WO2009116134A1 - レーザ光源モジュール - Google Patents

レーザ光源モジュール Download PDF

Info

Publication number
WO2009116134A1
WO2009116134A1 PCT/JP2008/054959 JP2008054959W WO2009116134A1 WO 2009116134 A1 WO2009116134 A1 WO 2009116134A1 JP 2008054959 W JP2008054959 W JP 2008054959W WO 2009116134 A1 WO2009116134 A1 WO 2009116134A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
laser
light source
wavelength conversion
source module
Prior art date
Application number
PCT/JP2008/054959
Other languages
English (en)
French (fr)
Inventor
基亮 玉谷
知世 難波
中村 聡
福田 圭一
幸治 船岡
学 川上
岡村 将光
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2010503688A priority Critical patent/JP5052668B2/ja
Priority to CA2718903A priority patent/CA2718903C/en
Priority to PCT/JP2008/054959 priority patent/WO2009116134A1/ja
Priority to KR1020107020025A priority patent/KR101142652B1/ko
Priority to EP08722353A priority patent/EP2259391B1/en
Priority to CN2008801280799A priority patent/CN101971441B/zh
Priority to US12/921,822 priority patent/US8265111B2/en
Publication of WO2009116134A1 publication Critical patent/WO2009116134A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping

Definitions

  • the present invention relates to a laser light source module including a solid-state laser that oscillates a fundamental laser beam and a wavelength conversion element that converts the wavelength of the fundamental laser beam oscillated from the solid-state laser.
  • a laser light source module that oscillates visible laser light can be obtained by converting the wavelength of infrared laser light oscillated from a solid-state laser element using an NLO wavelength conversion element to generate a second harmonic.
  • a semiconductor laser element is used as an excitation light source for the solid-state laser element.
  • the above NLO wavelength conversion element performs wavelength conversion efficiently when the phase matching condition is satisfied. For example, when the second harmonic is generated, when the phase velocity of the nonlinear polarization wave forcedly excited by the incident fundamental wave laser beam matches the phase velocity of the second harmonic generated by the nonlinear polarization, The light waves generated at the positions have the same phase and are coherently added, and high conversion efficiency is obtained.
  • the NLO wavelength conversion element since the NLO wavelength conversion element has temperature dependency and the chromatic dispersion characteristic changes according to the operating temperature, the operating temperature of the NLO wavelength conversion element is to prevent the phase matching condition from being lost. Must be kept constant.
  • the output light intensity and the oscillation wavelength of the semiconductor laser element have temperature dependence.
  • the oscillation wavelength from the semiconductor laser element becomes longer.
  • a semiconductor laser is used as an excitation light source of a solid-state laser element using a laser medium having a steep absorption spectrum such as yttrium vanadate (YVO 4 )
  • the change in the oscillation wavelength of the semiconductor laser element is caused by the output of the solid-state laser element. It becomes a factor to reduce.
  • a solid state laser, and an NLO wavelength conversion element it is desirable to keep each of the semiconductor laser element and the NLO wavelength conversion element at a predetermined temperature.
  • a solid-state laser element is excited by using a semiconductor laser array in which a plurality of semiconductor laser oscillators are arranged in one element, the light output of the laser light source module can be increased. From the viewpoint of increasing the light output of the light source, it is desirable to keep the entire semiconductor laser array at a uniform and constant temperature and keep the entire NLO wavelength conversion element at a uniform and constant temperature.
  • the harmonic generator described in Patent Document 1 and the semiconductor laser device described in Patent Document 2 are difficult to miniaturize because a cooling means is provided in the device. Further, since the semiconductor laser element and the wavelength conversion element are disposed on the same substrate or member, it is difficult to improve the positional accuracy of these elements, particularly the positional accuracy in the thickness direction of the base material or member.
  • a laser light source module using a semiconductor laser element that oscillates excitation light, a solid-state laser element that oscillates fundamental wave laser light, and a wavelength conversion element that converts the wavelength of the fundamental wave laser light
  • the positional accuracy is low, the light output of the laser light source module is lowered.
  • the light output of a laser light source module using a waveguide type as the laser oscillation part of the solid-state laser element and the NLO wavelength conversion element, or a laser light source module using a semiconductor laser array as an excitation light source In order to improve the above, it is desired to improve the positional accuracy and suppress the connection loss of the excitation light and the connection loss of the fundamental laser beam.
  • the present invention has been made in view of the above circumstances, and it is possible to obtain a laser light source module that includes a semiconductor laser element, a solid-state laser element, and a wavelength conversion element, and that is easy to obtain a small and highly accurate element. Objective.
  • the laser light source module includes a first block in which a laser oscillation unit for a solid-state laser element is mounted, a second block in which a semiconductor laser element is mounted, and a third block in which a wavelength conversion element is mounted. Since only two blocks are fixed to the stem, it is easy to adjust the relative position of the other blocks with respect to the second block. For this reason, it is easy to obtain a solid laser element, a semiconductor laser element, and a wavelength conversion element with high positional accuracy.
  • the second block and the third block have the first heater or the second heater, and each of the first to third blocks constitutes a heat sink, there is no need to arrange a cooling element in the module.
  • the temperatures of the semiconductor laser element, the laser oscillation unit, and the wavelength conversion element can be controlled by the cooling device and the first and second heaters arranged outside the module. Therefore, according to the present invention, it is easy to obtain a laser light source module that includes a semiconductor laser element, a solid-state laser element, and a wavelength conversion element, and that is small in size and has high positional accuracy of each element.
  • FIG. 1 is a side view schematically showing an example of the laser light source module of the present invention.
  • FIG. 2 is a plan view schematically showing the laser light source module shown in FIG.
  • FIG. 3 is a perspective view schematically showing an example of how the laser light source module shown in FIGS. 1 and 2 is used.
  • 4 is a schematic view showing a heat transport path between each member constituting the laser light source module shown in FIGS. 1 and 2 and the cooling device shown in FIG.
  • FIG. 5 is a side view schematically showing an example of the laser light source module according to the present invention in which the second heater is mounted on the lower surface of the third block.
  • FIG. 6 is a plan view schematically showing the laser light source module shown in FIG.
  • FIG. 1 is a side view schematically showing an example of the laser light source module of the present invention
  • FIG. 2 is a plan view schematically showing the laser light source module shown in FIG.
  • the laser light source module 50 shown in these drawings includes a heat sink 30 divided into three blocks, a first block 1, a second block 10, and a third block 20, and a stem 40 that supports the heat sink 30. .
  • the laser oscillation unit 3 is of a waveguide type used for a solid-state laser element, and has a plurality of optical waveguides that oscillate fundamental laser light.
  • FIG. 1 shows one optical waveguide 3a.
  • each optical waveguide is formed by a laser medium such as Nd: YVO 3 (neodymium doped yttrium vanadate).
  • the laser oscillation unit 3 constitutes a solid-state laser element SL together with a laser resonator described later.
  • a submount 12 is fixed to the upper surface 10a of the second block 10 by a bonding material (not shown), and the semiconductor laser element 13 and the first temperature sensor 14 are bonded on the submount 12 (not shown). ) Is fixed and mounted. Further, a first heater 15 (see FIG. 1) is fixed and mounted on the lower surface 10b of the second block 10 by a bonding material (not shown).
  • the second block 10 is a flat plate member made of a metal material or an alloy material having a high thermal conductivity like the first block 1 and has two side surfaces orthogonal to the optical axis of the semiconductor laser element 13. is doing.
  • the semiconductor laser element 13 is a semiconductor laser array having a plurality of semiconductor laser oscillators, and is connected to an external circuit (not shown) and functions as an excitation light source that emits excitation light of the solid-state laser element SL.
  • each optical waveguide in the laser oscillating unit 3 is formed of Nd: YVO 3 , for example, one that oscillates near-infrared laser light having a wavelength of 800 nm is used as each of the semiconductor laser oscillators.
  • the first temperature sensor 14 for example, a thermistor is used as the first temperature sensor 14 detects the temperature in the vicinity of the semiconductor laser element 13, and the first heater 15 heats the semiconductor laser element 13 via the second block 10 and the submount 12.
  • Each of the semiconductor laser element 13, the first temperature sensor 14, and the first heater 15 is connected to an external circuit when the laser light source module 50 is mounted.
  • a substrate 22 is fixed to the upper surface 20a of the third block 20 by a bonding material (not shown), and a soaking plate 23 is fixed on the substrate 22 by a bonding material (not shown).
  • a wavelength conversion element 24 is fixed and mounted by a bonding material (not shown).
  • a second temperature sensor 25 and two second heaters 26a and 26b are also fixed and mounted by a bonding material (not shown).
  • the third block 20 is a flat plate member made of a metal material or alloy material having a high thermal conductivity like the first block 1 and has two side surfaces orthogonal to the optical axis of the wavelength conversion element 24. is doing.
  • the substrate 22 fixed to the third block 20 is a flat plate member made of an electrically insulating material having a relatively high thermal conductivity such as glass or ceramics.
  • the substrate 22 includes a second temperature sensor. 25 drive circuit patterns and drive circuit patterns for the second heaters 26a and 26b are formed.
  • the soaking plate 23 is formed of a metal material or an alloy material having good thermal conductivity, such as copper or aluminum, and makes the temperature distribution in the wavelength conversion element 24 uniform.
  • two of the side surfaces of the first block 1 that are orthogonal to the optical axis of the laser oscillation unit 3 are two of the side surfaces of the third block 20 that are orthogonal to the optical axis of the wavelength conversion element 24.
  • One of the side surfaces is fixed to a bonding material (not shown).
  • a gap of about several tens of ⁇ m is provided between the semiconductor laser element 13 and the laser oscillation unit 3
  • a gap of, for example, about several tens of ⁇ m is provided between the laser oscillation unit 3 and the wavelength conversion element 24.
  • the optical axis of the laser oscillation unit 3 means the optical axis of each optical waveguide 3 a formed in the laser oscillation unit 3, and the optical axis of the wavelength conversion element 24 is formed in the wavelength conversion element 24. It means the optical axis of each optical waveguide 24a.
  • the light emission end of the semiconductor laser element 13 is on the laser oscillation unit 3 side, and the light emission end of the laser oscillation unit 3 is on the wavelength conversion element 24 side.
  • This laser resonator and each optical waveguide in the laser oscillation unit 3 constitute a solid-state laser element SL.
  • the These fundamental laser beams are repeatedly reflected and amplified in the laser resonator, and a part of each fundamental laser beam is incident on a predetermined optical waveguide 24a of the wavelength conversion element 24 to be wavelength-converted. It is emitted from the wavelength conversion element 24 as a harmonic.
  • the laser beam LB oscillated from the laser light source module 50 is drawn by a two-dot chain line.
  • the semiconductor laser element 13, the first heater 15, and the second heaters 26a and 26b are connected to an external circuit.
  • a thermistor is used as each of the first temperature sensor 14 and the second temperature sensor 25
  • each of the first temperature sensor 14 and the second temperature sensor 25 is also connected to an external circuit. Therefore, a predetermined number of lead pins are attached to the stem 40, the drive circuit pattern formed on the lead pins and the submount 12, the first heater 15, the drive circuit pattern formed on the substrate 22, and each second.
  • the heaters 26a and 26b are connected.
  • a cooling device such as a Peltier element, a heat pipe, or a fan is disposed outside the stem 40.
  • a plurality of lead pins are mounted on the stem 40 in addition to the lead pins LP 1 , LP 2 , LP 3 , LP 4 described above, and the drive of the first temperature sensor 14 is performed on these lead pins.
  • a circuit pattern (not shown), a first heater 15 (see FIG. 1), a drive circuit pattern (not shown) of the second temperature sensor 25, and a drive circuit pattern (not shown) of each of the second heaters 26a and 26b Is connected.
  • a Peltier element 60 is fixed as a cooling device on the back surface 40b of the stem 40, that is, the main surface opposite to the main surface 40a to which the second block 10 is fixed.
  • a third temperature sensor 65 that detects the element temperature of the Peltier element 60 is disposed.
  • Each lead pin, Peltier element 60, and third temperature sensor 65 mounted on the stem 40 are each connected to a predetermined external circuit (not shown).
  • the stem 40 and the heat sink 30 are cooled by the Peltier element 60, the semiconductor laser element 13 is heated by the first heater 15, and the wavelength conversion element 24 is heated by the second heaters 26a and 26b.
  • the laser beam LB (see FIG. 2) is oscillated as described above.
  • the second block 10 and the third block 20 have the first heater 15 or the second heaters 26a and 26b, and each of the first to third blocks 1, 10, and 20 constitutes a heat sink 30. Therefore, even if the cooling device is not arranged in the module, the laser oscillation unit 3 and the semiconductor laser can be obtained by the first heater 15, the second heaters 26a and 26b, and the cooling device (Peltier element 60) arranged outside the module. The temperature of each of the element 13 and the wavelength conversion element 24 can be controlled. Therefore, the laser light source module 50 can be easily downsized.
  • the time for changing the setup is reduced when the laser light source module 50 is manufactured. Less wiring is required, and wiring work between components and wiring work between blocks is easy. For this reason, the productivity of the laser light source module 50 is easy.
  • the laser light source module 50 From the viewpoint of increasing the light output of the laser light source module 50, it is desirable to operate the laser light source module 50 by setting the element temperatures of the semiconductor laser element 13 and the wavelength conversion element 24 to optimum operating temperatures, respectively.
  • the optimum operating temperature of the semiconductor laser element 13 is substantially fixed in advance according to the oscillation wavelength, the output intensity, etc. of the semiconductor laser element 13 and there is little room for change, but the optimum operating temperature of the wavelength conversion element 24 is the period polarization. Since the wavelength conversion part (each optical waveguide 24a; see FIG. 1) of the wavelength conversion element 24 is formed by the nonlinear optical crystal having the inversion structure, it is relatively free by appropriately designing the periodic polarization inversion structure. Can be changed.
  • the optimum operating temperature of the wavelength conversion element 24 is considered in consideration of the thermal resistance in the heat transport path between each member constituting the laser light source module 50 and the cooling device such as the Peltier element 60. It is preferable to use the wavelength conversion element 24 having the optimum operating temperature.
  • a method for selecting the optimum operating temperature of the wavelength conversion element 24 will be described in detail with reference to FIG.
  • FIG. 4 is a schematic diagram showing a heat transport path between each member constituting the laser light source module and the cooling device (Peltier element) shown in FIG.
  • the thermal resistance of each bonding material used in the laser light source module 50 is omitted.
  • 4 that are the same as those shown in FIG. 3 are assigned the same reference numerals as those used in FIG. 3, and descriptions thereof are omitted.
  • R 1 indicates the thermal resistance of the first block 1
  • R 10 indicates the thermal resistance of the second block 10
  • R 20 indicates the thermal resistance of the third block 20.
  • “R 40 ” indicates the thermal resistance of the stem 40.
  • Reference symbol “R 12 ” indicates the thermal resistance of the submount 12
  • R 22 indicates the thermal resistance of the substrate 22
  • R 23 indicates the thermal resistance of the soaking plate 23.
  • the thermal resistance value Ra of the heat transport path can be expressed by the following formula (I).
  • the element temperature Ta of the semiconductor laser element 1 can be expressed by the following equation (II).
  • the detection results of the first temperature sensor 14 and the second temperature sensor 25 and the temperature of the Peltier element 60 are arranged in the vicinity of the Peltier element 60.
  • the operating conditions of the first heater 15, the second heaters 26a and 26b, and the Peltier element 60 Is selected. If the optimum operating temperature of the wavelength conversion element 24 is selected as described above, a dedicated cooling device is provided in the vicinity of the wavelength conversion element 24 even if a small output is used as each of the second heaters 26a and 26b. Even if not, each of the semiconductor laser element 13 and the wavelength conversion element 24 can be easily maintained at the optimum operating temperature. Power consumption when using the laser light source module 50 can be suppressed.
  • a second heater for heating the wavelength conversion element can be mounted on the lower surface of the third block on which the wavelength conversion element is mounted.
  • the total number of second heaters can be a desired number of one or more.
  • FIG. 5 is a side view schematically showing an example of the laser light source module in which the second heater is mounted on the lower surface of the third block
  • FIG. 6 is a plan view schematically showing the laser light source module shown in FIG. FIG.
  • the laser light source module 150 shown in these figures is shown in FIG. 1 or FIG. 2 except that a heat sink 130 having a third block 120 is provided instead of the third block 20 shown in FIG. 1 or FIG.
  • the laser light source module 50 has the same configuration.
  • those common to the constituent elements shown in FIG. 1 or FIG. 2 are given the same reference numerals as those used in FIG. 1 or FIG. Is omitted.
  • one second heater 126 is mounted on the lower surface 120 b of the third block 120.
  • the heater is not mounted on the upper surface 120a of the third block 120. Therefore, the third block 120 is smaller than the third block 20 shown in FIG. 1 or FIG. The same applies to the substrate 122 fixed to the upper surface 120a of the third block 120.
  • the wavelength conversion element 24 is heated by the second heater 126 via the third block 120, the substrate 122, and the soaking plate 23.
  • the side surface on the third block side in the first block and the side surface on the first block side in the third block are such that the upper surface of the first block and the upper surface of the third block are positioned on the same plane, Alternatively, if it is easy to make them parallel to each other, they may be inclined at a predetermined angle without being orthogonal to the optical axis of the laser oscillation unit or the optical axis of the wavelength conversion element.
  • the second block When supporting the heat sink on the stem, the second block is fixed to the stem at the bottom surface of the second block, the first block is fixed to the side surface of the second block, and the third block is fixed to the side surface of the first block. May be.
  • the laser light source module of the present invention can be variously modified, modified, combined, etc. in addition to those described above.

Abstract

 固体レーザ素子と、励起光源と、波長変換素子とが搭載されたヒートシンクと、ヒートシンクを支持するステムとを備えたレーザ光源モジュールを構成するにあたり、ヒートシンクを3つのブロック、すなわち固体レーザ素子用のレーザ発振部が上面に搭載された第1ブロックと、レーザ発振部用の励起光を出射する半導体レーザ素子と第1温度センサとが上面に搭載され、所定の面に第1ヒータが搭載された第2ブロックと、レーザ発振部が発振した基本波レーザ光を波長変換する波長変換素子と第2温度センサとが上面に搭載され、所定の面に第2ヒータが搭載された第3ブロックとに分割し、第2ブロックのみを該第2ブロックの側面または底面でステムに固定し、第2ブロックの他の側面に第1ブロックを固定し、第1ブロックの側面に第3ブロックを固定することにより、小型化および各素子の位置精度の向上を図る。

Description

レーザ光源モジュール
 この発明は、基本波レーザ光を発振する固体レーザと該固体レーザから発振された基本波レーザ光を波長変換する波長変換素子とを備えたレーザ光源モジュールに関するものである。
 近年では、周期分極反転(Periodically Poled)構造を有する非線形光学(NLO:Non-Linear Optical)結晶での擬似位相整合を利用したNLO波長変換素子により、高効率で波長変換することが可能になっている。例えば、固体レーザ素子から発振された赤外レーザ光をNLO波長変換素子により波長変換して第2高調波を発生させることにより、可視レーザ光を発振するレーザ光源モジュールを得ることができる。このとき、固体レーザ素子の励起光源としては、例えば半導体レーザ素子が用いられる。
 上記のNLO波長変換素子は、位相整合条件を満たしたときに効率良く波長変換を行う。例えば第2高調波の発生時には、入射した基本波レーザ光により強制励起された非線形分極波の位相速度と非線形分極により発生した第2高調波の位相速度とが一致したときに、素子内の各位置で発生した光波が同一位相となって各々がコヒーレント加算され、高い変換効率が得られる。ただし、NLO波長変換素子は温度依存性を有しており、動作温度に応じて波長分散特性が変化するので、位相整合条件が崩れるのを防止するためには、当該NLO波長変換素子の動作温度を一定に保つ必要がある。
 同様に、半導体レーザ素子の出力光強度および発振波長にも温度依存性がある。最適動作温度よりも高温の環境下では、半導体レーザ素子からの発振波長が長くなる。例えばバナジン酸イットリウム(YVO4)のように吸収スペクトルが急峻なレーザ媒質を用いた固体レーザ素子の励起光源として半導体レーザを用いた場合、半導体レーザ素子の発振波長の変化は固体レーザ素子の出力を低下させる要因となる。
 したがって、半導体レーザ素子と固体レーザとNLO波長変換素子とを用いたレーザ光源モジュールの光出力を高めるうえからは、半導体レーザ素子およびNLO波長変換素子の各々を所定の温度に保つことが望まれる。勿論、半導体レーザ発振器を1つの素子の中に複数並べた半導体レーザアレイを用いて固体レーザ素子を励起すれば、レーザ光源モジュールの光出力を高めることができるが、この場合でも、当該レーザ光源モジュールの光出を高めるという観点からは、半導体レーザアレイ全体を均一かつ一定の温度に保つと共にNLO波長変換素子全体を均一かつ一定の温度に保つことが望まれる。
 例えば特許文献1に記載された高調波発生装置では、1つの基板上に2つのペルチェ素子を配置し、一方のペルチェ素子上には半導体レーザ素子を搭載し、他方のペルチェ素子上には保持部材に固定されたNLO波長変換素子を搭載して、個々のペルチェ素子により半導体レーザ素子およびNLO波長変換素子それぞれの温度を別個に制御している。半導体レーザ素子の温度制御は、当該半導体レーザ素子に配置されたサーミスタの測定温度に応じて行われ、NLO波長変換素子の温度制御は、当該NLO波長変換素子が固定された保持部材に配置されたサーミスタの測定温度に応じて行われる。
 また、特許文献2には、モジュールのケース外側にペルチェ素子やフィン等の冷却手段を配置し、ケースの内側に2つの熱伝達手段を配置して一方の熱伝達手段上にヒータを介して半導体レーザ素子を搭載し、他方の熱伝達手段上にヒータを介して電界吸収型半導体光変調器素子を搭載した半導体レーザ装置が記載されている。この半導体レーザ装置では、半導体レーザ素子に直接取り付けた温度センサの検知温度に応じて半導体レーザ素子の温度制御が行われ、電界吸収型半導体光変調器素子に直接取り付けた温度センサの検知温度に応じて電界吸収型光変調器素子の温度制御が行われる。
特開平7-43759号公報 特開2000-228556号公報
 しかしながら、特許文献1に記載された高調波発生装置や特許文献2に記載された半導体レーザ装置では、装置内に冷却手段が設けられるので小型化を図り難い。また半導体レーザ素子と波長変換素子とを同一の基板ないし部材に配置するので、これらの素子の位置精度、特に上記基材ないし部材の厚さ方向での位置精度を高め難い。
 例えば、励起光を発振する半導体レーザ素子と、基本波レーザ光を発振する固体レーザ素子と、基本波レーザ光を波長変換する波長変換素子とを用いてレーザ光源モジュールを構成するにあたってこれらの素子の位置精度が低いと、レーザ光源モジュールの光出力が低下する。特に、固体レーザ素子のレーザ発振部およびNLO波長変換素子の各々として導波路型のものを用いたタイプのレーザ光源モジュールや、励起光源として半導体レーザアレイを用いたタイプのレーザ光源モジュールでの光出力を向上させるうえからは、上記の位置精度を高めて励起光の接続損失および基本波レーザ光の接続損失を抑えることが望まれる。
 この発明は上記の事情に鑑みてなされたものであり、半導体レーザ素子と固体レーザ素子と波長変換素子とを備え、小型で各素子の位置精度が高いものを得易いレーザ光源モジュールを得ることを目的とする。
 上記の目的を達成するこの発明のレーザ光源モジュールは、基本波レーザ光を発振する固体レーザ素子と、固体レーザ素子を励起する励起光源と、固体レーザ素子が発振した基本波レーザ光を波長変換する波長変換素子とが搭載されたヒートシンクと、ヒートシンクを支持するステムとを備え、ヒートシンクは、基本波レーザ光を発振する固体レーザ素子用のレーザ発振部が上面に搭載された第1ブロックと、レーザ発振部用の励起光を出射する半導体レーザ素子と第1温度センサとが上面に搭載され、所定の面に第1ヒータが搭載された第2ブロックと、レーザ発振部が発振した基本波レーザ光を波長変換する波長変換素子と第2温度センサとが上面に搭載され、所定の面に第2ヒータが搭載された第3ブロックとの3つのブロックに分割されており、第2ブロックのみが該第2ブロックの側面または底面でステムに固定され、第2ブロックの他の側面に第1ブロックが固定され、第1ブロックの側面に第3ブロックが固定されていることを特徴とするものである。
 この発明のレーザ光源モジュールは、固体レーザ素子用のレーザ発振部が搭載された第1ブロック、半導体レーザ素子が搭載された第2ブロック、および波長変換素子が搭載された第3ブロックのうちの第2ブロックのみがステムに固定されているので、第2ブロックに対する他のブロックの相対位置を調整し易い。このため、固体レーザ素子、半導体レーザ素子、および波長変換素子それぞれの位置精度が高いものを得易い。
 また、第2ブロックおよび第3ブロックが第1ヒータまたは第2ヒータを有しており、かつ第1~第3ブロックの各々がヒートシンクを構成するので、モジュール内に冷却素子を配置しなくても、モジュールの外部に配置した冷却装置と第1~第2ヒータとにより半導体レーザ素子、レーザ発振部、および波長変換素子それぞれの温度を制御することができる。したがって、この発明によれば、半導体レーザ素子と固体レーザ素子と波長変換素子とを備え、小型で各素子の位置精度が高いレーザ光源モジュールを得易くなる。
図1は、この発明のレーザ光源モジュールの一例を概略的に示す側面図である。 図2は、図1に示したレーザ光源モジュールを概略的に示す平面図である。 図3は、図1および図2に示したレーザ光源モジュールの使用形態の一例を概略的に示す斜視図である。 図4は、図1および図2に示したレーザ光源モジュールを構成する各部材と図3に示した冷却装置との間の熱輸送経路を示す概略図である。 図5は、この発明のレーザ光源モジュールのうちで第3ブロックの下面に第2ヒータが搭載されたものの一例を概略的に示す側面図である。 図6は、図5に示したレーザ光源モジュールを概略的に示す平面図である。
符号の説明
 1 第1ブロック
 1a 第1ブロックの上面
 3 レーザ発振部
 10 第2ブロック
 10a 第2ブロックの上面
 10b 第2ブロックの下面
 12 サブマウント
 13 励起光源(半導体レーザ素子)
 14 第1温度センサ
 15 第1ヒータ
 20,120 第3ブロック
 20a,120a 第3ブロックの上面
 120b 第3ブロックの下面
 22,122 基板
 23 熱拡散板
 24 波長変換素子
 24a 光導波路(波長変換部)
 25 第2温度センサ
 26a,26b,126 第2ヒータ
 30,130 ヒートシンク
 40 ステム
 50,150 レーザ光源モジュール
 60 冷却装置(ペルチェ素子)
 SL 固体レーザ素子
 LB レーザ光
 以下、この発明のレーザ光源モジュールの実施の形態について、図面を参照して詳細に説明する。なお、この発明は下記の実施の形態に限定されるものではない。
実施の形態1.
 図1は、この発明のレーザ光源モジュールの一例を概略的に示す側面図であり、図2は、図1に示したレーザ光源モジュールを概略的に示す平面図である。これらの図に示すレーザ光源モジュール50は、第1ブロック1、第2ブロック10、および第3ブロック20の3つのブロックに分割されたヒートシンク30と、ヒートシンク30を支持するステム40とを備えている。
 上記の第1ブロック1の上面1aにはサブマウント2が接合材(図示せず)により固定されており、サブマウント2上にはレーザ発振部3が接合材(図示せず)により固定されている。上記の各接合材としては、はんだ、導電性接着剤、非導電性接着剤等、所望のものが適宜用いられる(以下同様)。第1ブロック1は、レーザ発振部3の光軸と直交する2つの側面を有する平板状の部材であり、例えば銅や銅タングステン等の銅系材料のように熱伝導率の高い金属材料や合金材料により作製される。
 第1ブロック1に固定されているサブマウント2は、レーザ発振部3に所定パターンの熱分布を形成し、該熱分布によりレンズ効果を発現させてレーザ発振部3内での光拡散を抑制する。そのために、当該サブマウント2としては、レーザ発振部3側に複数の接合面を有する櫛形状のものが用いられる。
 レーザ発振部3は固体レーザ素子に用いられる導波路型のものあり、基本波レーザ光を発振する複数の光導波路を有している。図1には、1つの光導波路3aが示されている。レーザ光源モジュール50が緑色のレーザ光を発振するものである場合には、例えばNd:YVO3(ネオジウムドープバナジン酸イットリウム)等のレーザ媒質により各光導波路が形成される。このレーザ発振部3は、後述するレーザ共振器と共に固体レーザ素子SLを構成する。
 第2ブロック10の上面10aにはサブマウント12が接合材(図示せず)により固定されており、サブマウント12上には半導体レーザ素子13と第1温度センサ14とが接合材(図示せず)により固定されて搭載されている。また、第2ブロック10の下面10bには、第1ヒータ15(図1参照)が接合材(図示せず)により固定されて搭載されている。当該第2ブロック10は、第1ブロック1と同様に熱伝導率の高い金属材料や合金材料により作製された平板状の部材であり、半導体レーザ素子13の光軸と直交する2つの側面を有している。
 第2ブロック10に固定されているサブマウント12は電気絶縁材料により作製され、半導体レーザ素子13の動作時に第2ブロック10と半導体レーザ素子13との線膨張係数差に起因してこれら第2ブロック10と半導体レーザ素子13との間に生じる熱応力を緩和する。このサブマウント12には、半導体レーザ素子13および温度センサ14に接続された駆動回路パターン(図示せず)が形成されている。
 半導体レーザ素子13は複数個の半導体レーザ発振器を有する半導体レーザアレイであり、図示を省略した外部回路に接続されて、固体レーザ素子SLの励起光を出射する励起光源として機能する。レーザ発振部3での各光導波路がNd:YVO3により形成されている場合、上記の半導体レーザ発振器の各々としては、例えば波長800nm帯の近赤外レーザ光を発振するものが用いられる。第1温度センサ14としては、例えばサーミスタが用いられる。第1温度センサ14は半導体レーザ素子13近傍の温度を検知し、第1ヒータ15は第2ブロック10およびサブマウント12を介して半導体レーザ素子13を加温する。これら半導体レーザ素子13、第1温度センサ14、および第1ヒータ15の各々は、レーザ光源モジュール50の実装時に外部回路に接続される。
 第3ブロック20の上面20aには基板22が接合材(図示せず)により固定されており、基板22上には均熱板23が接合材(図示せず)により固定されており、均熱板23上には波長変換素子24が接合材(図示せず)により固定されて搭載されている。また、基板22上には、第2温度センサ25と2個の第2ヒータ26a,26b(第2ヒータ26bについては図2参照)も接合材(図示せず)により固定されて搭載されている。当該第3ブロック20は、第1ブロック1と同様に熱伝導率の高い金属材料や合金材料により作製された平板状の部材であり、波長変換素子24の光軸と直交する2つの側面を有している。
 第3ブロック20に固定されている基板22は、ガラスやセラミックス等のように熱伝導率が比較的高い電気絶縁材料により形成された平板状の部材であり、当該基板22には第2温度センサ25の駆動回路パターンおよび各第2ヒータ26a,26bの駆動回路パターンがそれぞれ形成されている。均熱板23は、例えば銅やアルミニウム等の熱伝導性が良好な金属材料ないし合金材料により形成されて、波長変換素子24での温度分布を均一化する。
 波長変換素子24は、例えば周期分極反転構造を有する非線形光学結晶(ニオブ酸カリウム(KNbO3)、ニオブ酸リチウム(LiNbO3)等)により形成された複数の光導波路を有する導波路型のものであり、上記の各光導波路が波長変換部として機能する。図1には、1つの光導波路24aが示されている。波長変換素子24での波長変換効率には温度依存性があるので、レーザ光源モジュール50の動作時には当該波長変換素子24が所定の温度に保持される。第2温度センサ25は波長変換素子24近傍の温度を検知し、各第2ヒータ26a,26bは基板22および均熱板23を介して波長変換素子24を加温する。第2温度センサ25としては例えばサーミスタが用いられ、各第2ヒータ26a,26bは例えば電気抵抗体ペーストを塗工し、焼成することにより形成される。これら第2温度センサ25および各第2ヒータ26a,26bの各々は、レーザ光源モジュール50の実装時に外部回路に接続される。
 ステム40は、上述した第1~第3ブロック1,10,20を支持する。レーザ光源モジュール50では、ステム40の主面40a上に第2ブロック10のみが接合材(図示せず)により固定されており、第1ブロック1は第2ブロック10に、また第3ブロック20は第1ブロック1に固定されている。
 具体的には、各々のブロック1,10,20が上面1a,11a,21aを同じ方向に向け、半導体レーザ素子13から出射した励起光がレーザ発振部3の光導波路に入射し、かつレーザ発振部3で発振された基本波レーザ光が波長変換素子24の光導波路に入射するように固定されている。第2ブロック10の側面のうちで半導体レーザ素子13の光軸と直交する2つの側面の一方が接合材(図示せず)によりステム40の主面40aに接合され、他方の側面に第1ブロック1の側面のうちでレーザ発振部3の光軸と直交する2つの側面の一方が接合材(図示せず)により接合されている。また、第1ブロック1の側面のうちでレーザ発振部3の光軸と直交する2つの側面の他方には、第3ブロック20の側面のうちで波長変換素子24の光軸と直交する2つの側面の一方が接合材(図示せず)固定されている。半導体レーザ素子13とレーザ発振部3との間には例えば数十μm程度の間隙が設けられ、レーザ発振部3と波長変換素子24との間にも例えば数十μm程度の間隙が設けられている。
 なお、レーザ発振部3の光軸とは、当該レーザ発振部3に形成されている各光導波路3aの光軸を意味し、波長変換素子24の光軸とは、当該波長変換素子24に形成されている各光導波路24aの光軸を意味する。半導体レーザ素子13の光出射端はレーザ発振部3側にあり、レーザ発振部3の光出射端は波長変換素子24側にある。
 このような構造を有するレーザ光源モジュール50では、レーザ発振部3での各光導波路3aの光入射端および波長変換素子24での各光導波路24aの光入射端に共振器ミラーとして機能する光学薄膜(図示せず)が設けられており、これらの光学薄膜によりレーザ共振器が形成される。このレーザ共振器とレーザ発振部3での各光導波路とにより固体レーザ素子SLが構成される。半導体レーザ素子13中の各レーザ発振器により励起光が発振されると、これらの励起光がレーザ発振部3の各光導波路3aに入射して、個々の光導波路3aから基本波レーザ光が発振される。これらの基本波レーザ光はレーザ共振器内で反射を繰り返して増幅され、個々の基本波レーザ光の一部が波長変換素子24の所定の光導波路24aに入射して波長変換され、例えば第2高調波となって波長変換素子24から出射する。図2においては、レーザ光源モジュール50から発振されるレーザ光LBを二点鎖線で描いてある。
 勿論、レーザ光源モジュール50の使用時には、半導体レーザ素子13、第1ヒータ15、および各第2ヒータ26a,26bが外部回路に接続される。第1温度センサ14および第2温度センサ25の各々としてサーミスタを用いた場合には、これら第1温度センサ14および第2温度センサ25の各々も外部回路に接続される。そのため、ステム40には所定数のリードピンが装着され、これらのリードピンとサブマウント12に形成されている駆動回路パターン、第1ヒータ15、基板22に形成されている駆動回路パターン、および各第2ヒータ26a,26bとが接続される。そして、ステム40の外部にはペルチェ素子、ヒートパイプ、ファン等の冷却装置が配置される。
 図3は、図1および図2に示したレーザ光源モジュールの使用形態の一例を概略的に示す斜視図である。図示の例では、ステム40に4本のリードピンLP1,LP2,LP3,LP4が装着され、これらのリードピンLP1,LP2,LP3,LP4とサブマウント12に形成されている駆動回路パターン(図示せず)の所定箇所とが金属リボンR1,R2,R3,R4により互いに接続されている。また、上記の駆動回路パターンと半導体レーザ素子13とが複数本の金属細線Wにより互いに接続されている。
 図示を省略しているが、ステム40には上記のリードピンLP1,LP2,LP3,LP4以外にも複数本のリードピンが装着されており、これらのリードピンに第1温度センサ14の駆動回路パターン(図示せず)、第1ヒータ15(図1参照)、第2温度センサ25の駆動回路パターン(図示せず)、および各第2ヒータ26a,26bの駆動回路パターン(図示せず)が接続されている。
 また、ステム40の裏面40b、すなわち第2ブロック10が固定されている主面40aとは反対側の主面には、冷却装置としてペルチェ素子60が固定されており、ペルチェ素子60の近傍には該ペルチェ素子60の素子温度を検知する第3温度センサ65が配置されている。ステム40に装着されている各リードピン、ペルチェ素子60、および第3温度センサ65は、それぞれ、所定の外部回路(図示せず)に接続される。レーザ光源モジュール50は、ペルチェ素子60によりステム40およびヒートシンク30が冷却され、第1ヒータ15により半導体レーザ素子13が加温され、各第2ヒータ26a,26bにより波長変換素子24が加温された状態で動作して、前述のレーザ光LB(図2参照)を発振する。
 このようにして使用されるレーザ光源モジュール50では、第1ブロック1、第2ブロック10、および第3ブロック20の計3つのブロックのうちの第2ブロック10のみがステム40に固定されるので、各ブロック1,10,20をステム40に直接固定する場合に比べ、第2ブロック10に対する第1ブロック1の相対位置、および第2ブロック10に対する第3ブロック20の相対位置をそれぞれ調整し易い。また、温度変化に起因する各ブロック1,10,20間の相対位置のずれを抑え易い。これらのことから、レーザ光源モジュール50では、レーザ発振部3、半導体レーザ素子13、および波長変換素子24それぞれの位置精度が高く、これらの光軸のアライメント精度が高いものを得易い。
 また、第2ブロック10および第3ブロック20が第1ヒータ15または第2ヒータ26a,26bを有しており、第1~第3ブロック1,10,20の各々がヒートシンク30を構成しているので、モジュール内に冷却装置を配置しなくても、第1ヒータ15、各第2ヒータ26a,26b、およびモジュールの外部に配置した冷却装置(ペルチェ素子60)により、レーザ発振部3、半導体レーザ素子13、および波長変換素子24それぞれの温度を制御することができる。したがって、当該レーザ光源モジュール50では小型化を図ることも容易である。
 そして、第1ヒータ15以外の部品が第1~第3ブロック1,10,20の上面1a,10a,20aに配置されることから、レーザ光源モジュール50を製造する際には段取り替えの手間が少なくて済み、かつ部品間の配線作業やブロック間の配線作業が容易である。このため、当該レーザ光源モジュール50ではその生産性を高め易い。
 レーザ光源モジュール50の光出力を高めるという観点からは、半導体レーザ素子13および波長変換素子24の素子温度をそれぞれ最適動作温度にして当該レーザ光源モジュール50を動作させることが望ましい。半導体レーザ素子13の最適動作温度は、当該半導体レーザ素子13の発振波長や出力強度等により予め略固定されており、変更可能な余地は少ないが、波長変換素子24の最適動作温度は、周期分極反転構造を有する非線形光学結晶により当該波長変換素子24の波長変換部(各光導波路24a;図1参照)が形成されていることから、上記の周期分極反転構造を適宜設計することにより比較的自由に変更することができる。
 したがって、レーザ光源モジュール50においては、当該レーザ光源モジュール50を構成する各部材とペルチェ素子60等の冷却装置との間の熱輸送経路での熱抵抗を考慮して波長変換素子24の最適動作温度を選定し、該最適動作温度の波長変換素子24を用いることが好ましい。以下、図4を参照して、波長変換素子24の最適動作温度の選定方法について具体的に説明する。
 図4は、レーザ光源モジュールを構成する各部材と図3に示した冷却装置(ペルチェ素子)との間の熱輸送経路を示す概略図である。同図においては、レーザ光源モジュール50で用いられている各接合材の熱抵抗を省略している。図4に示す構成要素のうちで図3に示した構成要素と共通するものについては、図3で用いた参照符号と同じ参照符号を付してその説明を省略する。なお、図4中の参照符号「R1」は第1ブロック1の熱抵抗を示し、「R10」は第2ブロック10の熱抵抗を示し、「R20」は第3ブロック20の熱抵抗を示し、「R40」はステム40の熱抵抗を示す。また、参照符号「R12」はサブマウント12の熱抵抗を示し、「R22」は基板22の熱抵抗を示し、「R23」は均熱板23の熱抵抗を示す。
 図4から明らかなように、レーザ光源モジュール50で用いられている各接合材の熱抵抗を無視した場合、第1ヒータ15が動作していないときでの半導体レーザ素子13からペルチェ素子60までの熱輸送経路の熱抵抗値Raは、下式(I)により表すことができる。このとき、半導体レーザ素子13の発熱量をPa、ペルチェ素子60の素子温度をTcとすれば、半導体レーザ素子1の素子温度Taは下式(II)により表すことができる。
    Ra[K/W]=R12+R10+R40  ……(I)
    Ta[℃]=Tc+Ra×Pa  ……(II)
 一方、レーザ光源モジュール50で用いられている各接合材の熱抵抗を無視した場合、第1ヒータ15および各第2ヒータ26a,26bがそれぞれ動作していないときでの波長変換素子24からペルチェ素子60までの熱輸送経路の熱抵抗値Rbは、下式(III)により表すことができる。このとき、波長変換素子24の発熱量をPb、ペルチェ素子60の素子温度をTcとすれば、波長変換素子24の素子温度Tbは下式(IV)により表すことができる。
    Rb[K/W]=R23+R22+R20+R1+R10+R40  ……(III)
    Tb[℃]=Tc+Rb×Pb          ……(IV)
 上記(II)式および(IV)式から、第1ヒータ15および各第2ヒータ26a,26bがそれぞれ動作していないときの波長変換素子24の素子温度Tbは、外気温によらず下式(V)で表すことができる。
    Tb[℃]=Ta-Ra×Pa+Rb×Pb  ……(V)
 したがって、上記(V)式での「Ta」を半導体レーザ素子13の最適動作温度としたときに当該式(V)により求まる「Tb」の値の近傍で、該「Tb」よりも低い温度となるように波長変換素子24の位相整合温度、すなわち最適動作温度を選定して該最適動作温度の波長変換素子24をレーザ光源モジュール50に用いれば、波長変換素子24を最適動作温度に保つことが容易になる。波長変換素子24の位相整合温度を上記の温度「Tb」からどの程度ずらすかは、レーザ光源モジュール50に用いられる各第2ヒータ26a,26bの性能、レーザ光源モジュール50に求められる出力強度、レーザ光源モジュール50で許容される消費電力等を考慮して適宜選定される。
 半導体レーザ素子13および波長変換素子24それぞれの温度を制御するにあたっては、第1温度センサ14および第2温度センサ25それぞれの検知結果と、ペルチェ素子60の近傍に配置されて該ペルチェ素子60の温度を検知する第3温度センサ65(図3参照)の検知結果と、上記の各熱抵抗とを考慮して、第1ヒータ15、各第2ヒータ26a,26b、およびペルチェ素子60それぞれの動作条件が選定される。波長変換素子24の最適動作温度が上述のように選定されていれば、各第2ヒータ26a,26bとして小出力のものを用いても、また波長変換素子24の近傍に専用の冷却装置を設けなくても、半導体レーザ素子13および波長変換素子24の各々を最適動作温度に容易に保つことができる。レーザ光源モジュール50を使用する際の消費電力を抑えることができる。
実施の形態2.
 この発明のレーザ光源モジュールにおいては、波長変換素子が搭載される第3ブロックの下面に、波長変換素子を加温する第2ヒータを搭載することもできる。この場合の第2ヒータの総数は、1以上の所望数とすることができる。
 図5は、第3ブロックの下面に第2ヒータが搭載されたレーザ光源モジュールの一例を概略的に示す側面図であり、図6は、図5に示したレーザ光源モジュールを概略的に示す平面図である。これらの図に示すレーザ光源モジュール150は、図1または図2に示した第3ブロック20に代えて第3ブロック120を有するヒートシンク130を備えているという点を除き、図1または図2に示したレーザ光源モジュール50と同様の構成を有している。図5または図6に示した構成要素のうちで図1または図2に示した構成要素と共通するものについては、図1または図2で用いた参照符号と同じ参照符号を付してその説明を省略する。
 図示のレーザ光源モジュール150では、第3ブロック120の下面120bに1つの第2ヒータ126が搭載されている。第3ブロック120の上面120aにヒータは搭載されておらず、そのため、当該第3ブロック120は図1または図2に示した第3ブロック20に比べて小型化されている。第3ブロック120の上面120aに固定されている基板122についても同様である。波長変換素子24は、第3ブロック120、基板122、および均熱板23を介して第2ヒータ126により加温される。
 このように構成されたレーザ光源モジュール150は、実施の形態1で説明したレーザ光源モジュール50と同様の技術的効果を奏する。また、実施の形態1で説明したレーザ光源モジュール50よりも更に小型化を図ることができる。
 以上、この発明のレーザ光源モジュールについて実施の形態を挙げて説明したが、前述のように、この発明は上述の形態に限定されるものではない。例えば、半導体レーザ素子を加温する第1ヒータは、第1ブロックの上面に搭載してもよい。第1ヒータを第1ブロックの上面に搭載すれば、第1~第3ブロックに搭載される全ての部品を同一方向から実装することが可能になるので、実装性が向上する。ただし、第1ヒータを搭載するための面積を第1ブロックの上面に確保することが必要になるので、第1ヒータを第1ブロックの下面に搭載する場合に比べて、レーザ光源モジュールが大型化される。
 ステムには、必要に応じてヒートシンクとしての機能を付与することができる。例えばステムにヒートシンク形成用の貫通孔を形成し、この貫通孔に銅系材料等の熱伝導率の高い金属材料や合金材料を圧入することにより、ヒートシンクとしての機能が付与されたステムを得ることができる。
 また、ヒートシンクを構成する第1ブロックでの第2ブロック側の側面、および第2ブロックでの第1ブロック側の側面は、第1ブロックの上面と第2ブロックの上面とを同一平面上に位置させるか、または互いに平行にすることが容易であれば、レーザ発振部の光軸または半導体レーザ素子の光軸と直交せずに所定の角度で傾斜していてもよい。同様に、第1ブロックでの第3ブロック側の側面、および第3ブロックでの第1ブロック側の側面は、第1ブロックの上面と第3ブロックの上面とを同一平面上に位置させるか、または互いに平行にすることが容易であれば、レーザ発振部の光軸または波長変換素子の光軸と直交せずに所定の角度で傾斜していてもよい。
 ヒートシンクをステムに支持させるにあたっては、第2ブロックを該第2ブロックの底面でステムに固定し、第2ブロックの側面に第1ブロックを固定し、該第1ブロックの側面に第3ブロックを固定してもよい。この発明のレーザ光源モジュールについては、上述したもの以外にも種々の変形、修飾、組み合わせ等が可能である。
 この発明のレーザ光源モジュールは、レーザテレビ等の表示装置やレーザプリンタ等の印刷装置等の光源を構成するモジュールとして用いることができる。

Claims (6)

  1.  基本波レーザ光を発振する固体レーザ素子と、該固体レーザ素子を励起する励起光源と、前記固体レーザ素子が発振した基本波レーザ光を波長変換する波長変換素子とが搭載されたヒートシンクと、該ヒートシンクを支持するステムとを備え、
     前記ヒートシンクは、
     基本波レーザ光を発振する固体レーザ素子用のレーザ発振部が上面に搭載された第1ブロックと、
     前記レーザ発振部用の励起光を出射する半導体レーザ素子と第1温度センサとが上面に搭載され、所定の面に第1ヒータが搭載された第2ブロックと、
     前記レーザ発振部が発振した基本波レーザ光を波長変換する波長変換素子と第2温度センサとが上面に搭載され、所定の面に第2ヒータが搭載された第3ブロックと、
     の3つのブロックに分割されており、
     前記第2ブロックのみが該第2ブロックの側面または底面で前記ステムに固定され、前記第2ブロックの他の側面に前記第1ブロックが固定され、該第1ブロックの側面に前記第3ブロックが固定されていることを特徴とするレーザ光源モジュール。
  2.  前記半導体レーザ素子は、前記第2ブロックの上面に固定されたサブマウントに搭載され、
     前記第1温度センサは前記サブマウントに搭載されている、
     ことを特徴とする請求項1に記載のレーザ光源モジュール。
  3.  前記第1ヒータは前記第2ブロックの下面に搭載されていることを特徴とする請求項1に記載のレーザ光源モジュール。
  4.  前記波長変換素子は、前記第3ブロックの上面に固定された基板上に熱拡散板を介して搭載され、
     前記第2温度センサおよび前記第2ヒータは前記基板に搭載されている、
     ことを特徴とする請求項1に記載のレーザ光源モジュール。
  5.  前記第2ヒータは前記第3ブロックの下面に搭載されていることを特徴とする請求項1に記載のレーザ光源モジュール。
  6.  前記波長変換素子は、周期分極構造を有する非線形光学材料により形成された波長変換部を有し、
     前記半導体レーザ素子の最適動作温度をTa、発熱量をPaとし、前記波長変換素子の発熱量をPbとし、前記半導体レーザ素子から前記ステムの裏面に達する熱伝達経路での熱抵抗をRaとし、前記波長変換素子から前記ステムの裏面に達する熱輸送経路での熱抵抗をRbとしたときに、前記波長変換素子の位相整合温度が下式(i)
       Tb[℃]=Ta-Ra×Pa+Rb×Pb  ……(i)
    で示される温度Tbの近傍で、該温度Tbよりも低い温度に設定されている、
     ことを特徴とする請求項1に記載のレーザ光源モジュール。
PCT/JP2008/054959 2008-03-18 2008-03-18 レーザ光源モジュール WO2009116134A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2010503688A JP5052668B2 (ja) 2008-03-18 2008-03-18 レーザ光源モジュール
CA2718903A CA2718903C (en) 2008-03-18 2008-03-18 Laser light source module
PCT/JP2008/054959 WO2009116134A1 (ja) 2008-03-18 2008-03-18 レーザ光源モジュール
KR1020107020025A KR101142652B1 (ko) 2008-03-18 2008-03-18 레이저 광원 모듈
EP08722353A EP2259391B1 (en) 2008-03-18 2008-03-18 Laser light source module
CN2008801280799A CN101971441B (zh) 2008-03-18 2008-03-18 激光光源模块
US12/921,822 US8265111B2 (en) 2008-03-18 2008-03-18 Laser light source module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/054959 WO2009116134A1 (ja) 2008-03-18 2008-03-18 レーザ光源モジュール

Publications (1)

Publication Number Publication Date
WO2009116134A1 true WO2009116134A1 (ja) 2009-09-24

Family

ID=41090556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/054959 WO2009116134A1 (ja) 2008-03-18 2008-03-18 レーザ光源モジュール

Country Status (7)

Country Link
US (1) US8265111B2 (ja)
EP (1) EP2259391B1 (ja)
JP (1) JP5052668B2 (ja)
KR (1) KR101142652B1 (ja)
CN (1) CN101971441B (ja)
CA (1) CA2718903C (ja)
WO (1) WO2009116134A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011113073A (ja) * 2009-11-30 2011-06-09 Mitsubishi Electric Corp 波長変換素子
WO2012098569A1 (ja) 2011-01-17 2012-07-26 三菱電機株式会社 レーザ光源モジュール
JP2012253175A (ja) * 2011-06-02 2012-12-20 Mitsubishi Electric Corp 発光素子の温度制御装置及びこれを用いたディスプレイ装置
US20130136403A1 (en) * 2011-11-29 2013-05-30 Mitsubishi Electric Corporation Optical module
CN103154798A (zh) * 2010-10-07 2013-06-12 阿尔卡特朗讯 用于线卡的光电子组合件
US8787775B2 (en) 2010-10-07 2014-07-22 Alcatel Lucent Opto-electronic assembly for a line card
JP2016111214A (ja) * 2014-12-08 2016-06-20 三菱電機株式会社 波長可変光源、波長可変光源の制御方法、及び波長可変光源の製造方法
WO2016117457A1 (ja) * 2015-01-21 2016-07-28 三菱電機株式会社 平面導波路型レーザ装置
WO2016143493A1 (ja) * 2015-03-06 2016-09-15 三菱電機株式会社 レーザ装置及びその製造方法
WO2016208015A1 (ja) * 2015-06-24 2016-12-29 オリンパス株式会社 光源装置
WO2017130596A1 (ja) * 2016-01-28 2017-08-03 ソニー株式会社 半導体発光装置
JP2019527859A (ja) * 2016-07-14 2019-10-03 アヤー・ラブス・インコーポレーテッドAyar Labs Incorporated 光データ通信システム用レーザモジュール

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007322411A (ja) * 2006-05-02 2007-12-13 Univ Of Tokyo エネルギー準位の測定方法、分析方法
KR101018278B1 (ko) * 2008-09-19 2011-03-04 전자부품연구원 파장가변 소자 패키지
CN103875139A (zh) * 2011-11-16 2014-06-18 三菱电机株式会社 半导体激光器激励固体激光器
US9509112B2 (en) 2013-06-11 2016-11-29 Kla-Tencor Corporation CW DUV laser with improved stability
US9670846B2 (en) * 2013-07-29 2017-06-06 General Electric Company Enhanced mixing tube elements
US9083468B2 (en) * 2013-08-26 2015-07-14 Applied Optoelectronics, Inc. Heated laser package with increased efficiency for optical transmitter systems
CN104600551A (zh) * 2013-10-30 2015-05-06 上海熙隆光电科技有限公司 半导体激光泵浦的绿光高功率输出的固体激光谐振腔模块
EP3051206B1 (en) * 2015-01-28 2019-10-30 Ansaldo Energia Switzerland AG Sequential gas turbine combustor arrangement with a mixer and a damper
KR101846179B1 (ko) * 2016-08-09 2018-04-09 사단법인 원텍 단국 의광학 연구센터 광파라메트릭 발진기 레이저의 온도 제어 장치
US10175555B2 (en) 2017-01-03 2019-01-08 KLA—Tencor Corporation 183 nm CW laser and inspection system
KR102384695B1 (ko) 2017-12-07 2022-04-08 한국전자통신연구원 반도체 레이저 다이오드 광원 패키지

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590698A (ja) * 1991-09-27 1993-04-09 Mitsubishi Electric Corp レーザダイオードモジユール
JPH0743759A (ja) 1993-07-30 1995-02-14 Asahi Glass Co Ltd 高調波発生装置
JPH09293917A (ja) * 1996-04-26 1997-11-11 Mitsui Petrochem Ind Ltd 半導体レーザ励起固体レーザ装置
JP2000228556A (ja) 1999-02-08 2000-08-15 Mitsubishi Electric Corp 半導体レーザ装置
JP2001085767A (ja) * 1999-07-30 2001-03-30 Litton Syst Inc マイクロレーザをベースとする電気光学システムおよびその製造方法
WO2005030980A2 (en) * 2003-09-22 2005-04-07 Snake Creek Lasers Llc High densiity methods for producing diode-pumped micro lasers

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ201262A (en) * 1981-07-17 1984-12-14 British Petroleum Co Catalytic conversion of synthesis gas to hydrocarbons
US4847851A (en) * 1988-05-19 1989-07-11 University Of South Florida Butt-coupled single transverse mode diode pumped laser
JPH06152014A (ja) 1992-11-16 1994-05-31 Sony Corp レーザ光発生装置
JP3378103B2 (ja) 1994-12-28 2003-02-17 富士写真フイルム株式会社 レーザーダイオード励起固体レーザー
JP2871623B2 (ja) 1996-07-11 1999-03-17 日本電気株式会社 半導体レーザ装置
US6101201A (en) 1996-10-21 2000-08-08 Melles Griot, Inc. Solid state laser with longitudinal cooling
US6130902A (en) * 1998-05-26 2000-10-10 Shimoji; Yutaka Solid state laser chip
JP3741108B2 (ja) 2003-03-18 2006-02-01 ソニー株式会社 レーザー発光モジュール
US20070121689A1 (en) * 2003-09-22 2007-05-31 Snake Creek Lasers Llc Methods for Producing Diode-Pumped Micro Lasers
KR100790072B1 (ko) * 2006-03-29 2008-01-02 삼성전자주식회사 녹색 광 모듈

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590698A (ja) * 1991-09-27 1993-04-09 Mitsubishi Electric Corp レーザダイオードモジユール
JPH0743759A (ja) 1993-07-30 1995-02-14 Asahi Glass Co Ltd 高調波発生装置
JPH09293917A (ja) * 1996-04-26 1997-11-11 Mitsui Petrochem Ind Ltd 半導体レーザ励起固体レーザ装置
JP2000228556A (ja) 1999-02-08 2000-08-15 Mitsubishi Electric Corp 半導体レーザ装置
JP2001085767A (ja) * 1999-07-30 2001-03-30 Litton Syst Inc マイクロレーザをベースとする電気光学システムおよびその製造方法
WO2005030980A2 (en) * 2003-09-22 2005-04-07 Snake Creek Lasers Llc High densiity methods for producing diode-pumped micro lasers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2259391A4

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011113073A (ja) * 2009-11-30 2011-06-09 Mitsubishi Electric Corp 波長変換素子
CN103154798A (zh) * 2010-10-07 2013-06-12 阿尔卡特朗讯 用于线卡的光电子组合件
JP2013541047A (ja) * 2010-10-07 2013-11-07 アルカテル−ルーセント ライン・カードのための光電子アセンブリ
US8787775B2 (en) 2010-10-07 2014-07-22 Alcatel Lucent Opto-electronic assembly for a line card
KR101515732B1 (ko) * 2010-10-07 2015-04-27 알까뗄 루슨트 라인 카드를 위한 광전자 조립체
WO2012098569A1 (ja) 2011-01-17 2012-07-26 三菱電機株式会社 レーザ光源モジュール
CN103314487A (zh) * 2011-01-17 2013-09-18 三菱电机株式会社 激光光源模块
JPWO2012098569A1 (ja) * 2011-01-17 2014-06-09 三菱電機株式会社 レーザ光源モジュール
JP2012253175A (ja) * 2011-06-02 2012-12-20 Mitsubishi Electric Corp 発光素子の温度制御装置及びこれを用いたディスプレイ装置
US20130136403A1 (en) * 2011-11-29 2013-05-30 Mitsubishi Electric Corporation Optical module
JP2016111214A (ja) * 2014-12-08 2016-06-20 三菱電機株式会社 波長可変光源、波長可変光源の制御方法、及び波長可変光源の製造方法
WO2016117457A1 (ja) * 2015-01-21 2016-07-28 三菱電機株式会社 平面導波路型レーザ装置
JPWO2016117457A1 (ja) * 2015-01-21 2017-06-01 三菱電機株式会社 平面導波路型レーザ装置
WO2016143493A1 (ja) * 2015-03-06 2016-09-15 三菱電機株式会社 レーザ装置及びその製造方法
JPWO2016143493A1 (ja) * 2015-03-06 2017-06-22 三菱電機株式会社 レーザ装置及びその製造方法
WO2016208015A1 (ja) * 2015-06-24 2016-12-29 オリンパス株式会社 光源装置
WO2017130596A1 (ja) * 2016-01-28 2017-08-03 ソニー株式会社 半導体発光装置
JPWO2017130596A1 (ja) * 2016-01-28 2018-11-22 ソニー株式会社 半導体発光装置
US10541509B2 (en) 2016-01-28 2020-01-21 Sony Corporation Semiconductor light emitting device
JP7024410B2 (ja) 2016-01-28 2022-02-24 ソニーグループ株式会社 半導体発光装置
JP2019527859A (ja) * 2016-07-14 2019-10-03 アヤー・ラブス・インコーポレーテッドAyar Labs Incorporated 光データ通信システム用レーザモジュール
JP7237826B2 (ja) 2016-07-14 2023-03-13 アヤー・ラブス・インコーポレーテッド 光データ通信システム用レーザモジュール

Also Published As

Publication number Publication date
US8265111B2 (en) 2012-09-11
EP2259391A1 (en) 2010-12-08
CA2718903A1 (en) 2009-09-24
KR101142652B1 (ko) 2012-05-10
KR20100109981A (ko) 2010-10-11
JP5052668B2 (ja) 2012-10-17
CN101971441A (zh) 2011-02-09
US20110026548A1 (en) 2011-02-03
EP2259391A4 (en) 2012-03-21
EP2259391B1 (en) 2012-11-28
CN101971441B (zh) 2012-04-11
JPWO2009116134A1 (ja) 2011-07-21
CA2718903C (en) 2013-11-19

Similar Documents

Publication Publication Date Title
JP5052668B2 (ja) レーザ光源モジュール
US8743916B2 (en) Plane waveguide type laser and display device
WO2006103767A1 (ja) モード制御導波路型レーザ装置
JPWO2005033791A1 (ja) 波長変換レーザ装置および画像表示装置
JP2013504200A (ja) 周期的に分極された非線形材料の、効率がよくコンパクトな可視マイクロチップレーザ光源
JP5247795B2 (ja) 光モジュール
US20120077003A1 (en) Method of nonlinear crystal packaging and its application in diode pumped solid state lasers
CA2855913C (en) Semiconductor laser excitation solid-state laser
JP2003174222A (ja) レーザ装置
JP7319582B2 (ja) 波長変換装置
JP2006165292A (ja) 半導体レーザ励起固体レーザ装置
WO2016117457A1 (ja) 平面導波路型レーザ装置
JP2000349371A (ja) 半導体レーザ励起固体レーザ
JP6255805B2 (ja) レーザモジュール、固体レーザ装置及びレーザモジュールの製造方法
JP2006253406A (ja) 固体レーザー装置
JP2005354007A (ja) 固体レーザー装置
JP2008116692A (ja) 波長変換レーザ光源及びレーザ波長変換方法
CN104767104A (zh) 光模块

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880128079.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08722353

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010503688

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107020025

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12921822

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008722353

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2718903

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE