WO2016208015A1 - 光源装置 - Google Patents
光源装置 Download PDFInfo
- Publication number
- WO2016208015A1 WO2016208015A1 PCT/JP2015/068263 JP2015068263W WO2016208015A1 WO 2016208015 A1 WO2016208015 A1 WO 2016208015A1 JP 2015068263 W JP2015068263 W JP 2015068263W WO 2016208015 A1 WO2016208015 A1 WO 2016208015A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light source
- light
- amount
- heat
- heat generation
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/024—Arrangements for thermal management
Definitions
- the present invention relates to a light source device.
- Patent Document 1 manages the temperature of each light source in order to control the amount of light emitted from each light source when generating illumination light by combining light emitted from each of the light sources and having different wavelengths.
- a light source device is disclosed.
- the semiconductor laser light source device which is a light source device has a plurality of laser units and a control device for controlling these laser units.
- a control device for controlling these laser units.
- two laser units are arranged as an example.
- a laser unit that is a light source unit includes a semiconductor laser that is a light source, a drive current source that drives the semiconductor laser, a Peltier element that is disposed in the vicinity of the semiconductor laser, and that forms an endothermic heater, and a drive circuit that drives the Peltier element And have.
- a thermistor as a temperature sensitive element is attached to the Peltier element, and a temperature detection circuit is connected to the thermistor.
- Each semiconductor laser emits laser beams having different wavelengths.
- the laser beams are respectively guided to the optical coupler by the first optical fiber optically connected to the respective semiconductor lasers and synthesized by the optical coupler.
- the combined laser light is guided to a second optical fiber optically connected to the optical coupler, and is emitted as illumination light toward the outside in a state where light distribution is adjusted, for example.
- the semiconductor laser is driven by a drive current source based on the control of the control device, and emits laser light having a predetermined wavelength.
- the semiconductor laser generates heat as the laser beam is emitted, and the resistance value of the thermistor attached to the Peltier element varies depending on the temperature of the semiconductor laser.
- the temperature detection circuit detects the temperature of the semiconductor laser based on the change in resistance value.
- the temperature detection circuit outputs to the drive circuit a control signal C1 corresponding to the difference between a predetermined temperature T1, for example 25 ° C., and the detected temperature.
- the temperature detection circuit outputs temperature information C2 regarding the detected temperature to the control device.
- the drive circuit controls the drive current to the Peltier element by the control signal C1 output from the temperature detection circuit, and drives the Peltier element so that the detected temperature becomes the predetermined temperature T1.
- the drive circuit outputs a control signal C3 that increases or decreases according to the drive current output to the Peltier element to the control device.
- the control device generates a control signal C4 for controlling the drive current source based on the control signal C3, and outputs the control signal C4 to the drive current source.
- the drive current source changes the drive current passed through the semiconductor laser in response to the control signal C4.
- the drive current source is driven by passing a predetermined rated current through the semiconductor laser.
- the drive current source corresponds to the excess current amount.
- a drive current reduced by the amount is supplied to the semiconductor laser. As a result, the amount of laser light emitted from each semiconductor laser is controlled while the temperature of each semiconductor laser is controlled.
- the relationship between the amount of light emitted from the light source and the amount of heat generated by the light source when the light source device changes the total amount of illumination light. Different. For this reason, a temperature difference may become large between light sources. As a result, in the light emitted from each light source, the light quantity ratio becomes unstable, and the characteristics of the illumination light become unstable. In order to stabilize the characteristics of the illumination light, the temperature is controlled for each light source, and the temperature of each light source needs to be kept constant. For this reason, it is necessary to provide each light source with an adjustment unit having a Peltier element and a temperature detection circuit drive circuit, but the light source device becomes large.
- each light source When one adjustment part is shared by each light source, a plurality of light sources are heated or cooled simultaneously by one adjustment part. For this reason, the temperature of each light source cannot be kept constant in a state where there is a difference in the amount of heat generated by each light source. For this reason, even if the total light quantity of illumination light changes, the light source device which can stabilize the characteristic of illumination light with a simple structure is desired.
- the present invention has been made in view of these circumstances, and an object thereof is to provide a light source device that can stabilize the characteristics of illumination light with a simple configuration even when the total amount of illumination light changes.
- One aspect of the light source device of the present invention is a light source device that generates illumination light by combining light emitted from each of a plurality of light sources and having different wavelengths, and is adjacent to and at least one of the light sources.
- a calorific value adjustment element that adjusts the calorific value of the light source by heat generation, a plurality of light source exothermic units having at least one of the light source and the calorific value adjustment element, and the calorific value of the light source exothermic unit is the amount of the light source
- the light source and the light source are adjusted so that the ratio of the heat generation amounts of the light source heat generation units is constant and the illumination light is in a desired state.
- a light source control unit that controls the calorific value adjustment element.
- the present invention it is possible to provide a light source device that can stabilize the characteristics of illumination light with a simple configuration even if the total amount of illumination light changes.
- FIG. 1A is a schematic diagram of a light source device according to a first embodiment of the present invention.
- FIG. 1B is a top view showing a positional relationship between the first, second, and third light source heat generating units and the adjustment unit.
- FIG. 1C is a side view showing the positional relationship between the first, second, and third light source heating units and the adjustment unit.
- FIG. 1D is a side view showing the positional relationship between the first and second light source heat generating units and the adjusting unit.
- FIG. 2 is a diagram illustrating the relationship between the drive current and the output light amount, and the relationship between the drive current and the heat generation amount.
- FIG. 3A is a diagram illustrating a first information table.
- FIG. 3B is a diagram showing a second information table.
- FIG. 4A is a schematic diagram of a light source device according to Modification 1 of the first embodiment.
- FIG. 4B is a side view showing a positional relationship between the first, second, third light source heat generating units and the adjusting unit in the first modification.
- FIG. 4C is a diagram showing a third information table.
- FIG. 4D is a diagram showing a fourth information table.
- FIG. 5 is a diagram showing the extinction coefficient of reduced hemoglobin and the extinction coefficient of oxyhemoglobin with respect to wavelength.
- FIG. 6A is a schematic diagram of a light source device according to Modification 2 of the first embodiment.
- FIG. 6B is a side view showing the positional relationship between the first, second, and third light source heating units and the adjustment unit in Modification 2.
- FIG. 1 is a schematic diagram of a light source device according to Modification 1 of the first embodiment.
- FIG. 4B is a side view showing a positional relationship between the first, second, third light source heat generating units
- FIG. 7A is a diagram showing a fifth information table.
- FIG. 7B is a diagram showing a sixth information table.
- FIG. 7C is a diagram showing a seventh information table.
- FIG. 7D is a diagram showing an eighth information table.
- FIG. 8A is a schematic diagram of a light source device according to the second embodiment.
- FIG. 8B is a side view showing the positional relationship between the first, second, and third light source heating units and the adjustment unit.
- FIG. 8C is a diagram illustrating chromaticity coordinates of illumination light.
- FIG. 9A is a schematic diagram of a light source device according to a third embodiment.
- FIG. 9B is a diagram illustrating the transmission characteristics of the color filter.
- the light source device 10 includes, for example, three light source heating units 20, 30, and 40.
- the first light source heat generating unit 20 has only a first light source 21 that emits a green first laser beam having a center wavelength of, for example, 530 nm.
- the second light source heat generating unit 30 is adjacent to and thermally connected to the second light source 31 that emits a red second laser beam having a center wavelength of, for example, 638 nm, and generates heat of the second light source 31 by heat generation.
- a second heat quantity adjusting element 33 for adjusting the quantity Q2a The second light source heat generating unit 30 may have at least one of the second light source 31 and the second heat quantity adjusting element 33.
- the third light source heat generating unit 40 is thermally connected to the third light source 41 that emits a blue third laser beam having a central wavelength of, for example, 445 nm, and adjacent to the third light source 41, and generates heat of the third light source 41 by heat generation.
- a third heat quantity adjusting element 43 for adjusting the quantity Q3a The third light source heating unit 40 may include at least one of the third light source 41 and the third heat quantity adjusting element 43.
- the light sources 21, 31, 41 generate heat when driven.
- the light source device 10 generates illumination light by combining light emitted from each of the light sources 21, 31, 41 and having different wavelengths, and emits the illumination light toward the outside.
- the first laser light emitted from the light source 21 is collected on the first light guide member 61 by the first optical component 51 and guided to the light combining unit 71 by the light guide member 61.
- the second and third laser beams emitted from the light sources 31 and 41 are guided to the light combining unit 71 by the second and third optical components 53 and 55 and the second and third light guide members 63 and 65. Lighted.
- the first, second, and third laser lights are combined by the light combining unit 71 and guided to the light conversion unit 73 by the fourth light guide member 67.
- the optical components 51, 53, and 55 are, for example, lenses disposed in the light source device 10, and the light guide members 61, 63, 65, and 67 are, for example, optical fibers disposed in the light source device 10.
- the light source device 10 of the present embodiment controls the first, second, and third laser beams output from the light sources 21, 31, and 41 to a desired state (for example, a constant light amount ratio). Even if the total amount of illumination light is variable, white illumination light that maintains a desired state is generated. For example, when the light quantity ratio of the first, second, and third laser lights is preset as, for example, 1: 1.33: 0.56, the light sources 21, 31, and 41 are controlled by the light source controller 100 described later based on the setting. The Thereby, white illumination light having a chromaticity coordinate of (0.31, 0.36) and a color temperature of around 6500K is realized.
- the light sources 21, 31 and 41 are preferably semiconductor lasers (LDs) in consideration of the optical coupling efficiency between the light sources 21, 31 and 41 and the light guide members 61, 63 and 65 and the light conversion efficiency ⁇ described later. .
- the light sources 21, 31, and 41 may be small light emitters, and may be LEDs or surface emitting lasers.
- the characteristics of the light sources 21, 31, and 41 are recorded in the first information table 101a (see FIG. 3A) of the recording unit 101.
- the calorific value adjustment element only needs to be thermally connected to at least one light source.
- the heat quantity adjusting elements 33 and 43 are small.
- the calorific value adjustment elements 33 and 43 quickly respond to a drive application current supplied from the light source control unit 100 described later.
- the calorific values Qv2 and Qv3 of the heat quantity adjusting elements 33 and 43 are finely controlled by the drive applied current.
- the calorific value adjustment elements 33 and 43 are, for example, heater resistance members attached to the LDs.
- the light sources 31 and 41 are LEDs or LDs
- the light sources 31 and 41 can also serve as the heat amount adjusting elements 33 and 43.
- the light sources 31 and 41 contribute to the characteristics of the illumination light with respect to input power described later, and the optical coupling efficiency between the light sources 31 and 41 and the light guide members 63 and 65.
- LD is preferable to LED.
- the heat generation amount Qs as the base always (see FIG. 2) occurs from the LD. For this reason, it is difficult to control the LD so that the light quantity of the LD varies linearly, and as a result, the heat generation amounts Q2 and Q3 of the light source heat generating units 30 and 40 are controlled to vary linearly. It becomes difficult. In this case, when the LD and the heater resistance member are used in combination, the variable range of the light amount of the light source heat generation units 30 and 40 is greatly changed, and the heat generation amounts Q2 and Q3 of the light source heat generation units 30 and 40 can be controlled.
- the heat generation amount Q1 of the light source heat generation unit 20 having only the light source 21 is the heat generation amount Q1a of the light source 21, and the heat generation amounts Q2 and Q3 of the light source heat generation units 30 and 40 having the light sources 31 and 41 and the heat amount adjustment elements 33 and 43 are This is the sum of the heat generation amounts Q2a, Q3a of the light sources 31, 41 and the heat generation amounts Qv2, Qv3 of the heat amount adjustment elements 33, 43.
- the light combining unit 71 is, for example, a coupler disposed in the light source device 10.
- the light combining unit 71 may be omitted, and in this case, the first, second, and third laser lights may be directly focused on the light guide member 67 by a combination of optical lenses.
- the light conversion unit 73 is disposed in the light source device 10 and converts light distribution, which is an example of optical characteristics, as desired.
- the light conversion unit 73 includes, for example, diffusing particles.
- the light conversion unit 73 may include a wavelength conversion member or filler particles.
- the light conversion unit 73 reduces color unevenness by diffusion or scattering, and controls the light distribution characteristics of illumination light.
- the light source heat generating units 20, 30, and 40 are mounted on the respective upper surfaces, and are thermally connected to the light source heat generating units 20, 30, and 40.
- First, second, and third heat connection members 81, 83, and 85, and a mounting member 91 on which heat connection members 81, 83, and 85 are mounted on the upper surface and thermally connected to heat connection members 81, 83, and 85 Have.
- the thermal connection members 81, 83, 85 are, for example, plate materials.
- the thermal connection members 81, 83, 85 have different thermal conductivities, and the thicknesses of the thermal connection members 81, 83, 85 are different from each other.
- the thermal connection members 81, 83, 85 are formed of a material having a large thermal conductivity so that heat generated from the light source heating units 20, 30, 40 is conducted to the thermal connection members 81, 83, 85 as quickly as possible. Is done.
- Such heat connection members 81, 83, and 85 are formed of, for example, a metal material such as Cu or Ag, or a dielectric material such as SiO 2 , ZnO, Al 2 O 3 , AlN, or AlON.
- the materials of the thermal connection members 81, 83, and 85 are selected so that the thermal resistances R1, R2, and R3 between the light source heating units 20, 30, and 40 and the adjusting unit 99 described later are adjusted to a predetermined ratio.
- the thermal conductivity and thickness of the thermal connection members 81, 83, 85 are controlled.
- the thermal resistance of each of the heat connection members 81, 83, 85 is larger than the thermal resistance of each of the light source heating units 20, 30, 40. It is assumed that the light source heat generating unit 20 and the heat connecting member 81 are the first unit, the light source heat generating unit 30 and the heat connecting member 83 are the second unit, and the light source heat generating unit 40 and the heat connecting member 85 are the third unit.
- the thermal connection members 81, 83, and 85 are configured such that the product of the heat generation amount of the light source heating unit and the thermal resistance of the thermal connection member in each unit is equal in the first, second, and third units.
- the mounting member 91 is, for example, a plate material.
- the light source device 10 is arranged in the vicinity of the light source 21, and measures the temperature of the light source heating unit 20 and the temperature of the entire light source heating unit 20, 30, 40 to the standard temperature Ts. In order to control, it has the temperature control part 95 which outputs the applied voltage according to the measurement result of the measurement part 93.
- the standard temperature Ts is, for example, a temperature recommended for stable operation of the light sources 21, 31, 41 under normal use, and is, for example, 300K.
- the light source device 10 is thermally connected to the heat dissipating part 97 for releasing heat to the outside, the mounting member 91 and the heat dissipating part 97, and the light source heat generating units 20, 30, 40 has an adjustment unit 99 that adjusts the amount of heat conducted from the heat conduction member 81, 83, 85 to the heat radiating unit 97 via the mounting member 91 and the adjustment unit 99.
- the measuring unit 93 is, for example, a thermocouple or a thermistor.
- the measuring unit 93 is mounted on the upper surface of the thermal connection member 81.
- the measuring unit 93 may be disposed in the vicinity of each of the light sources 21, 31, 41.
- the temperature control unit 95 includes the heat connection members 81, 83, 85, the mounting member 91, and the adjustment unit from the light source heating units 20, 30, 40 so that the temperature of the entire light source heating unit 20, 30, 40 approaches the standard temperature Ts.
- the amount of heat conducted to the heat radiating portion 97 through 99 is controlled by the applied voltage, and the temperature difference between the light source heating units 20, 30, 40 is suppressed.
- the heat radiating unit 97 radiates the heat conducted from the adjusting unit 99 to the outside.
- the adjusting unit 99 adjusts the amount of conduction so that the temperature of the entire light source heating unit 20, 30, 40 approaches the standard temperature Ts.
- the adjustment unit 99 is, for example, a Peltier element.
- the adjusting unit 99 is also a heat radiating member that releases heat, for example.
- the adjustment unit 99 is thermally connected to the light source heat generation units 20, 30, and 40 and the thermal connection members 81, 83, and 85 via the mounting member 91. Specifically, as shown in FIG. 1C, the adjustment unit 99 is interposed between the mounting member 91 and the heat radiating unit 97, is mounted at the center of the lower surface of the mounting member 91, and is mounted at the center of the upper surface of the heat radiating unit 97. 1B, when the mounting member 91 is viewed from the upper surface of the mounting member 91, the adjustment unit is arranged such that the center positions of the light source heating units 20, 30, 40 are separated from the center position of the adjustment unit 99 by an equal distance. 99 is arranged.
- the light source heat generating units 20, 30, and 40 may be arranged concentrically, for example, with the adjustment unit 99 as the center.
- the light source device 10 includes first, second, and second light sources 21, 31, and 41 that are emitted from the light sources 21, 31, and 41, respectively.
- the light source control unit 100 that controls the light sources 21, 31, and 41 and the heat amount adjusting elements 33 and 43 is provided so that the state of the three laser beams becomes a desired state.
- the light source control unit 100 controls the light sources 21, 31, 41 and the calorific value adjustment elements 33, 43 so that the total amount of illumination light maintained in a desired state is variable.
- the light source control unit 100 includes a recording unit 101 that records an information table 101a (see FIG. 3A) having the characteristics of the light sources 21, 31, 41, and the light sources 21, 31, 41, and the heat amount adjustment element 33, based on the information table 101a. And a driving unit 103 which is a circuit for driving
- the information table 101a includes first, second, and third information when white illumination light having a chromaticity coordinate of (0.31, 0.36) and a color temperature of 6500K is realized.
- the output light amounts P1, P2, and P3 of the laser light, the wavelengths of the first, second, and third laser lights, and the light amount ratio of the first, second, and third laser lights.
- the information table 101a includes the threshold current Ith of the light sources 21, 31, and 41, the drive voltage Vd of the light sources 21, 31, and 41, and the light conversion efficiency ⁇ at the standard temperature Ts.
- the light conversion efficiency ⁇ indicates the conversion efficiency of the output light amounts P1, P2, P3 of the light sources 21, 31, 41 with respect to the input power input to the light sources 21, 31, 41.
- the input power is a product of the drive current Id and the drive voltage Vd with respect to the output light amounts P1, P2, and P3 of the light sources 21, 31, and 41, and is represented by ((Id ⁇ Ith) ⁇ Vd). Therefore, the light conversion efficiency ⁇ is expressed by P / ((Id ⁇ Ith) ⁇ Vd).
- each drive current Id can be determined based on the threshold current Ith, the light conversion efficiency ⁇ , and the drive voltage Vd with respect to the output light amounts P1, P2, P3 of the light sources 21, 31, 41.
- the fluctuation of the drive voltage Vd and the fluctuation of the light conversion efficiency ⁇ can be ignored in the temperature control range near the standard temperature Ts where the temperature of the entire light source is controlled.
- the drive unit 103 transmits the temperature T1 of the light source heating unit 20 transmitted from the temperature control unit 95 so that the actual light amount ratio of the first, second, and third laser beams substantially matches the light amount ratio recorded in the information table 101a.
- the drive current Id and drive voltage Vd applied to the light sources 21, 31, and 41 and the drive current Id and drive voltage Vd applied to the calorific value adjustment elements 33 and 43 corresponding to the above are set based on the information table 101a. .
- the drive unit 103 drives the light source heat generating units 20, 30, 40 and the heat amount adjusting elements 33, 43 based on this setting.
- the drive unit 103 controls the output light amounts P1, P2, and P3 of the light sources 21, 31, and 41 in order to maintain the desired illumination light state.
- the desired state is, for example, a predetermined light amount ratio.
- the driving unit 103 controls driving of the light sources 21, 31, 41 corresponding to the output light amounts P1, P2, P3.
- the drive control refers to controlling, for example, a drive current Id and a drive voltage Vd described later.
- the drive unit 103 uses the heat generation amount Q1a of the light source 21 with the highest heat generation as a reference, and the heat generation amounts of the heat amount adjustment elements 33 and 43 included in the light source heat generation units 30 and 40 other than the light source heat generation unit 20 to which the light source 21 belongs. Qv2 and Qv3 are controlled.
- the temperature control unit 95 increases the voltage applied to the adjustment unit 99 to increase the heat radiation amount, and the mounting member 91 Reduce the temperature.
- the temperature control unit 95 lowers the applied voltage to bring the temperature of the mounting member 91 close to the standard temperature Ts and stabilize the temperature.
- the drive unit 103 controls the heat generation amounts Q1a, Q2a, Q3a of the light sources 21, 31, 41, and the heat generation amounts Qv2, Qv3 of the heat amount adjustment elements 33, 43, and the temperature difference between the light source heat generation units 20, 30, 40 is this control. It will be described that it is suppressed by.
- the light source heating units 20, 30 corresponding to the light quantity ratio are recorded.
- 40 is defined as Q1, Q2, Q3. It is assumed that the heat generation amount Q1 of the light source heat generation unit 20 is larger than the heat generation amounts Q2 and Q3 of the light source heat generation units 30 and 40, the heat generation amount Q1 is used as a reference, and the heat generation amounts Q2 and Q3 are controlled.
- the heat generation amounts of the light sources 21, 31, and 41 are defined as Q1s, Q2s, and Q3s.
- the heat generation amounts of the light sources 21, 31, 41 are defined as Q1L, Q2L, and Q3L.
- QjL can be described by Pj and ⁇ j.
- the calorific values Qjs and QjL are calculated by the drive unit 103 using the information table 101a and the above-described equations (1) and (2).
- three light source heat generating units 20, 30, and 40 are arranged.
- the light source heat generating units 20, 30 are provided. It only has to be arranged. If the first laser light and the second laser light or light generated by wavelength conversion of the second laser light have a complementary relationship, white illumination light is emitted.
- the relationship between the light source heating unit 20 and the light source heating unit 30 is the same as the relationship between the light source heating unit 20 and the light source heating unit 40. It is. Therefore, the following description will be made using the relationship between the light source heating unit 20 and the light source heating unit 30.
- the heat generation amount ratio K1 Q2 / Q1 of the light source heat generation units 20 and 30 is calculated by the drive unit 103.
- the drive unit 103 controls the heat generation amount Qv2 of the heat amount adjustment element 33 so that the heat generation amount ratio K1 is constant even when the total amount of illumination light is variable.
- the lower limit state which is the lower limit of the total amount of illumination light, indicates the threshold state of the light source heating units 20 and 30 and is based on the threshold current Ith of the light sources 21 and 31. Accordingly, the heat generation amount Q1 of the light source heat generation unit 20 in the threshold state is the heat generation amount Q1s of the light source 21 in the threshold state, and the heat generation amount Q2 of the light source heat generation unit 30 in the threshold state is adjusted with the heat generation amount Q2s of the light source 31 in the threshold state. This is the sum total of the calorific value Qv2 of the element 33.
- the lower limit state may be based on a drive current lower than the threshold current Ith. However, in this case, since the change in the drive voltage Vd of the light sources 21 and 31 is large, the lower limit state is preferably based on a drive current larger than the threshold current Ith.
- the lower limit state includes a state where the light source is OFF.
- the drive unit 103 adjusts the heat generation amount Qv2 of the heat amount adjustment element 33 so that K1 becomes equal to K1max.
- the heat amount adjusting element 33 is a heat amount adjusting element included in the light source heat generating unit 30 other than the light source heat generating unit 20 to which the light source 21 having the highest heat generation amount belongs.
- K1max is determined by the drive unit 103 as follows. Illumination in which the calorific value Qv2 of the calorific value adjustment element 33 is zero and the illumination light is in the maximum light quantity state K1, and the calorific value Qv2 of the calorific value adjustment element 33 is zero and the output light quantity of the illumination light is zero and the light sources 21 and 31 are in the threshold state
- the driving unit 103 calculates K1 when the light is in the minimum light quantity state. The larger of the two K1s is determined by the drive unit 103 as K1max.
- the drive unit 103 is configured such that the light amount ratio of the first and second laser beams is constant with respect to an arbitrary total light amount of the illumination light, and the heat generation amount ratio K1 of the light source heat generation units 20 and 30 is constant as K1max.
- a method for determining the calorific value Qv2 of the calorific value adjustment element 33 will be described.
- the drive unit 103 determines the calorific value Q2 of the light source heat generating unit 30 based on the calorific value ratio K1 and the calorific value Q1 of the light source heat generating unit 20. calculate.
- the driving unit 103 uses the light source 31 based on the output light quantity P1 of the light source 21 and the light quantity ratio described above. Is calculated.
- a current Id2 and a drive voltage Vd2 are calculated.
- the drive unit 103 calculates the heat generation amount Qv2 of the heat amount adjustment element 33 in this way.
- the driving unit 103 calculates the heat generation amount Q1 of the light source heat generation unit 20 based on the output light amount P1, and calculates the heat generation amount Q2 of the light source heat generation unit 30 based on the heat generation amount Q1 and the heat generation amount ratio K1. To do.
- the drive unit 103 calculates the output light amount P2 based on the light amount ratio and the output light amount P1, and calculates the heat generation amount Qv2 of the heat amount adjusting element 33 based on the output light amount P2 and the heat generation amount Q2.
- the drive unit 103 calculates the heat generation amount Qv3 of the heat amount adjustment element 43 in the same manner as described above.
- the driving unit 103 drives the calorific value adjusting elements 33 and 43 so that the calorific value adjusting elements 33 and 43 generate the calorific values Qv2 and Qv3. Further, the drive unit 103 drives the light sources 21, 31, and 41 with drive currents Id1, Id2, and Id3 for the output light amounts P1, P2, and P3.
- the calorific value ratio K1 of the light source heat generating units 20 and 30 is always K1max
- the calorific value ratio K2 of the light source heat generating units 20 and 40 is always K2max.
- the recording unit 101 records the second information table 101b (see FIG. 3B) having, for example, the heat generation amounts Q1, Q2, Q3, Qv2, Qv3 and the heat generation amount ratios Q2 / Q1, Q3 / Q1.
- each temperature difference between each of the light source heat generating units 20, 30, 40 and the adjusting unit 99 is caused by the amount of heat generated Q1, Q2, Q3 of each of the light source heat generating units 20, 30, 40, and the light source heat generating unit 20, It is determined by the product of the thermal resistances R1, R2, and R3 between the adjustment units 99 and 40 and the adjustment unit 99, respectively. Therefore, if the products of the heat generation amounts Q1, Q2, Q3 and the thermal resistances R1, R2, R3 are set to be constant, the light source heat generation units 20, 30, 40, respectively, even if the total amount of illumination light changes. This temperature difference is further suppressed. As a result, even if the total light amount of the illumination light is variable, the fluctuation of the light amount ratio in the illumination light is controlled within an allowable range, and the characteristics of the illumination light are further stabilized.
- the heat connection members 81, 83, 85 and the mounting member 91 are disposed between the light source heating units 20, 30, 40 and the adjustment unit 99.
- j 1, 2, and 3 since the thermal resistance of the jth heat connection member is larger than the thermal resistance of the jth light source heat generation unit, the heat resistance of the jth light source heat generation unit is the same as that of the jth light source heat generation unit. Compared to 99, the thermal resistance Rj is small and negligible.
- the thermal resistance ratio R2 / R1 is the amount of heat generated by the light source heating units 20 and 30.
- the inverse ratio of the ratio Q2 / Q1, or Q1 ⁇ R1 is constant as Q2 ⁇ R2. Therefore, the temperature control unit 95 reads the heat generation amounts Q1 and Q2 from the information table 101b of the recording unit 101, calculates the applied voltage based on the heat generation amounts Q1 and Q2, and outputs the applied voltage to the adjustment unit 99.
- the adjusting unit 99 adjusts the amount of heat conducted to the heat radiating unit 97 according to the applied voltage.
- the adjustment unit 99 adjusts the thermal resistances R1 and R2.
- the temperature T1 of the light source heating unit 20 and the temperature T2 of the light source heating unit 30 are controlled by the adjustment unit 99 to a temperature close to the standard temperature Ts.
- a minute fluctuation amount between the light amount ratio and the heat generation amount ratio generated by the difference ⁇ T between the temperatures T1, T2 and the standard temperature Ts can be defined as an allowable amount, and the light amount ratio in the illumination light is further controlled to be substantially constant.
- the adjustment unit 99 adjusts the thermal resistances R1 and R3. Thereby, the temperature T1 of the light source heating unit 20 and the temperature T3 of the light source heating unit 40 are controlled by the adjustment unit 99 to a temperature close to the standard temperature Ts.
- the minute fluctuation amount between the light amount ratio and the heat generation amount ratio generated by the difference ⁇ T between the temperatures T1 and T3 and the standard temperature Ts can be defined as an allowable amount, and the light amount ratio in the illumination light can be further controlled to be substantially constant.
- K1min ⁇ K1 Q2 / Q1 ⁇ 1 (7)
- the heat adjustment element 33 is a heater resistance member
- the heat generation amount Qv2 of the heat adjustment element 33 is small in consideration of light utilization efficiency.
- the calorific value adjustment element 33 is an LD
- the calorific value Qv2 needs to be set to be equal to or greater than the calorific value Qs in the LD threshold state.
- K1 is calculated by the driving unit 103 using the following formula (8).
- K1 (Ith2 ⁇ Vd2 + X 0 ⁇ ⁇ 2 + Qv2) / (Ith1 ⁇ Vd1 + P1 ⁇ ⁇ 1) ⁇ formula (8).
- the drive unit 103 calculates the drive current Id2m and the drive voltage Vd2m for the output light quantity Pm2 from the information table 101a.
- the heat generation amounts Q1m and Q2m of the light sources 21 and 31 generated by the output light amounts Pm1 and Pm2 are calculated by the driving unit 103 using the following formulas (9) and (10).
- Q1m Ith1 ⁇ Vd1 + Pm1 ⁇ ⁇ 1 (9)
- Q2m Ith2 ⁇ Vd2 + X 0 ⁇ ⁇ 2 ⁇ Pm1 + Qv2 (10)
- the drive unit 103 calculates the heat generation amounts Qv2 and Qv3 of the heat amount adjustment elements 33 and 43 so that the heat generation ratio is constant. For this reason, the temperature difference of the light source heat generating units 20, 30, 40 is suppressed. Therefore, in this embodiment, the temperature of the light source heat generating units 20, 30, 40 can be controlled to the standard temperature Ts, and even if the total light amount of the illumination light is variable, the characteristics of the illumination light such that the light amount ratio is constant with a simple configuration. A stable light source device 10 can be provided.
- the output light amount P1 of the light source 21 is variable from 0.1 W to a maximum of 1.0 W.
- the information table 101b includes the output light amounts P2 and P3 of the light sources 31 and 41, the drive currents Id1, Id2 and Id3, and the heat generation amounts Q1a, Q2a and Q3a of the light sources 21, 31, 41 corresponding to the output light amount P1.
- the quantity ratio Q2 / Q1, Q3 / Q1, and the calorific values Qv2, Qv3 of the calorific value adjusting elements 33, 43 are included.
- the calorific value ratios Q2 / Q1, Q3 / Q1 are constant by adjusting the calorific values Qv2, Qv3 of the calorific value adjusting elements 33, 43 with a constant light quantity ratio.
- the temperature of the entire light source heating unit 20, 30, 40 approaches the standard temperature Ts by the adjusting unit 99.
- the temperature of the entire light source heating unit 20, 30, 40 is several degrees higher than the standard temperature Ts. Due to this temperature difference, the heat generation amounts Q1, Q2, and Q3 of the light source heating units 20, 30, and 40 vary. However, if the fluctuation amount is several percent or less of the fluctuation amount, this fluctuation is allowed and the heat generation amount ratio K is allowed.
- the drive voltage Vd is estimated as constant. Actually, when the drive current Id becomes sufficiently larger than the threshold current Ith, the drive voltage Vd becomes higher than the drive voltage Vth in the threshold state. When the heat generation amount Q increases and the temperature of the adjustment unit 99 becomes higher than the standard temperature Ts, the drive voltage Vd becomes lower than the drive voltage Vth in the threshold state. Since the variation amount of the drive voltage Vd with respect to the output light amount P is small, the allowable range of the light amount ratio is the variation amount of the light amount accompanying the variation amount of the drive voltage Vd.
- the heat generation amounts Q1a, Q2a, and Q3a of the light sources 21, 31, and 41 and the output light amounts P1, P2, and P3 are calculated.
- the output light amounts P1, P2, and P3 are in the vicinity of the maximum and the heat generation amounts Q1a, Q2a, and Q3a are increased, the light conversion efficiencies ⁇ 1, ⁇ 2, and ⁇ 3 tend to gradually decrease.
- the output light amounts P1, P2, and P3 are close to the maximum, the amount of change in the light amount ratio is the maximum, and the maximum value of this change is the maximum allowable value.
- Modification 1 of the first embodiment will be described with reference to FIGS. 4A, 4B, 4C, and 4D.
- the light source device 10 switches from one of the plurality of illumination modes to one of the illumination modes, and the light source control unit 100 controls the light source and the calorific value adjustment element according to the switched illumination mode.
- the plurality of illumination modes are, for example, a white light mode and a first special light mode.
- White light mode indicates the first embodiment.
- the light sources 21, 31, and 41 are simultaneously driven, and illumination light having a constant light amount ratio is generated.
- the light sources 31 and 41 are turned off, and the light sources 21 and 45 are turned on.
- the heat adjustment elements 33 and 43 are driven.
- the heat generation amount ratio K1 between the heat generation amount Q1 of the light source heat generation unit 20 and the heat generation amount Q2 of the light source heat generation unit 30 is the same as the heat generation amount ratio K1 in the white light mode.
- the illumination light illuminates the object and is reflected by the object while the light quantity ratio between the two types of first and fourth laser beams emitted from the light sources 21 and 45 is constant. Observation is performed based on light.
- the third light source heating unit 40 includes a third light source 41 that emits a blue third laser beam having a central wavelength of, for example, 445 nm, and a blue-violet first component having a central wavelength of, for example, 405 nm.
- a fourth light source 45 that emits four laser beams, and a third heat amount adjusting element that is adjacent to and thermally connected to the third light source 41 and the fourth light source 45 and adjusts the heat generation amounts Q3a and Q4a of the light sources 41 and 45 by heat generation. 43.
- the white light mode is the same as in the first embodiment.
- the light sources 21 and 45 are driven, and the green first laser light and the blue-violet fourth laser light are combined to generate illumination light.
- the light quantity ratio between the first laser beam and the fourth laser beam is set in advance to 1: 0.8, for example.
- the recording unit 101 records the third information table 101c (see FIG. 4C) having the characteristics of the light sources 21 and 45 in the first special light mode.
- the light source device 10 is incorporated into the endoscope device 200, for example.
- the endoscope apparatus 200 includes a switching unit (not shown) such as a switch for switching between the white light illumination mode and the first special light mode.
- the endoscope apparatus 200 includes an imaging unit 201 that captures reflected light reflected by an object when the illumination light illuminates the object, and an image processing unit 203 that performs image processing on the reflected light captured by the imaging unit 201.
- a display unit 205 that displays the image-processed reflected light as an image.
- the light source heating unit 20 is driven under the same driving conditions in both the white light mode and the first special light mode.
- the heat generation amount ratio K2 (Q2 / Q1) in the first special light mode between the heat generation amount Q1 of the light source heat generation unit 20 and the heat generation amount Q2 of the light source heat generation unit 30 (heat generation amount Qv2 of the heat amount adjustment element 33) is the white light mode.
- the drive unit 103 calculates the heat generation amount Qv2 of the heat amount adjustment element 33 so as to be the same as the heat generation amount ratio K2 (Q2 / Q1).
- the drive unit 103 drives the heat quantity adjustment element 33 so that the heat quantity adjustment element 33 generates the heat generation amount Qv2.
- the light source heating unit 40 in the first special light mode, the light source 41 is turned off and the light source 45 is driven.
- the light sources 21 and 45 are controlled by the light source control unit 100 based on the setting. Thereby, special light is realized.
- Heat generation amount ratio K3 in the first special light mode between the heat generation amount Q1 of the light source heat generation unit 20 and the heat generation amount Q3 of the light source heat generation unit 40 (the sum of the heat generation amount Q4a of the light source 45 and the heat generation amount Qv2 of the heat amount adjustment element 43)
- the drive unit 103 calculates the heat generation amount Qv3 of the heat amount adjustment element 43 so that Q3 / Q1) is the same as the heat generation amount ratio K3 (Q3 / Q1) in the white light mode.
- the drive unit 103 drives the heat quantity adjustment element 43 so that the heat quantity adjustment element 43 generates the heat generation amount Qv3.
- the calorific value ratio Q3 in the white light mode is the sum of the calorific value Q3a of the light source 41 and the calorific value Qv3 of the calorific value adjustment element 43.
- the drive unit 103 calculates the drive currents Id1 and Id4 of the light sources 21 and 45 so that the light quantity ratio between the first laser beam and the fourth laser beam is 1: 0.8. .
- the drive unit 103 may set the heat generation amount ratio K3 in the white light mode to a larger value.
- the driving unit 103 calculates the driving currents Id1, Id4, the driving voltages Vd1, Vd4, and the heat generation amounts Q1, Q3 with respect to the output light amounts P1, P4 of the light sources 21, 45 from the information table 101c. . Then, the drive unit 103 calculates the heat generation amount Qv3 of the heat amount adjustment element 43 based on the heat generation amounts Q1 and Q3 so that the heat generation amount ratio K3 is constant.
- the distance between the object and the emission position of the illumination light varies depending on the observation situation.
- the image processing unit 203 generates an image, the total amount of illumination light needs to be adjusted according to the distance so that the imaging unit 201 is not saturated.
- the recording unit 101 may record the fourth information table 101d (see FIG. 4D).
- the information table 101d includes, for example, the drive current Id1 of the light source 21, the heat generation amount Q1 of the light source heat generation unit 20 (the heat generation amount Q1a of the light source 21), and the heat generation amount of the light source heat generation unit 30 corresponding to the output light amount P1 of the light source 21.
- Q2 heat generation amount Qv2 of the heat adjustment element 33
- heat generation ratio Q2 / Q1 output light amount P4 of the light source 45, drive current Id4 of the light source 45, and heat generation Q2 of the light source heating unit 40 (heat generation of the light source 45)
- the calorific value ratios Q2 / Q1 and Q3 / Q1 in the first special light mode are the same as the calorific value ratio in the white light mode, and the green first laser
- the light quantity ratio between the light and the blue-violet fourth laser light is constant at 1: 0.8.
- the plurality of illumination modes are, for example, a white light mode and a second special light mode.
- a light source that emits laser light having a specific wavelength is selected and driven, and the other light sources are turned off.
- the heat quantity adjusting element is also driven.
- the amount of laser light having a specific wavelength is all the same while maintaining the heat generation ratio of the light source heating unit in the white mode, and the combined illumination light illuminates the object. .
- the outputs of the light sources that emit laser light having a specific wavelength are all set to be the same, but the drive voltage varies due to the difference between the standard temperature Ts and the actual light source temperature T1.
- the amount of variation in the output of the light source due to the variation in the drive voltage is set as the allowable variation, and the illumination light illuminates the object and is reflected by the object with the light output of the light source of each specific wavelength controlled to be substantially constant. Observation is performed based on the amount of reflected light for each specific wavelength.
- hemoglobin in blood has a characteristic that the extinction coefficient ⁇ a changes depending on the wavelength of illumination light.
- the display unit 205 switches and displays the second special light mode image and the white light mode image.
- the image of the second special light mode shows a high and low distribution of oxygen concentration in blood.
- An image in the white light mode indicates a white image.
- the first light source heating unit 20 includes a fifth light source 27a that emits a red fifth laser beam having a center wavelength of 638 nm, and a red sixth laser beam having a center wavelength of 660 nm. And a sixth light source 27b that emits light.
- the second light source heat generating unit 30 is connected to the seventh light source 37 that emits a blue seventh laser beam having a center wavelength of, for example, 473 nm, and is adjacent to and thermally connected to the seventh light source 37.
- the third light source heat generating unit 40 is thermally connected to an eighth light source 47 that emits a green eighth laser beam having a center wavelength of, for example, 530 nm, and is adjacent to and thermally connected to the eighth light source 47.
- the recording unit 101 includes the fifth information table 101e (see FIG. 7A) having the characteristics of the light sources 27a, 27b, 37, and 47 that are driven in the white light mode, and the light sources 27a, 27b, and 37 that are driven in the second special light mode.
- a sixth information table 101f having characteristics is recorded.
- the light source control unit 100 controls. Thereby, white illumination light having a chromaticity coordinate of (0.324, 0.334) and a color temperature of about 6000K is realized.
- the second special light mode for example, when the light quantity ratio of the fifth, sixth, and seventh laser lights is preset to 1: 1: 1, the light sources 27a, 27b, 37, and 47 are controlled by the light source control unit 100 based on the setting. Be controlled. Thereby, the second special light is realized.
- the hemoglobin in k has reduced hemoglobin 301 that is not bonded to oxygen and oxidized hemoglobin 303 that is bonded to oxygen.
- the extinction coefficient of reduced hemoglobin 301 is different from the extinction coefficient of oxyhemoglobin 303.
- the absorbance is different except for the isosbestic point.
- the isosbestic point is one of the intersections of reduced hemoglobin 301 and oxyhemoglobin 303 in FIG.
- the wavelength of the laser light emitted from the light source 37 is set to 473 mm, which is a wavelength corresponding to this intersection.
- the luminance value changes even if light having the same light intensity and the same wavelength illuminates the same blood vessel. Even if light having the same light intensity is illuminated, if the wavelength changes, the extinction coefficient changes, so the luminance value changes.
- the light quantity ratio is 1: 0.33: 0.67: 0.5
- the calorific value ratios Q2 / Q1, Q3 / Q1 are constant
- the thermal resistance ratios R2 / R1, R3 / R1 are
- the drive unit 103 calculates the heat generation amounts Qv2 and Qv3 of the heat amount adjusting elements 33 and 43 so as to be constant.
- the drive unit 103 drives the heat amount adjusting elements 33 and 43 so that the heat amount adjusting elements 33 and 43 generate heat values Qv2 and Qv3. Thereby, the temperature of the light source heat generating units 20, 30, 40 is controlled, and each output light quantity is stabilized.
- the distance between the object and the illumination light emission position varies depending on the observation situation.
- the image processing unit 203 generates an image, the total amount of white illumination light needs to be adjusted according to the distance so that the imaging unit 201 is not saturated.
- the recording unit 101 may record the seventh information table 101g (see FIG. 7C).
- the information table 101g includes, for example, the drive currents Id5, Id6, Id7, Id8 of the light sources 27a, 27b, 37, 47 corresponding to the output light amount P5 of the light source 27a, and the heat generation amount Q1 (light sources 27a, 27b of the light source heating unit 20).
- the calorific value ratios Q2 / Q1 and Q3 / Q1 in the white light mode are the same, the light amount ratio is constant, and stable white Illumination light is obtained.
- the imaging unit 201 images the reflected light in a state in which the reflected light is split into the wavelength 473 nm, the wavelength 638 nm, and the wavelength 660 nm.
- the extinction coefficient of oxyhemoglobin 303 is the same as the extinction coefficient of reduced hemoglobin 301.
- the extinction coefficient of oxyhemoglobin 303 is higher than the extinction coefficient of reduced hemoglobin 301, and the luminance value of reduced hemoglobin 301 is higher than the luminance value of oxyhemoglobin 303.
- the luminance difference between the oxidized hemoglobin 303 and the reduced hemoglobin 301 is clear. Images are generated. The target part is clarified by comparing the image with the white image.
- the total light amount of the second special light needs to be adjusted according to the distance described above.
- the recording unit 101 may record the eighth information table 101h (see FIG. 7D).
- the information table 101h includes, for example, the drive currents Id5, Id6, Id7 of the light sources 27a, 27b, 37 corresponding to the output light amount P5 of the light source 27a, and the heat generation amount Q1 of the light source heating unit 20 (the heat generation amount Q5a of the light sources 27a, 27b).
- the heat generation amount Q2 of the light source heating unit 30 (the heat generation amount Q7a of the light source 37 and the heat generation amount Qv2 of the heat amount adjustment element 33), the heat generation amount ratio Q2 / Q1, and the output light amounts P6, P7 of the light sources 27b, 37.
- a heat generation amount Q3 of the light source heat generation unit 40 (a heat generation amount Qv3 of the heat amount adjustment element 43) and a heat generation amount ratio Q3 / Q1.
- the output light amount P5 of the light source 27a is variable, the heat generation amount ratios Q2 / Q1, Q3 / Q1 in the second special light mode are the same, the light amount ratio is constant, and stable. Special light can be obtained.
- the second special light mode even if the total light amount of the special light is variable, stable special light can be obtained if the light amount is substantially constant within the allowable fluctuation and the calorific value ratio is constant.
- the light source heating unit 20 has a plurality of light sources 21a and 21b.
- the light sources 21a and 21b emit laser beams having the same color but having different wavelengths from each other. This also applies to the light source heating units 30 and 40.
- the light sources of the light source heating unit 30 are referred to as light sources 31a and 31b, and the light sources of the light source heating unit 40 are referred to as light sources 41a and 41b.
- An optical element such as a lens is arranged corresponding to each light source, and the laser light emitted from each light source is condensed on each light guide member by the optical element.
- the light source 21a emits green first laser light a having a center wavelength of, for example, 520 nm, and the light source 21b emits green first laser light b having a center wavelength of, for example, 540 nm.
- the light source 31a emits red second laser light a having a center wavelength of, for example, 600 nm, and the light source 31b emits red second laser light b having a center wavelength of, for example, 650 nm.
- the light source 41a emits blue third laser light a having a center wavelength of, for example, 450 nm, and the light source 41b emits blue third laser light b having a center wavelength of, for example, 400 nm.
- the light source 21b is, for example, an LD, and also serves as a first heat quantity adjusting element.
- the light source device 10 controls the light output from each light source to a desired state (for example, constant chromaticity coordinates) and maintains the desired state even if the total amount of illumination light is variable. Produces white illumination light.
- a desired state for example, constant chromaticity coordinates
- the heat generation amount Q1 of the light source heat generation unit 20 is larger than the heat generation amounts Q2 and Q3 of the light source heat generation units 30 and 40, and the heat generation amount Q1 is used as a reference. Let Q3 be controlled.
- the heat generation amount Qv ⁇ b> 1 of the first heat quantity adjustment element that is the light source 21 b is calculated by the drive unit 103.
- the chromaticity coordinates of the first laser beams a and b are ⁇ 1A (X1A, Y1A), ⁇ 1B (X1B, Y1B), and the output light amounts of the first laser beams a and b are set. These are referred to as P1A and P1B.
- the chromaticity coordinates of the second laser beams a and b are referred to as ⁇ 2A (X2A, Y2A) and ⁇ 2B (X2B, Y2B), and the output light amounts of the second laser beams a and b are referred to as P2A and P2B.
- the chromaticity coordinates of the third laser beams a and b are referred to as ⁇ 3A (X3A, Y3A) and ⁇ 3B (X3B, Y3B), and the output light amounts of the third laser beams a and b are referred to as P3A and P3B.
- White illumination light is generated by combining the first, second, and third laser beams a and b.
- the chromaticity coordinate of the illumination light is referred to as (X, Y), and the total amount of illumination light is referred to as P.
- the drive unit 103 sets the chromaticity coordinates (X, Y) of the illumination light.
- the light source and the calorific value adjusting element are controlled so as to be close to the desired chromaticity coordinates (0.33, 0.33). For this reason, the drive unit 103 calculates the output light amount (PiA + PiB) of each light source using the equation (11).
- the drive unit 103 calculates the calorific values Qv1, Qv2, and Qv3 of the calorific value adjustment elements based on the calorific value Q1 of the light source heat generating unit 20.
- the products of the heat generation amounts Q1, Q2, Q3 of the light source heating units 20, 30, 40, and the thermal resistances R1, R2, R3 between the light source heating units 20, 30, 40 and the adjusting unit 99 are constant.
- the temperature control unit 95 reads the heat generation amounts Q1, Q2, and Q3 from the information table (not shown) of the recording unit 101, calculates the applied voltage based on the heat generation amounts Q1, Q2, and Q3, and outputs the applied voltage to the adjustment unit 99. To do.
- the adjusting unit 99 adjusts the amount of heat transferred to the heat radiating unit 97 according to the applied voltage. That is, the adjustment unit 99 adjusts the thermal resistance Rj.
- the temperatures T1, T2, and T3 of the light source heating units 20, 30, and 40 are controlled by the adjustment unit 99 to a temperature close to the standard temperature Ts.
- the laser beams emitted from the two light sources in each light source heating unit have the same color.
- the dominant wavelengths of the two laser lights are regarded as standard wavelengths of light emitted from the light source heat generating unit
- the illumination light of the present embodiment includes three light sources in the three light source heat generating units. It is assumed that it is composed of standard wavelengths. For this reason, the light quantity ratio in the light source heating unit needs to be calculated.
- the dominant wavelength is two With respect to the intensity (total) of the entire wavelength range of the light source, a wavelength which is integrated from the short wavelength side and becomes 50% of the total is defined as a dominant wavelength.
- the dominant wavelength is the standard wavelength
- the chromaticity coordinates of the two light source heating units of the same color are regarded as the chromaticity coordinates of the standard wavelength
- the chromaticity coordinates of the three standard wavelengths of RGB are the desired chromaticity coordinates (0. 33, 0.33)
- the light quantity ratios of the three standard wavelengths of RGB are provisionally set.
- Each light source heating unit is configured with respect to the product of the chromaticity coordinates with respect to the standard wavelength of each light source heating unit and the provisional light quantity ratio. That is, the light amounts of the two light sources are determined so that the sum of the products of the chromaticity coordinates and the light amounts of the two light sources is substantially equal to the corresponding standard wavelength value.
- the light amounts of the six light sources are easily determined, and the chromaticity coordinates (X, Y) of the illumination light are controlled to the desired chromaticity coordinates (0.33, 0.33).
- the standard wavelengths of the light source heating units 20, 30, 40 are ⁇ 1o, ⁇ 2o, ⁇ 3o, and the chromaticity coordinates of the corresponding standard wavelengths are ⁇ 1o (X1o, Y1o), ⁇ 2o (X2o, Y2o), ⁇ 3o (X3o, Y3o).
- the chromaticity coordinates (X, Y) of the illumination light composed of these standard wavelengths are controlled in the vicinity of the desired chromaticity coordinates (0.33, 0.33), the light quantity ratio of each light source heating unit is set to r1. , R2, r3.
- the light intensity ratio and the heat generation amount of each light source heat generation unit are controlled, so that the chromaticity coordinates (X, Y) of the illumination light are in the vicinity of the desired chromaticity coordinates (0.33, 0.33). Can be set.
- the light amount ratio (PB: PG) in the reflected light that is captured by the imaging unit 201. : PR) is constant, and the drive unit 103 controls the light amount ratio (P1: P2: P3) emitted from the light sources 21, 31, 41.
- the color filter 207 has wavelength selectivity, and the transmission regions of the color filter 207 are not completely separated from each other but partially overlap each other. Since the light source is a multi-mode LD, the laser light has a wide spectrum and the wavelength range is wide. This wavelength range is considered.
- the following formula shows the product of the spectral intensity for one wavelength and the transmission coefficient of the color filter 207.
- the mathematical formula is obtained by convolution integration of the spectral intensity distribution and the transmission spectral distribution of the color filter 207.
- An example of the image processing method of the endoscope apparatus 200 is to make the light amount ratio of the reflected light transmitted through the color filter 207 constant with respect to the wavelength of the reflected light, and correct the color at an appropriate ratio in the image processing unit 203. Generate a white image.
- the light source 21 emits green laser light having a wavelength ⁇ 1 and a light quantity P1.
- the light source 31 emits red laser light having a wavelength ⁇ 2 and a light quantity P2.
- the light source 41 emits blue laser light having a wavelength ⁇ 3 and a light quantity P3.
- the transmission wavelength band of the color filter 207 is wide, so there is a region for detecting light in two wavelength ranges with respect to the wavelengths of the three colors of laser beams. It is in a situation that will end up.
- the driving unit 103 uses the blue laser light amount PB and the green laser light amount PB received by the imaging unit 201 after passing through the color filter 207. Calculated based on the sum of P1.
- the color filter 207 has a transmittance of Fb ( ⁇ 3) with respect to the wavelength ⁇ 3 of the blue laser light and a transmittance of Fg ( ⁇ 1) with respect to the wavelength ⁇ 1 of the green laser light. .
- the drive unit 103 calculates the light amount PB using the following equation (13).
- PB Fb ( ⁇ 3) ⁇ P3 + Fg ( ⁇ 1) ⁇ P1 (13)
- the driving unit 103 calculates the light amount PG of the green laser light received by the imaging unit 201 after passing through the color filter 207, based on the light amount P1 of the green laser light.
- the color filter 207 has a transmittance of Fg ( ⁇ 1) with respect to the wavelength ⁇ 1 of the green laser light.
- the drive unit 103 calculates the light amount PG using the following formula (14).
- the driving unit 103 calculates the light amount PR of the red laser light received by the imaging unit 201 after passing through the color filter 207, based on the light amount P2 of the red laser light.
- the color filter 207 has a transmittance of Fr ( ⁇ 2) with respect to the wavelength ⁇ 2 of the red laser beam.
- the drive unit 103 calculates PR using the following equation (15).
- PR Fr ( ⁇ 2) ⁇ P2
- the drive unit 103 uses the following formulas (15) and (16) so that the ratio of the amount of light transmitted through the color filter 207, that is, PB: PG: PR is constant at 1: 1: 1. , P3 are controlled.
- the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Moreover, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
光源装置(10)は、少なくとも1つの光源に対して隣接且つ熱的に接続され、発熱によって光源の発熱量を調整する熱量調整素子(33,43)と、光源(21)のみを有する、または光源(31,41)及び熱量調整素子(33,43)を有する複数の光源発熱ユニット(20,30,40)とを有する。光源装置(10)は、光源発熱ユニット(20,30,40)それぞれの発熱量の比が一定となり且つ照明光の状態が所望の状態となるように、光源(21,31,41)と熱量調整素子(33,43)とを制御する光源制御部(100)を有する。
Description
本発明は、光源装置に関する。
例えば特許文献1は、複数の光源それぞれから出射され且つ互いに異なる波長を有する光の合成によって照明光を生成する際に、各光源から出射される光量を制御するために、各光源の温度を管理する光源装置を開示している。
光源装置である半導体レーザ光源装置は、複数のレーザユニットと、これらレーザユニットを制御する制御装置とを有する。以下にて、一例として、2つのレーザユニットが配置されるものとする。
光源ユニットであるレーザユニットは、光源である半導体レーザと、半導体レーザを駆動する駆動電流源と、半導体レーザの近傍に配置され、吸熱発熱器を構成するペルチェ素子と、ペルチェ素子を駆動する駆動回路とを有する。感温素子としてのサーミスタがペルチェ素子に取り付けられており、温度検出回路がサーミスタに接続される。
半導体レーザは、それぞれ、互いに異なる波長を有するレーザ光を出射する。レーザ光は、それぞれ、各半導体レーザに光学的に接続される第1光ファイバによって光結合器に導光され、光結合器によって合成される。そして合成されたレーザ光は、光結合器に光学的に接続される第2光ファイバに導光されて、例えば配光が調整された状態で外部に向かって照明光として出射される。
半導体レーザは、制御装置の制御を基に駆動電流源によって駆動され、所定の波長を有するレーザ光を出射する。半導体レーザはレーザ光の出射に伴い発熱し、ペルチェ素子に取り付けられるサーミスタの抵抗値は半導体レーザの温度によって変化する。温度検出回路は、抵抗値の変化を基に半導体レーザの温度を検出する。温度検出回路は、例えば25℃である所定温度T1と検出した温度との差に応じた制御信号C1を駆動回路に出力する。温度検出回路は、検出した温度に関する温度情報C2を制御装置に出力する。
駆動回路は、温度検出回路から出力された制御信号C1によってペルチェ素子への駆動電流を制御し、検出温度が所定温度T1となるようにペルチェ素子を駆動させる。駆動回路は、ペルチェ素子へ出力する駆動電流に応じて増減する制御信号C3を制御装置に出力する。
制御装置は、制御信号C3を基に駆動電流源を制御する制御信号C4を生成し、制御信号C4を駆動電流源に出力する。
駆動電流源は、制御信号C4に応答して半導体レーザに流す駆動電流を変化させる。駆動電流源は、ペルチェ素子の電流が所定電流値以下である場合、所定の定格電流を半導体レーザに流して駆動し、ペルチェ素子の電流が所定値を超えた場合、超過した電流量に相当する量だけ減じた駆動電流を半導体レーザに流す。これにより、各半導体レーザの温度が管理された状態で、各半導体レーザから出射されるレーザ光の光量が制御される。
互いに異なる波長を有する光の合成によって照明光を生成する光源装置において、光源装置が照明光の総光量を変化させた際、光源から出射される光量と光源の発熱量との関係が光源毎に異なる。このため、光源同士において温度差が大きくなることがある。結果として、光源それぞれから出射される光において、光量比が不安定となり、照明光の特性が不安定となる。
照明光の特性が安定するためには、温度が光源毎に制御され、各光源の温度が一定に保たれる必要がある。このために、ペルチェ素子と温度検出回路駆動回路とを有する調整部が各光源に備えられる必要があるが、光源装置が大型になる。1つの調整部が各光源に共有される場合、複数の光源が1つの調整部によって一斉に加熱または冷却される。このため各光源の発熱量に差が存在する状態では、各光源の温度は一定に保たれない。
このため、照明光の総光量が変化しても、簡素な構成で照明光の特性を安定できる光源装置が望まれている。
照明光の特性が安定するためには、温度が光源毎に制御され、各光源の温度が一定に保たれる必要がある。このために、ペルチェ素子と温度検出回路駆動回路とを有する調整部が各光源に備えられる必要があるが、光源装置が大型になる。1つの調整部が各光源に共有される場合、複数の光源が1つの調整部によって一斉に加熱または冷却される。このため各光源の発熱量に差が存在する状態では、各光源の温度は一定に保たれない。
このため、照明光の総光量が変化しても、簡素な構成で照明光の特性を安定できる光源装置が望まれている。
本発明は、これらの事情に鑑みてなされたものであり、照明光の総光量が変化しても、簡素な構成で照明光の特性を安定できる光源装置を提供することを目的とする。
本発明の光源装置の一態様は、複数の光源それぞれから出射され且つ互いに異なる波長を有する光の合成によって照明光を生成する光源装置であって、少なくとも1つの前記光源に対して隣接且つ熱的に接続され、発熱によって前記光源の発熱量を調整する熱量調整素子と、前記光源と前記熱量調整素子との少なくとも一方を有する複数の光源発熱ユニットと、前記光源発熱ユニットの発熱量は前記光源の発熱量と前記熱量調整素子の発熱量との総和である場合において、前記光源発熱ユニットそれぞれの発熱量の比が一定となり且つ前記照明光の状態が所望の状態となるように、前記光源と前記熱量調整素子とを制御する光源制御部と、を具備する。
本発明によれば、照明光の総光量が変化しても、簡素な構成で照明光の特性を安定できる光源装置を提供できる。
以下、図面を参照して本発明の実施形態について詳細に説明する。なお、一部の図面では図示の明瞭化のために部材の一部の図示を省略する。
[第1の実施形態]
[構成]
図1Aと図1Bと図1Cと図1Dと図2と図3Aと図3Bとを参照して第1の実施形態について説明する。
[光源装置10]
図1Aに示すように、本実施形態では、光源装置10は、例えば3つの光源発熱ユニット20,30,40を有する。
第1光源発熱ユニット20は、中心波長が例えば530nmの緑色の第1レーザ光を出射する第1光源21のみを有する。
第2光源発熱ユニット30は、中心波長が例えば638nmの赤色の第2レーザ光を出射する第2光源31と、第2光源31に隣接且つ熱的に接続され、発熱によって第2光源31の発熱量Q2aを調整する第2熱量調整素子33とを有する。なお第2光源発熱ユニット30は、第2光源31と第2熱量調整素子33との少なくとも一方を有していてもよい。
第3光源発熱ユニット40は、中心波長が例えば445nmの青色の第3レーザ光を出射する第3光源41と、第3光源41に隣接且つ熱的に接続され、発熱によって第3光源41の発熱量Q3aを調整する第3熱量調整素子43とを有する。なお第3光源発熱ユニット40は、第3光源41と第3熱量調整素子43との少なくとも一方を有していてもよい。
光源21,31,41は、駆動によって発熱する。
[構成]
図1Aと図1Bと図1Cと図1Dと図2と図3Aと図3Bとを参照して第1の実施形態について説明する。
[光源装置10]
図1Aに示すように、本実施形態では、光源装置10は、例えば3つの光源発熱ユニット20,30,40を有する。
第1光源発熱ユニット20は、中心波長が例えば530nmの緑色の第1レーザ光を出射する第1光源21のみを有する。
第2光源発熱ユニット30は、中心波長が例えば638nmの赤色の第2レーザ光を出射する第2光源31と、第2光源31に隣接且つ熱的に接続され、発熱によって第2光源31の発熱量Q2aを調整する第2熱量調整素子33とを有する。なお第2光源発熱ユニット30は、第2光源31と第2熱量調整素子33との少なくとも一方を有していてもよい。
第3光源発熱ユニット40は、中心波長が例えば445nmの青色の第3レーザ光を出射する第3光源41と、第3光源41に隣接且つ熱的に接続され、発熱によって第3光源41の発熱量Q3aを調整する第3熱量調整素子43とを有する。なお第3光源発熱ユニット40は、第3光源41と第3熱量調整素子43との少なくとも一方を有していてもよい。
光源21,31,41は、駆動によって発熱する。
光源装置10は、複数の光源21,31,41それぞれから出射され且つ互いに異なる波長を有する光の合成によって照明光を生成し、照明光を外部に向けて出射する。具体的には、光源21から出射された第1レーザ光は、第1光学部品51によって第1導光部材61に集光され、導光部材61によって光合成部71に導光される。第1レーザ光と同様に、光源31,41から出射された第2,3レーザ光は、第2,3光学部品53,55と第2,3導光部材63,65によって光合成部71に導光される。第1,2,3レーザ光は、光合成部71によって合成され第4導光部材67によって光変換部73に導光される。そして、導光されたレーザ光は、光変換部73によって光学特性を制御された状態で外部に照明光として出射される。光学部品51,53,55は光源装置10に配置される例えばレンズであり、導光部材61,63,65,67は光源装置10に配置される例えば光ファイバである。
詳細については後述するが、本実施形態の光源装置10は、光源21,31,41から出力される第1,2,3レーザ光を所望の状態(例えば光量比を一定)に制御することによって、照明光の総光量が可変しても、所望の状態を維持された白色の照明光を生成する。例えば第1,2,3レーザ光の光量比が例えば1:1.33:0.56と予め設定されると、光源21,31,41は設定に基づいて後述する光源制御部100によって制御される。これにより、色度座標が(0.31,0.36)で、色温度が6500K近傍の白色の照明光が実現される。
光源21,31,41は、光源21,31,41と導光部材61,63,65との光学的な結合効率と、後述する光変換効率ηとを考慮して半導体レーザ(LD)が好ましい。光源21,31,41は、小型の発光体であればよく、LEDまたは面発光レーザでもよい。光源21,31,41の特性は、記録部101の第1情報テーブル101a(図3A参照)に記録される。
本実施形態では、熱量調整素子は、少なくとも1つの光源に熱的に接続されていればよい。熱量調整素子33,43は、小型である。熱量調整素子33,43は、後述する光源制御部100から供給される駆動印加電流に対して迅速に応答する。熱量調整素子33,43の発熱量Qv2,Qv3は、駆動印加電流によって、細かく制御される。光源31,41がLDである場合、熱量調整素子33,43はLDに取り付けられる例えばヒータ抵抗部材である。光源31,41がLEDまたはLDである場合、光源31,41は熱量調整素子33,43を兼ね得る。この場合、光源31,41(熱量調整素子33,43)は、後述する入力パワーに対して照明光の特性に寄与し、光源31,41と導光部材63,65との光学的な結合効率を考慮して、LEDよりもLDが好ましい。
光源31,41において、LDが熱量調整素子33,43として用いられる場合、LDがレーザ光を出射しないといったLDに対する駆動電流が閾値以下の状態であっても、常にベースとしての発熱量Qs(図2参照)がLDから発生する。このため、LDの光量が線形的に可変するようにLDが制御されることは困難であり、結果として光源発熱ユニット30,40の発熱量Q2,Q3が線形的に可変するように制御されることは困難となる。
この場合、LDとヒータ抵抗部材とが併用されることで、光源発熱ユニット30,40の光量の可変レンジが大きく変わり、光源発熱ユニット30,40の発熱量Q2,Q3は制御可能となる。
この場合、LDとヒータ抵抗部材とが併用されることで、光源発熱ユニット30,40の光量の可変レンジが大きく変わり、光源発熱ユニット30,40の発熱量Q2,Q3は制御可能となる。
光源21のみを有する光源発熱ユニット20の発熱量Q1は光源21の発熱量Q1aであり、光源31,41及び熱量調整素子33,43を有する光源発熱ユニット30,40の発熱量Q2,Q3は、光源31,41の発熱量Q2a,Q3aと熱量調整素子33,43の発熱量Qv2,Qv3との総和となる。
光合成部71は、光源装置10に配置される例えばカプラである。なお光合成部71は省略されてもよく、この場合、第1,2,3レーザ光は、光学レンズの組み合わせによって、導光部材67に直接集光されてよい。
光変換部73は、光源装置10に配置され、光学特性の一例である配光を所望に変換する。光変換部73は、例えば拡散粒子を有する。第1,2,3レーザ光の可干渉性を低減できれば、光変換部73は、波長変換部材またはフィラー粒子を有してもよい。光変換部73は、拡散または散乱によって色むらを低減し、照明光の配光特性を制御する。
図1Aと図1Bと図1Cとに示すように、光源装置10は、光源発熱ユニット20,30,40がそれぞれの上面に実装され、光源発熱ユニット20,30,40に熱的に接続される第1,2,3熱接続部材81,83,85と、熱接続部材81,83,85が上面に実装され、熱接続部材81,83,85に熱的に接続される実装部材91とを有する。
熱接続部材81,83,85は、例えば板材である。熱接続部材81,83,85は互いに異なる熱伝導率を有し、熱接続部材81,83,85の厚みは互いに異なる。熱接続部材81,83,85は、光源発熱ユニット20,30,40から発生した熱ができるだけ迅速に熱接続部材81,83,85に伝導されるように、大きな熱伝導率を有する材料によって形成される。このような熱接続部材81,83,85は、例えば、Cu、Ag等の金属材料、またはSiO2、ZnO、Al2O3、AlN、AlON等の誘電体材料によって形成される。光源発熱ユニット20,30,40と後述する調整部99との間の熱抵抗R1,R2,R3が互いに所定の比率に調整されるように、熱接続部材81,83,85の材質は選定され、熱接続部材81,83,85の熱伝導率及び厚みは制御される。
熱接続部材81,83,85それぞれの熱抵抗は、光源発熱ユニット20,30,40それぞれにおける熱抵抗よりも大きい。光源発熱ユニット20と熱接続部材81とが第1ユニット、光源発熱ユニット30と熱接続部材83とが第2ユニット、光源発熱ユニット40と熱接続部材85とが第3ユニットであるとする。各ユニットにおける光源発熱ユニットの発熱量と熱接続部材の熱抵抗との積は、第1,2,3ユニットにおいて等しくなるように、熱接続部材81,83,85は構成される。
実装部材91は、例えば板材である。
図1Aに示すように、光源装置10は、光源21の近傍に配置され、光源発熱ユニット20の温度を計測する計測部93と、光源発熱ユニット20,30,40全体の温度を標準温度Tsに制御するために計測部93の計測結果に応じた印加電圧を出力する温度制御部95とを有する。標準温度Tsは、例えば、通常使用下における光源21,31,41の安定動作のために推奨される温度であり、例えば300Kである。光源装置10は、熱を外部に放出する放熱部97と、実装部材91と放熱部97とに熱的に接続され、温度制御部95から出力された印加電圧によって、光源発熱ユニット20,30,40から熱接続部材81,83,85と実装部材91と調整部99とを介して放熱部97へ伝導される熱の伝導量を調整する調整部99とを有する。
計測部93は、例えば、熱電対またはサーミスタである。計測部93は、熱接続部材81の上面に実装される。計測部93は、光源21,31,41それぞれの近傍に配置されてもよい。
温度制御部95は、光源発熱ユニット20,30,40全体の温度が標準温度Tsに近づくように、光源発熱ユニット20,30,40から熱接続部材81,83,85と実装部材91と調整部99とを介して放熱部97へ伝導される熱の伝導量を印加電圧によって制御し、光源発熱ユニット20,30,40の温度差を抑制する。
放熱部97は、調整部99から伝導された熱を外部に放熱する。
調整部99は、光源発熱ユニット20,30,40全体の温度が標準温度Tsに近づくように、伝導量を調整する。調整部99は、例えばペルチェ素子である。調整部99は、例えば、熱を放出する放熱部材でもある。
調整部99は、実装部材91を介して、光源発熱ユニット20,30,40それぞれと熱接続部材81,83,85それぞれによって熱的に接続される。詳細には、図1Cに示すように、調整部99は、実装部材91と放熱部97との間に介在し、実装部材91の下面中央に実装され放熱部97の上面中央に実装される。図1Bに示すように、実装部材91が実装部材91の上面から見られた際に、光源発熱ユニット20,30,40の中心位置が調整部99の中心位置から等距離離れるように、調整部99は配置される。光源発熱ユニット20,30,40は、調整部99を中心に例えば同心円状に配置されてもよい。
図1Aに示すように、光源装置10は、光源発熱ユニット20,30,40の発熱量Q1,Q2,Q3の比が一定となり且つ光源21,31,41それぞれから出射される第1,2,3レーザ光の状態が所望の状態となるように、光源21,31,41と熱量調整素子33,43とを制御する光源制御部100を有する。光源制御部100は、所望の状態を維持された照明光の総光量が可変するように、光源21,31,41と熱量調整素子33,43とを制御する。
光源制御部100は、光源21,31,41の特性を有する情報テーブル101a(図3A参照)を記録する記録部101と、情報テーブル101aを基に光源21,31,41と熱量調整素子33,43とを駆動させる回路である駆動部103とを有する。
図3Aに示すように、情報テーブル101aは、色度座標が(0.31,0.36)で、色温度が6500K近傍の白色の照明光が実現される場合における、第1,2,3レーザ光の出力光量P1,P2,P3と、第1,2,3レーザ光の波長と、第1,2,3レーザ光の光量比とを有する。また情報テーブル101aは、標準温度Tsにおける、光源21,31,41の閾値電流Ithと、光源21,31,41の駆動電圧Vdと、光変換効率ηとを有する。光変換効率ηは、光源21,31,41に入力される入力パワーに対する光源21,31,41の出力光量P1,P2,P3の変換効率を示す。入力パワーは、光源21,31,41の出力光量P1,P2,P3に対する駆動電流Id及び駆動電圧Vdとの積であり、((Id-Ith)×Vd)で示される。このため光変換効率ηは、P/((Id-Ith)×Vd)によって示される。
よって各駆動電流Idは、光源21,31,41の出力光量P1,P2,P3に対して、閾値電流Ithと光変換効率ηと駆動電圧Vdとを基に決定され得る。ここで駆動電圧Vdの変動と光変換効率ηの変動とは、光源全体の温度が制御される標準温度Ts近傍の温度制御範囲では、無視できるものとする。
駆動部103は、第1,2,3レーザ光の実際の光量比が情報テーブル101aに記録された光量比と略一致するように、温度制御部95から伝送された光源発熱ユニット20の温度T1に対応する、光源21,31,41に印加する駆動電流Id及び駆動電圧Vdと、熱量調整素子33,43に印加される駆動電流Id及び駆動電圧Vdとを、情報テーブル101aを基に設定する。駆動部103は、この設定を基に光源発熱ユニット20,30,40と熱量調整素子33,43とを駆動させる。
具体的には、駆動部103は、照明光の状態が所望の状態を維持されるために、光源21,31,41それぞれの出力光量P1,P2,P3を制御する。所望の状態は、例えば所定の光量比である。駆動部103は、出力光量P1,P2,P3に対応する光源21,31,41の駆動を制御する。駆動の制御とは、例えば後述する駆動電流Idと駆動電圧Vdとを制御することを示す。例えば、駆動部103は、発熱量が最も高い光源21の発熱量Q1aを基準に、光源21が所属する光源発熱ユニット20以外の光源発熱ユニット30,40が有する熱量調整素子33,43の発熱量Qv2,Qv3を制御する。
[作用]
計測部93によって検出された光源発熱ユニット20の温度が標準温度Tsに比べて高い場合、温度制御部95は、調整部99にかける印加電圧を上げて、放熱量を増加させ、実装部材91の温度を下げる。光源発熱ユニット20の温度が標準温度Tsに比べて低い場合、温度制御部95は、印加電圧を下げて、実装部材91の温度を標準温度Tsに近づけ、温度を安定化させる。
駆動部103が光源21,31,41の発熱量Q1a,Q2a,Q3aと熱量調整素子33,43の発熱量Qv2,Qv3とを制御し、光源発熱ユニット20,30,40の温度差がこの制御によって抑制されることについて、説明する。
計測部93によって検出された光源発熱ユニット20の温度が標準温度Tsに比べて高い場合、温度制御部95は、調整部99にかける印加電圧を上げて、放熱量を増加させ、実装部材91の温度を下げる。光源発熱ユニット20の温度が標準温度Tsに比べて低い場合、温度制御部95は、印加電圧を下げて、実装部材91の温度を標準温度Tsに近づけ、温度を安定化させる。
駆動部103が光源21,31,41の発熱量Q1a,Q2a,Q3aと熱量調整素子33,43の発熱量Qv2,Qv3とを制御し、光源発熱ユニット20,30,40の温度差がこの制御によって抑制されることについて、説明する。
第1,2,3レーザ光の光量比が例えば1:1.33:0.56と予め所定に設定されて情報テーブル101aに記録される際、光量比に応じた、光源発熱ユニット20,30,40の発熱量を、Q1,Q2,Q3と定義する。光源発熱ユニット20の発熱量Q1が光源発熱ユニット30,40の発熱量Q2,Q3よりも大きく、発熱量Q1が基準となり、発熱量Q2,Q3が制御されるとする。
光源21,31,41が第1,2,3レーザ光を出射しない閾値(スタンバイ)状態において、光源21,31,41の発熱量をQ1s,Q2s,Q3sと定義する。光源21,31,41が第1,2,3レーザ光を出射している駆動状態において、光源21,31,41の発熱量をQ1L,Q2L,Q3Lと定義する。
図2を参照して、j=1,2,3としたとき、第j光源の駆動電流Idjと駆動電圧Vdjと閾値電流Ithjと出力光量Pjと光変換効率ηjと発熱量Qjs,QjLとの関係を説明する。
光変換効率ηjは、出力光量Pjに影響されることなく一定であると仮定した場合、前記したように、
ηj=Pj/((Idj-Ithj)×Vdj)であり、
(Idj-Ithj)×Vdj=Pj/ηj となる。
光変換効率ηjは、出力光量Pjに影響されることなく一定であると仮定した場合、前記したように、
ηj=Pj/((Idj-Ithj)×Vdj)であり、
(Idj-Ithj)×Vdj=Pj/ηj となる。
駆動電圧Vdjは略一定とすると、駆動状態では、
QjL=Vdj×(Idj-Ithj)-Pj であり、
=Pj×(1/ηj-1) ・・・式(1) となる。
QjL=Vdj×(Idj-Ithj)-Pj であり、
=Pj×(1/ηj-1) ・・・式(1) となる。
このようにQjLは、Pjとηjとによって記述できる。
また閾値状態では、Qjs=Ithj×Vdj・・・式(2) となる。
発熱量Qjs,QjLは、情報テーブル101aと前記した式(1),(2)とを用いる駆動部103によって算出される。
本実施形態では、例えば3つの光源発熱ユニット20,30,40が配置されるが、白色の照明光が出射される最小の構成としては、図1Dに示すように、光源発熱ユニット20,30が配置されていればよい。第1レーザ光と、第2レーザ光または第2レーザ光が波長変換されて発生する光とが互いに補完の関係を有していれば、白色の照明光が出射される。
本実施形態では、例えば3つの光源発熱ユニット20,30,40が配置されており、光源発熱ユニット20と光源発熱ユニット30との関係は、光源発熱ユニット20と光源発熱ユニット40との関係と同一である。このため、以下において、光源発熱ユニット20と光源発熱ユニット30との関係を用いて説明する。
前記したように第1,2レーザ光の光量比が予め所定に設定された際、本実施形態では、光源発熱ユニット20,30の発熱量比K1=Q2/Q1が駆動部103によって算出される。本実施形態では、発熱量比K1が一定であれば、照明光の総光量が可変しても、光量比が一定の状態を維持された白色の照明光が生成されることになる。このため本実施形態では、照明光の総光量が可変しても、発熱量比K1が一定となるように、駆動部103は熱量調整素子33の発熱量Qv2を制御する。
照明光の総光量の下限となる下限状態は、光源発熱ユニット20,30の閾値状態を示し、光源21,31の閾値電流Ithを基準とする。したがって閾値状態における光源発熱ユニット20の発熱量Q1は閾値状態における光源21の発熱量Q1sであり、閾値状態における光源発熱ユニット30の発熱量Q2は、閾値状態における光源31の発熱量Q2sと熱量調整素子33の発熱量Qv2との総和である。
なお下限状態は、閾値電流Ithよりも低い駆動電流を基準としてもよい。しかし、この場合、光源21,31の駆動電圧Vdの変化が大きいため、下限状態は閾値電流Ithよりも大きい駆動電流を基準にすることが好ましい。下限状態は、光源がOFFの状態を含む。
なお下限状態は、閾値電流Ithよりも低い駆動電流を基準としてもよい。しかし、この場合、光源21,31の駆動電圧Vdの変化が大きいため、下限状態は閾値電流Ithよりも大きい駆動電流を基準にすることが好ましい。下限状態は、光源がOFFの状態を含む。
照明光の出力光量が零から最大まで可変した場合、発熱量比K1の最大値をK1maxと定義する。K1がK1maxと等しくなるように、駆動部103は、熱量調整素子33の発熱量Qv2を調整する。熱量調整素子33は、発熱量が最も高い光源21が所属する光源発熱ユニット20以外の光源発熱ユニット30が有する熱量調整素子となる。
K1maxは、駆動部103によって以下のように決定される。
熱量調整素子33の発熱量Qv2を零として照明光が最大光量状態におけるK1と、熱量調整素子33の発熱量Qv2を零として照明光の出力光量が零且つ光源21,31が閾値状態である照明光が最小光量状態におけるK1とが駆動部103によって算出される。2つのK1のうち大きい方がK1maxとして駆動部103によって決定される。
熱量調整素子33の発熱量Qv2を零として照明光が最大光量状態におけるK1と、熱量調整素子33の発熱量Qv2を零として照明光の出力光量が零且つ光源21,31が閾値状態である照明光が最小光量状態におけるK1とが駆動部103によって算出される。2つのK1のうち大きい方がK1maxとして駆動部103によって決定される。
次に、照明光の任意の総光量に対して、第1,2レーザ光の光量比が一定となり、光源発熱ユニット20,30の発熱量比K1がK1maxとして一定となるように、駆動部103が熱量調整素子33の発熱量Qv2を決定する方法を説明する。
光源21の出力光量をP1と定義したときに、駆動部103は、情報テーブル101aから光変換効率η1と閾値電流Ith1と駆動電圧Vd1とを読み出し、式(1),(2)を用いて、光源21の発熱量Q1a(=Q1s+Q1L)を算出する。なお光源発熱ユニット20は光源21のみを有するため、光源21の発熱量Q1aは光源発熱ユニット20の発熱量Q1とみなすことができる。
発熱量比K1(Q2/Q1)は一定にされる必要があるため、駆動部103は、発熱量比K1と光源発熱ユニット20の発熱量Q1とを基に光源発熱ユニット30の発熱量Q2を算出する。
次に、第1,2レーザ光の光量比が1:1.33と設定されている状況下で、駆動部103は、光源21の出力光量P1と前記した光量比とを基に、光源31の出力光量P2を算出する。駆動部103は、出力光量P2(=1.33×P1)と、情報テーブル101aと、光変換効率η2(=P2/((Id2-Ith2)×Vd2)とを用いて、出力光量P2に対する駆動電流Id2と駆動電圧Vd2とを算出する。
また駆動部103は、情報テーブル101aから光変換効率η2と閾値電流Ith2と駆動電圧Vd2とを読み出し、式(1),(2)を基に、光源31の発熱量Q2a(=Q2s+Q2L)を算出する。
熱量調整素子33の発熱量Qv2は、光源発熱ユニット30の発熱量Q2と光源31の発熱量Q2aとの差分であり、Qv2=Q2-Q2a=Q2-Q2s-Q2Lとなる。駆動部103は、このように熱量調整素子33の発熱量Qv2を算出する。
以上をまとめると、駆動部103は、出力光量P1を基に光源発熱ユニット20の発熱量Q1を算出し、発熱量Q1と発熱量比K1とを基に光源発熱ユニット30の発熱量Q2を算出する。駆動部103は、光量比と出力光量P1とを基に出力光量P2を算出し、出力光量P2と発熱量Q2とを基に熱量調整素子33の発熱量Qv2を算出する。
光源発熱ユニット20と光源発熱ユニット40とにおいても、前記同様に、駆動部103は、熱量調整素子43の発熱量Qv3を算出する。
駆動部103は、熱量調整素子33,43が発熱量Qv2,Qv3を発熱するように、熱量調整素子33,43を駆動させる。また駆動部103は、出力光量P1,P2,P3に対する駆動電流Id1,Id2,Id3によって、光源21,31,41を駆動させる。
算出された熱量調整素子33,43の発熱量Qv2,Qv3によって、光源発熱ユニット20,30の発熱量比K1が常にK1maxとなり、光源発熱ユニット20,40の発熱量比K2が常にK2maxとなる。結果として照明光の任意の総光量が可変しても、熱量調整素子33,43の発熱量Qv2,Qv3が算出される度に調整されているため、第1,2,3レーザ光の光量比が一定となる。よって、照明光の任意の総光量が可変しても、照明光の特性である光量比は安定する。
なお記録部101は、例えば前記した発熱量Q1,Q2,Q3,Qv2,Qv3と発熱量比Q2/Q1,Q3/Q1とを有する第2情報テーブル101b(図3B参照)を記録する。
次に調整部99について説明する。
一般的に、光源発熱ユニット20,30,40それぞれと調整部99との間の各温度差は、光源発熱ユニット20,30,40それぞれの発熱量Q1,Q2,Q3と、光源発熱ユニット20,30,40それぞれと調整部99との間における熱抵抗R1,R2,R3それぞれとの積で決まる。このため、発熱量Q1,Q2,Q3と、熱抵抗R1,R2,R3との積がそれぞれ一定に設定されれば、照明光の総光量が変化しても光源発熱ユニット20,30,40それぞれの温度差はさらに抑えられることになる。結果として、照明光の総光量が可変しても、照明光における光量比の変動は許容範囲内に制御され、照明光の特性はさら安定する。
一般的に、光源発熱ユニット20,30,40それぞれと調整部99との間の各温度差は、光源発熱ユニット20,30,40それぞれの発熱量Q1,Q2,Q3と、光源発熱ユニット20,30,40それぞれと調整部99との間における熱抵抗R1,R2,R3それぞれとの積で決まる。このため、発熱量Q1,Q2,Q3と、熱抵抗R1,R2,R3との積がそれぞれ一定に設定されれば、照明光の総光量が変化しても光源発熱ユニット20,30,40それぞれの温度差はさらに抑えられることになる。結果として、照明光の総光量が可変しても、照明光における光量比の変動は許容範囲内に制御され、照明光の特性はさら安定する。
このため本実施形態では、熱接続部材81,83,85と実装部材91とは、光源発熱ユニット20,30,40と調整部99との間に配置されている。
j=1,2,3としたとき、第j熱接続部材の熱抵抗が第j光源発熱ユニットの熱抵抗よりも大きいため、第j光源発熱ユニットの熱抵抗は第j光源発熱ユニットと調整部99との間の熱抵抗Rjに比べて小さく無視できる。
j=1,2,3としたとき、第j熱接続部材の熱抵抗が第j光源発熱ユニットの熱抵抗よりも大きいため、第j光源発熱ユニットの熱抵抗は第j光源発熱ユニットと調整部99との間の熱抵抗Rjに比べて小さく無視できる。
光源発熱ユニット20と調整部99との間の熱抵抗R1と光源発熱ユニット30と調整部99との間の熱抵抗R2とにおいて、熱抵抗比R2/R1は光源発熱ユニット20,30の発熱量比Q2/Q1の逆比、またはQ1×R1がQ2×R2と一定となる。このため温度制御部95は、記録部101の情報テーブル101bから発熱量Q1,Q2を読み出し、発熱量Q1,Q2を基に印加電圧を算出し、印加電圧を調整部99に出力する。調整部99は、印加電圧に応じて、放熱部97へ伝導される熱の伝導量を調整する。つまり調整部99は、熱抵抗R1,R2を調整することとなる。
これにより、光源発熱ユニット20の温度T1と光源発熱ユニット30の温度T2とは、調整部99によって、標準温度Tsに近い温度に制御される。温度T1,T2と標準温度Tsとの差ΔTで発生する光量比と発熱量比との微小変動量は、許容量と定義でき、照明光における光量比は略一定にさらに制御される。
これにより、光源発熱ユニット20の温度T1と光源発熱ユニット30の温度T2とは、調整部99によって、標準温度Tsに近い温度に制御される。温度T1,T2と標準温度Tsとの差ΔTで発生する光量比と発熱量比との微小変動量は、許容量と定義でき、照明光における光量比は略一定にさらに制御される。
前記同様に、調整部99は、熱抵抗R1,R3を調整することとなる。これにより、光源発熱ユニット20の温度T1と光源発熱ユニット40の温度T3とは、調整部99によって、標準温度Tsに近い温度に制御される。温度T1,T3と標準温度Tsとの差ΔTで発生する光量比と発熱量比との微小変動量は、許容量と定義でき、照明光における光量比は略一定にさらに制御できる。
光源発熱ユニット20,30の発熱量Q1,Q2の制御方法を、下記式を用いて説明する。
Q1=Q1a=Q1s+Q1L
=Ith1×Vd1+P1×(1/η1-1)
=Ith1×Vd1+P1×κ1・・・式(4)
Q2=Q2a+Qv2=Q2s+Q2L+Qv2
=Ith2×Vd2+P2×(1/η2-1)+Qv2
=Ith2×Vd2+P2×κ2+Qv2・・・式(5)
κj=(1/ηj-1) (j=1,2) とする。
Q1=Q1a=Q1s+Q1L
=Ith1×Vd1+P1×(1/η1-1)
=Ith1×Vd1+P1×κ1・・・式(4)
Q2=Q2a+Qv2=Q2s+Q2L+Qv2
=Ith2×Vd2+P2×(1/η2-1)+Qv2
=Ith2×Vd2+P2×κ2+Qv2・・・式(5)
κj=(1/ηj-1) (j=1,2) とする。
光源21,31,41の出力光量P1,P2,P3において、
P1:P2:P3=1:X0:Y0であり、この光量比は一定である。
光源21,31の閾値状態において、出力光量P1,P2が零である場合、発熱量比K1は下記式(6),(7)を用いる駆動部103によって算出される。出力光量が互いに零であり、光源発熱ユニット30の熱量調整素子33を動作させない場合、発熱量比K1は、最小発熱量比K1minとなる。すなわち、
K1min=Q2s/Q1s=(Ith2×Vd2)/(Ith1×Vd1)・・・式(6)
K1min≦ K1= Q2/Q1 ≦1・・・式(7)
なお熱量調整素子33がヒータ抵抗部材である場合、光の利用効率を考慮して、熱量調整素子33の発熱量Qv2が小さいことが好ましい。
また熱量調整素子33がLDである場合、発熱量Qv2は、LDの閾値状態の発熱量Qs以上に設定される必要がある。
光源21,31の駆動状態において、K1は下記式(8)を用いる駆動部103によって算出される。
P1:P2:P3=1:X0:Y0であり、この光量比は一定である。
光源21,31の閾値状態において、出力光量P1,P2が零である場合、発熱量比K1は下記式(6),(7)を用いる駆動部103によって算出される。出力光量が互いに零であり、光源発熱ユニット30の熱量調整素子33を動作させない場合、発熱量比K1は、最小発熱量比K1minとなる。すなわち、
K1min=Q2s/Q1s=(Ith2×Vd2)/(Ith1×Vd1)・・・式(6)
K1min≦ K1= Q2/Q1 ≦1・・・式(7)
なお熱量調整素子33がヒータ抵抗部材である場合、光の利用効率を考慮して、熱量調整素子33の発熱量Qv2が小さいことが好ましい。
また熱量調整素子33がLDである場合、発熱量Qv2は、LDの閾値状態の発熱量Qs以上に設定される必要がある。
光源21,31の駆動状態において、K1は下記式(8)を用いる駆動部103によって算出される。
K1=(Ith2×Vd2+X0×κ2+Qv2)/(Ith1×Vd1+P1×κ1)・・・式(8)。
光源21の任意の出力光量Pm1が光源21の最大出力光量P1maxによって記述されるとき、すなわち、Pm1=α×P1max(1≧α≧0)である場合、駆動部103は、情報テーブル101aから出力光量Pm1に対する駆動電流Id1mと駆動電圧Vd1mとを算出する。
同様に、光源31の任意の出力光量Pm2=X0×α×P1maxである場合、駆動部103は、情報テーブル101aから出力光量Pm2に対する駆動電流Id2mと駆動電圧Vd2mとを算出する。
出力光量Pm1,Pm2で発生する光源21,31の発熱量Q1m,Q2mは、下記式(9),(10)を用いる駆動部103によって算出される。
Q1m=Ith1×Vd1+Pm1×κ1・・・式(9)
Q2m=Ith2×Vd2+X0×κ2×Pm1+Qv2・・・式(10)
Qv2は、K1=Q2m/Q1mを用いる駆動部103によって算出される。
Q2m=Ith2×Vd2+X0×κ2×Pm1+Qv2・・・式(10)
Qv2は、K1=Q2m/Q1mを用いる駆動部103によって算出される。
[効果]
本実施形態では、発熱量比が一定となるように、駆動部103が熱量調整素子33,43の発熱量Qv2,Qv3を算出する。このため光源発熱ユニット20,30,40の温度差が抑制される。よって本実施形態では、光源発熱ユニット20,30,40の温度は標準温度Tsに制御でき、照明光の総光量が可変しても、簡単な構成で、光量比が一定といった照明光の特性を安定できる光源装置10を提供できる。
本実施形態では、発熱量比が一定となるように、駆動部103が熱量調整素子33,43の発熱量Qv2,Qv3を算出する。このため光源発熱ユニット20,30,40の温度差が抑制される。よって本実施形態では、光源発熱ユニット20,30,40の温度は標準温度Tsに制御でき、照明光の総光量が可変しても、簡単な構成で、光量比が一定といった照明光の特性を安定できる光源装置10を提供できる。
なお光源21の出力光量P1が0.1W~最大1.0Wまで可変であるとする。この場合、情報テーブル101bは、出力光量P1に対応する、光源31,41の出力光量P2,P3と駆動電流Id1,Id2,Id3と光源21,31,41の発熱量Q1a,Q2a,Q3aと発熱量比Q2/Q1,Q3/Q1と熱量調整素子33,43の発熱量Qv2,Qv3等を有する。
白色照明光において、光量比が一定で、熱量調整素子33,43の発熱量Qv2,Qv3が調整されることで、発熱量比Q2/Q1,Q3/Q1が一定となる。
出力光量が最大であり、放熱部材である調整部99の容量が大きい場合、光源発熱ユニット20,30,40全体の温度は調整部99によって標準温度Tsに近づく。しかしながら、出力光量が最大であり、調整部99の容量が小さい場合、光源発熱ユニット20,30,40全体の温度は標準温度Tsよりも数度高くなる。この温度差によって、光源発熱ユニット20,30,40の発熱量Q1,Q2,Q3が変動する。しかしながら、変動量が変動量の数%以下であれば、この変動は許容され、発熱量比Kは許容される。
発熱量Qと駆動電流Idとが設定される場合、駆動電圧Vdは一定として見積もられる。実際には、駆動電流Idが閾値電流Ithよりも十分大きくなると、駆動電圧Vdは閾値状態における駆動電圧Vthよりも高くなる。発熱量Qが大きくなり、調整部99の温度が標準温度Tsよりも高くなると、駆動電圧Vdは閾値状態における駆動電圧Vthよりも低くなる。出力光量Pに対する駆動電圧Vdの変動量が小さいため、光量比の許容範囲は、駆動電圧Vdの変動量に伴う光量の変化量とする。
光源21,31,41の光変換効率η1,η2,η3を一定として、光源21,31,41の発熱量Q1a,Q2a,Q3aと出力光量P1,P2,P3とが算出される。しかしながら、出力光量P1,P2,P3が最大近傍となり、発熱量Q1a,Q2a,Q3aが増加すると、光変換効率η1,η2,η3は徐々に低下する傾向がある。出力光量P1,P2,P3が最大近傍では、光量比の変動量が最大となり、この変動の最大値を最大許容値とする。
[第1の実施形態の変形例1]
図4Aと図4Bと図4Cと図4Dとを用いて、第1の実施形態の変形例1について説明する。
本変形例では、光源装置10は複数の照明モードからいずれか1つの照明モードに切り替え、光源制御部100は切り替えられた照明モードに応じて光源と熱量調整素子とを制御する。複数の照明モードは、例えば白色光モードと第1特殊光モードとである。
図4Aと図4Bと図4Cと図4Dとを用いて、第1の実施形態の変形例1について説明する。
本変形例では、光源装置10は複数の照明モードからいずれか1つの照明モードに切り替え、光源制御部100は切り替えられた照明モードに応じて光源と熱量調整素子とを制御する。複数の照明モードは、例えば白色光モードと第1特殊光モードとである。
白色光モードは、第1の実施形態を示す。白色光モードでは、光源21,31,41が同時に駆動し、一定の光量比を有する照明光が生成される。
第1特殊光モードでは、光源31,41がOFFとなり、光源21,45がONとなる。第1特殊光モードでは、熱量調整素子33,43が駆動する。第1特殊光モードでは、光源発熱ユニット20の発熱量Q1と光源発熱ユニット30の発熱量Q2との発熱量比K1が白色光モードにおける発熱量比K1と同一となる。第1特殊光モードでは、光源21,45から出射される2種類の第1,4レーザ光の光量比が一定である状態で、照明光は対象物を照明し、対象物によって反射された反射光を基に観察などが実施される。
[構成]
以下に第1の実施形態とは異なる部分を説明する。
図4Aと図4Bとに示すように、第3光源発熱ユニット40は、中心波長が例えば445nmの青色の第3レーザ光を出射する第3光源41と、中心波長が例えば405nmの青紫色の第4レーザ光を出射する第4光源45と、第3光源41及び第4光源45に隣接且つ熱的に接続され、発熱によって光源41,45の発熱量Q3a,Q4aを調整する第3熱量調整素子43とを有する。
以下に第1の実施形態とは異なる部分を説明する。
図4Aと図4Bとに示すように、第3光源発熱ユニット40は、中心波長が例えば445nmの青色の第3レーザ光を出射する第3光源41と、中心波長が例えば405nmの青紫色の第4レーザ光を出射する第4光源45と、第3光源41及び第4光源45に隣接且つ熱的に接続され、発熱によって光源41,45の発熱量Q3a,Q4aを調整する第3熱量調整素子43とを有する。
白色光モードでは、第1の実施形態と同様である。
第1特殊光モードでは、光源21,45が駆動し、緑色の第1レーザ光と青紫色の第4レーザ光とが合成されて、照明光が生成される。なお第1レーザ光と第4レーザ光との光量比は、例えば1:0.8に予め設定されている。記録部101は、第1特殊光モードにおける光源21,45の特性を有する第3情報テーブル101c(図4C参照)を記録する。
第1特殊光モードでは、光源21,45が駆動し、緑色の第1レーザ光と青紫色の第4レーザ光とが合成されて、照明光が生成される。なお第1レーザ光と第4レーザ光との光量比は、例えば1:0.8に予め設定されている。記録部101は、第1特殊光モードにおける光源21,45の特性を有する第3情報テーブル101c(図4C参照)を記録する。
光源装置10は、例えば内視鏡装置200に組み込まれる。内視鏡装置200は、白色光照明モードと第1特殊光モードとを切り替えるスイッチなどの図示しない切替部を有する。内視鏡装置200は、照明光が対象物を照明した際に対象物によって反射された反射光を撮像する撮像部201と、撮像部201によって撮像された反射光を画像処理する画像処理部203と、画像処理された反射光を画像として表示する表示部205とを有する。
[動作]
光源発熱ユニット20は、白色光モードと第1特殊光モードとのどちらであっても、同じ駆動条件で駆動する。
光源発熱ユニット20は、白色光モードと第1特殊光モードとのどちらであっても、同じ駆動条件で駆動する。
第1特殊光モードの光源発熱ユニット30において、光源31はOFFとなる。そして光源発熱ユニット20の発熱量Q1と光源発熱ユニット30の発熱量Q2(熱量調整素子33の発熱量Qv2)との第1特殊光モードにおける発熱量比K2(Q2/Q1)が白色光モードにおける発熱量比K2(Q2/Q1)と同一となるように、駆動部103は、熱量調整素子33の発熱量Qv2を算出する。駆動部103は、熱量調整素子33が発熱量Qv2を発熱するように、熱量調整素子33を駆動させる。
第1特殊光モードの光源発熱ユニット40において、光源41がOFFになり、光源45が駆動する。
第1特殊光モードでは、例えば第1,4レーザ光の光量比が1:0.8と予め設定されると、光源21,45は設定に基づいて光源制御部100によって制御される。これにより、特殊光が実現される。
光源発熱ユニット20の発熱量Q1と光源発熱ユニット40の発熱量Q3(光源45の発熱量Q4aと熱量調整素子43の発熱量Qv2との総和)との第1特殊光モードにおける発熱量比K3(Q3/Q1)が白色光モードにおける発熱量比K3(Q3/Q1)と同一となるように、駆動部103は、熱量調整素子43の発熱量Qv3を算出する。駆動部103は、熱量調整素子43が発熱量Qv3を発熱するように、熱量調整素子43を駆動させる。白色光モードにおける発熱量比Q3は、光源41の発熱量Q3aと熱量調整素子43の発熱量Qv3との総和である。
なお、第1特殊光モードでは、第1レーザ光と第4レーザ光との光量比が1:0.8となるように、駆動部103は光源21,45の駆動電流Id1,Id4を算出する。この光量比が1:1に変更される場合、駆動部103は、白色光モードにおける発熱量比K3をさらに大きな値に設定すればよい。
第1特殊光モードにおいて、駆動部103は、情報テーブル101cから、光源21,45の出力光量P1,P4に対する、駆動電流Id1,Id4と駆動電圧Vd1,Vd4と発熱量Q1,Q3とを算出する。そして、駆動部103は、発熱量比K3が一定となるように、発熱量Q1,Q3を基に熱量調整素子43の発熱量Qv3を算出する。
実際には、熱量調整素子43であるヒータ抵抗部材に対して、所定の駆動電流と駆動電圧とが印加されると、熱量調整素子43の発熱量Qv3が制御される。
第1特殊光モードにおいて、対象物と照明光の出射位置との距離は、観察状況に応じて可変する。画像処理部203が画像を生成する際に、撮像部201が飽和しないように、距離に応じて、照明光の総光量が調整される必要がある。
このため、第1特殊光モードにおいて、第1レーザ光を出力する光源21の出力光量P1が0.1W~最大1.0Wまで可変であるとする。この場合、記録部101は、第4情報テーブル101d(図4D参照)を記録してもよい。情報テーブル101dは、例えば、光源21の出力光量P1に対応する、光源21の駆動電流Id1と、光源発熱ユニット20の発熱量Q1(光源21の発熱量Q1a)と、光源発熱ユニット30の発熱量Q2(熱量調整素子33の発熱量Qv2)と、発熱量比Q2/Q1と、光源45の出力光量P4と、光源45の駆動電流Id4と、光源発熱ユニット40の発熱量Q2(光源45の発熱量Q4aと熱量調整素子43の発熱量Qv3)と、発熱量比Q3/Q1とを有する。このように、光源21の出力光量P1が可変しても、第1特殊光モードの発熱量比Q2/Q1,Q3/Q1は、白色光モードの発熱量比と同一となり、緑色の第1レーザ光と青紫色の第4レーザ光との光量比が1:0.8と一定となる。
[効果]
本変形例では、白色光モードと第1特殊光モードとにおいて、照明光の総光量が可変しても、光量比が許容範囲内で略一定となり、安定した照明光の特性を有する光源装置10を提供できる。本変形例では、白色光モードと第1特殊光モードとの一方が他方に切り替わるため、安定した特性を有する照明光を対象物に照明でき、画像を基に診断及び分析できる。
本変形例では、白色光モードと第1特殊光モードとにおいて、照明光の総光量が可変しても、光量比が許容範囲内で略一定となり、安定した照明光の特性を有する光源装置10を提供できる。本変形例では、白色光モードと第1特殊光モードとの一方が他方に切り替わるため、安定した特性を有する照明光を対象物に照明でき、画像を基に診断及び分析できる。
[第1の実施形態の変形例2]
図5と図6Aと図6Bと図7Aと図7Bと図7Cと図7Dとを用いて、第1の実施形態の変形例2について説明する。
本変形例では、複数の照明モードは、例えば白色光モードと第2特殊光モードとである。
第2特殊光モードでは、特定の波長を有するレーザ光を出射する光源が選択され及び駆動し、他の光源がOFFになる。第2特殊光モードでは、熱量調整素子も駆動する。また第2特殊光モードでは、白色モード時の光源発熱ユニットの発熱量比が保たれつつ、特定の波長を有するレーザ光の光量がすべて同一になり、合波した照明光が対象物に照明する。特定波長を有するレーザ光を出射する光源の出力は全て同一に設定されるが、標準温度Tsと実際の光源の温度T1との差で、駆動電圧に変動が発生する。この駆動電圧の変動に伴う光源の出力の変動量を許容変動量とし、各特定波長の光源の光出力が略一定に制御された状態で照明光が対象物を照明し、対象物によって反射された特定波長毎の反射光量を基に観察などが実施される。
図5と図6Aと図6Bと図7Aと図7Bと図7Cと図7Dとを用いて、第1の実施形態の変形例2について説明する。
本変形例では、複数の照明モードは、例えば白色光モードと第2特殊光モードとである。
第2特殊光モードでは、特定の波長を有するレーザ光を出射する光源が選択され及び駆動し、他の光源がOFFになる。第2特殊光モードでは、熱量調整素子も駆動する。また第2特殊光モードでは、白色モード時の光源発熱ユニットの発熱量比が保たれつつ、特定の波長を有するレーザ光の光量がすべて同一になり、合波した照明光が対象物に照明する。特定波長を有するレーザ光を出射する光源の出力は全て同一に設定されるが、標準温度Tsと実際の光源の温度T1との差で、駆動電圧に変動が発生する。この駆動電圧の変動に伴う光源の出力の変動量を許容変動量とし、各特定波長の光源の光出力が略一定に制御された状態で照明光が対象物を照明し、対象物によって反射された特定波長毎の反射光量を基に観察などが実施される。
具体的には、血液中のヘモグロビンは、照明光の波長によって吸光係数μaが変化する特性を有する。吸光係数μaの波長選択性が利用されて、表示部205は、第2特殊光モードの画像と白色光モードの画像とを切り替えて表示する。第2特殊光モードの画像は、血液中の酸素濃度の高低分布を示す。白色光モードの画像は、白色画像を示す。
[構成]
以下に第1の実施形態とは異なる部分を説明する。
図6Aと図6Bとに示すように、第1光源発熱ユニット20は、中心波長が638nmの赤色の第5レーザ光を出射する第5光源27aと、中心波長が660nmの赤色の第6レーザ光を出射する第6光源27bとを有する。
第2光源発熱ユニット30は、中心波長が例えば473nmの青色の第7レーザ光を出射する第7光源37と、第7光源37に隣接且つ熱的に接続され、発熱によって第7光源37の発熱量Q7aを調整する第2熱量調整素子33とを有する。
第3光源発熱ユニット40は、中心波長が例えば530nmの緑色の第8レーザ光を出射する第8光源47と、第8光源47に隣接且つ熱的に接続され、発熱によって第8光源47の発熱量Q8aを調整する第3熱量調整素子43とを有する。
以下に第1の実施形態とは異なる部分を説明する。
図6Aと図6Bとに示すように、第1光源発熱ユニット20は、中心波長が638nmの赤色の第5レーザ光を出射する第5光源27aと、中心波長が660nmの赤色の第6レーザ光を出射する第6光源27bとを有する。
第2光源発熱ユニット30は、中心波長が例えば473nmの青色の第7レーザ光を出射する第7光源37と、第7光源37に隣接且つ熱的に接続され、発熱によって第7光源37の発熱量Q7aを調整する第2熱量調整素子33とを有する。
第3光源発熱ユニット40は、中心波長が例えば530nmの緑色の第8レーザ光を出射する第8光源47と、第8光源47に隣接且つ熱的に接続され、発熱によって第8光源47の発熱量Q8aを調整する第3熱量調整素子43とを有する。
記録部101は、白色光モードにおいて駆動する光源27a,27b,37,47の特性を有する第5情報テーブル101e(図7A参照)と、第2特殊光モードにおいて駆動する光源27a,27b,37の特性を有する第6情報テーブル101f(図7B参照)とを記録する。
白色光モードでは、第5,6,7,8レーザ光の光量比が1:0.33:0.67:0.5と予め設定されると、光源27a,27b,37,47は設定に基づいて光源制御部100によって制御される。これにより、色度座標が(0.324,0.334)で、色温度が6000K近傍の白色の照明光が実現される。
第2特殊光モードでは、例えば第5,6,7レーザ光の光量比が1:1:1と予め設定されると、光源27a,27b,37,47は設定に基づいて光源制御部100によって制御される。これにより、第2特殊光が実現される。
[動作]
図5に示すように、k中のヘモグロビンは、酸素と結合していない還元ヘモグロビン301と酸素と結合した酸化ヘモグロビン303とを有する。還元ヘモグロビン301の吸光係数は、酸化ヘモグロビン303の吸光係数とは異なる。還元ヘモグロビン301と酸化ヘモグロビン303とにおいて、等吸収点を除き、吸光度に差が生じる。なお等吸収点は、図5における還元ヘモグロビン301と酸化ヘモグロビン303との交点の1つである。本変形例では光源37が出射するレーザ光の波長は、この交点に対応する波長である473mmに設定される。
図5に示すように、k中のヘモグロビンは、酸素と結合していない還元ヘモグロビン301と酸素と結合した酸化ヘモグロビン303とを有する。還元ヘモグロビン301の吸光係数は、酸化ヘモグロビン303の吸光係数とは異なる。還元ヘモグロビン301と酸化ヘモグロビン303とにおいて、等吸収点を除き、吸光度に差が生じる。なお等吸収点は、図5における還元ヘモグロビン301と酸化ヘモグロビン303との交点の1つである。本変形例では光源37が出射するレーザ光の波長は、この交点に対応する波長である473mmに設定される。
吸光度に差が生じた場合、同じ光量強度で同じ波長を有する光が同じ血管を照明しても、輝度値が変化する。また同じ光量強度を有する光が照明されても、波長が変わると、吸光係数が変わるため、輝度値が変化する。
白色光モードでは、光量比が1:0.33:0.67:0.5になり、発熱量比Q2/Q1,Q3/Q1がそれぞれ一定となり、熱抵抗比R2/R1,R3/R1がそれぞれ一定となるように、駆動部103は、熱量調整素子33,43の発熱量Qv2,Qv3を算出する。駆動部103は、熱量調整素子33,43が発熱量Qv2,Qv3を発熱するように、熱量調整素子33,43を駆動させる。これにより、光源発熱ユニット20,30,40の温度が制御され、各出力光量が安定する。
対象物と照明光の出射位置との距離は、観察状況に応じて可変する。画像処理部203が画像を生成する際に、撮像部201が飽和しないように、距離に応じて、白色照明光の総光量が調整される必要がある。
このため、白色光モードにおいて、赤色の第5レーザ光を出力する光源27aの出力光量P5が0.1W~最大1.0Wまで可変であるとする。この場合、記録部101は、第7情報テーブル101g(図7C参照)を記録してもよい。情報テーブル101gは、例えば、光源27aの出力光量P5に対応する、光源27a,27b,37,47の駆動電流Id5,Id6,Id7,Id8と、光源発熱ユニット20の発熱量Q1(光源27a,27bの発熱量Q5a,Q6a)と、光源発熱ユニット30の発熱量Q2(光源37の発熱量Q7aと熱量調整素子33の発熱量Qv2)と、発熱量比Q2/Q1と、光源27b,37,47の出力光量P6,P7,P8と、光源発熱ユニット40の発熱量Q3(光源47の発熱量Q8aと熱量調整素子43の発熱量Qv3)と、発熱量比Q3/Q1とを有する。この場合、情報テーブル101gに示すように、光源27aの出力光量P5が可変しても、白色光モードの発熱量比Q2/Q1,Q3/Q1は同一となり、光量比が一定となり、安定した白色照明光が得られる。
第2特殊光モードでは、波長473nmと波長638nmと波長660nmとに反射光が分光された状態、撮像部201が反射光を撮像する。波長473nmにおける画像において、酸化ヘモグロビン303の吸光係数が還元ヘモグロビン301の吸光係数と同一である。波長638nm,660nmにおける画像において、酸化ヘモグロビン303の吸光係数は還元ヘモグロビン301の吸光係数よりも高く、還元ヘモグロビン301の輝度値は酸化ヘモグロビン303の輝度値よりも高い。
波長638nmの画像と波長473nmにおける画像との差分の画像と、波長660nmの画像と波長473nmにおける画像との差分の画像とが合成されると、酸化ヘモグロビン303と還元ヘモグロビン301との輝度差が明瞭な画像が生成される。そしてこの画像と白色画像との比較によって、対象部位が明確化される。
また前記した距離に応じて、第2特殊光の総光量が調整される必要がある。
このため、第2特殊光モードにおいて、赤色の第5レーザ光を出力する光源27aの出力光量P5が0.1W~最大0.75Wまで可変であるとする。この場合、記録部101は、第8情報テーブル101h(図7D参照)を記録してもよい。情報テーブル101hは、例えば、光源27aの出力光量P5に対応する、光源27a,27b,37の駆動電流Id5,Id6,Id7と、光源発熱ユニット20の発熱量Q1(光源27a,27bの発熱量Q5a,Q6a)と、光源発熱ユニット30の発熱量Q2(光源37の発熱量Q7aと熱量調整素子33の発熱量Qv2)と、発熱量比Q2/Q1と、光源27b,37の出力光量P6,P7と、光源発熱ユニット40の発熱量Q3(熱量調整素子43の発熱量Qv3)と、発熱量比Q3/Q1とを有する。この場合、情報テーブル101gに示すように、光源27aの出力光量P5が可変しても、第2特殊光モードの発熱量比Q2/Q1,Q3/Q1は同一となり、光量比が一定となり、安定した特殊光が得られる。
[効果]
本変形例では、白色光モードにおいて、第1の実施形態とは異なり、白色光が4つの光源から出射される互いに波長が異なる光によって生成される。よって、白色光の特性が安定する。
本変形例では、白色光モードにおいて、第1の実施形態とは異なり、白色光が4つの光源から出射される互いに波長が異なる光によって生成される。よって、白色光の特性が安定する。
第2特殊光モードにおいて、特殊光の総光量が可変しても、光量が許容変動内で略一定で、発熱量比が一定であれば、安定した特殊光が得られる。
[第2の実施形態]
[構成]
本実施形態では、図8Aと図8Bとに示すように、光源発熱ユニット20は、複数の光源21a,21bを有する。光源21a,21bは、互いに同じ色を有するが、中心波長が互いに異なる波長を有するレーザ光を出射する。この点は、光源発熱ユニット30,40についても同様である。光源発熱ユニット30の光源を光源31a,31bと称し、光源発熱ユニット40の光源を光源41a,41bと称する。各光源それぞれに対応してレンズなどの光学素子が配置されており、各光源それぞれから出射されたレーザ光は光学素子によって各導光部材に集光される。
[構成]
本実施形態では、図8Aと図8Bとに示すように、光源発熱ユニット20は、複数の光源21a,21bを有する。光源21a,21bは、互いに同じ色を有するが、中心波長が互いに異なる波長を有するレーザ光を出射する。この点は、光源発熱ユニット30,40についても同様である。光源発熱ユニット30の光源を光源31a,31bと称し、光源発熱ユニット40の光源を光源41a,41bと称する。各光源それぞれに対応してレンズなどの光学素子が配置されており、各光源それぞれから出射されたレーザ光は光学素子によって各導光部材に集光される。
図8Cに示すように、光源21aは中心波長が例えば520nmの緑色の第1レーザ光aを出射し、光源21bは中心波長が例えば540nmの緑色の第1レーザ光bを出射する。
光源31aは中心波長が例えば600nmの赤色の第2レーザ光aを出射し、光源31bは中心波長が例えば650nmの赤色の第2レーザ光bを出射する。
光源41aは中心波長が例えば450nmの青色の第3レーザ光aを出射し、光源41bは中心波長が例えば400nmの青色の第3レーザ光bを出射する。
光源31aは中心波長が例えば600nmの赤色の第2レーザ光aを出射し、光源31bは中心波長が例えば650nmの赤色の第2レーザ光bを出射する。
光源41aは中心波長が例えば450nmの青色の第3レーザ光aを出射し、光源41bは中心波長が例えば400nmの青色の第3レーザ光bを出射する。
光源発熱ユニット20において、光源21bは、例えばLDであり、第1熱量調整素子を兼ねる。
[作用]
本実施形態では、光源装置10は、照明光の総光量が可変しても、各光源から出力される光を所望の状態(例えば色度座標を一定)に制御し、所望の状態を維持された白色の照明光を生成する。
本実施形態では、光源装置10は、照明光の総光量が可変しても、各光源から出力される光を所望の状態(例えば色度座標を一定)に制御し、所望の状態を維持された白色の照明光を生成する。
本実施形態では、第1の実施形態と同様に、光源発熱ユニット20の発熱量Q1が光源発熱ユニット30,40の発熱量Q2,Q3よりも大きく、発熱量Q1が基準となり、発熱量Q2,Q3が制御されるとする。光源21bである第1熱量調整素子の発熱量Qv1は、駆動部103によって算出される。
図8Cに示すように、光源発熱ユニット20において、第1レーザ光a,bの色度座標をλ1A(X1A,Y1A),λ1B(X1B,Y1B)、第1レーザ光a,bの出力光量をP1A,P1Bと称する。
光源発熱ユニット30において、第2レーザ光a,bの色度座標をλ2A(X2A,Y2A),λ2B(X2B,Y2B)、第2レーザ光a,bの出力光量をP2A,P2Bと称する。
光源発熱ユニット40において、第3レーザ光a,bの色度座標をλ3A(X3A,Y3A),λ3B(X3B,Y3B)、第3レーザ光a,bの出力光量をP3A,P3Bと称する。
光源発熱ユニット30において、第2レーザ光a,bの色度座標をλ2A(X2A,Y2A),λ2B(X2B,Y2B)、第2レーザ光a,bの出力光量をP2A,P2Bと称する。
光源発熱ユニット40において、第3レーザ光a,bの色度座標をλ3A(X3A,Y3A),λ3B(X3B,Y3B)、第3レーザ光a,bの出力光量をP3A,P3Bと称する。
第1,2,3レーザ光a,bの合成によって、白色の照明光が生成される。照明光の色度座標を(X,Y)と称し、照明光の総光量をPと称する。
照明光の色度座標(X,Y)は、各光源発熱ユニットから出射されるレーザ光の波長に対応する色度座標と、照明光全体に占める光量比との積の総和で決まる。すなわち、
(X,Y)=(ΣλiA(XiA,YiA)×PiA+λiB(XiB,YiB)×PiB)/Σ(PiA+PiB) (i=1,2,3) ・・・式(11) となる。
(X,Y)=(ΣλiA(XiA,YiA)×PiA+λiB(XiB,YiB)×PiB)/Σ(PiA+PiB) (i=1,2,3) ・・・式(11) となる。
照明光の色度座標(X,Y)が所望の色度座標(0.33,0.33)と予め設定されると、駆動部103は、照明光の色度座標(X,Y)が所望の色度座標(0.33,0.33)に近傍するように、光源と熱量調整素子とを制御する。このため駆動部103は、式(11)を用いて、各光源の出力光量(PiA+PiB)を算出する。
駆動部103は、光源発熱ユニット20の発熱量Q1を基準にして、熱量調整素子の発熱量Qv1,Qv2,Qv3を算出する。
光源発熱ユニット20,30,40の発熱量Q1,Q2,Q3と、光源発熱ユニット20,30,40と調整部99との間の熱抵抗R1,R2,R3との積が一定となるように、温度制御部95は、記録部101の図示しない情報テーブルから発熱量Q1,Q2,Q3を読み出し、発熱量Q1,Q2,Q3を基に印加電圧を算出し、印加電圧を調整部99に出力する。調整部99は、印加電圧に応じて、放熱部97へ伝導される伝熱量を調整する。つまり調整部99は、熱抵抗Rjを調整する。
これにより、光源発熱ユニット20,30,40の温度T1,T2,T3は、調整部99によって、標準温度Tsに近い温度に制御される。
これにより、光源発熱ユニット20,30,40の温度T1,T2,T3は、調整部99によって、標準温度Tsに近い温度に制御される。
次に、各光源の出力光量(PiA+PiB)によって、式(11)における照明光の色度座標(X,Y)が所望の色度座標(0.33,0.33)近傍に制御される方法について説明する。
本実施形態では、各光源発熱ユニットにおける2つの光源から出射されるレーザ光は互いに同じ色である。2つの光源を1つの光源とみなした場合、2つのレーザ光のドミナント波長は光源発熱ユニットから出射される光の標準波長としてみなされ、本実施形態の照明光は3つの光源発熱ユニットにおける3つの標準波長によって構成されると想定される。このため光源発熱ユニットにおける光量比が算出される必要がある。
ここで、2つの光源の発振スペクトル波長強度分布に対して、短波長側から波長毎に、スペクトル強度と視感度係数との積をその波長の強度と定義した場合、ドミナント波長とは、2つの光源の波長域全体の強度(総和)に対して、短波長側から積算して、総和の50%となる波長をドミナント波長と定める。
本実施形態では、各光源発熱ユニットにおける2つの光源から出射されるレーザ光は互いに同じ色である。2つの光源を1つの光源とみなした場合、2つのレーザ光のドミナント波長は光源発熱ユニットから出射される光の標準波長としてみなされ、本実施形態の照明光は3つの光源発熱ユニットにおける3つの標準波長によって構成されると想定される。このため光源発熱ユニットにおける光量比が算出される必要がある。
ここで、2つの光源の発振スペクトル波長強度分布に対して、短波長側から波長毎に、スペクトル強度と視感度係数との積をその波長の強度と定義した場合、ドミナント波長とは、2つの光源の波長域全体の強度(総和)に対して、短波長側から積算して、総和の50%となる波長をドミナント波長と定める。
前記ドミナント波長を標準波長とし、同じ色の2つの光源発熱ユニットの色度座標を、標準波長の色度座標とみなし、RGBの3つの標準波長の色度座標が所望の色度座標(0.33,0.33)となるように、RGBの3つの標準波長の光量比が仮設定される。各光源発熱ユニットの標準波長に対する色度座標と仮光量比との積に対して、各光源発熱ユニットを構成する。すなわち、2つの光源の各々の色度座標と光量との積の和が、対応する標準波長の値に略等しくなるように、2つの光源の光量を決める。
この方法では、6つの光源の光量が簡易に決定され、照明光の色度座標(X,Y)を所望の色度座標(0.33,0.33)に制御される。
これを式で記述する場合、以下のとおりである。
光源発熱ユニット20,30,40の標準波長をλ1o,λ2o,λ3oとし、対応する標準波長の色度座標をλ1o(X1o,Y1o),λ2o(X2o,Y2o),λ3o(X3o,Y3o)とする。これら標準波長で構成される照明光の色度座標(X,Y)が所望の色度座標(0.33,0.33)近傍に制御される場合において、各光源発熱ユニットの光量比をr1,r2,r3とする。
例えば、白色照明光の緑色の光源発熱ユニット20の対応する色度座標を(X1,Y1)とすれば、
X1=r1×X1o,Y1=r1×Y1o となる。
X1=r1×X1o,Y1=r1×Y1o となる。
緑色光の光源発熱ユニット20は光源21a,21bで構成されており、光源21a,21bの光量比をr11:r12(r1=r11+r12)とすれば近似的に次のように設定される。
r1=r11+r12
X1=r1×X1o ~(r11×X1A) +(r12×X1B)
Y1=r1×Y1o ~(r11×Y1A) +(r12×Y1B)・・・式(12)
同様に光源発熱ユニット30,40の各光量比が設定されると、6つの互いに異なる波長で構成される照明光の色度座標(X,Y)を所望の色度座標(0.33,0.33)近傍に設定できる。
r1=r11+r12
X1=r1×X1o ~(r11×X1A) +(r12×X1B)
Y1=r1×Y1o ~(r11×Y1A) +(r12×Y1B)・・・式(12)
同様に光源発熱ユニット30,40の各光量比が設定されると、6つの互いに異なる波長で構成される照明光の色度座標(X,Y)を所望の色度座標(0.33,0.33)近傍に設定できる。
[効果]
本実施形態では、各光源発熱ユニットの光量比と発熱量とが制御されることにより、照明光の色度座標(X,Y)を所望の色度座標(0.33,0.33)近傍に設定できる。
本実施形態では、各光源発熱ユニットの光量比と発熱量とが制御されることにより、照明光の色度座標(X,Y)を所望の色度座標(0.33,0.33)近傍に設定できる。
[第3の実施形態]
[構成]
本実施形態では、内視鏡装置200において、図9Aに示すカラーフィルター207を透過した反射光を、撮像部201が撮像する際に、撮像部201が撮像する反射光における光量比(PB:PG:PR)が一定となるように、駆動部103は光源21,31,41から出射される光量比(P1:P2:P3)を制御する。
[構成]
本実施形態では、内視鏡装置200において、図9Aに示すカラーフィルター207を透過した反射光を、撮像部201が撮像する際に、撮像部201が撮像する反射光における光量比(PB:PG:PR)が一定となるように、駆動部103は光源21,31,41から出射される光量比(P1:P2:P3)を制御する。
図9Bに示すカラーフィルター207の透過特性において、カラーフィルター207は波長選択性を有し、カラーフィルター207の各透過領域は互いに対して完全に分離されておらず一部において互いに重なっている。光源がマルチモードのLDであるため、レーザ光は広いスペクトルを有し、波長域の幅は広くなっている。この波長域を検討対象とする。
以下の数式は、一点の波長に対するスペクトル強度とカラーフィルター207の透過係数との積を示す。しかし、実際には、数式は、スペクトル強度分布とカラーフィルター207の透過スペクトル分布との畳み込み積分で求められる。
内視鏡装置200の画像処理方法の一例は、反射光の波長に対して、カラーフィルター207を透過した反射光の光量比を一定にして、画像処理部203において適切な比率で色を補正し白色画像を生成する。
光源21は、波長λ1と光量P1を有する緑色のレーザ光を出射する。
光源31は、波長λ2と光量P2を有する赤色のレーザ光を出射する。
光源41は、波長λ3と光量P3を有する青色のレーザ光を出射する。
光源31は、波長λ2と光量P2を有する赤色のレーザ光を出射する。
光源41は、波長λ3と光量P3を有する青色のレーザ光を出射する。
レーザ光のスペクトルの広がりが狭帯域であるのに対して、カラーフィルター207の透過波長帯域が広いため、3色のレーザ光の波長に対して、2つの波長域の光を検出する領域が存在してしまう状況にある。
撮像部201が受光する反射光において、駆動部103は、カラーフィルター207を透過した後に撮像部201が受光する青レーザ光の光量PBを、青色のレーザ光の光量P3と緑色のレーザ光の光量P1との和を基に算出する。カラーフィルター207は、青色のレーザ光の波長λ3に対して透過率がFb(λ3)を有し、緑色のレーザ光の波長λ1に対して透過率がFg(λ1)を有しているとする。この場合、駆動部103は、光量PBを、下記式(13)を用いて算出する。
PB=Fb(λ3)×P3+Fg(λ1)×P1・・・式(13)
撮像部201が受光する反射光において、駆動部103は、カラーフィルター207を透過した後に撮像部201が受光する緑色レーザ光の光量PGを、緑色のレーザ光の光量P1を基に算出する。カラーフィルター207は、緑色のレーザ光の波長λ1に対して透過率がFg(λ1)を有しているとする。この場合、駆動部103は、光量PGを、下記式(14)を用いて算出する。
PG=Fg(λ1)×P1・・・式(14)
撮像部201が受光する反射光において、駆動部103は、カラーフィルター207を透過した後に撮像部201が受光する赤色レーザ光の光量PRを、赤色のレーザ光の光量P2を基に算出する。カラーフィルター207は、赤色のレーザ光の波長λ2に対して透過率がFr(λ2)を有しているとする。この場合、駆動部103は、PRを、下記式(15)を用いて算出する。
PR=Fr(λ2)×P2・・・式(15)
カラーフィルター207を透過した光量比、すなわちPB:PG:PRが1:1:1と一定となるように、駆動部103は下記式(15),(16)を用いて、各光量P1,P2,P3を制御する。
撮像部201が受光する反射光において、駆動部103は、カラーフィルター207を透過した後に撮像部201が受光する青レーザ光の光量PBを、青色のレーザ光の光量P3と緑色のレーザ光の光量P1との和を基に算出する。カラーフィルター207は、青色のレーザ光の波長λ3に対して透過率がFb(λ3)を有し、緑色のレーザ光の波長λ1に対して透過率がFg(λ1)を有しているとする。この場合、駆動部103は、光量PBを、下記式(13)を用いて算出する。
PB=Fb(λ3)×P3+Fg(λ1)×P1・・・式(13)
撮像部201が受光する反射光において、駆動部103は、カラーフィルター207を透過した後に撮像部201が受光する緑色レーザ光の光量PGを、緑色のレーザ光の光量P1を基に算出する。カラーフィルター207は、緑色のレーザ光の波長λ1に対して透過率がFg(λ1)を有しているとする。この場合、駆動部103は、光量PGを、下記式(14)を用いて算出する。
PG=Fg(λ1)×P1・・・式(14)
撮像部201が受光する反射光において、駆動部103は、カラーフィルター207を透過した後に撮像部201が受光する赤色レーザ光の光量PRを、赤色のレーザ光の光量P2を基に算出する。カラーフィルター207は、赤色のレーザ光の波長λ2に対して透過率がFr(λ2)を有しているとする。この場合、駆動部103は、PRを、下記式(15)を用いて算出する。
PR=Fr(λ2)×P2・・・式(15)
カラーフィルター207を透過した光量比、すなわちPB:PG:PRが1:1:1と一定となるように、駆動部103は下記式(15),(16)を用いて、各光量P1,P2,P3を制御する。
P2/P1=Fg(λ1)/Fr(λ2)・・・式(16)
P3/P1=(Fg(λ1)-Fb(λ1))/Fb(λ3)・・・式(17)
各光源の光量比が制御されることによって、撮像部201が受光する反射光の光量比が略一定となる。
P3/P1=(Fg(λ1)-Fb(λ1))/Fb(λ3)・・・式(17)
各光源の光量比が制御されることによって、撮像部201が受光する反射光の光量比が略一定となる。
[効果]
このため、画像処理部203が画像を生成する際に実施される色味の調整において、光量に対する重み付け画像処理が容易となる。
このため、画像処理部203が画像を生成する際に実施される色味の調整において、光量に対する重み付け画像処理が容易となる。
本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示される複数の構成要素の適宜な組み合せにより種々の発明を形成できる。
Claims (14)
- 複数の光源それぞれから出射され且つ互いに異なる波長を有する光の合成によって照明光を生成する光源装置であって、
少なくとも1つの前記光源に対して隣接且つ熱的に接続され、発熱によって前記光源の発熱量を調整する熱量調整素子と、
前記光源と前記熱量調整素子との少なくとも一方を有する複数の光源発熱ユニットと、
前記光源発熱ユニットの発熱量は前記光源の発熱量と前記熱量調整素子の発熱量との総和である場合において、前記光源発熱ユニットそれぞれの発熱量の比が一定となり且つ前記照明光の状態が所望の状態となるように、前記光源と前記熱量調整素子とを制御する光源制御部と、
を具備する光源装置。 - 1つの放熱部材と、
前記放熱部材と前記光源発熱ユニットそれぞれとを熱的に接続する熱接続部材と、
をさらに具備し、
前記熱接続部材それぞれの熱抵抗は、前記光源発熱ユニットそれぞれにおける熱抵抗よりも大きく、
1つの前記光源発熱ユニットと1つの前記熱接続部材とが1つのユニットであるとした場合に、1つの前記ユニットにおける前記光源発熱ユニットの発熱量と前記熱接続部材の熱抵抗との積が、前記ユニットそれぞれにおいて等しくなるように、前記熱接続部材それぞれが構成される請求項1に記載の光源装置。 - 前記光源制御部は、前記照明光の状態が前記所望の状態を維持されるために、前記光源それぞれの出力光量を制御し、前記出力光量に対応する前記光源の駆動を制御し、発熱量が最も高い第1光源の発熱量を基準に、前記第1光源が所属する前記光源発熱ユニット以外の前記光源発熱ユニットが有する前記熱量調整素子の発熱量を制御する請求項1または請求項2に記載の光源装置。
- 前記光源発熱ユニットは、前記光源と前記熱量調整素子とを有する請求項1乃至請求項3のいずれかに記載の光源装置。
- 前記光源は、レーザ光源であり、
前記所望の状態は、所望の光量比である請求項4に記載の光源装置。 - 前記光源装置は、複数の照明モードからいずれかの照明モードに切り替え、
前記光源制御部は、切り替えられた照明モードに応じて、前記光源と前記熱量調整素子とを制御する請求項5に記載の光源装置。 - 前記光源制御部は、前記所望の状態を維持された前記照明光の総光量が可変するように、前記光源と前記熱量調整素子とを制御する請求項5に記載の光源装置。
- 前記照明光が対象物を照明した際に前記対象物によって反射された後にカラーフィルターを透過した反射光を撮像する撮像部を有する内視鏡装置に前記光源装置が組み込まれた際に、
前記撮像部が撮像する前記反射光における光量比が一定となるように、前記光源制御部は前記光源それぞれから出射される光量比を制御する請求項5に記載の光源装置。 - 前記光源は、レーザ光源であり、
前記所望の状態は、所望の色度座標である請求項4に記載の光源装置。 - 前記光源は、前記熱量調整素子を兼ね、
前記照明光の色度座標は、前記光源発熱ユニットそれぞれから出射される光の波長に対応する色度座標と、前記照明光全体に占める光量比との積の総和で決まり、
前記光源制御部は、前記照明光の色度座標が前記所望の色度座標に近傍するように、前記光源と前記熱量調整素子とを制御する請求項6に記載の光源装置。 - 前記光源発熱ユニットが互いに同じ色を有し且つ互いに異なる波長を有する光を出射する2つの光源を有する場合の前記光源発熱ユニットから出射される光の標準波長を2つの光のドミナント波長であると定義し、
実際の照明光の色度座標が予め設定された前記照明光の色度座標に近似するように、前記光源発熱ユニットから出射される前記光の前記標準波長と前記光源の光量比とを基に、前記実際の照明光の色度座標を前記光源制御部は制御する請求項10に記載の光源装置。 - 前記照明光は、前記照明光の色度座標が前記所望の色度座標(0.33,0.33)に近傍する白色光である請求項11に記載の光源装置。
- 前記放熱部材は、前記光源発熱ユニットから外部に伝導される熱の伝導量を調整する調整部である請求項2に記載の光源装置。
- 前記光源は、前記熱量調整素子を兼ねる請求項1に記載の光源装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/068263 WO2016208015A1 (ja) | 2015-06-24 | 2015-06-24 | 光源装置 |
JP2017524508A JPWO2016208015A1 (ja) | 2015-06-24 | 2015-06-24 | 光源装置と内視鏡装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/068263 WO2016208015A1 (ja) | 2015-06-24 | 2015-06-24 | 光源装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016208015A1 true WO2016208015A1 (ja) | 2016-12-29 |
Family
ID=57585013
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/068263 WO2016208015A1 (ja) | 2015-06-24 | 2015-06-24 | 光源装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2016208015A1 (ja) |
WO (1) | WO2016208015A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040190580A1 (en) * | 2003-03-04 | 2004-09-30 | Bardia Pezeshki | High-yield high-precision distributed feedback laser based on an array |
US20080031294A1 (en) * | 2006-07-12 | 2008-02-07 | Krishnamoorthy Ashok V | Structures and methods for adjusting the wavelengths of lasers via temperature control |
WO2009116134A1 (ja) * | 2008-03-18 | 2009-09-24 | 三菱電機株式会社 | レーザ光源モジュール |
JP2009296020A (ja) * | 2009-09-24 | 2009-12-17 | Hitachi Ltd | 光モジュール |
US20100232462A1 (en) * | 2009-03-12 | 2010-09-16 | Futurewei Technologies, Inc. | Thermally Optimized Mechanical Interface for Hybrid Integrated Wavelength Division Multiplexed Arrayed Transmitter |
JP2013115257A (ja) * | 2011-11-29 | 2013-06-10 | Mitsubishi Electric Corp | 光モジュール |
JP2013258357A (ja) * | 2012-06-14 | 2013-12-26 | Mitsubishi Electric Corp | 半導体光源装置 |
WO2015045843A1 (ja) * | 2013-09-30 | 2015-04-02 | ウシオ電機株式会社 | レーザ光源装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0529695A (ja) * | 1991-07-23 | 1993-02-05 | Nippon Steel Corp | レーザ装置 |
JP2001085882A (ja) * | 1999-09-09 | 2001-03-30 | Hitachi Cable Ltd | 電子機器の冷却方法 |
JP2002280661A (ja) * | 2001-03-16 | 2002-09-27 | Furukawa Electric Co Ltd:The | レーザダイオードモジュールからなる光源 |
JP5764152B2 (ja) * | 2013-02-13 | 2015-08-12 | 株式会社フジクラ | 半導体レーザ装置 |
JP5872507B2 (ja) * | 2013-07-05 | 2016-03-01 | 富士通株式会社 | 半導体光増幅器モジュールの制御方法 |
EP3050492A4 (en) * | 2013-10-30 | 2017-09-20 | Olympus Corporation | Light source unit and endoscope device |
-
2015
- 2015-06-24 JP JP2017524508A patent/JPWO2016208015A1/ja active Pending
- 2015-06-24 WO PCT/JP2015/068263 patent/WO2016208015A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040190580A1 (en) * | 2003-03-04 | 2004-09-30 | Bardia Pezeshki | High-yield high-precision distributed feedback laser based on an array |
US20080031294A1 (en) * | 2006-07-12 | 2008-02-07 | Krishnamoorthy Ashok V | Structures and methods for adjusting the wavelengths of lasers via temperature control |
WO2009116134A1 (ja) * | 2008-03-18 | 2009-09-24 | 三菱電機株式会社 | レーザ光源モジュール |
US20100232462A1 (en) * | 2009-03-12 | 2010-09-16 | Futurewei Technologies, Inc. | Thermally Optimized Mechanical Interface for Hybrid Integrated Wavelength Division Multiplexed Arrayed Transmitter |
JP2009296020A (ja) * | 2009-09-24 | 2009-12-17 | Hitachi Ltd | 光モジュール |
JP2013115257A (ja) * | 2011-11-29 | 2013-06-10 | Mitsubishi Electric Corp | 光モジュール |
JP2013258357A (ja) * | 2012-06-14 | 2013-12-26 | Mitsubishi Electric Corp | 半導体光源装置 |
WO2015045843A1 (ja) * | 2013-09-30 | 2015-04-02 | ウシオ電機株式会社 | レーザ光源装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016208015A1 (ja) | 2018-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4525767B2 (ja) | 照明装置及び表示装置 | |
RU2415518C2 (ru) | Светодиодное осветительное устройство | |
JP4263484B2 (ja) | Ledの多色化アレイを有する照明器具 | |
JP4116435B2 (ja) | Led照明装置システム及びこのled照明装置システムのled光源に電力を供給する方法 | |
JP4167131B2 (ja) | 照明装置 | |
US20140159077A1 (en) | System for thermal control of red led(s) chips | |
US7733931B2 (en) | Light source device, projector device, monitor device, and lighting device | |
JP5211663B2 (ja) | 光源装置、プロジェクタ装置、モニタ装置、照明装置 | |
JP7059941B2 (ja) | 照明装置、観察システム、および制御方法 | |
WO2017154333A1 (ja) | 内視鏡用光源装置 | |
TW200539538A (en) | Control of spectral content of a laser diode light source | |
JP2013258357A (ja) | 半導体光源装置 | |
TW200937152A (en) | Method and arrangement for adjusting a color location, and illumination system | |
JP2013168529A (ja) | レーザ光源装置および画像表示装置 | |
WO2016208015A1 (ja) | 光源装置 | |
TWI362636B (en) | Light source control apparatus and method for controlling light source thereof | |
WO2015025849A1 (ja) | 光源装置及び内視鏡装置 | |
JP2011154206A (ja) | 光源装置、投影装置及び投影方法 | |
JP6350005B2 (ja) | プロジェクタおよびヘッドアップディスプレイ装置 | |
WO2015045843A1 (ja) | レーザ光源装置 | |
WO2024166224A1 (ja) | 光源装置及び冷却ユニット | |
WO2022190390A1 (ja) | 光源装置 | |
JP6367972B2 (ja) | 光源ユニット、光源装置および内視鏡装置 | |
JP2005191223A (ja) | 半導体レーザ光源装置 | |
WO2018131097A1 (ja) | 照明装置及び照明装置を含む内視鏡システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15896337 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017524508 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15896337 Country of ref document: EP Kind code of ref document: A1 |