電極20は、インコネル(商標名)600または601等のニッケルまたはニッケルを主成分とする合金から形成された電極母材21の内部に、電極母材21よりも熱伝導性に優れる銅または銅を主成分とする合金からなる芯材25を埋設した構造を有する棒状の電極である。通常、中心電極20は、有底筒状に形成された電極母材21の内部に芯材25を詰め、底側から押出成形を行って引き延ばすことで作製されるものである。芯材25は、胴部分においては略一定の外径をなすものの、先端側においては先細り形状に形成される。
 また、中心電極20の先端部22は絶縁碍子10の先端部11よりも突出されており、先端側に向かって径小となるように形成されている。そして、先端部22の先端面には、耐火花消耗性を向上するため、貴金属からなる電極チップ90が接合されている。両者の接合は、電極チップ90と中心電極20の先端部22との合わせ面を狙って外周を一周するレーザ溶接によって行われている。そして、レーザの照射により両材料が溶けて混ざり合うことによって、電極チップ90と中心電極20とが強固に接合されている。
 また、中心電極20は軸孔12内を後端側に向けて延設され、シール体4およびセラミック抵抗3(図1参照)を経由して、後方(図1における上方)の端子金具40に電気的に接続されている。そして、端子金具40には高圧ケーブル(図示外)がプラグキャップ(図示外)を介して接続され、高電圧が印加されるようになっている。ここで、中心電極20を絶縁碍子10の軸孔12内に保持してなるものを組立体60(図2,図3参照)とする。
 次に、接地電極30について説明する。接地電極30は耐腐食性の高い金属から構成され、一例として、インコネル(商標名)600または601等のニッケル合金が用いられる。この接地電極30は、自身の長手方向の横断面が略長方形を有しており、基部32が主体金具50の先端面57に溶接により接合されている。また、接地電極30の先端部31は、一側面側が中心電極20の先端部22に対向するように屈曲されている。
 次に、主体金具50について説明する。図1に示す主体金具50は、内燃機関のエンジンヘッド200にスパークプラグ100を固定するための円筒状の金具である。そして、絶縁碍子10を、その後端側胴部18の一部から脚長部13にかけての部位を取り囲むようにして内部に保持している。主体金具50は低炭素鋼材より形成され、図示外のスパークプラグレンチが嵌合する工具係合部51と、内燃機関の上部に設けられたエンジンヘッド200の取付ねじ孔201に螺合するねじ山が形成された取付ねじ部52とを備えている。
 また、主体金具50の工具係合部51と取付ねじ部52との間には、鍔状のシール部54が形成されている。そして、取付ねじ部52とシール部54との間のねじ首59には、板体を折り曲げて形成した環状のガスケット5が嵌挿されている。ガスケット5は、スパークプラグ100をエンジンヘッド200に取り付けた際に、シール部54の座面55と取付ねじ孔201の開口周縁部205との間で押し潰されて変形し、両者間を封止することで、取付ねじ孔201を介したエンジン内の気密漏れを防止するためのものである。
 そして、主体金具50の工具係合部51より後端側には薄肉の加締部53が設けられ、シール部54と工具係合部51との間には、加締部53と同様に薄肉の座屈部58が設けられている。そして、工具係合部51から加締部53にかけての主体金具50の内周面と絶縁碍子10の後端側胴部18の外周面との間には、円環状のリング部材6,7が介在されており、さらに両リング部材6,7間にタルク(滑石)9の粉末が充填されている。加締部53を内側に折り曲げるようにして加締めることにより、リング部材6,7およびタルク9を介し、絶縁碍子10が主体金具50内で先端側に向け押圧される。
 これにより、主体金具50の内周で取付ねじ部52の位置に形成された段部56に、環状の板パッキン8を介し、絶縁碍子10の段部15が支持されて、主体金具50と絶縁碍子10とが一体にされる。このとき、主体金具50と絶縁碍子10との間の気密性は、板パッキン8によって保持され、燃焼ガスの流出が防止される。また、座屈部58は、加締めの際に、圧縮力の付加に伴い外向きに撓み変形するように構成されており、タルク9の軸線O方向への圧縮長を長くして主体金具50内の気密性を高めている。
 上記構造からなるスパークプラグ100では、絶縁碍子10の先端側の表面にカーボンが付着して燻った状態になると、絶縁抵抗値が低下し、さらにイグニッションコイルの発生電圧が低下する。そしてその発生電圧がスパークプラグの要求電圧(火花ギャップ間で火花放電する電圧)より低くなると火花放電できなくなるため、失火を起こす原因となる。このような失火を防止するためには、絶縁碍子10の先端温度を約450℃まで上昇させる。これにより、絶縁碍子10に付着したカーボンを焼き切ることができるので、失火を防止することができる。このような現象を「自己清浄」と呼ぶ。
 このような自己清浄を速やかに行うことによって、燻った状態から正常な着火性能が得られる状態にまで速やかに回復させることができる。そして、自己清浄を速やかに行うためには、絶縁碍子10の先端温度を速やかに上昇させることが必要である。そこで、本実施形態では、絶縁碍子10の先端側の昇温性能を向上させるために、絶縁碍子10の先端側の突出量(後述するH)、絶縁碍子10の先端側の体積(後述するVi)、中心電極の先端側の体積(後述するVc)についてそれぞれ規定した。
 次に、スパークプラグ100で規定されるパラメータについて、図2,図3を参照して説明する。図3は、絶縁碍子10の先端側体積Viの位置と、中心電極20の先端側体積Vcの位置とを示す図である。図2,図3に示すように、まず、主体金具50の先端面57から軸線O方向先端側に向かって突き出た絶縁碍子10の突出量(長さ)をH(mm)とする。次いで、絶縁碍子10の先端から軸線O方向後端側へ1.5mm離れた位置を通り、軸線Oと直交する平面P(2点鎖線P-Pでその断面を示す。)を想定する。この平面Pで組立体60を切断する。その時の平面Pで切断した絶縁碍子10の先端側の体積をVi(mm)とする。さらにその平面Pで切断した中心電極20の先端側の体積をVc(mm)とする。
 そして、これらパラメータについては、以下の数値範囲で規定される。なお、以下に規定する数値範囲は、後述する各種試験の結果から導き出されたものである。
 ・H≧1.8mm
 ・4.02mm<Vi≦12.51mm
 ・2.10mm≦Vc≦6.42mm
 ・Vc/Vi≦1.03
さらに好ましくは、以下の数値範囲で規定される。
 ・H≧1.8mm
 ・4.22mm≦Vi≦8.77mm
 ・2.10mm≦Vc≦5.36mm
 ・Vc/Vi≦0.84
 このような数値範囲で各パラメータを規定することで、絶縁碍子10の先端側の昇温性能を向上させることができる。例えば、絶縁碍子の突出量Hは、小さければ小さいほど燃焼室に曝される部分が少なくなるため、絶縁碍子10の先端温度は十分に上昇しない。この場合、絶縁碍子10に付着したカーボンを速やかに焼き切ることができない。よって、正規放電しないことに起因する異常燃焼の発生率が高くなる。そこで、本実施形態では、Hを1.8mm以上と規定した。これにより、絶縁碍子10の先端側が燃焼室に十分に曝されるので、絶縁碍子10の先端温度が上昇し易くなる。従って、絶縁碍子10の昇温性能を向上できる。
 また、絶縁碍子10の先端側体積Viは、小さければ小さいほど先端温度は上昇し易くなり、絶縁碍子10に付着したカーボンを速やかに焼き切ることができる。ところが、Viを小さくし過ぎると、発火部周りで絶縁碍子の温度が上昇することから、絶縁碍子が貫通破壊する虞がある。その反対に、先端側体積Viを大きくすれば、先端温度は上昇し難くなる。そこで、本実施形態では、4.02mm<Vi≦12.51mm(好ましくは、8.77mm)と規定した。これにより、絶縁碍子10の昇温性能を維持できると共に、絶縁碍子10が貫通破壊する不具合を防止できる。
 また、中心電極20の先端側体積Vcを小さくし過ぎると、中心電極20の先端部22に溶接された電極チップ90の耐久性が急激に低下する。そこで、本実施形態では、2.10mm≦Vc≦6.42mm(好ましくは5.36mm)と規定した。これにより、絶縁碍子10の昇温性能を維持できると共に、電極チップ90の耐久性を保持できる。即ち、電極チップ90の消耗を防止できる。
 上記のような昇温性能を高めた絶縁碍子及び中心電極を、取付ねじ部のねじ山の外径が呼び径でM10以下の細径のスパークプラグに用いれば、主体金具50の内周と絶縁碍子10の外周との間のクリアランスが狭くても、絶縁碍子10に付着したカーボンを速やかに焼き切ることができる。よって、中心電極20から絶縁碍子10を介して主体金具50へ飛火する横飛火の発生を防止できるので、混合気への正常な着火を安定して確保できる。
 次に、本発明で規定した各パラメータの数値範囲を実証するための3つの評価試験について説明する。実施例1では、カーボン汚損の回復性試験について説明する。実施例2では、絶縁碍子の耐電圧試験について説明する。実施例3では、中心電極の電極チップの耐久性試験について説明する。なお、以下の説明では、絶縁碍子の突出量を「H」とし、絶縁碍子の先端側体積を「Vi」とし、中心電極の先端側体積を「Vc」と略して説明する。
 [実施例1]
 実施例1では、H、Vi、Vcがカーボン汚損の回復性に与える影響について調べた。まず、本試験では、絶縁碍子のHが異なる4つの試験区を設けた。試験区1をH=0.8mm、試験区2をH=1.8mm、試験区3をH=2.8mm、試験区4をH=3.8mmに設定した。そして、各試験区で設定されたHを満たすと共に、Vi及びVcをそれぞれ適宜変更させた複数本のスパークプラグを各試験区毎に用意した。
 次に、試験条件について説明する。まず、JIS D1606の燻り汚損試験に基づき、スパークプラグを燻らせ、絶縁抵抗値が100Ωのスパークプラグを用意した。そして、絶縁抵抗値が調整されたスパークプラグをベンチ上のエンジンに取り付け、回転数=3000rpm、吸入圧力=-30MPaの条件下で2分間保持した。その後、エンジンをアイドリング状態にし、横飛火の発生率を30秒間測定した。なお、本試験に使用したエンジンは2L、4気筒エンジンである。このような試験条件の下で、各試験区毎に上述したスパークプラグの各サンプルについて評価を行った。なお、評価は横飛火の発生率に基づいて3段階で行い、発生無しを「○」、5%未満を「△」、5%以上を「×」と判定した。
 試験区1の結果について、図4を参照して説明する。図4は、実施例1の試験区1の結果を示す表である。試験区1では、H=0.8mmで、Viを3.91~13.63(mm)の範囲内、Vcを2.10~6.98(mm)の範囲内で適宜変更させた19本のサンプル(サンプルNo.1-1~1-19)の評価を行った。表に示すように、19本のサンプルの評価は全て「×」であった。
 試験区2の結果について、図5を参照して説明する。図5は、実施例1の試験区2の結果を示す表である。試験区2では、H=1.8mmで、Viを1.74~16.51(mm)の範囲内、Vcを2.10~8.17(mm)の範囲内で適宜変更させた22本のサンプルの評価(サンプルNo.2-1~2-22)を行った。なお、試験区2の結果を示す表では、評価が異なるサンプル同士を比較検討し易くするために、上から順に、評価が「×」であったサンプル、評価が「△」であったサンプル、評価が「○」であったサンプルの順に並べている。
 表に示すように、22本のサンプルの内、評価が「△」であったサンプルは8本、評価が「○」であったサンプルは6本であった。「○」又は「△」に相当するサンプルの各パラメータの範囲は、Viが4.02~12.51(mm)の範囲内、Vcが2.10~6.42(mm)の範囲内、Vc/Viが0.28~1.03(mm)の範囲内であった。「○」のみに相当するサンプルの各パラメータの範囲は、Viが4.02~8.77(mm)の範囲内、Vcが2.10~5.36(mm)の範囲内、Vc/Viが0.40~0.84(mm)の範囲内であった。
 試験区3の結果について、図6を参照して説明する。図6は、実施例1の試験区3の結果を示す表である。試験区3では、H=2.8mmで、Viを4.02~13.63(mm)の範囲内、Vcを2.10~.6.98(mm)の範囲内で適宜変更させた13本のサンプル(サンプルNo.3-1~3-13)の評価を行った。なお、試験区3の結果を示す表についても、評価が異なるサンプル同士を比較検討し易くするために、上から順に、評価が「×」であったサンプル、評価が「△」であったサンプル、評価が「○」であったサンプルの順に並べている。
 表に示すように、13本のサンプルの内、評価が「△」であったサンプルは6本、評価が「○」であったサンプルは4本であった。「○」又は「△」に相当するサンプルの各パラメータの範囲は、Viが4.02~12.51(mm)の範囲内、Vcが2.10~6.42(mm)の範囲内、Vc/Viが0.28~1.03(mm)の範囲内であった。「○」のみに相当するサンプルの各パラメータの範囲は、Viが4.02~8.77(mm)の範囲内、Vcが2.10~5.36(mm)の範囲内、Vc/Viが0.40~0.84(mm)の範囲内であった。
 試験区4の結果について、図7を参照して説明する。図7は、実施例1の試験区4の結果を示す表である。試験区4では、H=3.8mmで、Viを4.02~13.63(mm)の範囲内、Vcを2.10~.6.98(mm)の範囲内で適宜変更させた13本のサンプル(サンプルNo.4-1~4-13)の評価を行った。なお、試験区4の結果を示す表についても、評価が異なるサンプル同士を比較検討し易くするために、上から順に、評価が「×」であったサンプル、評価が「△」であったサンプル、評価が「○」であったサンプルの順に並べている。
 表に示すように、13本のサンプルの内、評価が「△」であったサンプルは6本、評価が「○」であったサンプルは4本であった。「○」又は「△」に相当するサンプルの各パラメータの範囲は、Viが4.02~12.51(mm)の範囲内、Vcが2.10~6.42(mm)の範囲内、Vc/Viが0.28~1.03(mm)の範囲内であった。「○」のみに相当するサンプルの各パラメータの範囲は、Viが4.02~8.77(mm)の範囲内、Vcが2.10~5.36(mm)の範囲内、Vc/Viが0.40~0.84(mm)の範囲内であった。
 次に、実施例1の結果についてまとめる。実施例1の試験区1~4の各結果において、「○」「△」の範囲を考慮すると、H、Vi、Vc、Vc/Viについては、以下の数値範囲で規定される。
 ・H≧1.8mm
 ・4.02mm≦Vi≦12.51mm
 ・2.10≦Vc≦6.42mm
 ・Vc/Vi≦1.03
なお、「○」の範囲のみを考慮した場合は、以下の数値範囲で規定される。
 ・H≧1.8mm
 ・4.02mm≦Vi≦8.77mm
 ・2.10≦Vc≦5.36mm
 ・Vc/Vi≦0.84
 [実施例2]
 実施例2では、実施例1で規定された数値範囲において、絶縁碍子の耐電圧試験を行った。まず、実施例1で汚損時の回復性が良好であったH及びViの各範囲を満たすスパークプラグをサンプルとして作製した。具体的には、Hについて1.8,2.8,3.8の3種類を設定し、さらにViを2.47~12.51(mm)の範囲内で適宜変更させることで、23本のサンプルを作製した。なお、火花放電間隙は、電極消耗を考慮して1.3mmに調整した。
 次に、試験条件について説明する。エンジンは660cc、3気筒、ターボチャージャーエンジンを使用した。試験パターンは、アイドリング(800rpm)1分、全開3分からなるパターンであって、10時間それを繰り返した。そして、その10時間後の各サンプルについて、汚損の回復性を評価すると共に、絶縁碍子の耐電圧性を評価した。なお、汚損の回復性については「○」「△」「×」で評価した。絶縁碍子の耐電圧性については、絶縁碍子に貫通破壊が発生した場合を「×」、貫通が発生しなかった場合を「○」と評価した。
 次に、耐電圧試験の結果について、図8を参照して説明する。図8は、実施例2の結果を示す表である。汚損回復性については、Hに関わらず、Viが12.51(mm)である3本のサンプル(サンプルNo21,22,23)については何れも「△」であったが、それ以外は全て「○」であり、「×」は無かった。一方、絶縁碍子の貫通破壊の有無については、Hに関わらず、Viが2.47~4.02(mm)の範囲内にあるサンプルは全て「×」であったが、Viが4.22~12.51(mm)の範囲内にあるサンプルは全て「○」であった。
 次に、実施例2の結果についてまとめる。実施例2の結果を、実施例1で規定された数値範囲に反映させた場合、Vi=4.02(mm)のサンプルで絶縁碍子に貫通破壊が発生したため、Viは少なくとも4.02を超えていなければならない。従って、実施例1で規定されたViの数値範囲は、以下のようにさらに規定される。
 ・4.02mm<Vi≦12.51(好ましくは8.77)mm
 [実施例3]
 実施例3では、Vcが中心電極の先端部に溶接された電極チップの耐久性に与える影響について調べた。電極チップの耐久試験では、スパークプラグをエンジンに取り付けた状態で、100時間の耐久試験後の電極チップの残存率を算出した。ここで、「残存率」とは、電極チップの溶融部を含まない部分の残存率をいい、以下の式で算出した。
 ・残存率=耐久試験後の電極チップの体積/耐久試験前の電極チップの体積
なお、「電極チップの体積」とは、電極チップの溶融部を含まない部分の体積をいう。
 次に、試験条件について説明する。エンジンは2L、4気筒のエンジンを使用した。そして、WOT(5000rpm)で100時間連続で耐久試験を行い、耐久試験後の電極チップの残存率を算出した。電極チップは、イリジウム(Ir)合金製と、プラチナ(Pt)合金製との2種類について検討した。そして、これらの電極チップが溶接される中心電極のVcを0.64~8.17の範囲内で適宜変更させ、イリジウム合金製の電極チップを供えたスパークプラグ12本と、プラチナ合金製の電極チップを供えたスパークプラグ12本とをサンプルとして用意した。
 次に、耐久試験の結果について、図9,図10を参照して説明する。図9は、実施例3の結果を示す表であり、図10は、実施例3の結果を示すグラフである。まず、イリジウム合金製の電極チップから検討する。Vcが0.64mm~1.52mmにかけて、残存率は22%から49%まで緩やかに上昇した。そして、Vcが1.52mmを超えると急激に上昇し、Vcが1.79mmで残存率は90%にまで一気に上昇した。その後、残存率は98%に推移した。一方、プラチナ合金製の電極チップについても同様の結果が得られた。即ち、Vcが0.64mm~1.52mmにかけては、残存率は56%から70%まで緩やかに上昇した。そして、Vcが1.52mmを超えると急激に上昇し、Vcが1.79mmで残存率は85%にまで一気に上昇した。その後、残存率は93%に推移した。
 次に、実施例3の結果についてまとめる。イリジウム合金製及びプラチナ合金製の何れの電極チップを用いた場合でも、Vcが1.79mm以上で電極チップの残存率が急激に高くなった。従って、Vcが1.79mm以上であれば、電極チップの耐久性が保持されるので、実施例1で規定されたVcの数値範囲の下限値(Vc=2.10mm)は、この条件を満たしていることが実証された。
 以上の実施例1~3の結果を踏まえると、H、Vi、Vc、Vc/Viは、以下の数値範囲で規定されることが実証された。
 ・H≧1.8mm
 ・4.02mm<Vi≦12.51(好ましくは8.77)mm
 ・2.10mm≦Vc≦6.42(好ましくは5.36)mm
 ・Vc/Vi≦1.03(好ましくは0.84)
 なお、Vc/Viの下限値は、Vcの下限値及びViの下限値で自動的に決まる値である。 
 以上説明したように、本実施形態のスパークプラグ100では、絶縁碍子10の先端側の昇温性能を向上するために、絶縁碍子10の突出量H(mm)、絶縁碍子10の先端側体積Vi(mm)、中心電極20の先端側体積Vc(mm)を各々規定した。これにより、絶縁碍子10の耐電圧性および中心電極20の耐久性を保持しつつ、カーボン汚損の回復性を向上できる。そして、カーボン汚損の回復性が向上することから、中心電極20から絶縁碍子10を介して主体金具50へ飛火する横飛火の発生を抑制できるので、混合気への正常な着火を安定して確保できる。
 なお、本発明は各種の変形が可能なことはいうまでもない。例えば、中心電極20を構成する電極母材21や芯材25の材質は、それぞれ、ニッケルまたはニッケルを主成分とする合金、および銅または銅を主成分とする合金からなるとしたが、それぞれ、耐火花消耗性に優れた金属(Fe合金など)、および電極母材21よりも熱伝導性に優れた金属(Ag合金など)の組み合わせとなれば、その他の金属を用いてもよい。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2008年3月21日出願の日本特許出願(特願2008-72731)、に基づくものであり、その内容はここに参照として取り込まれる。

Claims (3)

  1.  軸線方向に延びる中心電極と、
     前記軸線方向に延びる軸孔を有し、前記中心電極を前記軸孔内の先端側に保持する絶縁碍子と、
     前記中心電極を前記絶縁碍子の前記軸孔内に保持してなる組立体における前記絶縁碍子の周囲を取り囲んで保持する主体金具と、
     一端部が、前記主体金具に接合され、他端部が、前記中心電極との間で火花放電間隙を形成する接地電極と
    を備えたスパークプラグにおいて、
     前記軸線方向において、前記主体金具の先端面から先端側に突き出る前記絶縁碍子の長さをHとし、前記軸線方向において、前記絶縁碍子の先端から後端側に向かって1.5mmの範囲内に相当する前記絶縁碍子の部分の体積をViとし、前記軸線方向において、前記1.5mmの範囲内に相当する前記中心電極の部分の体積をVcとしたときに、
     H≧1.8mm
    を満たすと共に、
     4.02mm<Vi≦12.51mm
     2.10mm≦Vc≦6.42mm
     Vc/Vi≦1.03
    を満たすスパークプラグ。
  2.  4.22mm≦Vi≦8.77mm
     2.10mm≦Vc≦5.36mm
     Vc/Vi≦0.84
    を満たす請求項1に記載のスパークプラグ。
  3.  前記主体金具は、自身の外周面に、内燃機関の取付ねじ孔に螺合するねじ山が形成された取付ねじ部を有し、
     前記取付ねじ部の外径は、呼び径で、M10以下である請求項1又は2に記載のスパークプラグ。
PCT/JP2009/055232 2008-03-21 2009-03-18 スパークプラグ WO2009116553A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020107020988A KR101522057B1 (ko) 2008-03-21 2009-03-18 스파크 플러그
US12/933,745 US8215277B2 (en) 2008-03-21 2009-03-18 Spark plug
CN200980110243.8A CN101978566B (zh) 2008-03-21 2009-03-18 火花塞
EP09722093.3A EP2264843B1 (en) 2008-03-21 2009-03-18 Spark plug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008072731A JP5386098B2 (ja) 2008-03-21 2008-03-21 スパークプラグ
JP2008-072731 2008-03-21

Publications (1)

Publication Number Publication Date
WO2009116553A1 true WO2009116553A1 (ja) 2009-09-24

Family

ID=41090953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055232 WO2009116553A1 (ja) 2008-03-21 2009-03-18 スパークプラグ

Country Status (6)

Country Link
US (1) US8215277B2 (ja)
EP (1) EP2264843B1 (ja)
JP (1) JP5386098B2 (ja)
KR (1) KR101522057B1 (ja)
CN (1) CN101978566B (ja)
WO (1) WO2009116553A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4719191B2 (ja) * 2007-07-17 2011-07-06 日本特殊陶業株式会社 内燃機関用スパークプラグ
JP4625531B1 (ja) * 2009-09-02 2011-02-02 日本特殊陶業株式会社 スパークプラグ
JP6238895B2 (ja) * 2011-08-19 2017-11-29 フェデラル−モーグル・イグニション・カンパニーFederal−Mogul Ignition Company 温度制御機能を有するコロナ点火器
CN112701565B (zh) * 2020-12-30 2022-03-22 潍柴火炬科技股份有限公司 一种火花塞

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161390A (ja) * 1984-08-30 1986-03-29 日本特殊陶業株式会社 点火プラグ
JPS63202874A (ja) * 1987-02-19 1988-08-22 株式会社デンソー 内燃機関用スパ−クプラグ
JP2727558B2 (ja) * 1987-04-16 1998-03-11 株式会社デンソー 内燃機関用スパークプラグ
JP2005116513A (ja) 2003-09-16 2005-04-28 Denso Corp スパークプラグ
JP2006049207A (ja) * 2004-08-06 2006-02-16 Nippon Soken Inc 内燃機関用スパークプラグ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0287080B1 (en) 1987-04-16 1992-06-17 Nippondenso Co., Ltd. Spark plug for internal-combustion engine
JPH10125443A (ja) * 1996-10-23 1998-05-15 Ngk Spark Plug Co Ltd 内燃機関用スパークプラグ
CA2291351C (en) * 1998-12-04 2004-03-16 Denso Corporation Spark plug for internal combustion engine having better self-cleaning function
JP4431271B2 (ja) * 1999-12-13 2010-03-10 日本特殊陶業株式会社 スパークプラグ
EP1239563B1 (en) * 1999-12-13 2010-06-16 Ngk Spark Plug Co., Ltd. Spark plug
JP4227738B2 (ja) * 2000-09-18 2009-02-18 日本特殊陶業株式会社 スパークプラグ
JP4471516B2 (ja) * 2001-02-27 2010-06-02 日本特殊陶業株式会社 スパークプラグ
JP2005243610A (ja) 2004-01-30 2005-09-08 Denso Corp スパークプラグ
JP4430724B2 (ja) * 2007-09-13 2010-03-10 日本特殊陶業株式会社 スパークプラグ
JP2009129645A (ja) * 2007-11-21 2009-06-11 Ngk Spark Plug Co Ltd スパークプラグ
CN101874331B (zh) * 2007-11-26 2013-05-01 日本特殊陶业株式会社 火花塞
KR101522058B1 (ko) * 2008-03-18 2015-05-20 니혼도꾸슈도교 가부시키가이샤 스파크 플러그

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161390A (ja) * 1984-08-30 1986-03-29 日本特殊陶業株式会社 点火プラグ
JPS63202874A (ja) * 1987-02-19 1988-08-22 株式会社デンソー 内燃機関用スパ−クプラグ
JP2727558B2 (ja) * 1987-04-16 1998-03-11 株式会社デンソー 内燃機関用スパークプラグ
JP2005116513A (ja) 2003-09-16 2005-04-28 Denso Corp スパークプラグ
JP2006049207A (ja) * 2004-08-06 2006-02-16 Nippon Soken Inc 内燃機関用スパークプラグ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2264843A4

Also Published As

Publication number Publication date
JP2009230946A (ja) 2009-10-08
EP2264843A1 (en) 2010-12-22
KR20100127236A (ko) 2010-12-03
JP5386098B2 (ja) 2014-01-15
KR101522057B1 (ko) 2015-05-20
EP2264843B1 (en) 2017-03-01
EP2264843A4 (en) 2013-09-25
CN101978566A (zh) 2011-02-16
US20110017163A1 (en) 2011-01-27
US8215277B2 (en) 2012-07-10
CN101978566B (zh) 2012-12-26

Similar Documents

Publication Publication Date Title
EP2216862B1 (en) Spark plug
JP5149295B2 (ja) スパークプラグ
JP5271420B2 (ja) スパークプラグ
WO2021111719A1 (ja) スパークプラグ
JP5525575B2 (ja) スパークプラグ
JP4430724B2 (ja) スパークプラグ
JP5386098B2 (ja) スパークプラグ
US8294344B2 (en) Spark plug and weld metal zone
JP5032556B2 (ja) スパークプラグ
JP4457021B2 (ja) スパークプラグ
US9742157B2 (en) Spark plug
JP5421473B2 (ja) スパークプラグ
JP5816126B2 (ja) スパークプラグ
JP5683409B2 (ja) スパークプラグおよびスパークプラグの製造方法
CN112217098B (zh) 火花塞
JP2006260988A (ja) スパークプラグ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980110243.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09722093

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009722093

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009722093

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107020988

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12933745

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE