WO2009113657A1 - 発振器 - Google Patents

発振器 Download PDF

Info

Publication number
WO2009113657A1
WO2009113657A1 PCT/JP2009/054868 JP2009054868W WO2009113657A1 WO 2009113657 A1 WO2009113657 A1 WO 2009113657A1 JP 2009054868 W JP2009054868 W JP 2009054868W WO 2009113657 A1 WO2009113657 A1 WO 2009113657A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
mos transistor
load circuit
circuit
oscillator
Prior art date
Application number
PCT/JP2009/054868
Other languages
English (en)
French (fr)
Inventor
佐藤 健一
智晃 山本
Original Assignee
旭化成エレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成エレクトロニクス株式会社 filed Critical 旭化成エレクトロニクス株式会社
Priority to CN2009801085644A priority Critical patent/CN101971485B/zh
Priority to JP2010502891A priority patent/JP5227394B2/ja
Priority to EP09720297.2A priority patent/EP2251973B1/en
Priority to US12/921,668 priority patent/US8653900B2/en
Publication of WO2009113657A1 publication Critical patent/WO2009113657A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • H03B5/36Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator active element in amplifier being semiconductor device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/003Changing the DC level

Definitions

  • the present invention relates to an oscillator, and more particularly to an oscillator including an oscillation circuit for oscillating a vibrator.
  • FIG. 16 is a diagram showing a configuration of a general crystal oscillator.
  • the crystal oscillator is composed of a crystal resonator SS and an oscillation circuit section CC for oscillating the crystal resonator SS.
  • the oscillation circuit section CC includes an amplifier A and a resistor R connected in parallel to the crystal resonator SS, a load capacitive element Ca (capacitance value C Ca ) connected between the input side of the amplifier A and the ground, and an amplifier.
  • the resistor R is also referred to as a feedback resistor, and is used to determine the DC operating point of input and output.
  • the oscillation frequency can be controlled.
  • the amplification factor of the amplifier A is gm
  • the crystal voltage amplitude of the crystal resonator SS is Vxtal.
  • the configuration of FIG. 16 is represented by an equivalent circuit as shown in FIG.
  • the crystal resonator side SSS includes a crystal series equivalent capacitance component C1 (capacitance value C C1 ), a crystal series equivalent resistance component R1 (resistance value R R1 ), and a crystal series equivalent inductive component L1 (reactance value L L1 ).
  • the oscillation circuit unit side CCS has a configuration in which a resistance component Rn (resistance value R Rn ) and a capacitance component CL (capacitance value C CL ) are connected in series.
  • the resistance component Rn is a negative resistance component having a negative value
  • a known LC oscillator is configured by canceling the resistance value R R1 of the resistance component R1 with the resistance value R Rn of the negative resistance component Rn. Can do.
  • the capacitance component CL is an oscillator equivalent capacitance component of an equivalent circuit.
  • Capacitance value C Ca capacitance value C CL and the load capacitive element Ca of the capacitive component CL the relationship between the capacitance value C Cb of the load capacitive element Cb is defined in Equation (1).
  • C CL (C Ca ⁇ C Cb ) / (C Ca + C Cb ) (1) According to Equation (1), when the capacitance value C Ca of the load capacitive element Ca is small and the capacitance value C Cb of the load capacitive element Cb is small, the capacitance value C CL of the oscillator equivalent capacitance component CL is small.
  • the excitation level P of the crystal resonator is as shown in Equation (2).
  • P R R1 ⁇ (C CL + C C0 ) 2 ⁇ (2 ⁇ f) 2 ⁇ Vxtal 2 [W] (2)
  • the excitation level P is proportional to the square of the frequency f. For this reason, when a high-frequency band crystal resonator is used, the excitation level P becomes a large value.
  • the resistance value R Rn of the negative resistance Rn indicating the allowance for oscillation of the circuit is as shown in Expression (3).
  • R Rn ⁇ gm / ⁇ C Ca ⁇ C Cb ⁇ (2 ⁇ f) 2 ⁇ (3)
  • the resistance value R Rn of the negative resistance component Rn is inversely proportional to the square of the frequency, and the absolute value decreases as the frequency f increases. Therefore, in a normal design, the amplification factor gm is increased in order to increase the negative resistance.
  • the crystal voltage amplitude Vxtal usually increases to the power supply level, so that the excitation level P of the crystal resonator increases.
  • problems such as a shortened life of the crystal unit occur.
  • the voltage controlled crystal oscillator is configured as shown in FIG. 18, for example.
  • both the load capacitive element Ca and the load capacitive element Cb are variable capacitive elements. If the capacitance of the variable capacitance element is controlled by the control voltage, a known voltage controlled oscillator can be configured. That is, the capacity is increased when the frequency is decreased, and the capacity is decreased when the frequency is increased.
  • parasitic capacitance is added in parallel to each of the load capacitive element Ca and the load capacitive element Cb (broken line portion in the figure).
  • a capacitance component CL is an oscillator equivalent capacitance component of an equivalent circuit.
  • the relationship between the capacitance value C CL of the oscillator equivalent capacitance component and the oscillation frequency f is expressed by Equation (4).
  • f 1 / 2 ⁇ ⁇ L L1 ⁇ C C1 ⁇ (C C0 + C CL ) / (C C0 + C C1 + C CL ) ⁇ 1/2 (4)
  • the equation (5) is obtained.
  • FIG. 20 is a diagram showing a change in the amount fL in which the oscillation frequency f with respect to the capacitance value C CL of the oscillator equivalent capacitance component CL is expressed as a ratio.
  • the capacity value C CL when the value other than the variable capacity of the oscillator equivalent capacity component CL is small, the capacity value C CL is also small according to the equation (1), so the frequency variable range becomes ⁇ fL1 in the figure, and the value When is large, the capacitance value C CL is also large according to the equation (1), so that the frequency variable range is ⁇ fL2 in FIG.
  • variable width [Delta] C CL of the capacitance value C CL of the oscillator equivalent capacitive component CL are equal, smaller value of capacitance than the variable capacitance, variable frequency range becomes large. For this reason, if the value of the capacity other than the variable capacity is large, it is difficult to widen the frequency variable range.
  • the amplification factor gm is usually increased in order to increase the resistance value R Rn of the negative resistance component of the circuit. Then, the size of the amplifier must be increased, and the parasitic capacitance increases, so that it is difficult to take a wide frequency variable range.
  • a configuration for solving the problem of the excitation level P of the crystal resonator and the frequency variable range at a high frequency as described above is disclosed (for example, see Japanese Patent Laid-Open No. 2001-308641). This configuration will be described with reference to FIG.
  • This figure is an example of a general method for suppressing the crystal voltage amplitude Vxtal.
  • the diode D1 is connected to suppress the crystal voltage amplitude Vxtal.
  • the anode of the diode D1 is connected to the output terminal, and the cathode of the diode D1 is connected to the ground.
  • the crystal voltage amplitude Vxtal is determined by the forward voltage drop of the diode D1 connected as a clamp diode, the crystal voltage amplitude Vxtal can be reduced.
  • the forward voltage drop of the diode D1 is Vf
  • equation (7) is obtained.
  • Vxtal (1 / ⁇ 2) ⁇ Vf (7)
  • the excitation level P of the crystal resonator can be reduced.
  • the forward drop voltage Vf of the diode D1 is, for example, 0.8 [V].
  • the excitation level P of the crystal resonator can be expressed by the above equation (2).
  • the configuration of FIG. 21 has a problem that the junction capacitance C D1 of the diode (broken line portion in the figure) is connected in parallel to the load capacitance Cb, and the load capacitance increases accordingly. . That is, even if the excitation level P of the crystal resonator can be improved in terms of amplitude, the excitation level P of the crystal resonator is deteriorated by the increase in the load equivalent of the oscillator equivalent capacitance component CL due to the increase in load capacitance. Therefore, there is a problem that the effect on the excitation level P is low.
  • the present invention has been made to solve the above-described problems of the prior art, and an object of the present invention is to satisfy the requirement of the excitation level of the crystal resonator in an oscillator using a high-frequency crystal resonator, and to adjust the frequency variable range. It is an object of the present invention to provide an oscillator that can widen the frequency.
  • An oscillator according to the present invention is an oscillator having an oscillation circuit for oscillating a vibrator, and includes a load circuit that is inductive and simultaneously limits an oscillation amplitude as a load of the vibrator. . According to such a configuration, it is possible to satisfy the excitation level requirement of the vibrator and widen the frequency variable range.
  • the load circuit may include at least one active element. Even when at least one active element is included, the requirement of the excitation level of the vibrator can be satisfied and the frequency variable range can be widened.
  • the active element is a transistor.
  • the oscillation amplitude is limited by the threshold voltage of the transistor.
  • the reactance component of the output impedance of the load circuit is positive. According to such a configuration, it is possible to satisfy the requirement of the excitation level of the crystal resonator and widen the frequency variable range.
  • the load circuit is connected to at least one terminal of the vibrator. If a load circuit is connected to at least one terminal of the vibrator, the voltage change can be regulated and the excitation level requirement of the crystal vibrator can be satisfied.
  • the load circuit is connected in parallel to the vibrator. Even when a load circuit is connected in parallel with the vibrator, the voltage change is regulated to satisfy the excitation level requirement of the crystal vibrator.
  • the load circuit is An NPN bipolar transistor having an emitter connected to the terminal of the vibrator and a collector supplied with a first predetermined voltage; A resistance component having a second predetermined voltage supplied to one end and the other end connected to the base of the NPN bipolar transistor; A capacitive component provided between the emitter and base of the NPN bipolar transistor; It is characterized by having.
  • the load circuit is An NPN bipolar transistor having a collector connected to a terminal of the vibrator and a third predetermined voltage supplied to the emitter; A resistance component provided between the collector and base of the NPN bipolar transistor; A capacitive component provided between the emitter and base of the NPN bipolar transistor; It is characterized by having.
  • the load circuit is A PNP bipolar transistor having an emitter connected to the vibrator and a collector supplied with a first predetermined voltage; A resistance component having a second predetermined voltage supplied to one end and the other end connected to the base of the PNP bipolar transistor; A capacitive component provided between the emitter and base of the PNP bipolar transistor; You may have.
  • the load circuit is A PNP bipolar transistor having a collector connected to the vibrator and a third voltage supplied to the emitter; A resistance component provided between a collector and a base of the PNP bipolar transistor; A capacitive component provided between the emitter and base of the PNP bipolar transistor; You may have.
  • the load circuit is A MOS transistor having a drain connected to the vibrator and a fourth predetermined voltage supplied to the source; A resistance component provided between the drain and gate of the MOS transistor; A capacitive component provided between the source and gate of the MOS transistor; It is characterized by having.
  • the MOS transistor may be an N-type MOS transistor.
  • the MOS transistor may be a P-type MOS transistor.
  • the load circuit is A MOS transistor having a source connected to the vibrator and a drain supplied with a fifth predetermined voltage; A sixth predetermined voltage is supplied to one end, and the other end is connected to the gate of the MOS transistor; A capacitive component provided between the source and gate of the MOS transistor; It is characterized by having.
  • the MOS transistor may be an N-type MOS transistor.
  • the MOS transistor may be a P-type MOS transistor.
  • the present invention by providing a circuit having inductivity and limiting the oscillation amplitude as a load of the vibrator, the requirement of the excitation level of the crystal vibrator is satisfied, and the frequency variable range is increased. Can be wide.
  • FIG. 1 is a circuit diagram showing a configuration of an oscillator according to an embodiment of the present invention.
  • the oscillator according to the present embodiment has a configuration in which a limiter circuit LM1 is connected as a load circuit of an oscillator including a crystal resonator SS and an oscillation circuit section CC for oscillating the crystal resonator SS.
  • the resonator is not limited to a crystal resonator, and may be a SAW resonator, a ceramic resonator, or the like.
  • the current resulting from oscillation passes through the limiter circuit LM1 from one terminal of the crystal resonator, and is again opposite to the crystal resonator via the voltage source (voltage value VH).
  • the limiter circuit LM1 is a load of the crystal resonator because it returns to one terminal on the side.
  • the limiter circuit LM1 includes an N-type MOS transistor 1, a resistance element Rx (resistance value R Rx ) connected between the gate terminal G and the drain terminal D, and the gate terminal G and the source terminal S.
  • the drain terminal D of the N-type MOS transistor 1 is connected to the output terminal of the amplifier A.
  • the drain terminal D of the N-type MOS transistor 1 is connected to the capacitor Cx (capacitance value C Cx ).
  • a voltage source having a voltage value VH is connected to the source terminal S of the N-type MOS transistor 1.
  • the voltage Vb at the output terminal of the amplifier A is clipped when the limiter circuit LM1 exceeds the threshold voltage value of the gate voltage of the N-type MOS transistor 1. That is, as shown in FIG. 2, the voltage Vb is clipped at a voltage value obtained by adding the threshold voltage value VT of the N-type MOS transistor 1 to the voltage value VH of the voltage source.
  • the crystal voltage amplitude Vxtal is given by equation (8).
  • Vxtal (1 / ⁇ 2) ⁇ (VT + VH) (8) Therefore, the crystal voltage amplitude Vxtal can be adjusted by adjusting the voltage value VH of the voltage source. That is, if the voltage value VH supplied to the source terminal S of the N-type MOS transistor 1 is adjusted, the crystal voltage amplitude Vxtal can be suppressed.
  • the limiter circuit LM1 in FIG. 1 can be expressed as an inductance Lx.
  • the value L Lx of the inductance Lx is given by assuming that the amplification factor of the N-type MOS transistor 1 is gmx.
  • L Lx (gmx ⁇ R Rx ⁇ 1) ⁇ C Cx / ⁇ gmx 2 + (2 ⁇ f) 2 ⁇ C Cx 2 ⁇ (9) It is.
  • a parallel circuit of the value L Lx of the inductance Lx and the capacitance value C Cb of the load capacitive element Cb is defined as a capacitance Cb ′.
  • the reactance 2 ⁇ fL Lx value which is the product of the inductance L Lx and the angular frequency 2 ⁇ f
  • the inductance Lx appears to be equivalent to a coil. That is, the reactance of the limiter circuit LM1 is inductive.
  • Equation (9) the condition for making the reactance of the limiter circuit LM1 inductive is R RX > (1 / gmx).
  • the equivalent circuit portion (the broken line portion in FIG. 3) of the load capacitance element Cb and the limiter circuit LM1 is modified as shown in FIG. That is, in the circuit configuration of FIG. 4A corresponding to the broken line portion in FIG. 3, the load capacitive element Cb and the load capacitive element C Lx (capacitance value is ⁇ 1 / L Lx ( It can be replaced with a parallel circuit with 2 ⁇ f) 2 ). Further, the circuit of FIG. 5B can be modified as shown in FIG. In FIG.
  • the capacitance value of the oscillator equivalent capacitance component CL ′ is expressed as shown in FIG.
  • the excitation level P of the crystal resonator is as shown in Expression (12).
  • P R R1 ⁇ (C CL ′ + C C0 ) 2 ⁇ (2 ⁇ f) 2 ⁇ Vxtal ′ 2 [W] (12) Therefore, according to the circuit configuration of FIG.
  • FIG. 6 is a diagram showing a change in the amount fL representing the oscillation frequency f with respect to the capacitance value C CL ′ of the oscillator equivalent capacitance component CL ′.
  • the oscillator equivalent capacitance component changes in the range 6A in the figure, and the frequency variable range becomes the range of ⁇ fL1.
  • the capacitance value C CL ′ of the oscillator equivalent capacitance component CL ′ changes in the range 6B in FIG.
  • the frequency variable range is ⁇ fL2 It becomes a range, even in the same 'variable width [Delta] C CL' of the capacitance value C CL, wider than the range of DerutafL1. Therefore, the frequency variable range can be expanded by adding the limiter circuit LM1. Therefore, according to the present embodiment, in the oscillator using the high-frequency crystal resonator SS, the requirement for the excitation level of the crystal resonator can be satisfied and the frequency variable range can be widened.
  • FIG. 7 is a circuit diagram showing a configuration of an oscillator according to the second embodiment of the present invention.
  • the first embodiment described above has a configuration in which an upper limiter circuit (that is, a circuit that regulates the upper limit of the voltage change at the output terminal when connected to the output terminal of the amplifier A) is added.
  • the embodiment employs a configuration in which a downward limiter circuit (that is, a circuit that regulates the lower limit of the voltage change at the output terminal when connected to the output terminal of the amplifier A) is further employed.
  • an upper limiter circuit LM1 and a lower limiter circuit LM2 are connected as a load of the oscillator.
  • the limiter circuit LM2 of this example includes an N-type MOS transistor 2, a capacitive element Cx2 connected between the gate terminal G and the source terminal S, and a resistive element Rx2 connected to the gate terminal G.
  • the source terminal S of the N-type MOS transistor 2 is connected to the output terminal of the amplifier A.
  • a voltage source having a voltage value VL is connected to the other end of the resistance element Rx2 connected to the gate terminal G of the N-type MOS transistor 2.
  • the limiter circuits in both the upper and lower directions are connected, the amplitude of the voltage Vb on the output side of the amplifier exceeds the threshold value of the gate voltage of the N-type MOS transistors 1 and 2 by the limiter circuits LM1 and LM2. Voltage clipped. That is, as shown in FIG. 8, the upper limit of the voltage Vb is clipped by a voltage value obtained by adding the threshold voltage value VT of the N-type MOS transistor 1 to the voltage value VH of the voltage source. The lower limit is clipped by a voltage value obtained by subtracting the threshold voltage value VT of the MOS transistor 2.
  • the crystal voltage amplitude Vxtal is as shown in Equation (13).
  • Vxtal (1 / ⁇ 2) ⁇ ⁇ (VH + VT) ⁇ (VL ⁇ VT) ⁇ (13)
  • the voltage value VL and the voltage value VH can be arbitrarily set, and the latter may be zero volts. Therefore, by adjusting the voltage value VH supplied to the source terminal S of the N-type MOS transistor 1 and the voltage value VL supplied to the gate terminal G of the N-type MOS transistor 2 via the resistance element Rx2, the crystal voltage amplitude Further reduction of Vxtal becomes possible.
  • the limiter circuits LM1 and LM2 are both configured using N-type MOS transistors, which are active elements, but can also be configured using P-type MOS transistors. That is, FIG. 9A shows a downward limiter circuit LM2 configured using a P-type MOS transistor, and FIG. 9B shows an upward limiter circuit LM1 configured using a P-type MOS transistor. If these are connected to the output terminal of the oscillator, the lower limit and upper limit of the voltage amplitude of the crystal resonator can be suppressed.
  • a limiter circuit may be configured using a bipolar transistor which is another active element.
  • FIG. 4C shows an upper limiter circuit LM1 configured using an NPN bipolar transistor
  • FIG. 4D shows a lower limiter circuit LM2 configured using an NPN bipolar transistor. If these are connected to the output terminal of the oscillator, the upper limit and the lower limit of the voltage amplitude of the crystal resonator can be suppressed.
  • FIG. 4E shows a lower limiter circuit LM2 configured using a PNP bipolar transistor
  • FIG. 5F shows an upper limiter circuit LM1 configured using a PNP bipolar transistor. If these are connected to the output terminal of the oscillator, the lower limit and upper limit of the voltage amplitude of the crystal resonator can be suppressed.
  • the upper limiter circuit LM1 and the lower limiter circuit LM2 are added.
  • the lower limiter circuit LM2 is added.
  • a configuration in which only the circuit LM2 is provided may be employed. At this time, the crystal voltage amplitude Vxtal is as shown in Expression (14).
  • Vxtal (1 / ⁇ 2) ⁇ (VL ⁇ VT) (14)
  • the voltage value VL can be set arbitrarily. Therefore, the crystal voltage amplitude Vxtal can be further reduced by adjusting the voltage value VL supplied to the gate terminal G of the N-type MOS transistor 2 via the resistance element Rx2.
  • the base of the NPN bipolar transistor is connected to a voltage source (voltage value VH) via a resistance element Rx, and the collector is connected to a positive power source.
  • a voltage source voltage value VH
  • the base of the PNP-type bipolar transistor is connected to the voltage source (voltage value VH) via the resistance element Rx, and the collector is grounded. However, instead of grounding the collector, the voltage source You may connect to (voltage value VH).
  • the gate of the P-type MOS transistor is connected to the voltage source (voltage value VH) via the resistance element Rx, and the drain is grounded. However, instead of grounding the drain, the voltage source You may connect to (voltage value VH).
  • FIG. 4B the gate of the P-type MOS transistor is connected to the voltage source (voltage value VH) via the resistance element Rx, and the drain is grounded. However, instead of grounding the drain, the voltage source You may connect to (voltage value VH).
  • the gate of the N-type MOS transistor 2 of the limiter circuit LM2 is connected to the voltage source (voltage value VL) via the resistance element Rx2, and the drain is connected to the positive power supply. Instead of connecting to a power supply, it may be connected to a voltage source (voltage value VL).
  • the limiter circuit can be arranged between the terminals of the crystal resonator.
  • a differential limiter circuit L3 may be connected between the terminals of the crystal resonator SS.
  • the potential of the drain terminal of the N-type MOS transistor 1 needs to be DC biased by the current source Is so as to be higher than the source terminal.
  • the relationship between the oscillating voltages Va and Vb is such that the voltage Vb decreases when the voltage Va increases, and conversely the operation that the voltage Vb increases when Va decreases.
  • a differential limiter circuit L4 as shown in FIG. 11A may be provided as a downward limiter circuit.
  • the relationship between the oscillating voltages Va and Vb is such that the voltage Vb decreases when the voltage Va increases, and conversely the voltage Vb increases when the Va decreases. The operation is repeated.
  • the voltage Va rises and the voltage Vb is going to fall, if the voltage Va ⁇ Vb exceeds the threshold voltage value VT of the N-type MOS transistor, a current flows through the transistor, so the voltage Vb ⁇ Va is equal to the threshold voltage value VT. Therefore, the crystal voltage amplitude Vxtal can be reduced as compared with the case where the limiter circuit LM4 is not provided.
  • two differential limiter circuits L3 and L4 may be provided as shown in FIG. In this case, however, it is necessary to provide a DC cut capacitor Ccut.
  • the amplitude of the voltage Vb on the output side of the amplifier exceeds the threshold value of the gate voltage of the N-type MOS transistor 1 by the differential limiter circuits LM3 and LM4. Voltage clipped. That is, when the voltage Vb ⁇ Va exceeds the threshold voltage value VT of the N-type MOS transistor of the limiter circuit LM3, a current flows through the N-type MOS transistor, and the voltage is clipped at the threshold voltage value VT. If the voltage Va-Vb exceeds the threshold voltage value VT of the N-type MOS transistor of the limiter circuit LM4, a current flows through the N-type MOS transistor, and the voltage is clipped at the threshold voltage value VT.
  • the crystal voltage amplitude Vxtal can be further reduced as compared with the cases of FIGS. 10 and 11A.
  • the crystal voltage amplitude Vxtal is as shown in Expression (15).
  • Vxtal (1 / ⁇ 2) ⁇ 2VT (15)
  • the limiter circuit is configured by using the N-type MOS transistor 1.
  • the P-type MOS is used.
  • the limiter circuit may be configured using a transistor, an NPN bipolar transistor, or a PNP bipolar transistor.
  • a limiter circuit is configured using a bipolar transistor, a resistance element Rx is connected between the base terminal and the collector terminal, and a capacitive element Cx is connected between the base terminal and the emitter terminal.
  • the limiter circuit described above may be provided at any position. That is, as shown in FIG. 13, the crystal voltage amplitude Vxtal is suppressed regardless of the position on the input side of the amplifier A and the position on the output side of the amplifier A.
  • “upper” indicates a limiter circuit for the upper limit of the voltage
  • “lower” indicates a limiter circuit for the lower limit of the voltage.
  • the limiter circuit LM5 for the upper limit of the voltage on the input side of the amplifier A When the limiter circuit LM5 for the upper limit of the voltage on the input side of the amplifier A is provided, the lower limit of the voltage on the output side of the amplifier A is normally suppressed. Further, when the limiter circuit LM6 for the lower limit of the voltage on the input side of the amplifier A is provided, the upper limit of the voltage on the output side of the amplifier A is normally suppressed. Therefore, as shown in FIG. 14A, a configuration is adopted in which a limiter circuit LM5 for the upper limit of the voltage on the input side of the amplifier A and a limiter circuit LM1 for the upper limit of the voltage on the output side of the amplifier A are provided. Also good. Further, as shown in FIG. 6B, a configuration is adopted in which a limiter circuit LM6 for the lower limit of the voltage on the input side of the amplifier A and a limiter circuit LM2 for the lower limit of the voltage on the output side of the amplifier A are employed. Also
  • a limiter circuit may be added at a position parallel to the crystal unit SS. That is, a differential limiter circuit LM3 similar to that shown in FIG. 10 may be added as shown in FIG. 15A, or a differential limiter circuit LM4 similar to that shown in FIG. 11A may be added as shown in FIG. May be added. Further, as shown in FIG. 11C, the same differential limiter circuits LM3 and LM4 as in FIG. 11B may be added.
  • the connection directions of the differential limiter circuits LM3 and LM4 are the same as those in FIGS. 10, 11A, and 11B.
  • the limiter circuit for the upper limit and the lower limit of the voltage is a combination of limiter circuits including NPN type bipolar transistors (FIGS. 9D and 9C), or both of the limiter circuits including PNP type bipolar transistors are used.
  • the combination (FIG. 9 (f), FIG. 9 (e)) is preferable in that the number of steps can be reduced.
  • the resistance element and the capacitance element are provided as the resistance component and the capacitance component.
  • a parasitic resistance or a parasitic capacitance may be used. Even when the resistance component and the capacitance component are realized by the parasitic resistance and the parasitic capacitance without providing the resistance element and the capacitance element, the requirement of the excitation level of the crystal resonator can be satisfied and the frequency variable range can be widened.
  • the oscillation circuit unit for oscillating the crystal resonator and the limiter circuit described above may be integrated together or may be integrated on the same substrate. Further, a crystal resonator may be added and integrated as a unit, or may be integrated on the same substrate.
  • the present invention can be used for an oscillator including an oscillation circuit for oscillating a vibrator.
  • FIG. 1 is a circuit diagram showing a configuration of an oscillator according to a first embodiment of the present invention. It is a figure which shows the change of the voltage of the output terminal in FIG. It is a figure which shows the equivalent circuit of the structure of FIG. It is a figure which shows the equivalent circuit of the broken-line part in FIG. It is a figure which shows the equivalent circuit of the structure of FIG. It is a figure which shows the frequency variable range in the structure of FIG. It is a circuit diagram which shows the structure of the oscillator by the 2nd Embodiment of this invention. It is a figure which shows the change of the voltage of the output terminal in FIG.
  • FIG. 4D is a diagram showing a limiter circuit configured using an NPN bipolar transistor
  • FIG. 4E is a diagram illustrating a limiter circuit configured using a PNP bipolar transistor
  • FIG. 2F is a diagram showing a limiter circuit configured using PNP-type bipolar transistors. It is a figure which shows the structural example of the oscillator which has arrange
  • FIG. 4 is a diagram showing a configuration example of an oscillator in which another differential limiter circuit is arranged, in which (a) is a P-type MOS transistor, (b) is an NPN-type bipolar transistor, (c) is a PNP-type bipolar transistor, It is a figure which shows the structural example of the limiter circuit which attacked using each. It is a figure which shows the example of arrangement
  • (A) is a diagram showing a configuration provided with a limiter circuit for the upper limit of the voltage on the input side of the amplifier and a limiter circuit for the upper limit of the voltage on the output side; It is a figure which shows the structure which provided the limiter circuit and the limiter circuit about the minimum of the voltage of the output side.
  • (A) is a diagram showing a configuration example in which a differential limiter circuit is added
  • (b) is a diagram showing a configuration example in which another differential limiter circuit is added
  • (c) is a configuration in which two differential limiter circuits are added.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

 高周波の水晶振動子を使った発振器において、水晶振動子の励振レベルの要求を満足させ、周波数可変範囲を広くすることができる発振器を実現する。振動子SSを発振させるための発振回路CCを有する発振器に、振動子SSの負荷として、誘導性を有し、かつ、発振振幅を制限する負荷回路であるリミッタ回路LM1を設ける。このような構成によれば、リミッタ回路LM1の作用により、水晶振動子の励振レベルの要求を満足させ、かつ、周波数可変範囲を広くすることができる。

Description

発振器
 本発明は発振器に関し、特に振動子を発振させるための発振回路を含む発振器に関する。
 近年、通信の高速化や端末の高速処理化が進み、基準となる発振器の高周波数化が要求されてきている。そして、高周波の水晶振動子を用いた電圧制御水晶発振器においては、水晶振動子の励振レベルを低く抑えることが強く要求されている。
 図16は、一般的な水晶発振器の構成を示す図である。同図を参照すると、水晶発振器は、水晶振動子SSと、それを発振させるための発振回路部CCとから構成されている。発振回路部CCは、水晶振動子SSに並列に接続された増幅器A及び抵抗Rと、増幅器Aの入力側とグランドとの間に接続された負荷容量素子Ca(容量値CCa)と、増幅器Aの出力側とグランドとの間に接続された負荷容量素子Cb(容量値CCb)とを有している。抵抗Rは、帰還抵抗とも呼ばれ、入力と出力のDC動作点を定めるためのものである。
 この構成において、負荷容量素子Caおよび負荷容量素子Cbが可変容量素子であれば、発振周波数を制御することができる。なお、ここでは、増幅器Aの増幅率をgm、水晶振動子SSの水晶電圧振幅をVxtalとする。
 図16の構成を等価回路で表すと、図17のようになる。同図において、水晶振動子側SSSは、水晶直列等価容量成分C1(容量値CC1)、水晶直列等価抵抗成分R1(抵抗値RR1)および水晶直列等価誘導性成分L1(リアクタンス値LL1)と、水晶端子間容量C0(容量値CC0)とが並列接続された構成である。一方、発振回路部側CCSは、抵抗成分Rn(抵抗値RRn)と容量成分CL(容量値CCL)とが直列接続された構成である。抵抗成分Rnはマイナスの値となる負性抵抗成分であり、この負性抵抗成分Rnの抵抗値RRnで抵抗成分R1の抵抗値RR1を打消すことにより、周知のLC発振器を構成することができる。
 なお、容量成分CLは、等価回路の発振器等価容量成分である。この容量成分CLの容量値CCLと負荷容量素子Caの容量値CCa、負荷容量素子Cbの容量値CCbとの関係は、式(1)の通りである。
 CCL=(CCa×CCb)/(CCa+CCb) …(1)
 式(1)によれば、負荷容量素子Caの容量値CCaが小さく、かつ、負荷容量素子Cbの容量値CCbが小さい場合、発振器等価容量成分CLの容量値CCLが小さくなる。
 また、水晶振動子の励振レベルPは、式(2)のようになる。
 P=RR1×(CCL+CC02×(2πf)2×Vxtal2[W]  …(2)
 式(2)によると、励振レベルPは、周波数fの2乗に比例する。このため、高周波帯域の水晶振動子を用いた場合には、励振レベルPが大きな値になってしまう。さらに、回路の発振の余裕を示す負性抵抗Rnの抵抗値RRnは式(3)のようになる。
 RRn= -gm/{CCa×CCb×(2πf)2} …(3)
 式(3)を参照すると、負性抵抗成分Rnの抵抗値RRnは、周波数の2乗に反比例で、周波数fが高いほど絶対値が小さくなる。そこで、通常の設計では、負性抵抗を大きくするために増幅率gmを大きくする。増幅率gmを大きくすると、通常、水晶電圧振幅Vxtalの振幅が電源レベルまで大きくなってしまうため、水晶振動子の励振レベルPは大きくなる。励振レベルPが大きくなると、水晶振動子の寿命が短くなるなどの問題が生じる。
 さらに、電圧制御水晶発振器では、増幅率gmを大きくすると、発振周波数の可変範囲を広くするのが難しい。以下、この点について説明する。
 電圧制御水晶発振器は、例えば、図18のように構成される。同図においては、負荷容量素子Caおよび負荷容量素子Cbを共に可変容量素子とする。そして、制御電圧によって可変容量素子の容量を制御すれば、周知の電圧制御発振器を構成することができる。すなわち、周波数を下げる場合には容量を増加させ、周波数を上げる場合には容量を減少させる。なお、同図において、負荷容量素子Ca、負荷容量素子Cbには、それぞれ並列に、寄生容量が付加されている(同図中の破線部分)。
 図18の構成の等価回路は、図19のようになる。同図において、容量成分CLは等価回路の発振器等価容量成分である。ここで、発振器等価容量成分の容量値CCLと発振周波数fとの関係は、式(4)のようになる。
 f=1/2π{LL1×CC1×(CC0+CCL)/(CC0+CC1+CCL)}1/2…(4)
 わかりやすくする為、発振周波数fを比率で表した量をfLと表すと、式(5)のようになる。
 fL=(f-fs)/fs …(5)
 ここで、式(5)において、周波数fsは水晶振動子SSの直列共振周波数であり、fs=1/2π(LL1×CC11/2と表せる。
 式(5)に発振周波数f、直列共振周波数fsを代入し、近似すると、式(6)のようになる。
 fL = 〔1/2π{LL1・CC1・(CC0+CCL)/(CC0+CC1+CCL)}1/2 - 1/2π(LL1・CC11/2〕/{1/2π(LL1・CC1)}
    =  {CC1/(CC0+CCL)+1}1/2-1
 ここで、多くの場合、CC1<<(CC0+CCL)であるため、
   ≒1/2・{CC1/(CC0+CCL)} …(6)
 ここで、周波数可変範囲について、寄生容量などの可変容量以外の容量が大きいときと小さいときを比べてみる。
 図20は発振器等価容量成分CLの容量値CCLに対する発振周波数fを比率で表した量fLの変化を示す図である。
 同図を参照すると、発振器等価容量成分CLの可変容量以外の容量について、その値が小さい場合は式(1)により容量値CCLも小さいので周波数可変範囲が同図中のΔfL1となり、その値が大きい場合は式(1)により容量値CCLも大きいので周波数可変範囲が同図中のΔfL2、となる。つまり、発振器等価容量成分CLの容量値CCLの可変幅ΔCCLが同じであっても、可変容量以外の容量の値の小さい方が、周波数可変範囲が大となる。このため、可変容量以外の容量の値が大であると、周波数可変範囲を広くすることが難しい。
 ところが、高周波帯域では、回路の負性抵抗成分の抵抗値RRnを大きくするために、通常、増幅率gmを大きくする。すると、増幅器のサイズを大きくしなければならず、寄生容量が大きくなるため、周波数可変範囲を広く取りにくくなる。
 上記のような高周波における、水晶振動子の励振レベルPと周波数可変範囲の問題を解決するための構成が開示されている(例えば、特開2001-308641号公報を参照。)。この構成について図21を参照して説明する。
 同図は、水晶電圧振幅Vxtalを抑える一般的な方法の一例である。本例は、ダイオードD1を接続して水晶電圧振幅Vxtalを抑える構成である。同図の構成では、出力端にダイオードD1のアノードが接続され、グランドにダイオードD1のカソードが接続されている。
 同図の回路構成では、クランプダイオードとして接続されたダイオードD1の順方向降下電圧によって水晶電圧振幅Vxtalが決まるので、水晶電圧振幅Vxtalを低減させることができる。ここで、ダイオードD1の順方向降下電圧をVfとすると、式(7)のようになる。
 Vxtal=(1/√2)×Vf …(7)
 式(2)及び式(7)を参照すると、水晶振動子の励振レベルPを低減させることができる。なお、ダイオードD1の順方向降下電圧Vfは、例えば0.8[V]である。
 図21の構成においても、水晶振動子の励振レベルPは、上記式(2)で表すことができる。しかしながら、図21の構成では、負荷容量Cbに、ダイオードの接合容量CD1(同図中の破線部分)が並列接続されることになり、その分だけ負荷容量が増加してしまうという問題がある。すなわち、水晶振動子の励振レベルPを振幅の面で改善させることができても、負荷容量の増加により回路の発振器等価容量成分CLが大きくなる分、水晶振動子の励振レベルPを悪化させてしまうので、励振レベルPに対する効果が低いという問題がある。
 また、図20を参照すると、周波数可変範囲については、回路の発振器等価容量成分CLの容量値CCLが増加してしまうため、広い可変範囲を得ることが難しくなる。
 本発明は上述した従来技術の問題点を解決するためになされたものであり、その目的は高周波の水晶振動子を使った発振器において、水晶振動子の励振レベルの要求を満足させ、周波数可変範囲を広くすることができる発振器を提供することである。
 本発明による発振器は、振動子を発振させるための発振回路を有する発振器であって、前記振動子の負荷として、誘導性であると同時に発振振幅を制限する負荷回路を備えたことを特徴とする。このような構成によれば、振動子の励振レベルの要求を満足させ、かつ、周波数可変範囲を広くすることができる。
 前記負荷回路は、少なくとも1つの能動素子を含んでいてもよい。少なくとも1つの能動素子を含んでいる場合でも、振動子の励振レベルの要求を満足させ、かつ、周波数可変範囲を広くすることができる。
 なお、例えば、前記能動素子はトランジスタである。また、前記発振振幅の制限は前記トランジスタの閾値電圧によって実現される。さらに、前記負荷回路の出力インピーダンスのリアクタンス成分が正である。このような構成によれば、水晶振動子の励振レベルの要求を満足させ、かつ、周波数可変範囲を広くすることができる。
 前記負荷回路は、前記振動子の少なくとも1つの端子に接続される。振動子の少なくとも1つの端子に負荷回路を接続すれば、電圧変化を規制することができ、水晶振動子の励振レベルの要求を満足させることができる。
 そして、前記負荷回路は、前記振動子に並列に接続される。振動子に並列に負荷回路を接続した場合でも電圧変化を規制することにより、水晶振動子の励振レベルの要求を満足させることができる。
 前記負荷回路は、
 エミッタが前記振動子の端子に接続され、コレクタに第1の所定電圧が供給されるNPNバイポーラトランジスタと、
 第2の所定電圧が一端に供給され、他端が前記NPNバイポーラトランジスタのベースに接続された抵抗成分と、
 前記NPNバイポーラトランジスタのエミッタとベースとの間に設けられた容量成分と、
 を有することを特徴とする。この負荷回路を用いることにより、水晶振動子の励振レベルの要求を満足させ、かつ、周波数可変範囲を広くすることができる。
 前記負荷回路は、
 コレクタが前記振動子の端子に接続され、エミッタに第3の所定電圧が供給されるNPNバイポーラトランジスタと、
 前記NPNバイポーラトランジスタのコレクタとベースとの間に設けられた抵抗成分と、
 前記NPNバイポーラトランジスタのエミッタとベースとの間に設けられた容量成分と、
 を有することを特徴とする。この負荷回路を用いることにより、水晶振動子の励振レベルの要求を満足させ、かつ、周波数可変範囲を広くすることができる。
 前記負荷回路は、
 エミッタが前記振動子に接続され、コレクタに第1の所定電圧が供給されるPNPバイポーラトランジスタと、
 第2の所定電圧が一端に供給され、他端が前記PNPバイポーラトランジスタのベースに接続された抵抗成分と、
 前記PNPバイポーラトランジスタのエミッタとベースとの間に設けられた容量成分と、
 を有していてもよい。この負荷回路を用いることにより、水晶振動子の励振レベルの要求を満足させ、かつ、周波数可変範囲を広くすることができる。
 前記負荷回路は、
 コレクタが前記振動子に接続され、エミッタに第3の電圧が供給されるPNPバイポーラトランジスタと、
 前記PNPバイポーラトランジスタのコレクタとベースとの間に設けられた抵抗成分と、
 前記PNPバイポーラトランジスタのエミッタとベースとの間に設けられた容量成分と、
 を有していてもよい。この負荷回路を用いることにより、水晶振動子の励振レベルの要求を満足させ、かつ、周波数可変範囲を広くすることができる。
 前記負荷回路は、
 ドレインが前記振動子に接続され、ソースに第4の所定電圧が供給されるMOSトランジスタと、
 前記MOSトランジスタのドレインとゲートとの間に設けられた抵抗成分と、
 前記MOSトランジスタのソースとゲートとの間に設けられた容量成分と、
 を有することを特徴とする。前記MOSトランジスタは、N型MOSトランジスタであってもよい。また、前記MOSトランジスタは、P型MOSトランジスタであってもよい。この負荷回路を用いることにより、水晶振動子の励振レベルの要求を満足させ、かつ、周波数可変範囲を広くすることができる。
 前記負荷回路は、
 ソースが前記振動子に接続され、ドレインに第5の所定電圧が供給されるMOSトランジスタと、
 第6の所定電圧が一端に供給され、他端が前記MOSトランジスタのゲートに接続された抵抗成分と、
 前記MOSトランジスタのソースとゲートとの間に設けられた容量成分と、
 を有することを特徴とする。前記MOSトランジスタは、N型MOSトランジスタであってもよい。また、前記MOSトランジスタは、P型MOSトランジスタであってもよい。この負荷回路を用いることにより、水晶振動子の励振レベルの要求を満足させ、かつ、周波数可変範囲を広くすることができる。
 前記負荷回路として、上述した負荷回路を2つ組み合わせて設けてもよい。2つの負荷回路を組み合わせて設けることにより、電圧変化の上限および下限を規制し、水晶振動子の励振レベルの要求を満足させることができる。
 本発明によれば、誘導性を有し、かつ、発振振幅を制限する回路を、振動子の負荷として、備えることにより、水晶振動子の励振レベルの要求を満足させ、かつ、周波数可変範囲を広くすることができる。
 以下、本発明の実施の形態を、図面を参照して説明する。なお、以下の説明において参照する各図では、他の図と同等部分は同一符号によって示されている。
(第1の実施形態)
 図1は、本発明の実施形態による発振器の構成を示す回路図である。同図において、本実施形態による発振器は、水晶振動子SSおよびそれを発振させるための発振回路部CCからなる発振器の負荷回路として、リミッタ回路LM1が接続された構成になっている。
 以下は、水晶振動子の場合について説明するが、振動子は水晶振動子に限らず、SAW振動子、セラミック振動子などでもよい。
 ここで、図1におけるリミッタ回路LM1に着眼すると、水晶振動子の片方の端子から、発振に起因する電流がリミッタ回路LM1を通り、電圧源(電圧値VH)を介して再び水晶振動子の反対側の片方の端子に戻るかたちになっているので、リミッタ回路LM1は水晶振動子の負荷である。
 リミッタ回路LM1は、N型MOSトランジスタ1と、そのゲート端子Gとドレイン端子Dとの間に接続された抵抗素子Rx(抵抗値RRx)と、そのゲート端子Gとソース端子Sとの間に接続された容量素子Cx(容量値CCx)とから構成され、N型MOSトランジスタ1のドレイン端子Dが増幅器Aの出力端子に接続されている。なお、N型MOSトランジスタ1のソース端子Sには、電圧値VHの電圧源が接続されている。
 ここで、増幅器Aの出力端子の電圧Vbは、リミッタ回路LM1によってN型MOSトランジスタ1のゲート電圧の閾値電圧値を越えたところで、電圧クリップされる。すなわち、図2のように、電圧Vbは、電圧源の電圧値VHにN型MOSトランジスタ1の閾値電圧値VTを加えた電圧値で、クリップされる。
 ここで、増幅器の入力端子の電圧Vaは出力端子の電圧Vbのおよそ逆位相で同じレベルの電圧になっているため、水晶電圧振幅Vxtalは、式(8)のようになる。
 Vxtal=(1/√2)×(VT+VH) …(8)
 したがって、電圧源の電圧値VHを調整することによって、水晶電圧振幅Vxtalを調整することができる。つまり、N型MOSトランジスタ1のソース端子Sに供給される電圧値VHを調整すれば、水晶電圧振幅Vxtalを抑制することができる。
 一方、水晶振動子の励振レベルについて調べるため、図1の構成の等価回路を描くと、図3のようになる。同図において、図1中のリミッタ回路LM1の部分はインダクタンスLxとして表現することができる。このインダクタンスLxの値LLxは、N型MOSトランジスタ1の増幅率をgmxとすると、
 LLx=(gmx・RRx-1)・CCx/{gmx2+(2πf)2・CCx 2} …(9)
である。このインダクタンスLxの値LLxと負荷容量素子Cbの容量値CCbとの並列回路を容量Cb'とする。
 ここで、インダクタンスLLxと角周波数2πfとの積であるリアクタンス2πfLLx値が正であるとき、インダクタンスLxはコイルと等価に見える。すなわち、リミッタ回路LM1がもつリアクタンスが誘導性となる。式(9)において、リミッタ回路LM1がもつリアクタンスを誘導性にするための条件は、RRX>(1/gmx)である。
 さらに、本回路の等価容量について調べるため、負荷容量素子Cb及びリミッタ回路LM1の等価回路部分(図3中の破線部分)を変形すると、図4のようになる。すなわち、図3中の破線部分に相当する図4(a)の回路構成は、同図(b)のように、負荷容量素子Cbと負荷容量素子CLx(容量値は-1/LLx(2πf)2)との並列回路に置き換えることができる。さらに、同図(b)の回路は、同図(c)のように変形することができる。
 なお、同図(c)において、負荷容量素子Cb'の容量値CCb'は、
 CCb'=CCb-{1/LLx(2πf)2} …(10)
である。つまり、負荷容量素子Cbに対して並列にインダクタンスLxが挿入された形となるため、実質的に、負荷容量素子Cbの容量値CCbよりも少ない値の容量値CCb'に見えることになる。
 これを踏まえて発振器等価容量成分CL'の容量値をあらわすと、図5のようになる。同図において、発振器等価容量成分CL'の容量値CCL'は、
 CCL'=(CCa×CCb')/(CCa+CCb')   …(11)
である。このため、小さな容量値の発振器等価容量成分CL'を得ることができる。
 また、水晶振動子の励振レベルPは、式(12)のようになる。
 P=RR1×(CCL'+CC02×(2πf)2×Vxtal'2[W]  …(12)
 よって、図1の回路構成によれば、水晶電圧振幅Vxtalの抑制と、発振器等価容量成分CLの低減とを行うことができるため、励振レベルPを抑制することができる。
 さらに、発振器等価容量成分CLが低減されるため、周波数可変範囲は、図6のようになる。
 図6は発振器等価容量成分CL'の容量値CCL'に対する発振周波数fを比率で表した量fLの変化を示す図である。
 同図を参照すると、リミッタ回路が付加されていない場合の回路構成においては、同図中の範囲6Aで発振器等価容量成分が変化し、周波数可変範囲はΔfL1の範囲となる。一方、図1のようにリミッタ回路LM1が付加されている場合の回路構成においては、同図中の範囲6Bで発振器等価容量成分CL'の容量値CCL'が変化し、周波数可変範囲はΔfL2の範囲となり、容量値CCL'の可変幅ΔCCL'が同じであっても、ΔfL1の範囲よりも広くなる。したがって、リミッタ回路LM1が付加されることにより、周波数可変範囲を広げることができる。
 よって、本実施形態によれば、高周波の水晶発振子SSを使った発振器において、水晶振動子の励振レベルの要求を満足させ、周波数可変範囲を広くすることができる。
(第2の実施形態)
 図7は、本発明の第2の実施形態による発振器の構成を示す回路図である。上述した第1の実施形態は上方向のリミッタ回路(つまり、増幅器Aの出力端子に接続した時に、その出力端子における電圧変化の上限を規制する回路)を付加した構成であるのに対し、本実施形態では下方向のリミッタ回路(つまり、増幅器Aの出力端子に接続した時に、その出力端子における電圧変化の下限を規制する回路)を更に付加した構成を採用している。
 すなわち、同図において、上方向のリミッタ回路LM1、および、下方向のリミッタ回路LM2が発振器の負荷として接続されている。本例のリミッタ回路LM2は、N型MOSトランジスタ2と、そのゲート端子Gとソース端子Sとの間に接続された容量素子Cx2と、そのゲート端子Gに接続された抵抗素子Rx2と、から構成され、N型MOSトランジスタ2のソース端子Sが増幅器Aの出力端子に接続されている。そして、N型MOSトランジスタ2のゲート端子Gに接続された抵抗素子Rx2の他端には、電圧値VLの電圧源が接続されている。
 このように、上下両方向のリミッタ回路が接続されているため、増幅器の出力側の電圧Vbの振幅は、リミッタ回路LM1およびLM2によってN型MOSトランジスタ1及び2のゲート電圧の閾値を越えたところで、電圧クリップされる。すなわち、図8のように、電圧Vbは、電圧源の電圧値VHにN型MOSトランジスタ1の閾値電圧値VTを加えた電圧値で上限がクリップされると共に、電圧源の電圧値VLからN型MOSトランジスタ2の閾値電圧値VTを減じた電圧値で下限がクリップされる。
 この場合、水晶電圧振幅Vxtalは式(13)のようになる。
 Vxtal=(1/√2)×{(VH+VT)-(VL-VT)} …(13)
 ここで、電圧値VLおよび電圧値VHは任意に設定することができ、後者は零ボルトでもよい。よって、N型MOSトランジスタ1のソース端子Sに供給される電圧値VH、抵抗素子Rx2を介してN型MOSトランジスタ2のゲート端子Gに供給される電圧値VLを調節することにより、水晶電圧振幅Vxtalのさらなる低減が可能になる。
 ところで、図7において、リミッタ回路LM1、LM2は、共に、能動素子である、N型MOSトランジスタを用いて構成されているが、P型MOSトランジスタを用いて構成することもできる。すなわち、図9(a)はP型MOSトランジスタを用いて構成した下方向のリミッタ回路LM2であり、同図(b)はP型MOSトランジスタを用いて構成した上方向のリミッタ回路LM1である。これらを、発振器の出力端に接続すれば、水晶振動子の電圧振幅の下限および上限を抑制することができる。
 また、他の能動素子である、バイポーラトランジスタを用いて、リミッタ回路を構成してもよい。同図(c)はNPN型バイポーラトランジスタを用いて構成した上方向のリミッタ回路LM1であり、同図(d)はNPN型バイポーラトランジスタを用いて構成した下方向のリミッタ回路LM2である。これらを、発振器の出力端に接続すれば、水晶振動子の電圧振幅の上限および下限を抑制することができる。
 同図(e)はPNP型バイポーラトランジスタを用いて構成した下方向のリミッタ回路LM2であり、同図(f)はPNP型バイポーラトランジスタを用いて構成した上方向のリミッタ回路LM1である。これらを、発振器の出力端に接続すれば、水晶振動子の電圧振幅の下限および上限を抑制することができる。
 尚、上述した第2の実施形態は上方向のリミッタ回路LM1、および、下方向のリミッタ回路LM2を付加した構成であるのに対し、電圧Vbの下限のみをクリップする場合は、下方向のリミッタ回路LM2のみを設けた構成を採用してもよい。このとき、水晶電圧振幅Vxtalは、式(14)のようになる。
 Vxtal=(1/√2)×(VL-VT) …(14)
 ここで、電圧値VLは任意に設定することができる。よって、抵抗素子Rx2を介してN型MOSトランジスタ2のゲート端子Gに供給される電圧値VLを調節することにより、水晶電圧振幅Vxtalのさらなる低減が可能になる。
 ここで、同図(d)において、NPN型バイポーラトランジスタのベースは抵抗素子Rxを介して電圧源(電圧値VH)に接続され、コレクタは正電源に接続されているが、コレクタを正電源に接続する代わりに電圧源(電圧値VH)に接続してもよい。
 同様に、同図(f)において、PNP型バイポーラトランジスタのベースは抵抗素子Rxを介して電圧源(電圧値VH)に接続され、コレクタは接地されているが、コレクタを接地する代わりに電圧源(電圧値VH)に接続してもよい。
 同様に、同図(b)において、P型MOSトランジスタのゲートは抵抗素子Rxを介して電圧源(電圧値VH)に接続され、ドレインは接地されているが、ドレインを接地する代わりに電圧源(電圧値VH)に接続してもよい。
 同様に、図7において、リミッタ回路LM2のN型MOSトランジスタ2のゲートは抵抗素子Rx2を介して電圧源(電圧値VL)に接続され、ドレインは正電源に接続されているが、ドレインを正電源に接続する代わりに電圧源(電圧値VL)に接続してもよい。
(第3の実施形態)
 ところで、リミッタ回路を水晶振動子の端子間に配置することもできる。例えば、図10のように、上方向のリミッタ回路として、差動リミッタ回路L3を水晶振動子SSの端子間に接続してもよい。ただし、N型MOSトランジスタ1のドレイン端子の電位は、電流源Isによってソース端子よりも高くなるように直流バイアスする必要がある。発振中の電圧VaおよびVbの関係は、電圧Vaが上昇しようとすると電圧Vbが下降し、逆にVaが下降しようとすると電圧Vbが上昇しようとする動作を繰返すようになっている。電圧Vaが下降し、電圧Vbが上昇しようとするときに、電圧Vb-VaがN型MOSトランジスタの閾値電圧値VTを超えると、トランジスタに電流が流れるため、電圧Va-Vbは閾値電圧値VTなる電圧で制限されるので、リミッタ回路LM3が設けられていない場合に比べ、水晶電圧振幅Vxtalを小さくすることができる。
 また、下方向のリミッタ回路として、図11(a)のような差動リミッタ回路L4を設けてもよい。同図(a)の回路構成においても、発振中の電圧VaおよびVbの関係は、電圧Vaが上昇しようとすると電圧Vbが下降し、逆にVaが下降しようとすると電圧Vbが上昇しようとする動作を繰返すようになっている。電圧Vaが上昇し、電圧Vbが下降しようとするときに、電圧Va-VbがN型MOSトランジスタの閾値電圧値VTを超えると、トランジスタに電流が流れるため、電圧Vb-Vaは閾値電圧値VTなる電圧で制限されるので、リミッタ回路LM4が設けられていない場合に比べ、水晶電圧振幅Vxtalを小さくすることができる。
 さらに、同図(b)のように、2つの差動リミッタ回路L3、L4を設けてもよい。ただし、その場合には、直流カット用のキャパシターCcutを設ける必要がある。
 このように、上下両方向のリミッタ回路が接続されているため、増幅器の出力側の電圧Vbの振幅は、差動リミッタ回路LM3およびLM4によってN型MOSトランジスタ1のゲート電圧の閾値を越えたところで、電圧クリップされる。すなわち、電圧Vb-Vaがリミッタ回路LM3のN型MOSトランジスタの閾値電圧値VTを超えようとすると、N型MOSトランジスタに電流が流れ、閾値電圧値VTで電圧がクリップされる。また、電圧Va-Vbがリミッタ回路LM4のN型MOSトランジスタの閾値電圧値VTを超えようとすると、N型MOSトランジスタに電流が流れ、閾値電圧値VTで電圧がクリップされる。したがって、図10および図11(a)の場合よりも、水晶電圧振幅Vxtalの更なる低減が可能である。
 この場合、水晶電圧振幅Vxtalは式(15)のようになる。
 Vxtal=(1/√2)×2VT  …(15)
 尚、図10、および、図11(a)(b)において、N型MOSトランジスタ1を用いてリミッタ回路を構成したが、図12(a)(b)(c)のように、P型MOSトランジスタ、NPN型バイポーラトランジスタ、または、PNP型バイポーラトランジスタを用いて、リミッタ回路を構成してもよい。バイポーラトランジスタを用いてリミッタ回路を構成した場合は、そのベース端子とコレクタ端子との間に抵抗素子Rxを接続し、そのベース端子とエミッタ端子との間に容量素子Cxを接続する。
(リミッタ回路の配置)
 ところで、以上説明したリミッタ回路は、どの位置に設けてもよい。すなわち、図13のように増幅器Aの入力側の位置、増幅器Aの出力側の位置、のどこに配置した場合でも、水晶電圧振幅Vxtalを抑制する効果が生じる。同図において、「上」は電圧の上限についてのリミッタ回路を示し、「下」は電圧の下限についてのリミッタ回路を示している。
 増幅器Aの入力側の電圧の上限についてのリミッタ回路LM5を備えると、通常、増幅器Aの出力側の電圧の下限も抑制される。また、増幅器Aの入力側の電圧の下限についてのリミッタ回路LM6を備えると、通常、増幅器Aの出力側の電圧の上限も抑制される。
 したがって、図14(a)のように、増幅器Aの入力側の電圧の上限についてのリミッタ回路LM5と、増幅器Aの出力側の電圧の上限についてのリミッタ回路LM1とを設けた構成を採用してもよい。
 また、同図(b)のように、増幅器Aの入力側の電圧の下限についてのリミッタ回路LM6と、増幅器Aの出力側の電圧の下限についてのリミッタ回路LM2とを設けた構成を採用してもよい。
 さらに、水晶振動子SSと並列の位置にリミッタ回路を追加してもよい。すなわち、図15(a)のように図10と同様の差動リミッタ回路LM3を追加してもよいし、同図(b)のように図11(a)と同様の差動リミッタ回路LM4を追加してもよい。また、同図(c)のように、図11(b)と同様の差動リミッタ回路LM3およびLM4を追加してもよい。ここで、差動リミッタ回路LM3およびLM4の接続の向きは、図10、図11(a)、図11(b)と同様である。
 尚、複数のリミッタ回路を設けた構成を採用する場合であって、CMOSプロセスでバイポーラトランジスタを製造するときは、同種のバイポーラトランジスタのみを製造する方が工程数が少なくてすむという点で好ましい。すなわち、電圧の上限及び下限についてのリミッタ回路を共にNPN型バイポーラトランジスタを含むリミッタ回路の組合せ(図9(d)、図9(c))とするか、共にPNP型バイポーラトランジスタを含むリミッタ回路の組合せ(図9(f)、図9(e))とするのが、工程数が少なくてすむという点で好ましい。
 また、上述した実施形態では、抵抗成分、容量成分として抵抗素子、容量素子を設けたが、寄生抵抗、寄生容量であっても良い。抵抗素子、容量素子を設けずに寄生抵抗、寄生容量によって抵抗成分、容量成分を実現した場合でも、水晶振動子の励振レベルの要求を満足させ、かつ、周波数可変範囲を広くすることができる。
 また、水晶振動子を発振させるための発振回路部と上述したリミッタ回路とを一体に集積化しても良く、同一基板上に集積化しても良い。さらに、水晶振動子も加えて一体に集積化しても良く、同一基板上に集積化しても良い。
(まとめ)
 以上説明したように、本発明によれば、誘導性を有し、かつ、発振振幅を制限する回路を、振動子の負荷として、備えることにより、水晶振動子の励振レベルの要求を満足させ、かつ、周波数可変範囲を広くすることができる
 本発明は、振動子を発振させるための発振回路を含む発振器に利用することができる。
本発明の第1の実施形態による発振器の構成を示す回路図である。 図1中の出力端子の電圧の変化を示す図である。 図1の構成の等価回路を示す図である。 図3中の破線部分の等価回路を示す図である。 図3の構成の等価回路を示す図である。 図1の構成のおける周波数可変範囲を示す図である。 本発明の第2の実施形態による発振器の構成を示す回路図である。 図7中の出力端子の電圧の変化を示す図である。 (a)はP型MOSトランジスタを用いて構成したリミッタ回路を示す図、同図(b)はP型MOSトランジスタを用いて構成したリミッタ回路を示す図、同図(c)はNPN型バイポーラトランジスタを用いて構成したリミッタ回路を示す図、同図(d)はNPN型バイポーラトランジスタを用いて構成したリミッタ回路を示す図、同図(e)はPNP型バイポーラトランジスタを用いて構成したリミッタ回路を示す図、同図(f)はPNP型バイポーラトランジスタを用いて構成したリミッタ回路を示す図である。 差動リミッタ回路を配置した発振器の構成例を示す図である。 (a)は別の差動リミッタ回路を配置した発振器の構成例を示す図、(b)は2つの差動リミッタ回路を配置した発振器の構成例を示す図である。 は別の差動リミッタ回路を配置した発振器の構成例を示す図であり、(a)はP型MOSトランジスタを、(b)はNPN型バイポーラトランジスタを、(c)はPNP型バイポーラトランジスタを、それぞれ用いて攻勢したリミッタ回路の構成例を示す図である。 リミッタ回路の配置の例を示す図である。 (a)は増幅器の入力側の電圧の上限についてのリミッタ回路と出力側の電圧の上限についてのリミッタ回路とを設けた構成を示す図、(b)は増幅器の入力側の電圧の下限についてのリミッタ回路と出力側の電圧の下限についてのリミッタ回路とを設けた構成を示す図である。 (a)は差動リミッタ回路を追加した構成例を示す図、(b)は他の差動リミッタ回路を追加した構成例を示す図、(c)は2つの差動リミッタ回路を追加した構成例を示す図である。 一般的な水晶発振器の構成例を示す図である。 図16の構成の等価回路を示す図である。 周波数制御水晶発振器の構成例を示す図である。 図18の構成の等価回路を示す図である。 発振器等価容量に対する発振周波数の変化を示す図である。 水晶電圧振幅を抑える一般的な方法の一例を示す図である。
符号の説明
1、2 N型MOSトランジスタ
A 増幅器
Ca、Cb 負荷容量素子
CC 発振回路部
Ccut キャパシター
CL 発振器等価容量成分
Cx、Cx2 容量素子
D1 ダイオード
Is 電流源
LM1、LM2、LM5、LM6 リミッタ回路
LM3、LM4 差動リミッタ回路
Rx、Rx2 抵抗素子
SS 水晶振動子

Claims (20)

  1.  振動子を発振させるための発振回路を有する発振器であって、前記振動子の負荷として、誘導性であると同時に発振振幅を制限する負荷回路を備えたことを特徴とする発振器。
  2.  前記負荷回路は、少なくとも1つの能動素子を含むことを特徴とする請求項1に記載の発振器。
  3.  前記能動素子はトランジスタであることを特徴とする請求項2に記載の発振器。
  4.  前記発振振幅の制限は前記トランジスタの閾値電圧によって実現されることを特徴とする請求項3に記載の発振器。
  5.  前記負荷回路の出力インピーダンスのリアクタンス成分が正であることを特徴とする請求項1に記載の発振器。
  6.  前記負荷回路は、前記振動子の少なくとも1つの端子に接続されることを特徴とする請求項1に記載の発振器。
  7.  前記負荷回路は、前記振動子に並列に接続されることを特徴とする請求項1に記載の発振器。
  8.  前記負荷回路は、
     エミッタが前記振動子の端子に接続され、コレクタに第1の所定電圧が供給されるNPNバイポーラトランジスタと、
     第2の所定電圧が一端に供給され、他端が前記NPNバイポーラトランジスタのベースに接続された抵抗成分と、
     前記NPNバイポーラトランジスタのエミッタとベースとの間に設けられた容量成分と、
     を有することを特徴とする請求項1乃至5のいずれかに記載の発振器。
  9.  前記負荷回路は、
     コレクタが前記振動子の端子に接続され、エミッタに第3の所定電圧が供給されるNPNバイポーラトランジスタと、
     前記NPNバイポーラトランジスタのコレクタとベースとの間に設けられた抵抗成分と、
     前記NPNバイポーラトランジスタのエミッタとベースとの間に設けられた容量成分と、
     を有することを特徴とする請求項1乃至5のいずれかに記載の発振器。
  10.  前記負荷回路は、
     エミッタが前記振動子に接続され、コレクタに第1の所定電圧が供給されるPNPバイポーラトランジスタと、
     第2の所定電圧が一端に供給され、他端が前記PNPバイポーラトランジスタのベースに接続された抵抗成分と、
     前記PNPバイポーラトランジスタのエミッタとベースとの間に設けられた容量成分と、
     を有することを特徴とする請求項1乃至5のいずれかに記載の発振器。
  11.  前記負荷回路は、
     コレクタが前記振動子に接続され、エミッタに第3の電圧が供給されるPNPバイポーラトランジスタと、
     前記PNPバイポーラトランジスタのコレクタとベースとの間に設けられた抵抗成分と、
     前記PNPバイポーラトランジスタのエミッタとベースとの間に設けられた容量成分と、
     を有することを特徴とする請求項1乃至5のいずれかに記載の発振器。
  12.  前記負荷回路は、
     ドレインが前記振動子に接続され、ソースに第4の所定電圧が供給されるMOSトランジスタと、
     前記MOSトランジスタのドレインとゲートとの間に設けられた抵抗成分と、
     前記MOSトランジスタのソースとゲートとの間に設けられた容量成分と、
     を有することを特徴とする請求項1乃至5のいずれかに記載の発振器。
  13.  前記MOSトランジスタは、N型MOSトランジスタであることを特徴とする請求項12に記載の発振器。
  14.  前記MOSトランジスタは、P型MOSトランジスタであることを特徴とする請求項12に記載の発振器。
  15.  前記負荷回路は、
     ソースが前記振動子に接続され、ドレインに第5の所定電圧が供給されるMOSトランジスタと、
     第6の所定電圧が一端に供給され、他端が前記MOSトランジスタのゲートに接続された抵抗成分と、
     前記MOSトランジスタのソースとゲートとの間に設けられた容量成分と、
     を有することを特徴とする請求項1乃至5のいずれかに記載の発振器。
  16.  前記MOSトランジスタは、N型MOSトランジスタであることを特徴とする請求項15に記載の発振器。
  17.  前記MOSトランジスタは、P型MOSトランジスタであることを特徴とする請求項15に記載の発振器。
  18.  前記負荷回路として、請求項9の負荷回路および請求項10の負荷回路および請求項13および請求項17のうちの少なくとも1つと、請求項8の負荷回路および請求項11の負荷回路および請求項14および請求項16の負荷回路のうちの少なくとも1つとを備えたことを特徴とする請求項1乃至5のいずれかに記載の発振器。
  19.  前記負荷回路として、請求項8の負荷回路と請求項9の負荷回路とを備えたことを特徴とする請求項1乃至5のいずれかに記載の発振器。
  20.  前記負荷回路として、請求項10の負荷回路と請求項11の負荷回路とを備えたことを特徴とする請求項1乃至5のいずれかに記載の発振器。
PCT/JP2009/054868 2008-03-13 2009-03-13 発振器 WO2009113657A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801085644A CN101971485B (zh) 2008-03-13 2009-03-13 振荡器
JP2010502891A JP5227394B2 (ja) 2008-03-13 2009-03-13 発振器
EP09720297.2A EP2251973B1 (en) 2008-03-13 2009-03-13 Oscillator
US12/921,668 US8653900B2 (en) 2008-03-13 2009-03-13 Oscillator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008064247 2008-03-13
JP2008-064247 2008-03-13

Publications (1)

Publication Number Publication Date
WO2009113657A1 true WO2009113657A1 (ja) 2009-09-17

Family

ID=41065318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054868 WO2009113657A1 (ja) 2008-03-13 2009-03-13 発振器

Country Status (5)

Country Link
US (1) US8653900B2 (ja)
EP (1) EP2251973B1 (ja)
JP (1) JP5227394B2 (ja)
CN (1) CN101971485B (ja)
WO (1) WO2009113657A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8629730B2 (en) 2009-12-22 2014-01-14 Asahi Kasei Microdevices Corporation Oscillator

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9024710B2 (en) * 2012-07-27 2015-05-05 Lsi Corporation Low-voltage active inductor
US8854147B2 (en) * 2012-10-12 2014-10-07 Google Inc. Crystal oscillator with electrostatic discharge (ESD) compliant drive level limiter
CN106374870B (zh) * 2016-08-31 2019-03-05 兆讯恒达微电子技术(北京)有限公司 晶体振荡器
US10574181B2 (en) * 2018-05-17 2020-02-25 Microsoft Technology Licensing, Llc Circuit with shunt path
US10951166B1 (en) 2020-01-10 2021-03-16 Dialog Semiconductor B.V. Crystal oscillator with fast start-up
US10965250B1 (en) * 2020-01-10 2021-03-30 Dialog Semiconductor B.V. Switched capacitor crystal oscillator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0353706A (ja) * 1989-07-21 1991-03-07 Nec Corp 発振回路
JPH053418A (ja) * 1991-06-25 1993-01-08 Mitsubishi Electric Corp 移相器
JP2000216633A (ja) * 1999-01-21 2000-08-04 Toyo Commun Equip Co Ltd 電圧制御型水晶発振器
JP2001308641A (ja) 2000-04-21 2001-11-02 Toyo Commun Equip Co Ltd 圧電発振器
JP2005136961A (ja) * 2003-09-17 2005-05-26 Nippon Dempa Kogyo Co Ltd 水晶発振回路

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3025476A (en) * 1958-06-02 1962-03-13 Gen Electric Crystal controlled high frequency transistor oscillator
JPS5513590A (en) * 1978-07-14 1980-01-30 Sanyo Electric Co Ltd Crystal oscillator circuit
JPS5564406A (en) * 1978-11-07 1980-05-15 Sanyo Electric Co Ltd Crystal oscillation circuit
JPS5781707A (en) 1980-11-10 1982-05-21 Nec Corp Piezoelectric oscillator
JPS6229304A (ja) * 1985-07-31 1987-02-07 Nec Corp 水晶発振回路
JPH04267607A (ja) * 1991-02-21 1992-09-24 Nippon Steel Corp 発振用駆動回路
JPH0846427A (ja) * 1994-07-29 1996-02-16 Kyocera Corp 電圧制御型水晶発振器
US6025765A (en) * 1998-04-08 2000-02-15 Nortel Networks Corporation Gyrator with loop amplifiers connected to inductive elements
JP2001016039A (ja) * 1999-06-30 2001-01-19 Kinseki Ltd 可変周波数発振回路
US6836189B2 (en) * 2001-01-31 2004-12-28 Bentley N. Scott RF choke bias scheme for load pulled oscillators
JP2003037479A (ja) * 2001-07-24 2003-02-07 Japan Science & Technology Corp アクティブインダクタ回路及びlc発振回路
JP2005051350A (ja) 2003-07-30 2005-02-24 Seiko Epson Corp 逓倍発振回路及びこれを使用した無線通信装置
US6956442B2 (en) * 2003-09-11 2005-10-18 Xilinx, Inc. Ring oscillator with peaking stages
US7504899B2 (en) * 2004-03-22 2009-03-17 Mobius Microsystems, Inc. Inductor and capacitor-based clock generator and timing/frequency reference

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0353706A (ja) * 1989-07-21 1991-03-07 Nec Corp 発振回路
JPH053418A (ja) * 1991-06-25 1993-01-08 Mitsubishi Electric Corp 移相器
JP2000216633A (ja) * 1999-01-21 2000-08-04 Toyo Commun Equip Co Ltd 電圧制御型水晶発振器
JP2001308641A (ja) 2000-04-21 2001-11-02 Toyo Commun Equip Co Ltd 圧電発振器
JP2005136961A (ja) * 2003-09-17 2005-05-26 Nippon Dempa Kogyo Co Ltd 水晶発振回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2251973A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8629730B2 (en) 2009-12-22 2014-01-14 Asahi Kasei Microdevices Corporation Oscillator

Also Published As

Publication number Publication date
JPWO2009113657A1 (ja) 2011-07-21
CN101971485A (zh) 2011-02-09
US20110037526A1 (en) 2011-02-17
US8653900B2 (en) 2014-02-18
EP2251973B1 (en) 2015-01-07
EP2251973A4 (en) 2012-12-19
EP2251973A1 (en) 2010-11-17
JP5227394B2 (ja) 2013-07-03
CN101971485B (zh) 2013-12-04

Similar Documents

Publication Publication Date Title
JP5227394B2 (ja) 発振器
US20080007369A1 (en) Bulk acoustic wave filter with reduced nonlinear signal distortion
US7986194B2 (en) Oscillator
US7446617B2 (en) Low power consumption frequency divider circuit
JP5145988B2 (ja) 発振回路、発振器
US8305151B2 (en) Resonance type oscillation circuit and semiconductor device
JP4536102B2 (ja) 発振器
JP2010041346A (ja) 副振動抑圧型の水晶発振回路
JP2006197143A (ja) 電圧制御水晶発振器
JP4611290B2 (ja) 電圧制御発振器
JP5098979B2 (ja) 圧電発振器
JP2007281691A (ja) 電力増幅器
JP2001217649A (ja) 圧電発振回路
TW201515382A (zh) 差動振盪器
US9077281B2 (en) Oscillator circuit
JP4677696B2 (ja) 平衡型発振回路およびそれを用いた電子装置
JP2008211768A (ja) 発振器
JP2007096396A (ja) 発振回路
JP5792568B2 (ja) 電圧制御発振回路
JP2005072828A (ja) 水晶発振回路
EP1081846B1 (en) Voltage controled oscillator
JP2002026660A (ja) 電圧制御水晶発振器
JP2004274463A (ja) 差動電子回路
JP2005039596A (ja) 集積化発振回路
JPH1117114A (ja) 可変容量回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980108564.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09720297

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010502891

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009720297

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12921668

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE