WO2009116334A1 - 羽根駆動装置 - Google Patents

羽根駆動装置 Download PDF

Info

Publication number
WO2009116334A1
WO2009116334A1 PCT/JP2009/052473 JP2009052473W WO2009116334A1 WO 2009116334 A1 WO2009116334 A1 WO 2009116334A1 JP 2009052473 W JP2009052473 W JP 2009052473W WO 2009116334 A1 WO2009116334 A1 WO 2009116334A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive
blade
pins
arm
section
Prior art date
Application number
PCT/JP2009/052473
Other languages
English (en)
French (fr)
Inventor
ピチェット ヌムノン
仲野隆司
Original Assignee
セイコープレシジョン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコープレシジョン株式会社 filed Critical セイコープレシジョン株式会社
Publication of WO2009116334A1 publication Critical patent/WO2009116334A1/ja
Priority to US12/616,360 priority Critical patent/US7955009B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/02Diaphragms

Definitions

  • the present invention relates to a blade driving device.
  • Patent Document 1 includes a first arm attached to a rotor shaft, and a first elongated hole that is swingably attached to a support shaft that protrudes from the main plate and engages with a first operating pin provided on the first arm.
  • a sector drive device having a second arm provided and a blade (sector) provided with a second elongated hole that engages with a second operating pin provided on the second arm is disclosed.
  • an object of the present invention is to provide a blade driving device that has a simple structure and can ensure the amount of movement of the blades while maintaining a reduction in size.
  • the object is to adjust the opening amount of the opening that is supported so as to be able to move in a straight line, the blade having the first and second engagement holes, and the predetermined range to rotate the substrate.
  • a driving member that drives the blade; and an arm that is provided on the driving member and transmits the driving force of the driving member to the blade.
  • the arm engages with the first and second engagement holes, respectively. This can be achieved by a blade drive device provided with first and second drive pins.
  • the arm is provided with the first and second drive pins, even if the length of the arm is shortened, the amount of movement of the blades can be changed without changing the rotation range of the arm. Can be secured. Therefore, the amount of movement of the blades can be ensured while maintaining a small size with a simple structure.
  • the first and second drive pins may employ a configuration in which the first and second drive pins are arranged in a circumferential direction centered on the rotation center of the arm.
  • the first and second engagement holes may be provided so as to be along each other.
  • the first and second drive pins can be arranged in a minimum space, so that the amount of movement of the blades can be ensured while maintaining downsizing.
  • the first engagement hole includes a drive section in which the power of the first drive pin is transmitted to the blades and a non-drive section in which the power of the first drive pin is released
  • the second engagement The joint hole includes a drive section in which the power of the second drive pin is transmitted to the blades and a non-drive section in which the power of the second drive pin is released, and one of the first and second drive pins is When located in the drive section, a configuration in which the other is located in the non-drive section can be adopted.
  • the arm portion is provided with a plurality of drive pins that engage with the engagement holes, the amount of movement of the pin can be ensured even when the length of the arm portion is short. .
  • the driving member and the blade may be positioned so as to sandwich the substrate, and the substrate may have a single escape hole for allowing the first and second driving pins to escape.
  • the degree of freedom of arrangement of the mounting holes of the actuators and the like increases, so that the space of the board can be used effectively and the amount of movement of the blades is ensured while maintaining downsizing. be able to.
  • a blade driving device that has a simple structure and can ensure the amount of movement of the blades while maintaining downsizing.
  • FIG. 1 is a perspective view of a blade driving device according to the present embodiment.
  • FIG. 2 is a perspective view of the blade driving device in which a part of the substrate is omitted.
  • FIG. 3 is a front view of the blade.
  • FIG. 4 is a front view of the blade driving device in a fully opened state.
  • FIG. 5 is a front view of the blade driving device during the transition between the fully open state and the small aperture state.
  • FIG. 6 is a front view of the blade driving device in the small aperture state.
  • FIG. 7 is a front view of a conventional blade driving device in a fully opened state.
  • FIG. 8 is a front view of a conventional blade driving device in a small aperture state.
  • FIG. 1 is a perspective view of a blade driving device according to the present embodiment.
  • FIG. 2 is a perspective view of the blade driving device in which a part of the substrate is omitted.
  • FIG. 3 is a front view of the blade.
  • FIG. 4 is a
  • FIG. 9 is a front view of the blade driving device according to the second embodiment in a fully opened state.
  • FIG. 10 is a front view of the blade driving device according to the second embodiment during the transition between the fully opened state and the small aperture state.
  • FIG. 11 is a front view of the blade driving device according to the second embodiment in a small aperture state.
  • FIG. 1 is a perspective view of the blade driving device 1 according to the first embodiment
  • FIG. 2 is a perspective view of the blade driving device 1 according to the first embodiment, in which a part of the substrate 10 is omitted.
  • the blade driving device 1 includes a substrate 10 having an opening 11 at the center, a blade 20 that is supported so as to be able to move straight forward while adjusting the opening amount of the opening 11, and a driving member that is supported so as to be rotatable and drives the blade 20. 30, including an electromagnetic actuator 40 that drives the drive member 30.
  • the blade 20 and the electromagnetic actuator 40 are arranged so as to sandwich the substrate 10.
  • the electromagnetic actuator 40 includes a stator 41 formed in a U-shape and having magnetic poles at both ends thereof, a rotor 42 magnetized in two circumferentially different poles to form a cylindrical shape, and a coil bobbin attached to an arm of the stator 41 43, a coil 44 wound around the coil bobbin 43 is included.
  • the coil 44 When the coil 44 is energized, the magnetic pole portions described above are excited to have different polarities, and the rotor 42 is rotated by the attractive force and the repulsive force generated between the rotor 42 and the magnetic pole portion.
  • the driving member 30 is fixed to the rotor 42 and rotates together with the rotor 42 within a predetermined angle range.
  • the drive member 30 is made of resin.
  • the drive member 30 includes an arm 32 extending radially outward from the rotation center of the drive member 30, that is, the rotation center of the rotor 42, and drive pins 33 a and 33 b erected from the tip of the arm 32. .
  • the arm 32 transmits the driving force of the driving member 30 to the blade 20 engaged with the driving pins 33a and 33b.
  • the arm 32 is formed so as to increase in width as it moves away from the rotation center of the drive member 30.
  • the substrate 10 is formed of a resin, and the substrate 10 is formed with a single escape hole 13 for escaping both the drive pins 33a and 33b in an arc shape.
  • the blade 20 is formed of a general light reflection preventing film or a light shielding film, for example, a Soma black film (manufactured by Somaru), and the blade 20 is engaged with the drive pins 33a and 33b, respectively. Holes 23a and 23b are formed.
  • the engagement holes 23a and 23b are substantially linear and are formed along each other.
  • FIG. 3 is a front view of the blade 20.
  • a diaphragm aperture 21 having a smaller diameter than the aperture 11 is formed in the blade 20.
  • guide pins 12a and 12b are formed on the substrate 10, and guide holes 22a and 22b that engage with the guide pins 12a and 12b, respectively, are formed on the blade 20.
  • the guide holes 22a and 22b are linear and formed in parallel.
  • the guide holes 22a and 22b have a function of guiding the blade 20 so that the movement of the blade 20 is in a straight traveling direction.
  • the guide holes 22a and 22b and the engagement holes 23a and 23b are not parallel.
  • the engagement hole 23a is composed of a drive section 23ad and a non-drive section 23an
  • the engagement hole 23b is similarly composed of a drive section 23bd and a non-drive section 23bn.
  • the driving section 23ad and the non-driving section 23an continue in this order from the lower left to the upper right in FIG. 3, whereas in the engaging hole 23b, the lower left in FIG. From the top to the upper right, the non-driving section 23bn and the driving section 23bd are consecutive in this order.
  • the non-drive section 23an is formed wider than the drive section 23ad, and similarly, the non-drive section 23bn is formed wider than the drive section 23bd. Details will be described later.
  • FIG. 4 is a front view of the blade driving device 1 in the fully open state
  • FIG. 5 is a front view of the blade driving device 1 in the middle of the transition between the fully opened and small aperture states
  • FIG. 6 is a blade drive in the small aperture state.
  • 2 is a front view of the device 1.
  • FIG. 4 to 6 the substrate 10 is indicated by a broken line
  • the rotor 42 of the electromagnetic actuator 40 and the driving member 30 are indicated by a solid line in order to make the operation of the blade driving device 1 easier to understand. .
  • the blade 20 in the fully open state, the blade 20 is positioned at a position retracted from the opening 11. Further, in this state, the drive pin 33b abuts on one end of the escape hole 13, and the clockwise rotation of the drive member 30 is restricted.
  • the guide pins 12a and 12b are also in contact with the ends of the guide holes 22a and 22b, respectively, and the movement of the blade 20 in the direction away from the opening 11 is restricted.
  • the drive pins 33a and 33b are provided on the arm 32 so as to be arranged in the circumferential direction around the rotation center C of the drive member 30 (rotation center of the rotor 42). Specifically, the drive pins 33 a and 33 b are formed at positions having a distance R from the rotation center C of the drive member 30. Further, the drive pins 33a and 33b are separated from each other by a predetermined distance in the circumferential direction. In other words, the drive pins 33 a and 33 b are arranged so that a line connecting them intersects a radial line from the rotation center C of the arm 32.
  • the drive member 30 When the rotor 42 rotates counterclockwise from the state shown in FIG. 4, the drive member 30 also rotates counterclockwise.
  • the drive pins 33a and 33b move in the escape hole 13 in the counterclockwise direction.
  • the drive pin 33a is in sliding contact with the inner peripheral surface of the engagement hole 23a in the drive section 23ad, and the power of the drive pin 33a is transmitted to the blade 20.
  • the drive pin 33b is not in sliding contact with the inner peripheral surface of the engagement hole 23b in the non-drive section 23bn, and the movement of the drive pin 33b is released.
  • the power of the electromagnetic actuator 40 is transmitted to the blades 20 through the drive pin 33a.
  • the drive pin 33a is located near the boundary between the drive section 23ad and the non-drive section 23an, and the drive pin 33b is similarly located near the boundary between the drive section 23bd and the non-drive section 23bn. Is shown. In this state, both of the drive pins 33a and 33b are in contact with the inner peripheral surfaces of the engagement holes 23a and 23b, respectively.
  • the drive pin 33a leaves the drive section 23ad and enters the non-drive section 23an.
  • the drive pin 33b leaves the non-drive section 23bn and enters the drive section 23bd.
  • the drive pin 33a releases power by the non-drive section 23an, but the drive pin 33b contacts the inner peripheral surface of the drive section 23bd, and the power of the drive pin 33b is transmitted to the blades 20.
  • the rotor 42 further rotates counterclockwise from the state shown in FIG. 5, the power of the electromagnetic actuator 40 is transmitted to the blades 20 via the drive pins 33 b.
  • the state shown in FIG. 6 shows a state in which the drive pin 33a abuts against the other end of the escape hole 13 and the rotation of the drive member 30 in the counterclockwise direction is restricted.
  • the guide pins 12a and 12b are also in contact with the other ends of the guide holes 22a and 22b, respectively, and the further movement of the blade 20 in the diagonally lower left direction is restricted.
  • the opening 11 and the aperture opening 21 overlap.
  • the state shown in FIG. 6 shifts to the state shown in FIGS. 5 and 4 when the rotor 42 rotates in the clockwise direction again.
  • the role of transmitting the power of the electromagnetic actuator 40 to the blade 20 is switched from one of the drive pin 33a and the drive pin 33b to the other.
  • the engagement holes 23 a and 23 b are formed so that any one of the drive pins 33 a and 33 b is transmitted to the blade 20 during the movement of the blade 20. This is because the two drive pins 33 a and 33 b are provided at the tip of the arm 32.
  • the sliding resistance is partially increased, and the drive member This is because 30 does not rotate smoothly. More specifically, the distance between the drive pins 33a and 33b is always constant, but the rotation of the drive member 30 causes the distance between the drive pins 33a and 33b in the direction perpendicular to the direction in which the engagement holes 23a and 23b extend. This is because the distance changes. For example, when the engagement holes 23a and 23b are always in sliding contact with the drive pins 33a and 33b over the entire section in the position shown in FIG. 5, in the state shown in FIGS. 4 and 6, the drive pins 33a and 33b This is because the distance between the engagement holes 23a and 23b becomes longer than the distance between them, and the sliding resistance between the drive pins 33a and 33b and the engagement holes 23a and 23b increases.
  • FIG. 7 is a front view of the conventional blade driving device 1x in the fully opened state
  • FIG. 8 is a front view of the conventional blade driving device 1x in the small aperture state.
  • the substrate 10x is indicated by a broken line, and other portions are omitted.
  • the blade driving device 1x has a blade 20x, and the movement amount of the blade 20x is substantially the same as that of the blade 20 of the blade driving device 1.
  • the drive member 30x includes an arm 32x and a drive pin 33x.
  • a single drive pin 33x is erected at the tip of the arm 32x.
  • the board 10x is formed with a relief hole 13x for allowing the drive pin 33x to escape, and the blade 20x is formed with a single engagement hole 23x for engaging with the drive pin 33x.
  • the engagement hole 23x is formed in a linear shape. Further, the engagement hole 23x is always in sliding contact with the drive pin 33x in all sections. That is, the engagement hole 23x is configured so that the power of the drive pin 33x can be always transmitted to the blade 20.
  • a single guide hole 22x that engages with the guide pins 12ax and 12bx formed in the substrate 10x is linearly formed.
  • the blade driving device 1x rotates from the fully open state shown in FIG. 7 to the small aperture state shown in FIG. 8 by rotating the driving member 30x counterclockwise. And migrate.
  • the distance Rx from the rotation center Cx of the drive member 30x to the drive pin 33x is the drive pin from the rotation center C of the drive member 30 of the blade driving device 1 according to this embodiment. It is longer than the distance R to 33a, 33b. This is because it is necessary to secure the amount of movement of the drive pin in order to secure the amount of movement of the blade that moves straight, and in order to ensure the amount of movement of the drive pin, the drive is performed from the center of rotation of the arm. This is because a longer distance to the pin is preferable. This is because, when the rotation range of the drive member is constant, the movement amount of the drive pin is larger as the distance from the rotation center of the arm to the drive pin is longer. However, as shown in FIG.
  • the blade driving device can be reduced in size, but the movement amount of the driving pin is also reduced accordingly. Therefore, the moving amount of the blade cannot be ensured.
  • problems such as strict position setting of the magnetic pole portion formed on the stator facing the rotor and securing of torque, and the rotation range of the rotor is expanded. It is desirable that the amount of movement of the drive pin can be ensured without this.
  • the movement amount of the blade 20 is ensured without expanding the rotation range of the rotor 42. can do.
  • the lengths of the escape holes 13 and 13x are substantially the same.
  • the movement amount D of the drive pin 33b is shorter than the movement amount Dx of the drive pin 33x. This is because the drive pin 33b abuts at one end of the escape hole 13 in the fully open state and the drive pin 33a abuts at the other end of the escape hole 13 in the throttled state, whereas in the blade drive device 1x, This is because, in any state, the single drive pin 33x contacts one end or the other end of the escape hole 13x. That is, in the case of the blade driving device 1 according to the present embodiment, the rotation range of the driving member 30 can be reduced by the distance between the driving pins 33a and 33b.
  • wing 20 can be ensured, without enlarging the rotation range of the rotor 42, and size reduction of the blade drive device 1 can be maintained. Further, as in the blade driving device 1 according to the present embodiment, the movement of the blade 20 is maintained while maintaining the downsizing of the device by a simple structure in which two driving pins 33a and 33b are provided at the tip of the arm 32. The amount can be secured.
  • FIG. 9 to 11 are explanatory views of the blade driving device 1A according to the second embodiment.
  • FIG. 9 is a front view of the blade driving device 1A according to the second embodiment in the fully opened state
  • FIG. 10 is a front view of the blade driving device 1A according to the second embodiment in the middle of the transition between the fully opened and small aperture states
  • 11 is a front view of the blade driving device 1A according to the second embodiment in a small aperture state.
  • FIG. 9 to FIG. 11 in order to make the operation of the blade driving device 1 ⁇ / b> A easy to understand, it is indicated by a broken line of the substrate 50, and other parts of the configuration are omitted.
  • the blade driving device 1A is a so-called guillotine shutter.
  • the blade driving device 1A includes a substrate 50, a blade 60, and the like.
  • the substrate 50 is formed in a rectangular shape.
  • An opening 51 is formed in the substrate 50.
  • a diaphragm opening 61 is formed in the blade 60.
  • Guide pins 52 a and 52 b are formed on the substrate 50, and the guide pins 52 a and 52 b engage with guide holes 62 a and 62 b formed in the blade 60, respectively.
  • the guide holes 62a and 62b are formed substantially in parallel. As the guide holes 62a and 62b engage with the guide pins 52a and 52b, respectively, the blade 60 is supported to move in the longitudinal direction of the substrate 50.
  • the substrate 50 is formed with a single escape hole 53 for escaping the movement of both the drive pins 33a and 33b.
  • the blade 60 has engagement holes 63a and 63b that engage with the drive pins 33a and 33b, respectively.
  • the engagement holes 63a and 63b also have a driving section 63ad and a non-driving section 63an, a driving section 63bd, and a non-driving section 63bn, respectively.
  • the blade drive device 1A employs an electromagnetic actuator as a drive source, similarly to the blade drive device 1 according to the first embodiment. 9 to 11, only the rotor 42 is shown for the electromagnetic actuator.
  • the drive pin 33a is located in the drive section 63ad, and the drive pin 33b is located in the non-drive section 63bn.
  • the blade 60 moves to the left along the direction of the guide holes 62a and 62b, and shifts to the state shown in FIG.
  • the drive pin 33a leaves the drive section 63ad and enters the non-drive section 63an, and the drive pin 33b exits the non-drive section 63bn and enters the drive section 63bd.
  • the aperture state is shifted to that shown in FIG.
  • the present invention can also be employed in so-called guillotine shutters.
  • the present invention may be applied to a blade that fully closes the opening formed in the substrate.
  • An ND (Neutral Density) filter may be pasted on the aperture opening formed in the blade.
  • the blade 20 is formed of a general light reflection preventing film or a light shielding film, but a blade formed of resin may be used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Diaphragms For Cameras (AREA)
  • Shutters For Cameras (AREA)

Abstract

 本実施例に係る羽根駆動装置1は、開口11を有した基板10と、直進移動可能に支持され開口11の開口量を調節すると共に、係合孔23a、23bを有した羽根20と、所定の範囲を回動して羽根20を駆動する駆動部材30と、駆動部材30に設けられ、駆動部材30の駆動力を羽根20に伝えるアーム32と、アーム32に設けられ係合孔23a、23bとそれぞれ係合する駆動ピン33a、33bとを備えている。

Description

羽根駆動装置
 本発明は、羽根駆動装置に関する。
 従来から、カメラなどに採用される羽根駆動装置が知られている。特許文献1には、ロータ軸に取り付けられた第1アームと、地板から突出した支軸に揺動可能に取り付けられ且つ第1アームに設けられた第1作動ピンと係合する第1長穴が設けられた第2アームと、第2アームに設けられた第2作動ピンと係合する第2長穴が設けられた羽根(セクタ)とを有するセクタ駆動装置が開示されている。第1及び第2アームを設けることにより、羽根の移動量を大きくすることができるものである。
特開2006-84895号公報
 特許文献1に開示されている装置によれば、2つのアームを設ける必要があるため、部品点数が増大し、装置が複雑化する。
 また、単にアームの回動中心から駆動ピンまでの距離を長くすることによっても、駆動ピンの移動量を確保でき、これにより羽根の移動量を確保することも可能である。しかしながら、アームの回動中心から駆動ピンまでの距離を長くすると、アームの長さが長くなるので、羽根駆動装置内にアームの回動を許容する大きいスペースを確保する必要がある。このようなスペースを確保すると、羽根駆動装置が大型化する。
 そこで本発明は、簡易な構造であって小型化を維持しつつ羽根の移動量を確保できる羽根駆動装置を提供することを課題とする。
 上記目的は、開口を有した基板と、直進移動可能に支持され前記開口の開口量を調節すると共に、第1及び第2係合孔を有した羽根と、所定の範囲を回動して前記羽根を駆動する駆動部材と、前記駆動部材に設けられ、該駆動部材の駆動力を前記羽根に伝えるアームとを備え、前記アームには、前記第1及び第2係合孔とそれぞれ係合する第1及び第2駆動ピンが設けられている羽根駆動装置によって達成できる。
 この構成により、アームには、第1及び第2駆動ピンが設けられているので、アームの長さを短くした場合であっても、アームの回動範囲を変更することなく、羽根の移動量を確保することができる。従って、簡易な構造であって小型化を維持しつつ羽根の移動量を確保することができる。
 上記構成において、
 前記第1及び第2駆動ピンは、前記アームの回動中心を中心とする周方向に並んでいる、構成を採用できる。これにより、アームの回動範囲を変更することなく、羽根の移動量を確保することができる。
 上記構成において、前記第1及び第2係合孔は、互いに沿うように設けられている、構成を採用できる。これにより、第1及び第2駆動ピンを最小スペースで配置できるので小型化を維持しつつ羽根の移動量を確保することができる。
 上記構成において、前記第1係合孔は、前記第1駆動ピンの動力が前記羽根へ伝達される駆動区間と、前記第1駆動ピンの動力を逃がす非駆動区間とを含み、前記第2係合孔は、前記第2駆動ピンの動力が前記羽根へ伝達される駆動区間と、前記第2駆動ピンの動力を逃がす非駆動区間とを含み、前記第1及び第2駆動ピンは、一方が前記駆動区間に位置する場合は、他方が前記非駆動区間に位置する、構成を採用できる。
 この構成により、アーム部には、係合孔と係合する複数の駆動ピンが設けられているので、アーム部の長さが短い場合であっても、ピンの移動量を確保することができる。
 上記構成において、前記駆動部材及び羽根は、前記基板を挟むように位置し、前記基板は、前記第1及び第2駆動ピンを逃がす単一の逃げ孔を有している、構成を採用できる。これにより、逃げ孔が一つであるため、アクチュエータの取り付け穴等の配置の自由度が増えるため、基板のスペースを有効に利用することができ小型化を維持しつつ羽根の移動量を確保することができる。
 本発明によれば、簡易な構造であって小型化を維持しつつ羽根の移動量を確保できる羽根駆動装置を提供できる。
図1は、本実施例に係る羽根駆動装置の斜視図である。 図2は、基板を一部省略した羽根駆動装置の斜視図である。 図3は、羽根の正面図である。 図4は、全開状態での羽根駆動装置の正面図である。 図5は、全開及び小絞り状態間の移行途中での羽根駆動装置の正面図である。 図6は、小絞り状態での羽根駆動装置の正面図である。 図7は、全開状態での従来の羽根駆動装置の正面図である。 図8は、小絞り状態での従来の羽根駆動装置の正面図である。 図9は、全開状態での実施例2に係る羽根駆動装置の正面図である。 図10は、全開及び小絞り状態間の移行途中での実施例2に係る羽根駆動装置の正面図である。 図11は、小絞り状態での実施例2に係る羽根駆動装置の正面図である。
 以下、本発明に係る羽根駆動装置について図面を参照して説明する。
図1は、実施例1に係る羽根駆動装置1の斜視図であり、図2は、基板10を一部省略した、実施例1に係る羽根駆動装置1の斜視図である。羽根駆動装置1は、中央部に開口11を有した基板10、開口11の開口量を調整すると共に直進移動可能に支持された羽根20、回動可能に支持されて羽根20を駆動する駆動部材30、駆動部材30を駆動する電磁アクチュエータ40を含む。羽根20、電磁アクチュエータ40は、基板10を挟むように配置されている。
 電磁アクチュエータ40は、U字状に形成されその両端部にそれぞれ磁極部を有するステータ41、周方向に異なる2極に着磁され円筒形状を成すロータ42、ステータ41の腕部に取り付けられたコイルボビン43、コイルボビン43に巻回されたコイル44を含む。コイル44への通電により、上述の磁極部がそれぞれ異なる極性に励磁され、ロータ42と磁極部との間に発生する吸着力及び反発力によって、ロータ42が回動する。
 駆動部材30は、ロータ42に固定されており、ロータ42と共に所定の角度範囲を回動する。駆動部材30は、樹脂により形成されている。また、駆動部材30は、駆動部材30の回動中心、即ち、ロータ42の回転中心から径方向外側に伸びたアーム32と、アーム32の先端部から立設した駆動ピン33a、33bとを含む。アーム32は駆動部材30の駆動力を、駆動ピン33a、33bに係合する羽根20に伝える。また、アーム32は、駆動部材30の回動中心から離れるに従って、幅が広くなるように形成されている。
 基板10は、樹脂により形成されており、基板10には、駆動ピン33a、33bの双方を逃がすための単一の逃げ孔13が円弧状に形成されている。また、羽根20は、一般的な光反射防止用フィルムや遮光フィルム、例えばソマブラックフィルム(ソマール社製)により形成されており、羽根20には、駆動ピン33a、33bとそれぞれ係合する係合孔23a、23bが形成されている。係合孔23a、23bは、ほぼ直線状であって互いに沿うように形成されている。図3は、羽根20の正面図である。羽根20には、開口11よりも径の小さい絞り開口21が形成されている。
 また、基板10には、ガイドピン12a、12bが形成されており、羽根20には、ガイドピン12a、12bとそれぞれ係合するガイド孔22a、22bが形成されている。ガイド孔22a、22bは、直線状であって平行に形成されている。ガイド孔22a、22bは、羽根20の移動が直進方向となるように羽根20を案内する機能を有している。尚、ガイド孔22a、22bと、係合孔23a、23bとは、平行ではない。
 また、図3に示すように、係合孔23aは、駆動区間23ad及び非駆動区間23anから構成され、係合孔23bも同様に、駆動区間23bd及び非駆動区間23bnから構成される。駆動区間23adに駆動ピン33aが位置する場合には、駆動ピン33aの動力が羽根20へと伝達される。非駆動区間23anに駆動ピン33aが位置する場合には、駆動ピン33aの動力を逃がされる。同様に、駆動区間23bdに駆動ピン33bが位置する場合には、駆動ピン33bの動力が羽根20へと伝達される。非駆動区間23bnに駆動ピン33bが位置する場合には、駆動ピン33bの動力が逃がされる。また、係合孔23aにおいては、図3の紙面左下から右上にかけて、駆動区間23ad、非駆動区間23anの順で連続しているのに対して、係合孔23bにおいては、図3の紙面左下から右上にかけて、非駆動区間23bn、駆動区間23bdの順で連続している。駆動区間23adよりも非駆動区間23anの方が幅広に形成されており、同様に、駆動区間23bdよりも非駆動区間23bnの方が幅広に形成されている。詳しくは後述する。
 次に、羽根駆動装置1の動作について説明する。図4は、全開状態での羽根駆動装置1の正面図、図5は、全開及び小絞り状態間の移行途中での羽根駆動装置1の正面図、図6は、小絞り状態での羽根駆動装置1の正面図である。尚、図4乃至図6においては、羽根駆動装置1の動作をわかりやすくするために、基板10を破線で示しており、電磁アクチュエータ40のロータ42と、駆動部材30とを実線で示している。
 図4に示すように、全開状態においては、羽根20は開口11から退避した位置に位置付けられる。また、この状態においては、駆動ピン33bが逃げ孔13の一端に当接して駆動部材30の時計方向の回動が制限されている。また、ガイドピン12a、12bも、それぞれガイド孔22a、22bの一端に当接して羽根20の、開口11から離れる方向への移動が規制されている。
 尚、駆動ピン33a、33bは、駆動部材30の回動中心C(ロータ42の回動中心)を中心とする周方向に並ぶように、アーム32に設けられている。詳細には、駆動ピン33a、33bは、駆動部材30の回動中心Cから距離Rを有した位置に形成されている。また、駆動ピン33a、33bは、周方向に所定の距離だけ離間している。換言すれば、駆動ピン33a、33bは、両者を結ぶ線が、アーム32の回動中心Cからの放射状の線と交差するように、配置されている。
 図4に示した状態から、ロータ42が反時計方向に回動すると、これに伴って駆動部材30も反時計方向に回動する。駆動部材30が回動すると、駆動ピン33a、33bは、逃げ孔13内を反時計方向に移動する。この移動の際に、駆動ピン33aは、駆動区間23ad内において、係合孔23aの内周面と摺接して、駆動ピン33aの動力が羽根20へ伝達される。一方、駆動ピン33bは、非駆動区間23bn内において、係合孔23bの内周面とは摺接せずに、駆動ピン33bの移動が逃がされる。このように、駆動ピン33aを介して、電磁アクチュエータ40の動力が羽根20へと伝達される。
 このようにロータ42が反時計方向に回動すると、羽根20は、ガイド孔22a、22bの方向に沿って左斜め下方向へと移動する。換言すると、駆動ピン33a、33bが、それぞれ係合孔23a、23b内を上るように、羽根20が相対的に左斜め下方向へと移動する。これにより、図5に示した状態へと移行する。
 図5に示した状態は、駆動ピン33aが、駆動区間23ad、非駆動区間23anの境界付近に位置し、駆動ピン33bも同様に、駆動区間23bd、非駆動区間23bnの境界付近に位置した状態を示している。この状態においては、駆動ピン33a、33bは、両者共に、その一部分が、それぞれ係合孔23a、23bの内周面と当接している。この状態から、ロータ42が更に反時計方向に回転すると、駆動ピン33aは、駆動区間23adを脱し、非駆動区間23anへ突入する。また、駆動ピン33bは、非駆動区間23bnを脱し、駆動区間23bdへと突入する。これにより、駆動ピン33aは、非駆動区間23anによって動力が逃がされるが、駆動ピン33bは、駆動区間23bdの内周面と当接して、駆動ピン33bの動力が羽根20へと伝達される。このように、図5に示した状態から、更にロータ42が反時計方向に回転した場合には、駆動ピン33bを介して、電磁アクチュエータ40の動力が羽根20へと伝達される。
 図6に示した状態は、駆動ピン33aが逃げ孔13の他端に当接して駆動部材30の反時計方向の回動が規制された状態を示している。この際、ガイドピン12a、12bも、それぞれガイド孔22a、22bの他端に当接して、羽根20の更なる左斜め下方向への移動が規制される。この際に、開口11と絞り開口21とが重なる。尚、図6に示した状態から、再びロータ42が時計方向に回動することにより、図5、図4に示した状態へと移行する。
 以上のように、全開状態及び小絞り状態間の移行過程において、電磁アクチュエータ40の動力を羽根20へと伝達する役割が、駆動ピン33a及び駆動ピン33bの一方から他方へと切り替わる。換言すれば、羽根20が移動する過程において、駆動ピン33a、33bのうち、何れか一方の動力が、羽根20へと伝達されるように、係合孔23a、23bが形成されている。この理由は、アーム32の先端部に、2つの駆動ピン33a、33bを設けたことに起因する。
 例えば、係合孔23a、23bがほぼ平行に形成され、その両者がそれぞれ、全区間に渡って駆動ピン33a、33bと常に摺接していると、部分的に摺動抵抗が増大し、駆動部材30がスムーズに回動しなくなるからである。詳しく述べると、駆動ピン33a、33b間の距離は常に不変であるが、駆動部材30の回動により、係合孔23a、23bが伸びた方向に垂直な方向での、駆動ピン33a、33b間の距離が変化するからである。例えば、図5に示す位置において係合孔23a、23bが、それぞれ全区間に渡って駆動ピン33a、33bと常に摺接していると、図4及び6に示した状態では、駆動ピン33a、33b間の距離よりも、係合孔23a、23b間の距離の方が長くなり、駆動ピン33a、33bと、係合孔23a、23bとの摺動抵抗が増すためである。
 また、このようにアーム32に2つの駆動ピン33a、33bを設けた理由について以下で説明する。
 まず、従来の羽根駆動装置1xについて説明する。図7は、全開状態での従来の羽根駆動装置1xの正面図であり、図8は、小絞り状態での従来の羽根駆動装置1xの正面図である。尚、理解を容易にするために、基板10xを破線で示しており、そのほか部分的に省略してある。
 羽根駆動装置1xは、羽根20xを有しており、羽根20xの移動量は、羽根駆動装置1の羽根20とほぼ同じである。駆動部材30xは、アーム32xと駆動ピン33xとを含む。また、アーム32xの先端には、単一の駆動ピン33xが立設されている。また、基板10xには、駆動ピン33xを逃がす逃げ孔13xが、羽根20xには、駆動ピン33xと係合する単一の係合孔23xが形成されている。係合孔23xは、直線状に形成されている。また、係合孔23xは、全区間で常に駆動ピン33xと摺接している。即ち、係合孔23xは、駆動ピン33xの動力が、常に羽根20へと伝達され得るように構成されている。尚、羽根20xには、基板10xに形成されたガイドピン12ax、12bxと係合する単一のガイド孔22xが直線状に形成されている。羽根駆動装置1xは、本実施例に係る羽根駆動装置1と同様に、駆動部材30xが反時計方向に回動することにより、図7に示した全開状態から図8に示した小絞り状態へと移行する。
 図4、図7に示すように、駆動部材30xの回動中心Cxから駆動ピン33xまでの距離Rxは、本実施例に係る羽根駆動装置1の、駆動部材30の回動中心Cから駆動ピン33a、33bまでの距離Rよりも長い。これは、直進移動する羽根の移動量を確保するためには、駆動ピンの移動量を確保することが必要であり、駆動ピンの移動量を確保するためには、アームの回動中心から駆動ピンまでの距離が長い方が好ましいためである。駆動部材の回動範囲が一定の場合には、アームの回動中心から駆動ピンまでの距離が長い方が、駆動ピンの移動量が大きいからである。しかしながら、図7に示すように、駆動部材30xの回動中心Cxから駆動ピン33xまでの距離Rxが長いと、羽根駆動装置1x内に駆動部材30xの回動を許容する大きいスペースを確保する必要があり、羽根駆動装置1xが大型化する。
 しかしながら、アームの長さを短くすると、羽根駆動装置を小型化することができるが、これに伴い、駆動ピンの移動量も減少する。従って、羽根の移動量を確保することができないことになる。この解決案として、ロータの回動範囲を拡大することによって、駆動ピンの移動量を確保することも考えられる。しかしながら、ロータの回動範囲を拡大するためには、ステータに形成された、ロータと対向する磁極部の厳密な位置設定や、トルクの確保などの問題があり、ロータの回動範囲を拡大することなく、駆動ピンの移動量を確保できることが望まれる。
 従って、本実施例に係る羽根駆動装置1のように、アーム32に、2つの駆動ピン33a、33bを設けることにより、ロータ42の回動範囲を拡大することなく、羽根20の移動量を確保することができる。
 この点について詳細に説明する。図6、図8に示すように、逃げ孔13、13xの長さはほぼ一致している。しかしながら、駆動ピン33bの移動量Dは、駆動ピン33xの移動量Dxよりも短い。これは、全開状態において駆動ピン33bが逃げ孔13の一端で当接し、絞り状態において駆動ピン33aが逃げ孔13の他端で当接するからであるのに対して、羽根駆動装置1xにおいては、いずれの状態においても、単一の駆動ピン33xが、逃げ孔13xの一端又は他端と当接するからである。即ち、本実施例に係る羽根駆動装置1の場合、駆動ピン33a、33b間の距離だけ、駆動部材30の回動範囲を削減することができる。これにより、ロータ42の回動範囲を拡大することなく、羽根20の移動量を確保することができ、羽根駆動装置1の小型化を維持することができる。また、本実施例に係る羽根駆動装置1のように、アーム32の先端部に2つの駆動ピン33a、33bを設けるという、簡易な構造によって、装置の小型化を維持しつつ、羽根20の移動量を確保することができる。
 次に、実施例2に係る羽根駆動装置1Aについて説明する。図9乃至図11は、実施例2に係る羽根駆動装置1Aの説明図である。図9は、全開状態での実施例2に係る羽根駆動装置1Aの正面図、図10は、全開及び小絞り状態間の移行途中での実施例2に係る羽根駆動装置1Aの正面図、図11は、小絞り状態での実施例2に係る羽根駆動装置1Aの正面図である。図9乃至図11においては、羽根駆動装置1Aの動作をわかりやすくするために、基板50の破線で示し、そのほか、一部の構成について省略してある。羽根駆動装置1Aは、所謂ギロチン式シャッターである。
 図9乃至図11に示すように、羽根駆動装置1Aは、基板50、羽根60などを含む。基板50は、矩形状に形成されている。また、基板50には、開口51が形成されている。羽根60には、絞り開口61が形成されている。基板50には、ガイドピン52a、52bが形成されており、ガイドピン52a、52bは、羽根60に形成されたガイド孔62a、62bにそれぞれ係合する。また、ガイド孔62a、62bは、ほぼ平行に形成されている。ガイド孔62a、62bが、それぞれガイドピン52a、52bと係合することにより、羽根60は、基板50の長手方向への移動が支持されている。また、基板50には、駆動ピン33a、33bの両者の移動を逃がすための単一の逃げ孔53が形成されている。
 羽根60には、駆動ピン33a、33bとそれぞれ係合する係合孔63a、63bが、形成されている。係合孔63a、63bも、実施例1に係る羽根駆動装置1と同様に、それぞれ駆動区間63ad及び非駆動区間63an、駆動区間63bd及び非駆動区間63bnを有している。
 また、羽根駆動装置1Aは、実施例1に係る羽根駆動装置1と同様に、駆動源として電磁アクチュエータが採用されている。尚、図9乃至図11においては、電磁アクチュエータについては、ロータ42のみを示している。
 全開状態においては、駆動ピン33aは、駆動区間63adに、駆動ピン33bは、非駆動区間63bnに位置する。この状態から、ロータ42が反時計方向に回動すると、羽根60は、ガイド孔62a、62bの方向に沿って左方向へと移動し、図10に示した状態へと移行する。更に、ロータ42が反時計方向に回動すると、駆動ピン33aは、駆動区間63adを脱して非駆動区間63anに突入し、駆動ピン33bは、非駆動区間63bnを脱して駆動区間63bdに突入して、図11に示した絞り状態へと移行する。以上のように本発明は、所謂ギロチン式シャッターにも採用できる。
 以上本発明の好ましい一実施形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 基板に形成された開口を全閉状態にする羽根に本発明を採用してもよい。羽根に形成された絞り開口に、ND(Neutral Density)フィルタを貼り付けたものであってもよい。
 上記実施例では羽根20を一般的な光反射防止用フィルムや遮光フィルムにより形成した例を示したが、樹脂により成型された羽根を用いてもよい。

Claims (5)

  1.  開口を有した基板と、
     直進移動可能に支持され前記開口の開口量を調節すると共に、第1及び第2係合孔を有した羽根と、
     所定の範囲を回動して前記羽根を駆動する駆動部材と、
     前記駆動部材に設けられ、該駆動部材の駆動力を前記羽根に伝えるアームと、を備え、
     前記アームには、前記第1及び第2係合孔とそれぞれ係合する第1及び第2駆動ピンが設けられている、ことを特徴とする羽根駆動装置。
  2.  前記第1及び第2駆動ピンは、前記アームの回動中心を中心とする周方向に並んでいる、ことを特徴とする請求項1に記載の羽根駆動装置。
  3.  前記第1及び第2係合孔は、互いに沿うように設けられている、ことを特徴とする請求項1又は2に記載の羽根駆動装置。
  4.  前記第1係合孔は、前記第1駆動ピンの動力が前記羽根へ伝達される駆動区間と、前記第1駆動ピンの動力を逃がす非駆動区間とを含み、
     前記第2係合孔は、前記第2駆動ピンの動力が前記羽根へ伝達される駆動区間と、前記第2駆動ピンの動力を逃がす非駆動区間とを含み、
     前記第1及び第2駆動ピンは、一方が前記駆動区間に位置する場合は、他方が前記非駆動区間に位置する、ことを特徴とする請求項1又は2に記載の羽根駆動装置。
  5.  前記駆動部材及び羽根は、前記基板を挟むように位置し、
     前記基板は、前記1及び第2駆動ピンを逃がす単一の逃げ孔を有している、ことを特徴とする請求項1又は2に記載の羽根駆動装置。
PCT/JP2009/052473 2008-03-19 2009-02-16 羽根駆動装置 WO2009116334A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/616,360 US7955009B2 (en) 2008-03-19 2009-11-11 Sector blade driving apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008072290A JP5185667B2 (ja) 2008-03-19 2008-03-19 羽根駆動装置
JP2008-072290 2008-03-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/616,360 Continuation US7955009B2 (en) 2008-03-19 2009-11-11 Sector blade driving apparatus

Publications (1)

Publication Number Publication Date
WO2009116334A1 true WO2009116334A1 (ja) 2009-09-24

Family

ID=41090742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052473 WO2009116334A1 (ja) 2008-03-19 2009-02-16 羽根駆動装置

Country Status (3)

Country Link
US (1) US7955009B2 (ja)
JP (1) JP5185667B2 (ja)
WO (1) WO2009116334A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002162665A (ja) * 2000-11-27 2002-06-07 Canon Inc 光量調節装置
JP2003185989A (ja) * 2001-12-17 2003-07-03 Sony Corp 調光装置及び撮像装置
JP2005164842A (ja) * 2003-12-01 2005-06-23 Seiko Precision Inc シャッタ装置及びこれを含む光学機器
JP2006098515A (ja) * 2004-09-28 2006-04-13 Nidec Copal Corp カメラ用絞り装置
JP2006178366A (ja) * 2004-12-24 2006-07-06 Nidec Copal Corp カメラ用羽根駆動装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04133011A (ja) * 1990-09-25 1992-05-07 Konica Corp ズームレンズ鏡胴
JPH11167144A (ja) * 1997-12-02 1999-06-22 Minolta Co Ltd 視野枠切換装置
JPH11167145A (ja) * 1997-12-02 1999-06-22 Minolta Co Ltd 視野枠切換装置
JP3983235B2 (ja) * 2004-08-20 2007-09-26 ニスカ株式会社 光量調整装置
JP4210637B2 (ja) 2004-09-17 2009-01-21 セイコープレシジョン株式会社 セクタ駆動装置、これを備えたシャッタ装置、絞り駆動装置および光量調節装置
US20060245752A1 (en) * 2005-04-27 2006-11-02 Koji Kawaguchi Diaphragm device, lens assembly including same and surveillance camera
JP4187758B2 (ja) * 2006-06-26 2008-11-26 ニスカ株式会社 光量調整装置
JP4393539B2 (ja) * 2007-07-30 2010-01-06 日本電産コパル株式会社 光学機器用羽根駆動装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002162665A (ja) * 2000-11-27 2002-06-07 Canon Inc 光量調節装置
JP2003185989A (ja) * 2001-12-17 2003-07-03 Sony Corp 調光装置及び撮像装置
JP2005164842A (ja) * 2003-12-01 2005-06-23 Seiko Precision Inc シャッタ装置及びこれを含む光学機器
JP2006098515A (ja) * 2004-09-28 2006-04-13 Nidec Copal Corp カメラ用絞り装置
JP2006178366A (ja) * 2004-12-24 2006-07-06 Nidec Copal Corp カメラ用羽根駆動装置

Also Published As

Publication number Publication date
US7955009B2 (en) 2011-06-07
JP2009229591A (ja) 2009-10-08
JP5185667B2 (ja) 2013-04-17
US20100054729A1 (en) 2010-03-04

Similar Documents

Publication Publication Date Title
US20130322866A1 (en) Blade drive device and optical equipment
JP6297584B2 (ja) 双安定電磁制御式シャッタ
JP4950952B2 (ja) 駆動装置及び光学機器
JP2011107584A (ja) 絞り装置
JP2010091671A (ja) 駆動機構、羽根駆動装置及び光学機器
JP5025673B2 (ja) 羽根駆動装置及び光学機器
JP3145532U (ja) 絞り装置
JP5185667B2 (ja) 羽根駆動装置
US9274401B2 (en) Focal-plane shutter and optical device
US9436063B2 (en) Blade driving device and optical apparatus
JP6295091B2 (ja) 羽根駆動装置及び光学機器
JP5113713B2 (ja) 羽根駆動装置及び光学機器
JP5178627B2 (ja) 羽根駆動装置及び光学機器
JP4210637B2 (ja) セクタ駆動装置、これを備えたシャッタ装置、絞り駆動装置および光量調節装置
JP2007151354A (ja) 電磁アクチュエータ及びカメラ用羽根駆動装置
JP2017223811A (ja) 羽根駆動装置及び撮像装置
JP5975924B2 (ja) カメラ用羽根駆動装置
US7959365B2 (en) Blade drive device and optical equipment
JP2005241957A (ja) シャッタ装置
JP4971257B2 (ja) 光量調節装置及び光学機器
JP4598436B2 (ja) セクタ駆動装置
JP2016182011A (ja) 電磁アクチュエータ、羽根駆動装置、及びカメラ
JP6001351B2 (ja) 羽根駆動装置及び光学機器
JP4620343B2 (ja) 電磁アクチュエータ及びそれを有するシャッタ装置
JP4933123B2 (ja) 光量調節装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09722299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09722299

Country of ref document: EP

Kind code of ref document: A1