WO2016117457A1 - 平面導波路型レーザ装置 - Google Patents
平面導波路型レーザ装置 Download PDFInfo
- Publication number
- WO2016117457A1 WO2016117457A1 PCT/JP2016/051080 JP2016051080W WO2016117457A1 WO 2016117457 A1 WO2016117457 A1 WO 2016117457A1 JP 2016051080 W JP2016051080 W JP 2016051080W WO 2016117457 A1 WO2016117457 A1 WO 2016117457A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wavelength conversion
- conversion element
- laser
- planar waveguide
- heat sink
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/37—Non-linear optics for second-harmonic generation
- G02F1/377—Non-linear optics for second-harmonic generation in an optical waveguide structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/02—Constructional details
- H01S3/04—Arrangements for thermal management
- H01S3/042—Arrangements for thermal management for solid state lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
- H01S3/108—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
- H01S3/109—Frequency multiplication, e.g. harmonic generation
Definitions
- the present invention relates to a planar waveguide laser device.
- a planar waveguide laser device is known as a light source for a projector or the like.
- the planar waveguide type laser device has a structure in which the upper and lower surfaces of a flat plate-shaped laser medium extended in the traveling direction of the laser light are sandwiched between clads having a refractive index lower than that of the laser medium. It is functioning as well. Since the planar waveguide laser device has a thin waveguide and a high excitation density, a large gain can be obtained even when a laser medium having a small stimulated emission cross section is used, and a highly efficient oscillation operation can be realized.
- the output can be scaled while keeping the excitation density at a desired value by expanding the laser medium as the waveguide in the width direction. Since the laser medium is excited by the semiconductor laser, the output can be scaled by increasing the emission points of the semiconductor laser in the width direction of the laser medium.
- Laser oscillation is performed by appropriately configuring a laser resonator using the excited laser medium, and thereby laser output light can be obtained.
- the laser having the highest gain and easy oscillation is an infrared laser (fundamental wave laser) having a wavelength of about 1.06 ⁇ m, which is a fundamental wave.
- a green laser (second harmonic laser) having a wavelength of about 0.53 ⁇ m that is a second harmonic can be obtained.
- the wavelength conversion element performs wavelength conversion by phase matching or pseudo phase matching. In order to perform wavelength conversion with high efficiency, it is necessary to maintain the wavelength conversion element at an appropriate temperature. Conversely, if the wavelength conversion element can be kept at a constant temperature, a wavelength conversion laser with high efficiency and high output can be obtained.
- Patent Document 1 a laser medium excited by an excitation laser and an SHG (Second (Harmonic Generation) element that is a wavelength conversion element are included in a first resonance mirror and a second resonance mirror that are resonators.
- a laser resonator having a sandwiched structure is disclosed.
- the temperature of the wavelength conversion element is measured with a thermistor, and the wavelength conversion element is kept at a constant temperature by controlling the heater based on the measurement result.
- the average temperature of the entire wavelength conversion element can be kept constant by using a thermistor and a heater as disclosed in Patent Document 1, but it is difficult to adjust the temperature distribution in the wavelength conversion element. For this reason, when the temperature distribution in the wavelength conversion element becomes non-uniform, the output distribution becomes non-uniform in the wavelength conversion element, causing a problem that efficiency is partially reduced. This problem lowers the overall efficiency of the wavelength conversion element and makes it difficult to realize a high-power wavelength conversion laser.
- the refractive index of an optical component such as a wavelength conversion element changes depending on temperature
- the temperature of the wavelength conversion element changes depending on the location
- the refractive index also becomes nonuniform in the wavelength conversion element. If there are regions having different refractive indexes in the wavelength conversion element, the laser light is refracted depending on the amount of change in the refractive index, so that the laser light passing through the wavelength conversion element does not travel straight. In that case, when scaled in the width direction, the plurality of laser oscillation lights cannot be propagated in parallel. As a result, optimization of the laser resonator can be achieved only in a part of the region, the overall efficiency is lowered, and a wavelength conversion laser with high efficiency and high output cannot be obtained.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a planar waveguide laser device capable of making the temperature distribution in the wavelength conversion element uniform.
- a planar waveguide laser device includes a semiconductor laser (10) having a plurality of emission points arranged in the width direction, and a planar laser that is excited by the output light of the semiconductor laser (10) and constitutes a laser resonator.
- the temperature distribution in the width direction in the wavelength conversion element (30) is made uniform by equalizing the temperature distribution in the width direction in at least the region immediately below the wavelength conversion element (30) of 31). .
- the temperature distribution in the wavelength conversion element is made uniform, wavelength conversion with high efficiency and high output becomes possible regardless of the position of the wavelength conversion element in the width direction.
- the refractive index distribution in the wavelength conversion element becomes uniform and the laser beam can travel straight in the wavelength conversion element, scaling in the width direction can be easily performed, and higher output can be realized.
- FIG. 1 is a top view of a planar waveguide laser device according to Embodiment 1.
- FIG. 1 is a cross-sectional view of a planar waveguide laser device according to a first embodiment.
- FIG. 3 is a diagram showing a temperature distribution in the planar waveguide laser device according to the first embodiment.
- 6 is a diagram for explaining a state in which the operation of the temperature compensation means is stopped in the planar waveguide laser device according to Embodiment 1.
- FIG. 6 is a diagram for explaining a state in which the operation of the temperature compensation means is stopped in the planar waveguide laser device according to Embodiment 1.
- FIG. FIG. 6 is a diagram illustrating a temperature distribution in a state where the operation of the temperature compensation unit is stopped in the planar waveguide laser device according to the first embodiment.
- FIG. 6 is a cross-sectional view of a planar waveguide laser device according to a second embodiment.
- FIG. 6 is a cross-sectional view of a planar waveguide laser device according to a third embodiment.
- FIG. 6 is a cross-sectional view of a planar waveguide laser device according to a third embodiment.
- FIG. 6 is a cross-sectional view of a planar waveguide laser device according to a third embodiment.
- FIG. 1 is a top view of a planar waveguide laser device 1 according to Embodiment 1 of the present invention.
- the planar waveguide laser device 1 includes a semiconductor laser 10 having a plurality of light emitting points arranged in the width direction (direction perpendicular to the laser traveling direction), and a planar waveguide solid-state laser element 20. And a planar waveguide type wavelength conversion element 30.
- the semiconductor laser 10, the solid-state laser element 20, and the wavelength conversion element 30 are arranged substantially coaxially on the same plane.
- the incident surface (surface on the semiconductor laser 10 side) of the solid-state laser element 20 excited by the output light of the semiconductor laser 10 becomes the first reflection surface of the laser resonator, and the emission surface (on the solid-state laser element 20 side) of the wavelength conversion element 30.
- the surface opposite to the surface of the laser resonator is the second reflecting surface of the laser resonator to form an infrared laser (fundamental laser) resonator, and the wavelength conversion element 30 converts the infrared laser into green light ( It functions to convert the wavelength into a second harmonic laser).
- the semiconductor laser 10, the solid-state laser element 20, and the wavelength conversion element 30 are disposed on the heat sinks 11, 21, 31, respectively. Furthermore, the planar waveguide laser device 1 according to the present embodiment includes two temperature compensation means 32 on the heat sink 31 on which the wavelength conversion element 30 is mounted. The wavelength conversion element 30 is interposed between the temperature compensation means 32. It is arranged. That is, the temperature compensation unit 32 is disposed outside both in the width direction of the wavelength conversion element 30.
- the heat generated in the wavelength conversion element 30 is discharged to the heat sink 31 that holds the wavelength conversion element 30. Since heat has the property of spreading to the surroundings, even if the heat generation in the wavelength conversion element 30 is uniform in the width direction, the temperature of the wavelength conversion element 30 is usually the highest in the central portion and at the end portion. Lower. However, in the planar waveguide laser device 1 according to the present embodiment, the temperature compensation means 32 disposed on the heat sink 31 works to make the temperature distribution in the width direction in the wavelength conversion element 30 uniform.
- the temperature compensation means 32 is, for example, a heater, and the temperature distribution of the heat sink 31 can be controlled by discharging the heat generated by the temperature compensation means 32 to the heat sink 31. Since the temperature distribution of the heat sink 31 is determined by the sum of the temperature component due to the heat generation of the wavelength conversion element 30 and the temperature component due to the heat generation of the temperature compensation means 32, the heat distribution of the heat sink 31 is adjusted by adjusting the heat generation amount of the temperature compensation means 32. By uniformizing, the temperature distribution in the width direction of the wavelength conversion element 30 can be uniformized.
- the temperature (heat generation amount) of the temperature compensation means 32 is controlled by measuring the temperature of the wavelength conversion element 30 by temperature measurement means (not shown) such as a thermistor provided on or around the wavelength conversion element 30. It is performed based on the measurement result. That is, the heat generation amount of the temperature compensation means 32 is set so that the temperature distribution of the wavelength conversion element 30 is uniform.
- FIG. 2 is a cross-sectional view of the planar waveguide laser device 1 and corresponds to a cross section along the line A1-A2 shown in FIG.
- Heat generated by the wavelength conversion element 30 and the temperature compensation unit 32 is discharged to the heat sink 31.
- the heat flow H ⁇ b> 1 due to the heat generation of the wavelength conversion element 30 is transmitted directly below and around the wavelength conversion element 30, and the heat flow H ⁇ b> 2 due to the heat generation of the temperature compensation means 32 It is transmitted directly below and around it.
- FIG. 3 is a diagram showing a temperature distribution in the planar waveguide laser device 1 according to the first embodiment.
- a solid line T B1-B2 indicates a temperature distribution in the width direction of the wavelength conversion element 30 (a temperature distribution in a cross section along the line B1-B2 shown in FIG. 2)
- a solid line T C1-C2 indicates a heat sink 31.
- 2 shows the temperature distribution in the width direction (temperature distribution in the cross section along the line C1-C2 shown in FIG. 2).
- a broken line T1 indicates a temperature component due to heat generation of the wavelength conversion element 30 in the heat sink 31
- a broken line T2 indicates a temperature component due to heat generation of the temperature compensation unit 32 in the heat sink 31.
- the temperature component due to the heat generation of the wavelength conversion element 30 is the highest immediately below the wavelength conversion element 30 as indicated by the broken line T1
- the temperature component due to the heat generation of the temperature compensation means 32 is two temperatures as indicated by the broken line T2. It becomes the highest directly under each compensation means 32.
- the heat generation amount of the temperature compensation unit 32 is set appropriately, the temperature distribution in the heat sink 31 determined by the sum of the temperature component due to the heat generation of the wavelength conversion element 30 and the temperature component due to the heat generation of the temperature compensation unit 32 is represented by a solid line T C1-. It can be made uniform like C2 . By doing so, the temperature distribution in the wavelength conversion element 30 mounted on the heat sink 31 is also made uniform as indicated by the solid line TB1-B2 .
- the temperature distribution of the entire heat sink 31 does not need to be uniformed, and it is sufficient that the temperature distribution in the width direction at least in the region immediately below the wavelength conversion element 30 is uniformed as indicated by the solid line TC1-C2 .
- wavelength conversion with high efficiency and high output can be performed regardless of the width direction of the wavelength conversion element 30. Thereby, scaling in the width direction can be easily performed, and higher output can be realized.
- the temperature distribution of the wavelength conversion element 30 is made uniform, the refractive index in the width direction of the wavelength conversion element 30 is made uniform, so that the solid-state laser element 20 and the wavelength conversion element 30 are shown in FIG.
- the plurality of laser oscillation lights 2 propagating in the laser resonator configured by Therefore, by arranging the solid-state laser element 20 and the wavelength conversion element 30 substantially coaxially, high-efficiency and high-power laser oscillation can be achieved in the entire width direction.
- the laser-oscillated infrared fundamental wave light is wavelength-converted to a double wave by the wavelength conversion element 30, so that the green laser output light 3 with high efficiency and high output can be obtained.
- FIGS. 4 to 6 show a top view, a cross-sectional view, and a temperature distribution diagram of the planar waveguide laser device 1 when the temperature compensating means 32 is not operating, and correspond to FIGS. 1 to 3, respectively. Yes.
- the temperature compensation means 32 When the temperature compensation means 32 is not operating, the temperature compensation means 32 does not generate heat, so that only the heat flow H1 is generated in the heat sink 31 due to the heat generation of the wavelength conversion element 30 as shown in FIG. For this reason, the temperature distribution of the heat sink 31 is highest immediately below the wavelength conversion element 30 as indicated by the solid line TC1-C2 in FIG. Therefore, the temperature distribution in the wavelength conversion element 30 is high at the center of the wavelength conversion element 30 and low at the end, as indicated by the solid line TB1-B2 in FIG. As described above, when the temperature in the wavelength conversion element 30 is not uniform in the width direction, the wavelength conversion with the highest efficiency can be performed only in a part of the wavelength conversion element 30, and the wavelength conversion efficiency is lowered.
- the refractive index of the wavelength conversion element 30 is not uniform in the width direction, the laser oscillation light 2 passing through the wavelength conversion element 30 is bent toward a higher refractive index as shown in FIG. For this reason, the reflected light 4 is generated at a position away from the central portion of the wavelength conversion element 30, and when the reflected light 4 circulates, the laser oscillation light 2 is lost, and the intensity of the laser output light 3 is reduced.
- the planar waveguide laser device 1 of the present embodiment it is preferable to provide temperature control means for keeping the temperature of the wavelength conversion element 30 constant, as in Patent Document 1.
- the planar waveguide laser device 1 can be further increased in efficiency and output.
- this temperature control means for example, a device composed of a thermistor for measuring the temperature of the wavelength conversion element 30 and a heater for making the temperature of the wavelength conversion element 30 constant based on the measurement result can be considered.
- the heater of the temperature control means may be disposed on the upper surface of the heat sink 31 (between the heat sink 31 and the wavelength conversion element 30, or between the heat sink 31 and the temperature compensation means 32), or the lower surface of the heat sink 31 (wavelength).
- a heater may be embedded in the heat sink 31.
- the thermistor may be disposed at an appropriate position such as on the wavelength conversion element 30, the temperature compensation means 32, or the heat sink 31.
- the wavelength conversion element 30 has been described as converting a fundamental wave into a second harmonic, but outputs a third harmonic (blue laser) or a fourth harmonic (ultraviolet laser). Also good.
- the heat sink 31 is preferably made of a steel material having a low thermal conductivity such as a stainless steel material (SUS: SteelStUse Stainless). Thereby, the calorific values of the temperature compensation means 32 and the temperature control means can be kept low.
- FIG. 7 is a sectional view of the planar waveguide laser device 1 according to the second embodiment.
- the configuration of the planar waveguide laser device 1 according to the second embodiment is basically the same as that shown in FIG. 1, and FIG. 7 corresponds to a cross section taken along the line A1-A2 shown in FIG.
- the two temperature compensation means 32 have an integral structure by being embedded in one substrate 32a (for example, a ceramic substrate). That is, the temperature compensating means 32 and the substrate 32a constitute an integrated temperature compensating means 33.
- the wavelength conversion element 30 is disposed on the integrated temperature compensation means 33. Also in the integrated temperature compensating means 33, the two temperature compensating means 32 are arranged on both outer sides in the width direction of the wavelength conversion element 30 as in the first embodiment. That is, the wavelength conversion element 30 is mounted on the substrate 32 a between the two temperature compensation means 32.
- the same effect as in the first embodiment can be obtained by the action of the temperature compensating means 32 included in the integrated temperature compensating means 33.
- the two temperature compensating means 32 are disposed at appropriate positions on the heat sink 31, so that the two temperature compensating means 32 are individually set on the heat sink.
- the work of mounting on 31 becomes unnecessary. Therefore, the number of assembling steps can be reduced, and the planar waveguide laser device 1 according to the present invention can contribute to the improvement of reliability and cost reduction.
- FIG. 7 shows the integrated temperature compensating means 33 having a structure in which the temperature compensating means 32 is embedded in the substrate 32a, the integrated temperature compensating means 33 may be attached to the substrate 32a.
- a ceramic substrate is shown as an example of the substrate 32a.
- ceramic has lower thermal conductivity than SUS shown as an example of the heat sink 31, but the thermal conductivity of the substrate 32 a may be arbitrary, and the substrate 32 a may have higher thermal conductivity than the heat sink 31. Good.
- FIG. 8 is a cross-sectional view of the planar waveguide laser device 1 according to the third embodiment.
- the configuration of the planar waveguide laser device 1 according to the third embodiment is basically the same as that shown in FIG. 1, and FIG. 8 corresponds to the cross section taken along the line A1-A2 shown in FIG.
- the submount 34 is disposed on the heat sink 31, and the wavelength conversion element 30 is disposed on the submount 34. . That is, the wavelength conversion element 30 is mounted on the heat sink 31 via the submount 34.
- the submount 34 is made of a material having a higher thermal conductivity than the heat sink 31. For example, when the material of the heat sink 31 is SUS, copper can be used as the material of the submount 34.
- the heat generated in the wavelength conversion element 30 is made uniform in the width direction by the submount 34 and then discharged to the heat sink 31. Therefore, the temperature change in the width direction can be further reduced.
- the temperature distribution in the width direction of the wavelength conversion element 30 is further uniformed by the action of the temperature compensation means 32 arranged on both outer sides of the wavelength conversion element 30 in the width direction. A high-efficiency and high-power planar waveguide laser device 1 can be obtained.
- Embodiment 3 can also be combined with Embodiment 2. That is, as shown in FIG. 9, the integrated temperature compensation means 33 may be disposed on the heat sink 31, and the wavelength conversion element 30 may be disposed thereon via the submount 34. That is, the wavelength conversion element 30 may be mounted on the substrate 32 a between the two temperature compensation means 32 via the submount 34.
- the thermal conductivity of the submount 34 is preferably higher than that of the substrate 32 a, but the substrate 32 a may have a higher thermal conductivity than that of the submount 34.
- 1 planar waveguide laser device 2 laser oscillation light, 3 laser output light, 4 reflected light, 10 semiconductor laser, 11 heat sink, 20 solid state laser element, 21 heat sink, 30 wavelength conversion element, 31 heat sink, 32 temperature compensation means, 33 Integrated temperature compensation means, 34 submount.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Physics & Mathematics (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Lasers (AREA)
Abstract
平面導波路型レーザ装置(1)は、幅方向に並ぶ複数の発光点を持つ半導体レーザ(10)と、半導体レーザ(10)の出力光で励起され、レーザ共振器を構成する平面導波路型の固体レーザ素子(20)と、当該レーザ共振器が生成するレーザの波長変換を行う波長変換素子(30)とを備える。波長変換素子(30)を搭載するヒートシンク(31)上には、波長変換素子(30)の幅方向の両外側にそれぞれ配設された温度補償手段(32)が設けられている。温度補償手段(32)は、温度補償手段(32)は、ヒートシンク(31)の少なくとも波長変換素子(30)の真下の領域における幅方向の温度分布を均一化する。
Description
本発明は、平面導波路型レーザ装置に関するものである。
例えばプロジェクタなどの光源として、平面導波路型レーザ装置が知られている。平面導波路型レーザ装置は、レーザ光の進行方向に伸長した平板状のレーザ媒質の上下両面を、レーザ媒質よりも屈折率の低いクラッドで挟み込んだ構造を有しており、レーザ媒質は導波路としても機能している。平面導波路型レーザ装置は、導波路の厚さが薄く励起密度が高いため、誘導放出断面積の小さなレーザ媒質を用いた場合でも大きな利得が得られ、高効率な発振動作を実現できる。
さらに、平面導波路型レーザ装置では、導波路としてのレーザ媒質を幅方向に広げることによって、励起密度を所望の値に保ったままでの出力のスケーリングが可能である。レーザ媒質は半導体レーザにより励起されるため、レーザ媒質の幅方向に半導体レーザの発光点を増やすことで出力のスケーリングが可能となる。
励起されたレーザ媒質を用いて適切にレーザ共振器を構成することでレーザ発振が行われ、それによってレーザ出力光を得ることができる。活性媒質としてNdやYbなどを含むレーザ媒質では、最も利得が高く発振が容易なレーザは、基本波である波長1.06μm近傍の赤外レーザ(基本波レーザ)である。さらに、レーザ共振器の内外いずれかに波長変換素子を設けることにより、2倍波である波長0.53μm近傍の緑色レーザ(2倍波レーザ)を得ることができる。
波長変換素子は、位相整合または擬似位相整合により波長変換を行う。高効率に波長変換を行うためには、波長変換素子を適切な温度に維持する必要がある。逆に言えば、波長変換素子を一定温度に保つことができれば、高効率・高出力な波長変換レーザを得ることができる。
例えば、下記の特許文献1には、励起用レーザによって励起されるレーザ媒質と、波長変換素子であるSHG(Second Harmonic Generation)素子とを、共振器である第1共振ミラーと第2共振ミラーで挟んだ構造を有するレーザ共振器が開示されている。特許文献1のレーザ共振器では、波長変換素子の温度をサーミスタで測定し、その測定結果に基づいてヒータを制御することで波長変換素子を一定温度に保っている。
基本波である赤外レーザ(基本波レーザ)から2倍波である緑色レーザ(2倍波レーザ)への波長変換では、原理的には熱の発生はない。しかし実際には、レーザ共振器の内外で生じる不要な放射光や、波長変換素子の材料での光吸収などによって熱が生じる。このため、高出力なレーザであるほど、その動作に伴って波長変換素子の温度が上昇する。さらに、波長変換素子を保持する構造体を通した局所的な排熱によって波長変換素子内の温度が不均一になる。
波長変換素子の全体での平均温度は、特許文献1のようなサーミスタとヒータを用いて一定に保つことができるが、波長変換素子内の温度分布の調整は困難である。そのため、波長変換素子内の温度分布が不均一になると、波長変換素子内で出力分布が不均一になり、部分的に効率が低下する問題が生じる。この問題は、波長変換素子の全体としての効率を低下させ、高出力な波長変換レーザの実現を困難にする。
また、波長変換素子などの光学部品は温度に依存して屈折率が変わるため、波長変換素子の温度が場所によって変化すると、波長変換素子内で屈折率も不均一になる。波長変換素子内に屈折率の異なる領域が存在すると、レーザ光が屈折率の変化量に依存して屈折するため、波長変換素子を通過するレーザ光は直進しなくなる。その場合、幅方向にスケーリングしたときに、複数のレーザ発振光をそれぞれ平行に伝搬させることができない。その結果、レーザ共振器の最適化が一部の領域でしか達成できなくなり、全体としての効率が低下し、高効率・高出力な波長変換レーザを得ることができない。
本発明は以上のような課題を解決するためになされたものであり、波長変換素子内の温度分布を均一化できる平面導波路型レーザ装置を提供することを目的とする。
本発明に係る平面導波路型レーザ装置は、幅方向に並ぶ複数の発光点を持つ半導体レーザ(10)と、前記半導体レーザ(10)の出力光で励起され、レーザ共振器を構成する平面導波路型の固体レーザ素子(20)と、前記レーザ共振器が生成したレーザの波長変換を行う平面導波路型の波長変換素子(30)と、前記波長変換素子(30)を搭載するヒートシンク(31)と、前記ヒートシンク(31)上における前記波長変換素子(30)の幅方向の両外側にそれぞれ配設された温度補償手段(32)を備え、前記温度補償手段(32)は、前記ヒートシンク(31)の少なくとも波長変換素子(30)の真下の領域における幅方向の温度分布を均一化することによって、前記波長変換素子(30)内の幅方向の温度分布を均一化する。
本発明によれば、波長変換素子内の温度分布が均一化されるため、波長変換素子の幅方向の位置によらず高効率・高出力な波長変換が可能となる。また、波長変換素子内の屈折率分布が均一になり、レーザ光を波長変換素子内で直進させることができるため、容易に幅方向のスケーリングが可能となり、さらに高出力化を実現することができる。
この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
<実施の形態1>
図1は、本発明の実施の形態1の平面導波路型レーザ装置1の上面図である。図1に示すように、平面導波路型レーザ装置1は、幅方向(レーザの進行方向に垂直な方向)に並ぶ複数の発光点を持つ半導体レーザ10と、平面導波路型の固体レーザ素子20と、平面導波路型の波長変換素子30とを備えている。
図1は、本発明の実施の形態1の平面導波路型レーザ装置1の上面図である。図1に示すように、平面導波路型レーザ装置1は、幅方向(レーザの進行方向に垂直な方向)に並ぶ複数の発光点を持つ半導体レーザ10と、平面導波路型の固体レーザ素子20と、平面導波路型の波長変換素子30とを備えている。
半導体レーザ10、固体レーザ素子20および波長変換素子30は、同一平面上に略同軸で配置される。半導体レーザ10の出力光で励起される固体レーザ素子20の入射面(半導体レーザ10側の面)がレーザ共振器の第1の反射面となり、波長変換素子30の出射面(固体レーザ素子20側とは反対側の面)がレーザ共振器の第2の反射面となって、赤外レーザ(基本波レーザ)の共振器が構成され、波長変換素子30は、その赤外レーザを緑色光(2倍波レーザ)に波長変換するように機能する。
半導体レーザ10、固体レーザ素子20および波長変換素子30は、それぞれヒートシンク11,21,31上に配設されている。さらに、本実施の形態の平面導波路型レーザ装置1は、波長変換素子30を搭載するヒートシンク31上に2つの温度補償手段32を備えており、波長変換素子30は温度補償手段32の間に配設されている。つまり、温度補償手段32は、波長変換素子30の幅方向の両方の外側に配置されている。
原理的には波長変換で熱は発生しないが、実際には、固体レーザ素子20と波長変換素子30とで構成されるレーザ共振器の内外で生じる不要な放射光や、波長変換素子30の材料での光吸収などによって熱が生じる。そのため、高出力なレーザであるほど、その動作に伴って波長変換素子30の温度が上昇する。
波長変換素子30で生じた熱は、波長変換素子30を保持するヒートシンク31に排出される。熱は周囲に広がる性質を持つため、仮に、波長変換素子30での発熱が幅方向に均一であったとしても、通常は波長変換素子30の温度は中央部で最も高くなり、端の部分で低くなる。しかし、本実施の形態の平面導波路型レーザ装置1では、ヒートシンク31上に配設された温度補償手段32が、波長変換素子30内の幅方向の温度分布を均一化するように働く。
温度補償手段32は例えばヒータであり、温度補償手段32が生成する熱をヒートシンク31に排出することで、ヒートシンク31の温度分布を制御することができる。ヒートシンク31の温度分布は、波長変換素子30の発熱による温度成分と、温度補償手段32の発熱による温度成分との和によって決まるので、温度補償手段32の発熱量を調整してヒートシンク31の温度分布を均一化することによって、波長変換素子30の幅方向の温度分布を均一化できる。
温度補償手段32の温度(発熱量)の制御は、波長変換素子30の上または周囲に1つ以上設けられたサーミスタ等の温度測定手段(不図示)によって波長変換素子30の温度を測定し、その測定結果に基づいて行われる。すなわち、波長変換素子30の温度分布が均一になるように、温度補償手段32の発熱量が設定される。
図2は、平面導波路型レーザ装置1の断面図であり、図1に示すA1-A2線に沿った断面に対応している。波長変換素子30および温度補償手段32で生じた熱は、それぞれヒートシンク31に排出される。このとき、図2に示すように、波長変換素子30の発熱による熱流H1は、波長変換素子30の真下とその周囲に伝達され、温度補償手段32の発熱による熱流H2は、温度補償手段32の真下とその周囲に伝達される。
図3は、実施の形態1に係る平面導波路型レーザ装置1内の温度分布を示す図である。図3において、実線TB1-B2は波長変換素子30の幅方向の温度分布(図2に示すB1-B2線に沿った断面の温度分布)を示しており、実線TC1-C2はヒートシンク31における幅方向の温度分布(図2に示すC1-C2線に沿った断面の温度分布)を示している。また、破線T1は、ヒートシンク31における波長変換素子30の発熱による温度成分を示しており、破線T2は、ヒートシンク31における温度補償手段32の発熱による温度成分を示している。
ヒートシンク31において、波長変換素子30の発熱による温度成分は、破線T1のように波長変換素子30の真下で最も高くなり、温度補償手段32の発熱による温度成分は、破線T2のように2つの温度補償手段32それぞれの真下で最も高くなる。温度補償手段32の発熱量を適切に設定すれば、波長変換素子30の発熱による温度成分と温度補償手段32の発熱による温度成分との和によって決まるヒートシンク31内の温度分布を、実線TC1-C2のように均一にすることができる。そうすることによって、ヒートシンク31が搭載する波長変換素子30内の温度分布も、実線TB1-B2のように均一化される。なお、ヒートシンク31全体の温度分布が均一化される必要はなく、実線TC1-C2のように、少なくとも波長変換素子30の真下の領域における幅方向の温度分布が均一化されればよい。
このように、温度補償手段32を用いて波長変換素子30の幅方向の温度分布を均一化すると、波長変換素子30の幅方向によらず高効率・高出力な波長変換ができる。それにより、容易に幅方向にスケーリングが可能となり、さらに高出力化を実現することができる。
さらに、波長変換素子30の温度分布が均一化されることで、波長変換素子30の幅方向の屈折率が均一化されるので、図1に示すように、固体レーザ素子20と波長変換素子30で構成されるレーザ共振器内を伝搬する複数のレーザ発振光2がそれぞれ直進するようになる。従って、固体レーザ素子20と波長変換素子30を略同軸に配置することで、幅方向全体に高効率で高出力なレーザ発振が可能となる。レーザ発振した赤外の基本波光は、波長変換素子30で2倍波に波長変換されることから、高効率・高出力な緑色のレーザ出力光3を得ることができる。
ここで、図4~図6を用いて、平面導波路型レーザ装置1における温度補償手段32の動作を停止させた状態を説明する。図4~図6は、温度補償手段32の動作していないときの平面導波路型レーザ装置1の上面図、断面図および温度分布図を示しており、それぞれ図1~図3に対応している。
温度補償手段32が動作していないとき、温度補償手段32は発熱しないので、ヒートシンク31には図5のように波長変換素子30の発熱による熱流H1のみが生じる。このため、ヒートシンク31の温度分布は、図6の実線TC1-C2のように、波長変換素子30の真下で最も高くなり、そこから離れるに従って低くなる。よって、波長変換素子30内の温度分布は、図6の実線TB1-B2のように、波長変換素子30の中央部で高く、端部で低くなる。このように波長変換素子30内の温度が幅方向に均一でない場合、波長変換素子30の一部でしか最も高効率な波長変換を行うことができず、波長変換効率が低くなる。さらに、波長変換素子30の屈折率が幅方向に均一でなくなるため、図4に示すように、波長変換素子30を通過するレーザ発振光2は屈折率の高い方へ曲がる。このため、波長変換素子30の中央部から離れた位置で反射光4が生じ、それが周回することでレーザ発振光2の損失となり、レーザ出力光3の強度が低下することとなる。
なお、本実施の平面導波路型レーザ装置1においても、特許文献1と同様に、波長変換素子30の温度を一定に保つ温度制御手段を設けることが好ましい。それにより、平面導波路型レーザ装置1の更なる高効率化・高出力化を図ることができる。この温度制御手段としては、例えば、波長変換素子30の温度を測定するサーミスタと、その測定結果に基づいて波長変換素子30の温度を一定にするヒータとから構成されるものが考えられる。温度制御手段のヒータは、ヒートシンク31の上面(ヒートシンク31と波長変換素子30との間や、ヒートシンク31と温度補償手段32との間など)に配置してもよいし、ヒートシンク31の下面(波長変換素子30の搭載面とは反対側の面)に配置してもよい。あるいは、ヒータをヒートシンク31内に埋め込んでもよい。また、サーミスタは、波長変換素子30上、温度補償手段32上、ヒートシンク31上など、適切な位置に配置すればよい。
また、以上の説明では、波長変換素子30は、基本波を2倍波に変換するものとして説明したが、3倍波(青色レーザ)または4倍波(紫外レーザ)を出力するものであってもよい。また、ヒートシンク31は、例えばステンレス鋼材(SUS:Steel Use Stainless)など、熱伝導率が低い鋼材を用いることが好ましい。それにより、温度補償手段32および上記の温度制御手段の発熱量を低く抑えることができる。
<実施の形態2>
図7は、実施の形態2に係る平面導波路型レーザ装置1の断面図である。実施の形態2の平面導波路型レーザ装置1の構成は基本的に図1と同様であり、図7は図1に示すA1-A2線に沿った断面に対応している。
図7は、実施の形態2に係る平面導波路型レーザ装置1の断面図である。実施の形態2の平面導波路型レーザ装置1の構成は基本的に図1と同様であり、図7は図1に示すA1-A2線に沿った断面に対応している。
実施の形態2において、2つの温度補償手段32は、1つの基板32a(例えばセラミック基板)に埋め込まれることによって一体的な構成となっている。すなわち、温度補償手段32と基板32aとで、一体型温度補償手段33を構成している。
波長変換素子30は一体型温度補償手段33上に配設される。一体型温度補償手段33においても、2つの温度補償手段32は、実施の形態1と同様に波長変換素子30の幅方向の両外側に配置される。つまり、波長変換素子30は、2つの温度補償手段32の間の基板32aの上に搭載される。
実施の形態2においても、一体型温度補償手段33に含まれる温度補償手段32の作用によって、実施の形態1と同様の効果が得られる。また、一体型温度補償手段33を1つヒートシンク31上に取り付ければ、2つの温度補償手段32がヒートシンク31上の適切な位置に配設されるので、2つの温度補償手段32をそれぞれ個別にヒートシンク31上に取り付ける作業が不要になる。よって、組立工数を削減でき、本発明に係る平面導波路型レーザ装置1の信頼性向上および低コスト化に寄与できる。
なお、図7では、温度補償手段32が基板32aに埋め込まれた構造の一体型温度補償手段33を示したが、一体型温度補償手段33は基板32aに貼り付けられていてもよい。
また、ここでは基板32aの例としてセラミック基板を示した。一般に、セラミックは、ヒートシンク31の例として示したSUSよりも熱伝導率が低いが、基板32aの熱伝導率は任意でよく、基板32aがヒートシンク31よりも高い熱伝導率を有していてもよい。
<実施の形態3>
図8は、実施の形態3に係る平面導波路型レーザ装置1の断面図である。実施の形態3の平面導波路型レーザ装置1の構成も基本的に図1と同様であり、図8は図1に示すA1-A2線に沿った断面に対応している。
図8は、実施の形態3に係る平面導波路型レーザ装置1の断面図である。実施の形態3の平面導波路型レーザ装置1の構成も基本的に図1と同様であり、図8は図1に示すA1-A2線に沿った断面に対応している。
図8のように実施の形態3の平面導波路型レーザ装置1においては、ヒートシンク31上にサブマウント34が配設されており、波長変換素子30はサブマウント34の上に配設されている。すなわち、波長変換素子30は、ヒートシンク31上に、サブマウント34を介して搭載されている。サブマウント34は、ヒートシンク31よりも熱伝導率が高い材料で構成される。例えばヒートシンク31の材料がSUSの場合、サブマウント34の材料としては銅を用いることができる。
このように、波長変換素子30の直下に熱伝導率の高いサブマウント34を配置することで、波長変換素子30で生じた熱がサブマウント34で幅方向に均一化されてからヒートシンク31に排出されるようになるため、幅方向の温度変化をより小さくできる。また、実施の形態1と同様に、波長変換素子30の幅方向の両外側に配設された温度補償手段32の作用によって、波長変換素子30の幅方向の温度分布はさらに均一化され、より高効率・高出力な平面導波路型レーザ装置1が得られる。
実施の形態3は、実施の形態2と組み合わせることも可能である。つまり、図9のように、一体型温度補償手段33をヒートシンク31上に配設し、その上にサブマウント34を介して波長変換素子30を配設してもよい。すなわち、波長変換素子30を、サブマウント34を介して、2つの温度補償手段32の間の基板32aの上に搭載させてもよい。これにより、上記の効果に加え、組立工数の削減による平面導波路型レーザ装置1の信頼性向上および低コスト化の効果も得られる。この場合、サブマウント34の熱導電率は基板32aよりも高いことが望ましいが、基板32aがサブマウント34よりも高い熱導電率を有していてもよい。
なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
1 平面導波路型レーザ装置、2 レーザ発振光、3 レーザ出力光、4 反射光、10 半導体レーザ、11 ヒートシンク、20 固体レーザ素子、21 ヒートシンク、30 波長変換素子、31 ヒートシンク、32 温度補償手段、33 一体型温度補償手段、34 サブマウント。
Claims (5)
- 幅方向に並ぶ複数の発光点を持つ半導体レーザ(10)と、
前記半導体レーザ(10)の出力光で励起され、レーザ共振器を構成する平面導波路型の固体レーザ素子(20)と、
前記レーザ共振器が生成したレーザの波長変換を行う平面導波路型の波長変換素子(30)と、
前記波長変換素子(30)を搭載するヒートシンク(31)と、
前記ヒートシンク(31)上における前記波長変換素子(30)の幅方向の両外側にそれぞれ配設された温度補償手段(32)を備え、
前記温度補償手段(32)は、前記ヒートシンク(31)の少なくとも波長変換素子(30)の真下の領域における幅方向の温度分布を均一化することによって、前記波長変換素子(30)内の幅方向の温度分布を均一化する
ことを特徴とする平面導波路型レーザ装置(1)。 - 前記温度補償手段(32)はヒータである
請求項1記載の平面導波路型レーザ装置(1)。 - 前記温度補償手段(32)は、1つの基板(32a)に取り付けられて一体的に構成されており、
前記波長変換素子(30)は、前記温度補償手段(32)の間の前記基板(32a)上に搭載されている
請求項1または請求項2記載の平面導波路型レーザ装置(1)。 - 前記波長変換素子(30)は、前記ヒートシンク(31)よりも熱伝導率の高いサブマウント(34)を介して、前記ヒートシンク(31)の上に搭載されている
請求項1または請求項2記載の平面導波路型レーザ装置(1)。 - 前記波長変換素子(30)は、前記ヒートシンク(31)よりも熱伝導率の高いサブマウント(34)を介して、前記温度補償手段(32)の間の前記基板(32a)上に搭載されている
請求項3記載の平面導波路型レーザ装置(1)。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016570600A JPWO2016117457A1 (ja) | 2015-01-21 | 2016-01-15 | 平面導波路型レーザ装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-009126 | 2015-01-21 | ||
JP2015009126 | 2015-01-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016117457A1 true WO2016117457A1 (ja) | 2016-07-28 |
Family
ID=56417004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/051080 WO2016117457A1 (ja) | 2015-01-21 | 2016-01-15 | 平面導波路型レーザ装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2016117457A1 (ja) |
WO (1) | WO2016117457A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009116134A1 (ja) * | 2008-03-18 | 2009-09-24 | 三菱電機株式会社 | レーザ光源モジュール |
WO2009116131A1 (ja) * | 2008-03-18 | 2009-09-24 | 三菱電機株式会社 | 光モジュール |
JP2013125899A (ja) * | 2011-12-15 | 2013-06-24 | Sanyo Chem Ind Ltd | アルミニウム電解コンデンサ用電解液、およびそれを用いたアルミニウム電解コンデンサ。 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5933246B2 (ja) * | 2011-12-15 | 2016-06-08 | 三菱電機株式会社 | モード制御平面導波路型レーザ装置 |
-
2016
- 2016-01-15 WO PCT/JP2016/051080 patent/WO2016117457A1/ja active Application Filing
- 2016-01-15 JP JP2016570600A patent/JPWO2016117457A1/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009116134A1 (ja) * | 2008-03-18 | 2009-09-24 | 三菱電機株式会社 | レーザ光源モジュール |
WO2009116131A1 (ja) * | 2008-03-18 | 2009-09-24 | 三菱電機株式会社 | 光モジュール |
JP2013125899A (ja) * | 2011-12-15 | 2013-06-24 | Sanyo Chem Ind Ltd | アルミニウム電解コンデンサ用電解液、およびそれを用いたアルミニウム電解コンデンサ。 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016117457A1 (ja) | 2017-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4392024B2 (ja) | モード制御導波路型レーザ装置 | |
JP5052668B2 (ja) | レーザ光源モジュール | |
JP6245629B2 (ja) | 半導体レーザー励起固体レーザー装置を利用する車載式点火装置 | |
JP5312947B2 (ja) | 短波長光源およびレーザ画像形成装置 | |
JP2010114162A (ja) | レーザ利得媒質、レーザ発振器及びレーザ増幅器 | |
JP4747841B2 (ja) | 波長変換レーザ装置および画像表示装置 | |
JP2010034413A (ja) | 固体レーザ装置 | |
JP5389277B2 (ja) | モード制御導波路型レーザ装置 | |
JP5247795B2 (ja) | 光モジュール | |
JP6319460B2 (ja) | 波長可変レーザ装置 | |
JP2000133863A (ja) | 固体レーザ装置 | |
JP2013127545A (ja) | 半導体波長変換素子および赤外光発振光源 | |
WO2016117457A1 (ja) | 平面導波路型レーザ装置 | |
JP2008153462A (ja) | 固体レーザ増幅器 | |
JP6210732B2 (ja) | レーザ増幅器及びレーザ発振器 | |
JP2011254035A (ja) | 固体レーザ装置 | |
JP6385246B2 (ja) | 平面導波路型レーザ装置 | |
JP4862960B2 (ja) | 波長変換レーザ装置および画像表示装置 | |
JP5933246B2 (ja) | モード制御平面導波路型レーザ装置 | |
JP2006165292A (ja) | 半導体レーザ励起固体レーザ装置 | |
JP6257807B2 (ja) | アレイ型波長変換レーザ装置 | |
WO2016143493A1 (ja) | レーザ装置及びその製造方法 | |
JP4001077B2 (ja) | 固体レーザ増幅装置及び固体レーザ装置 | |
JP2016201435A (ja) | レーザ光源装置 | |
JP2008216531A (ja) | レーザ装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16740064 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016570600 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16740064 Country of ref document: EP Kind code of ref document: A1 |