WO2009113431A1 - 電動パワーステアリング装置 - Google Patents

電動パワーステアリング装置 Download PDF

Info

Publication number
WO2009113431A1
WO2009113431A1 PCT/JP2009/054043 JP2009054043W WO2009113431A1 WO 2009113431 A1 WO2009113431 A1 WO 2009113431A1 JP 2009054043 W JP2009054043 W JP 2009054043W WO 2009113431 A1 WO2009113431 A1 WO 2009113431A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
motor
wave
phase
harmonic component
Prior art date
Application number
PCT/JP2009/054043
Other languages
English (en)
French (fr)
Inventor
堀井 宏明
向 良信
浜本 恭司
宏樹 相模
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to US12/921,676 priority Critical patent/US8354810B2/en
Priority to CN2009801077065A priority patent/CN101959744B/zh
Priority to JP2010502780A priority patent/JP5314669B2/ja
Priority to EP09719239.7A priority patent/EP2256018B1/en
Publication of WO2009113431A1 publication Critical patent/WO2009113431A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input

Definitions

  • the present invention relates to an electric power steering device that assists steering torque with a multiphase AC motor.
  • the electric power steering device is a device that reduces the steering torque by generating an auxiliary torque according to the steering torque that the driver steers in the electric motor.
  • the electric power steering apparatus is required to control the electric motor that does not affect the steering feeling of the driver.
  • the PWM control by the triangular wave comparison method generates a PWM control signal voltage by comparing a three-phase sine wave command voltage with a reference triangular wave voltage.
  • the PWM inverter generates a rectangular wave drive voltage that is PWM-controlled based on the PWM control signal voltage, and applies the rectangular wave drive voltage to the electric motor to flow a three-phase current.
  • PWM control is performed using a PWM control signal voltage generated by increasing the amplitude ratio of the three-phase sine wave command voltage, the average voltage of the PWM drive voltage is distorted and the torque ripple of the motor increases. Limited to amplitude ratio.
  • the amplitude ratio is a ratio of the amplitude of the signal voltage to the amplitude of the reference triangular wave voltage.
  • Non-Patent Document 1 describes a technique for increasing the voltage utilization rate.
  • a three-phase modulated wave voltage obtained by modulating a three-phase sine wave command voltage with a third-order integral multiple harmonic (triangular wave) is used for PWM control.
  • the three-phase modulation wave voltage has a smaller amplitude around the signal voltage than the three-phase sine wave command voltage.
  • the range in which the amplitude ratio can be increased without distorting the average voltage of the PWM drive voltage increases, so that the voltage utilization rate can be increased.
  • Non-Patent Document 1 can increase the voltage utilization rate and increase the current flowing through the electric motor (polyphase AC motor), so that the electric motor can be driven at a high output.
  • the electric power steering device to which the technology of Non-Patent Document 1 is applied does not affect the driver's steering feeling even when the resolution of turning is low during low-speed traveling (at the time of stationary). However, when traveling at high speed, it is required to steer with high resolution, which affects the driver's steering feeling.
  • the present invention has been made in view of the above problems, and according to the vehicle speed, the multiphase AC motor is driven at a high output to reduce the steering torque, or the steering wheel has a high resolution without reducing the steering torque.
  • An object of the present invention is to provide an electric power steering device that can be steered by a motor.
  • an electric power steering apparatus that steers a vehicle by a torque of a multiphase AC motor driven in accordance with a steering input.
  • a control device is provided that adds the fundamental wave of the drive voltage applied to the AC motor and the harmonic component of the fundamental wave, and drives the multiphase AC motor based on the added modulation wave.
  • the wave component is varied according to the vehicle speed.
  • a fundamental wave for example, a three-phase sine wave command voltage
  • a harmonic component for example, a three-phase modulated wave voltage
  • a modulated wave for example, a three-phase modulated wave voltage
  • the motor output can be increased during low-speed traveling, and steering can be performed with high resolution during high-speed traveling.
  • the control device includes a sine wave generating means for generating a sine wave depending on the rotation angle of the multiphase AC motor, and a harmonic generator for generating a harmonic component using the sine wave as a fundamental wave.
  • a variable controller that changes the amplitude of the harmonic component according to the vehicle speed, a polyphase adder that generates a modulated wave by adding the sine wave and the harmonic component, and a polyphase alternating current using the modulated wave
  • a PWM inverter that PWM-controls the motor.
  • a multiphase AC motor is driven by PWM control with a small torque ripple using a three-phase modulation wave obtained by adding a three-phase sine wave and a harmonic component whose amplitude changes according to the vehicle speed. .
  • the voltage utilization rate can be increased and the voltage that can be applied to the multiphase AC motor can be increased, so that the motor output can be increased.
  • steering can be performed with high resolution without increasing the motor output. Therefore, the driver's steering feeling is not affected.
  • the harmonic component A when the vehicle speed exceeds a predetermined value (for example, the speed threshold Vs1 [km / h]), the harmonic component A switch that outputs a value with an amplitude of zero and outputs the value of a harmonic component as it is when the vehicle speed is a predetermined value or less.
  • a predetermined value for example, the speed threshold Vs1 [km / h]
  • the electric power steering apparatus according to the invention of claim 4 is characterized in that the harmonic component is a triangular wave composed of a harmonic of an odd multiple of the fundamental wave.
  • Triangular waves are composed of odd harmonics and can be easily generated. This facilitates the design and manufacture of the harmonic generator.
  • the harmonic component includes a third-order integer multiple of the fundamental wave.
  • the average voltage of the voltage (line voltage) applied to the polyphase AC motor does not include a third-order integer multiple harmonic component, so that the waveform is not distorted.
  • the present invention it is possible to reduce the steering torque by driving the multiphase AC motor with high output according to the vehicle speed, or to steer the steered wheels with high resolution without reducing the steering torque.
  • FIG. 1 It is a figure which shows the electric power steering apparatus which is one Embodiment of this invention. It is a block diagram which shows the control apparatus and electric motor of FIG. It is a figure which shows operation
  • SYMBOLS 1 Electric power steering apparatus 2 Steering wheel 3 Steering shaft 4 Pinion shaft 4A Pinion 5 Torque sensor 6 Torque transmission means 7 Electric motor (multiphase AC motor) DESCRIPTION OF SYMBOLS 8 Rack shaft 8A Rack tooth 9 Steering wheel 10 Control apparatus 11 Speed sensor 15 High voltage battery 20 PWM inverter 21 Angle sensor 22 Main body 25 Current sensor 30 2 axis / 3 phase coordinate converter (sine wave generation means) 31 Harmonic generator 32 Three-phase adder (multi-phase adder) 33 switch (variable controller) 35 3-phase / 2-axis coordinate converter 50 Target current converter
  • FIG. 1 is a diagram showing an electric power steering apparatus 1 according to an embodiment of the present invention.
  • the electric power steering device 1 includes a steering wheel 2, a steering shaft 3, a pinion shaft 4, a pinion 4A, a torque sensor 5, a torque transmission means 6, an electric motor 7, a rack shaft 8, rack teeth 8A, two steering wheels 9, and a control device. 10 and a speed sensor 11.
  • a three-phase brushless motor is used as the electric motor 7 which is a multiphase AC motor.
  • the driver turns the traveling direction of the vehicle via the electric power steering device 1 by operating the steering wheel 2.
  • the steering wheel 2 transmits the torque based on the steering torque from the driver to the torque sensor 5, the torque transmission means 6, and the pinion 4A via the steering shaft 3 and the pinion shaft 4.
  • the pinion 4 ⁇ / b> A and the rack teeth 8 ⁇ / b> A are engaged with each other to convert the rotational force into a force that linearly moves in the axial direction of the rack shaft 8.
  • the two steered wheels 9 and 9 are subjected to a force that causes a linear motion from the rack shaft 8 to change their direction by a steering angle corresponding to the rotational force. As a result, the traveling direction of the vehicle changes according to the driver's operation.
  • the torque sensor 5 detects the steering torque applied to the steering shaft 3 according to the steering of the driver by the steering wheel 2 and generates an electrical torque signal T, and outputs the torque signal T to the control device 10. To do.
  • the speed sensor 11 detects the speed (vehicle speed) of the vehicle and outputs a vehicle speed signal Vs to the control device 10.
  • the electric motor 7 generates auxiliary torque based on the three-phase currents Iu, Iv, and Iw, and transmits the auxiliary torque to the pinion 4A and the rack shaft 8 via the torque transmission means 6. As a result, the driver's steering torque is reduced.
  • the control device 10 applies a PWM drive voltage, which is a rectangular wave voltage generated based on the torque signal T, the vehicle speed signal Vs, and the angle signal ⁇ , to the electric motor 7 and causes the three-phase currents Iu, Iv, and Iw to flow.
  • the electric motor 7 outputs an angle signal ⁇ , which is the rotation angle of the electric motor 7, to the control device 10.
  • FIG. 2 is a block diagram showing the control device 10 and the electric motor 7 of FIG.
  • the control device 10 includes a target current converter 50, adders 70 and 75, a current controller 80, a 2-axis / 3-phase coordinate converter 30, a 3-phase adder 32, a harmonic generator 31, and a switch 33 (variable controller). ) And a three-phase / two-axis coordinate converter 35, and these functions are realized by a computer and a program including a CPU, a ROM, and a RAM. Further, the control device 10 includes a PWM inverter 20, a high voltage battery 15, and a current sensor 25.
  • the electric motor 7 includes a main body 22 and an angle sensor 21, and the main body 22 includes a stator and a rotor, and the stator includes at least three stator coils. One end of each of the three stator coils is connected to a neutral point, and the other end is connected to a terminal of the main body 22 so as to be star-connected.
  • the rotor of the main body 22 is rotatably supported by a rotating shaft, and is given a rotational force by a magnetic field generated by three stator coils.
  • the control device 10 performs dq vector control that decomposes into a magnetic pole axis component and a torque axis component, and also performs feedback control so that the deviation between the q-axis current command value iq * and the q-axis motor current value iq becomes zero.
  • the d-axis component is a magnetic pole axis component
  • the q-axis component is a torque axis component.
  • the current sensor 25 detects the current values of two phase currents Iu and Iv out of the three-phase currents of the motor 7, and converts the U-phase motor current value iu and the V-phase motor current value iv into a three-phase / 2-axis coordinate conversion. To the device 35.
  • the angle sensor 21 detects the rotation angle of the rotating shaft of the electric motor 7 and converts the angle signal ⁇ into a 2-axis / 3-phase coordinate converter 30, a harmonic generator 31, a PWM inverter 20, and a 3-phase / 2-axis coordinate. Output to the converter 35.
  • the three-phase / 2-axis coordinate conversion is calculated using, for example, the following equation.
  • ⁇ in the equation is an electrical angle, which is a value obtained by multiplying the mechanical rotation angle (mechanical angle) of the rotor by the number of pole pairs.
  • the three-phase / two-axis coordinate converter 35 outputs the d-axis motor current value id to the adder 75 and outputs the q-axis motor current value iq to the adder 70.
  • the target current converter 50 generates a corresponding q-axis current command value iq * based on the torque signal T and the vehicle speed signal Vs and outputs it to the adder 70.
  • d-axis current command value id * is set to zero.
  • Adder 70 subtracts q-axis motor current value iq from q-axis current command value iq *, and outputs the result to current controller 80.
  • the adder 75 subtracts the d-axis motor current value id from the d-axis current command value id * and outputs the result to the current controller 80.
  • the current controller 80 performs proportional / integral control (PI control) on the output signals from the adders 70 and 75 to generate the corresponding q-axis voltage command value Vq * and d-axis voltage command value Vd *. / Outputs to 3-phase coordinate converter 30.
  • PI control proportional / integral control
  • the 2-axis / 3-phase coordinate converter 30 is a sine wave generating unit that generates a sine wave depending on the rotation angle of the electric motor 7, and includes a q-axis voltage command value Vq * , a d-axis voltage command value Vd * , and an angle. Two-axis / 3-phase coordinate conversion is performed based on the signal ⁇ , and three-phase sine wave command voltages Vu * , Vv * , Vw * are generated. The 2-axis / 3-phase coordinate conversion is calculated using, for example, the following equation.
  • the 2-axis / 3-phase coordinate converter 30 outputs the three-phase sine wave command voltages Vu * , Vv * , Vw * to the three-phase adder 32.
  • the three-phase sine wave command voltages Vu * , Vv * and Vw * are three sine wave signal voltages having a phase difference of 120 degrees and having the same frequency and amplitude.
  • the harmonic generator 31 generates a synchronous triangular wave voltage Vm that is a harmonic component of the three-phase sine wave command voltages Vu * , Vv * , Vw * based on the angle signal ⁇ , and outputs it to the switch 33.
  • the synchronized triangular wave voltage Vm is, for example, a triangular wave, and is a signal voltage generated by superimposing an odd multiple of harmonic components synchronized with the three-phase sine wave command voltages Vu * , Vv * , and Vw * .
  • FIG. 3 is a diagram illustrating the operation of the switch 33 in FIG.
  • the switch 33 is a variable controller and does not change the amplitude of the synchronous triangular wave voltage Vm when the vehicle speed signal Vs is equal to or less than the speed threshold Vs1 [km / h], and is synchronized when the vehicle speed signal Vs exceeds the speed threshold Vs1.
  • the amplitude value of the triangular wave voltage Vm is set to zero.
  • the synchronous triangular wave voltage Vm is output to the three-phase adder 32.
  • the speed threshold Vs1 is set to a value indicating a boundary between when the vehicle is traveling at a low speed and when the vehicle is traveling at a high speed.
  • FIG. 4 is a diagram showing signal voltages input and output by the three-phase adder 32 of FIG.
  • the vertical axis represents voltage [V]
  • the horizontal axis represents angle [degree].
  • the three-phase adder 32 subtracts the amplitude value of the synchronous triangular wave voltage Vm from the amplitude value of the three-phase sine wave command voltages Vu * , Vv * , and Vw * , thereby generating a three-phase modulated wave voltage Vu. , Vv, Vw are generated and output to the PWM inverter 20 (FIG. 2).
  • This figure shows a case where the switch 33 (FIG. 2) does not change the amplitude of the synchronous triangular wave voltage Vm.
  • the three-phase modulated wave voltages Vu, Vv, and Vw are attenuated near the maximum amplitude as compared to the three-phase sine wave command voltages Vu * , Vv * , and Vw * . For this reason, the amplitude is reduced by 2 ⁇ A overall.
  • the switch 33 sets the amplitude of the synchronous triangular wave voltage Vm to zero, the waveforms of the three-phase modulation wave voltages Vu, Vv, and Vw are the same as the waveforms of the three-phase sine wave command voltages Vu * , Vv * , and Vw *. Sine waveform.
  • FIG. 5 is a diagram illustrating an operation performed by the PWM inverter 20 of FIG.
  • the waveform of the three-phase modulated wave voltages Vu, Vv, and Vw is set so that the switch 33 sets the amplitude of the synchronous triangular wave voltage Vm to zero (the vehicle speed signal Vs sets the speed threshold Vs1 [km / h]). It is a waveform when exceeding.
  • FIG. 5A is a diagram illustrating PWM conversion performed by the PWM inverter 20.
  • the PWM inverter 20 compares the reference triangular wave voltage Vc generated by a triangular wave generator (not shown) with the three-phase modulated wave voltages Vu, Vv, Vw, performs PWM conversion by the triangular wave comparison method, and generates a PWM control signal voltage. .
  • the reference triangular wave voltage Vc is set higher in frequency than the three-phase modulated wave voltages Vu, Vv, Vw. The higher this frequency is set, the smaller the torque ripple generated by the electric motor 7.
  • FIG. 5B is a diagram showing the phase voltage of the PWM drive voltage applied to the electric motor 7 of FIG.
  • the phase voltages Vun, Vvn, and Vwn have a DC voltage Ea in amplitude, respectively, between the U-phase terminal and the neutral point of the main body 22 of the electric motor 7, between the V-phase terminal and the neutral point, and the W-phase terminal. Applied between the neutral point.
  • FIG. 5C is a diagram showing the line voltage of the PWM drive voltage applied to the electric motor 7 of FIG.
  • the line voltages Vuv, Vvw, Vwu have twice the amplitude of the DC voltage Ea, and are respectively between the U-phase terminal and the V-phase terminal of the main body 22 of the electric motor 7, between the V-phase terminal and the W-phase terminal, Applied between the W-phase terminal and the U-phase terminal.
  • FIG. 6 is a diagram illustrating the relationship between the phase voltage of the PWM drive voltage and the line voltage.
  • three-phase currents Iu, Iv, Iw corresponding to the line voltages Vuv, Vvw, Vwu flow to generate auxiliary torque corresponding to the steering torque.
  • the line voltages Vuv, Vvw, Vwu applied to the electric motor 7 have a wide pulse width near the center and a narrow pulse width near both ends in each time of every half cycle. . For this reason, the average voltage in one cycle is equivalent to a sine wave voltage.
  • the average voltage of the PWM drive voltage is not distorted and the harmonic component is not generated. Since there are few, the torque ripple which the electric motor 7 generate
  • the amplitudes of the three-phase sine wave command voltages Vu * , Vv * , Vw * increase so that the electric motor 7 generates a corresponding auxiliary torque.
  • the amplitudes of the three-phase modulated wave voltages Vu, Vv, Vw also increase in the same manner.
  • the amplitudes of the three-phase modulated wave voltages Vu, Vv, and Vw exceed the amplitude of the reference triangular wave voltage Vc, the average voltage of the PWM drive voltage (line voltage) is distorted and the harmonic component increases, and the electric motor 7 Generate torque ripple.
  • the maximum amplitude ratio of the three-phase modulated wave voltages Vu, Vv, Vw is limited to a predetermined value (see page 44 of Non-Patent Document 1).
  • the switch 33 sets the amplitude of the synchronous triangular wave voltage Vm to zero, even if the average voltage of the PWM drive voltage (line voltage) is set to the maximum amplitude ratio without distortion, the PWM drive voltage (line voltage) The amplitude value of the fundamental wave component is smaller than the DC voltage Ea. For this reason, the voltage utilization rate is low.
  • the voltage utilization rate is the ratio of the amplitude value of the fundamental wave component of the PWM drive voltage (line voltage) to the DC voltage Ea.
  • the switch 33 does not change the amplitude of the synchronous triangular wave voltage Vm
  • the average voltage of the PWM drive voltage (line voltage) does not distort as compared with the case where the amplitude of the synchronous triangular wave voltage Vm is zero.
  • the amplitude ratio is large. That is, the amplitude values of the three-phase modulated wave voltages Vu, Vv, Vw can be increased by the voltage 2 ⁇ A as shown in FIG.
  • the amplitude of the fundamental wave components of the line voltages Vuv, Vvw, and Vwu based on the three-phase modulated wave voltages Vu, Vv, and Vw with the amplitude value increased by the voltage 2 ⁇ A can be increased, so that the voltage utilization rate can be increased. it can.
  • the amplitude of the synchronous triangular wave voltage Vm is not changed, the maximum voltage utilization rate at which the average voltage of the PWM drive voltage (line voltage) is not distorted compared to the case where the amplitude of the synchronous triangular wave voltage Vm is zero.
  • the amplitude value of the fundamental wave component of the PWM drive voltage (line voltage) becomes substantially equal to the DC voltage Ea.
  • the maximum voltage value that can be applied to the electric motor 7 can be increased, the maximum current values of the three-phase currents Iu, Iv, and Iw that flow in accordance with the maximum voltage value are increased, and the maximum torque generated by the electric motor 7 can be increased.
  • the current values of the three-phase currents Iu, Iv, Iw necessary for obtaining the same motor output can be reduced. In this case, the loss due to the resistance of the stator coil or the like is reduced, and the power efficiency is increased.
  • the control device 10 determines whether or not to set the amplitude value of the synchronous triangular wave voltage Vm to zero according to the vehicle speed signal Vs.
  • the electric power steering device 1 generates a large steering torque during low-speed traveling (at the time of stationary), and steers with high resolution without increasing the steering torque during high-speed traveling. Further, a large steering torque is required during low-speed traveling, and it is necessary to steer with high resolution during high-speed traveling. For this reason, the torque ripple of the electric motor 7 is small and does not affect the steering feeling of the driver.
  • the control device 10 (FIG. 2) includes a switch 33 that selects whether or not to set the amplitude value of the synchronous triangular wave voltage Vm to zero according to the vehicle speed signal Vs. Indicated.
  • a variable controller that varies the amplitude of the synchronous triangular wave voltage Vm may be provided. In such a case, the variable controller continuously changes the amplitude of the synchronous triangular wave voltage Vm according to the vehicle speed signal Vs. For this reason, since the amplitude of the synchronous triangular wave voltage Vm can be increased as the vehicle speed signal Vs increases, the steering feeling of the driver can be continuously changed according to the vehicle speed signal Vs.
  • the harmonic generator 31 generates a signal voltage of a third-order harmonic component synchronized with the three-phase sine wave command voltages Vu * , Vv * , Vw * based on the angle signal ⁇ . You can also. In this case, the average voltage of the PWM drive voltage (line voltage) applied to the electric motor 7 does not include a third-order integer multiple harmonic component, so that the waveform is not distorted.
  • Control device 10 can also include a power amplifier instead of PWM inverter 20.
  • the power amplifier amplifies the three-phase modulated wave voltages Vu, Vv, and Vw and applies them to the motor 7.
  • the electric motor 7 generates auxiliary torque based on the power-amplified three-phase modulated wave voltages Vu, Vv, and Vw. For this reason, an electric motor output can be changed according to the vehicle speed signal Vs.
  • the electric power steering apparatus 1 includes a steer-by-wire (Steer_By_Wire) in which the steering wheel 2 and the steering wheel 9 are mechanically separated.
  • Step_By_Wire steer-by-wire

Abstract

 低速走行時に電動機(7)を高出力駆動し、高速走行時に高い分解能で転舵する。  電動パワーステアリング装置(1)は、運転者が操舵輪(9)を操舵する操舵トルクの大きさに応じた補助トルクを電動機(7)で発生させて、運転者の操舵トルクを軽減させる。制御装置(10)は、速度センサ(11)からの車速信号(Vs)に基づいて、低速走行時に電動機(7)を高出力駆動し、高速走行時に電動機出力を大きくせずに高い分解能で転舵する。また、低速走行時には大きな操舵トルクを必要とし、高速走行時には高い分解能で転舵することを必要とする。このため、運転者の操舵フィーリングに影響を与えない。

Description

電動パワーステアリング装置
 本発明は、操舵トルクを多相交流モータで補助する電動パワーステアリング装置に関する。
 電動パワーステアリング装置は、運転者が操舵する操舵トルクに応じた補助トルクを電動機で発生させ、操舵トルクを軽減させる装置である。
 電動パワーステアリング装置は、運転者の操舵フィーリングに影響を与えない電動機の制御が要求される。
 三角波比較法によるPWM制御は、3相正弦波指令電圧と基準三角波電圧とを比較してPWM制御信号電圧を発生させるものである。PWMインバータは、PWM制御信号電圧に基づいてPWM制御された矩形波駆動電圧を生成し、この矩形波駆動電圧を電動機に印加して3相電流を流すものである。
 また、3相正弦波指令電圧の振幅比を高くして発生させたPWM制御信号電圧を用いてPWM制御すれば、PWM駆動電圧の平均電圧が歪み電動機のトルクリップルが増える等の理由から所定の振幅比に制限される。但し、振幅比は、基準三角波電圧の振幅に対する信号電圧の振幅の比である。
 非特許文献1には、電圧利用率を高くする技術が記載されている。この技術は、3相正弦波指令電圧を第3次の整数倍の高調波(三角波)で変調した3相変調波電圧をPWM制御に用いている。
 3相変調波電圧は、3相正弦波指令電圧に比して、信号電圧の振幅付近が小さくなる。この結果、PWM駆動電圧の平均電圧が歪まないで振幅比を大きくできる範囲が増加するので、電圧利用率を高めることができるものである。
ACサーボシステムの理論と設計の実際、第3章 電力変換回路44~45ページ(2005年7月10日第7版、発行所:総合電子出版)
 非特許文献1の技術は、電圧利用率を高くし電動機(多相交流モータ)に流れる電流を増やすことができるので、電動機を高出力駆動することができる。
 非特許文献1の技術を適用した電動パワーステアリング装置は、低速走行時(据え切り時)には、転舵の分解能が低くなっても、運転者の操舵フィーリングに影響を与えない。
 しかし、高速走行時には、高い分解能で転舵することが要求され、運転者の操舵フィーリングに影響を与えてしまう。
 本発明は、前記課題に鑑みてなされたものであり、車速に応じて、多相交流モータを高出力駆動して操舵トルクを軽減し、あるいは、操舵トルクを軽減せずに操舵輪を高い分解能で転舵することができる電動パワーステアリング装置を提供することを目的とする。
 前記課題を解決するため、請求項1に係る発明の電動パワーステアリング装置は、操舵入力に応じて駆動される多相交流モータのトルクによって車両を転舵させる電動パワーステアリング装置であって、多相交流モータに印加される駆動電圧の基本波とこの基本波の高調波成分とを加算し、この加算された変調波に基づいて多相交流モータを駆動させる制御装置を備え、制御装置は、高調波成分を車速に応じて可変させることを特徴とする。
 このような構成によれば、基本波(例えば、3相正弦波指令電圧)と高調波成分とを加算して、最大振幅付近を減衰させて平坦化した変調波(例えば、3相変調波電圧)を多相交流モータに印加して電動機出力を大きくできる。
 この場合、車速に応じて高調波成分が可変され多相交流モータの出力も可変されるので、低速走行時に電動機出力を大きくでき、高速走行時に高い分解能で転舵することができる。
 また、前記電動パワーステアリング装置において、制御装置は、多相交流モータの回転角に依存する正弦波を生成する正弦波生成手段と、正弦波を基本波として高調波成分を生成する高調波発生器と、車速に応じて高調波成分の振幅を変化させる可変制御器と、正弦波と高調波成分とを加算して変調波を生成する多相加算器と、変調波を用いて、多相交流モータをPWM制御するPWMインバータとを備えることを特徴とする。
 前記構成によれば、3相の正弦波と車速に応じて振幅が変化する高調波成分とを加算した3相の変調波を用いて、トルクリップルが小さいPWM制御により多相交流モータを駆動する。
 このため、大きな操舵トルクが必要な低速走行時には、電圧利用率を高くし多相交流モータに印加できる電圧も高くできるので、電動機出力を大きくすることができる。また、高い分解能で転舵することが必要な高速走行時には、電動機出力を大きくしないで高い分解能で転舵することができる。従って、運転者の操舵フィーリングに影響を与えない。
 また好適な実施形態として、請求項3に係る発明の電動パワーステアリング装置では、可変制御器は、車速が所定値(例えば、速度閾値Vs1[km/h])を超えるときに、高調波成分の振幅をゼロにした値を出力し、車速が所定値以下のときに、高調波成分の値をそのまま出力するスイッチであることを特徴とする。
 さらに好適な実施形態として、請求項4に係る発明の電動パワーステアリング装置では、高調波成分は、基本波の奇数倍の高調波からなる三角波であることを特徴とする。
 三角波は、奇数倍の高調波から成り、容易に発生させることができる。このため、高調波発生器の設計や製造が容易になる。
 また、高調波成分は、基本波に対して3次の整数倍の高調波を含んでいることを特徴とする。
 この場合、多相交流モータに印加される電圧(線間電圧)の平均電圧は、第3次の整数倍の高調波成分を含まないので、波形が歪まない。
 本発明によれば、車速に応じて、多相交流モータを高出力駆動して操舵トルクを軽減し、あるいは、操舵トルクを軽減せずに操舵輪を高い分解能で転舵することができる。
本発明の一実施形態である電動パワーステアリング装置を示す図である。 図1の制御装置及び電動機を示すブロック図である。 図2のスイッチの動作を示す図である。 図2の3相加算器が入出力する信号電圧を示す図である。 図2のPWMインバータが行う動作を示す図である。 PWM駆動電圧の相電圧と線間電圧との関係を示す図である。
符号の説明
 1  電動パワーステアリング装置
 2  ステアリングホイール
 3  ステアリング軸
 4  ピニオン軸
 4A ピニオン
 5  トルクセンサ
 6  トルク伝達手段
 7  電動機(多相交流モータ)
 8  ラック軸
 8A ラック歯
 9  操舵輪
 10 制御装置
 11 速度センサ
 15 高圧バッテリ
 20 PWMインバータ
 21 角度センサ
 22 本体
 25 電流センサ
 30 2軸/3相座標変換器(正弦波生成手段)
 31 高調波発生器
 32 3相加算器(多相加算器)
 33 スイッチ(可変制御器)
 35 3相/2軸座標変換器
 50 目標電流変換器
(第1実施形態)
 図1は、本発明の一実施形態である電動パワーステアリング装置1を示す図である。電動パワーステアリング装置1は、ステアリングホイール2、ステアリング軸3、ピニオン軸4、ピニオン4A、トルクセンサ5、トルク伝達手段6、電動機7、ラック軸8、ラック歯8A、2つの操舵輪9、制御装置10、及び、速度センサ11を備える。多相交流モータである電動機7は、例えば3相ブラシレスモータが用いられる。
 運転者は、ステアリングホイール2を操作することにより、電動パワーステアリング装置1を介して車両の走行方向の転舵を行う。
 ステアリングホイール2は、ステアリング軸3及びピニオン軸4を経由して、トルクセンサ5、トルク伝達手段6、及び、ピニオン4Aに、運転者からの操舵トルクに基づく回転力を伝達する。
 ピニオン4A及びラック歯8Aは、互いに噛み合うことにより、回転力をラック軸8の軸方向に直線運動させる力に変換する。2つの操舵輪9,9は、ラック軸8からの直線運動をさせる力が作用して、回転力に応じた操舵角だけ向きを変える。この結果、運転者の操作に応じて、車両の走行方向は変化する。
 トルクセンサ5は、ステアリングホイール2による運転者の操舵に応じて、ステアリング軸3に加えられた操舵トルクを検出して電気的なトルク信号Tを生成し、このトルク信号Tを制御装置10に出力する。速度センサ11は、車両の速度(車速)を検出して、車速信号Vsを制御装置10に出力する。
 電動機7は、3相電流Iu、Iv、Iwに基づいて補助トルクを発生し、トルク伝達手段6を経由してピニオン4A及びラック軸8に伝達する。この結果、運転者の操舵トルクが軽減する。制御装置10は、トルク信号T、車速信号Vs、及び、角度信号θに基づいて生成した矩形波電圧であるPWM駆動電圧を電動機7に印加して、3相電流Iu、Iv、Iwを流す。
 また、電動機7は、電動機7の回転角度である角度信号θを制御装置10に出力する。
 図2は、図1の制御装置10及び電動機7を示すブロック図である。制御装置10は、目標電流変換器50、加算器70、75、電流制御器80、2軸/3相座標変換器30、3相加算器32、高調波発生器31、スイッチ33(可変制御器)、及び、3相/2軸座標変換器35を備え、これらの機能は、CPU、ROM、及び、RAMにより構成されるコンピュータ及びプログラムによって実現される。
 さらに、制御装置10は、PWMインバータ20、高圧バッテリ15、電流センサ25を備える。
 電動機7は、本体22及び角度センサ21を備え、本体22は、固定子及び回転子を備え、固定子は、少なくとも3つの固定子コイルを備える。3つの固定子コイルは、一端が中性点に接続され、他端が本体22の端子に接続されて、スター結線される。本体22の回転子は、回転軸が回転可能に支持され、3つの固定子コイルが発生する磁界により回転力が与えられる。
 制御装置10は、磁極軸成分とトルク軸成分とに分解するdqベクトル制御を行い、q軸電流指令値iqとq軸電動機電流値iqとの偏差がゼロになるようにフィードバック制御も行う。d軸成分は磁極軸成分であり、q軸成分はトルク軸成分である。電流センサ25は、電動機7の3相電流の内の2つの相電流Iu、Ivの電流値を検出して、U相電動機電流値iu及びV相電動機電流値ivを3相/2軸座標変換器35に伝達する。角度センサ21は、電動機7の回転軸の回転角度を検出して、角度信号θを2軸/3相座標変換器30、高調波発生器31、PWMインバータ20、及び、3相/2軸座標変換器35に出力する。
 3相/2軸座標変換器35は、U相電動機電流値iu、V相電動機電流値iv、及び、角度信号θに基づいて3相/2軸座標変換を行い、d軸電動機電流値id及びq軸電動機電流値iqを生成する。また、W相電動機電流値iwについては、iu+iv+iw=0より演算で求められる。3相/2軸座標変換は、例えば、次式を用いて演算される。
Figure JPOXMLDOC01-appb-M000001
 ここで、式中のθは、電気角であり、回転子の機械的な回転角度(機械角)を極対数で乗じた値である。
 3相/2軸座標変換器35は、d軸電動機電流値idを加算器75に出力し、q軸電動機電流値iqを加算器70に出力する。
 目標電流変換器50は、トルク信号T及び車速信号Vsに基づいて、対応するq軸電流指令値iqを生成して加算器70に出力する。なお、弱め界磁制御を行わない場合には、d軸電流指令値idはゼロに設定される。
 加算器70は、q軸電流指令値iqからq軸電動機電流値iqを減算して、電流制御器80に出力する。加算器75は、d軸電流指令値idからd軸電動機電流値idを減算して、電流制御器80に出力する。
 電流制御器80は、加算器70、75からの出力信号を比例・積分制御(PI制御)して、対応するq軸電圧指令値Vq及びd軸電圧指令値Vdを生成し、2軸/3相座標変換器30に出力する。
 2軸/3相座標変換器30は、電動機7の回転角に依存する正弦波を生成する正弦波生成手段であり、q軸電圧指令値Vq、d軸電圧指令値Vd、及び、角度信号θに基づいて2軸/3相座標変換を行い、3相正弦波指令電圧Vu、Vv、Vwを生成する。2軸/3相座標変換は、例えば、次式を用いて演算される。
Figure JPOXMLDOC01-appb-M000002
 2軸/3相座標変換器30は、3相正弦波指令電圧Vu、Vv、Vwを3相加算器32に出力する。3相正弦波指令電圧Vu、Vv、Vwは、互いに120度の位相差を有し、同一の周波数及び振幅を有する3つの正弦波信号電圧である。
 高調波発生器31は、角度信号θに基づいて3相正弦波指令電圧Vu、Vv、Vwの高調波成分である同期三角波電圧Vmを発生して、スイッチ33に出力する。同期三角波電圧Vmは、例えば三角波であり、3相正弦波指令電圧Vu、Vv、Vwに対して、同期した奇数倍の高調波成分が重ねられて生成された信号電圧である。
 図3は、図2のスイッチ33の動作を示す図である。スイッチ33は、可変制御器であり、車速信号Vsが速度閾値Vs1[km/h]以下の場合に同期三角波電圧Vmの振幅を変化させないで、車速信号Vsが速度閾値Vs1を超えた場合に同期三角波電圧Vmの振幅値をゼロにする。そして、同期三角波電圧Vmを3相加算器32に出力する。
 なお、速度閾値Vs1は、車両が低速走行時と高速走行時との境界を示す値が設定される。
 図4は、図2の3相加算器32が入出力する信号電圧を示す図である。縦軸は電圧[V]を示し、横軸は角度[度]を示す。3相加算器32(多相加算器)は、3相正弦波指令電圧Vu、Vv、Vwの振幅値に対して同期三角波電圧Vmの振幅値を減算して3相変調波電圧Vu、Vv、Vwを生成し、PWMインバータ20(図2)に出力する。
 また、同図は、スイッチ33(図2)が同期三角波電圧Vmの振幅を変化させない場合を示すものである。3相変調波電圧Vu、Vv、Vwは、3相正弦波指令電圧Vu、Vv、Vwに比して、最大振幅付近が減衰する。このため、全体的に2ΔAだけ振幅が小さくなる。
 なお、スイッチ33が同期三角波電圧Vmの振幅をゼロにした場合、3相変調波電圧Vu、Vv、Vwの波形は、3相正弦波指令電圧Vu、Vv、Vwの波形と同一の正弦波形になる。また、スイッチではなく車速に応じて、所定のゲインを乗算するように構成してもよい。
 図5は、図2のPWMインバータ20が行う動作を示す図である。ここで説明を容易にする為、3相変調波電圧Vu、Vv、Vwの波形は、スイッチ33が同期三角波電圧Vmの振幅をゼロにした(車速信号Vsが速度閾値Vs1[km/h]を超えた)場合の波形である。
 図5(a)は、PWMインバータ20が行うPWM変換を示す図である。PWMインバータ20は、図示されない三角波発生器が発生した基準三角波電圧Vcと3相変調波電圧Vu、Vv、Vwとを比較して、三角波比較法によるPWM変換を行い、PWM制御信号電圧を生成する。基準三角波電圧Vcは、3相変調波電圧Vu、Vv、Vwに比して周波数が高く設定される。この周波数が高く設定される程、電動機7が発生するトルクリップルは、小さくなる。
 図2が示すように、高圧バッテリ15は、直流電圧EaをPWMインバータ20に供給する。PWMインバータ20は、PWM制御信号電圧に基づいて図示されない複数のスイッチング素子を所定のタイミングでオン又はオフにする。
 図5(b)は、図2の電動機7に印加したPWM駆動電圧の相電圧を示す図である。相電圧Vun、Vvn、Vwnは、振幅が直流電圧Eaであり、夫々電動機7の本体22のU相端子と中性点との間、V相端子と中性点との間、W相端子と中性点との間、に印加される。
 図5(c)は、図2の電動機7に印加したPWM駆動電圧の線間電圧を示す図である。線間電圧Vuv、Vvw、Vwuは、振幅が直流電圧Eaの2倍であり、夫々電動機7の本体22のU相端子とV相端子との間、V相端子とW相端子との間、W相端子とU相端子との間、に印加される。
 図6は、PWM駆動電圧の相電圧と線間電圧との関係を示す図である。電動機7は、線間電圧Vuv、Vvw、Vwuに応じた3相電流Iu、Iv、Iwが流れて、操舵トルクに応じた補助トルクを発生する。
 図5(c)において、電動機7に印加される線間電圧Vuv、Vvw、Vwuは、半周期毎の各時間の中で、中央部付近のパルス幅が広く、両端部付近のパルス幅が狭い。このため、1周期中の平均電圧が等価的に正弦波電圧になる。
 単にパルス幅を一定にした電圧を電動機7に印加する場合に比して、PWM制御による線間電圧Vuv、Vvw、Vwuを印加することにより、PWM駆動電圧の平均電圧が歪まず高調波成分も少ないので、電動機7が発生するトルクリップルは小さくなる。
 トルク信号Tの増加に伴い、電動機7が対応する補助トルクを発生するように、3相正弦波指令電圧Vu、Vv、Vwの振幅は増加する。そして、3相変調波電圧Vu、Vv、Vwの振幅も同様に増加する。
 しかし、3相変調波電圧Vu、Vv、Vwの振幅が基準三角波電圧Vcの振幅を超えると、PWM駆動電圧(線間電圧)の平均電圧が歪んで高調波成分が増加して、電動機7がトルクリップルを発生する。このため、3相変調波電圧Vu、Vv、Vwの最大の振幅比は、所定値に制限される(非特許文献1の44ページを参照)。
 スイッチ33が同期三角波電圧Vmの振幅をゼロにする場合には、PWM駆動電圧(線間電圧)の平均電圧が歪まない最大の振幅比に設定しても、PWM駆動電圧(線間電圧)の基本波成分の振幅値は、直流電圧Eaより小さくなる。このため、電圧利用率は低い。ここで、電圧利用率とは、直流電圧Eaに対するPWM駆動電圧(線間電圧)の基本波成分の振幅値の比である。
 一方、スイッチ33が同期三角波電圧Vmの振幅を変化させない場合には、同期三角波電圧Vmの振幅をゼロにする場合に比して、PWM駆動電圧(線間電圧)の平均電圧が歪まない最大の振幅比は大きい。すなわち、3相変調波電圧Vu、Vv、Vwは、図4に示すように振幅値を電圧2ΔAだけ大きくすることができる。
 このため、振幅値を電圧2ΔAだけ大きくした3相変調波電圧Vu、Vv、Vwに基づく線間電圧Vuv、Vvw、Vwuの基本波成分の振幅も大きくできるので、電圧利用率も高くすることができる。
 さらに、同期三角波電圧Vmの振幅を変化させない場合には、同期三角波電圧Vmの振幅をゼロにする場合に比して、PWM駆動電圧(線間電圧)の平均電圧が歪まない最大の電圧利用率が高くなり、PWM駆動電圧(線間電圧)の基本波成分の振幅値が直流電圧Eaに略等しくなる。このため、電動機7に印加できる最大電圧値を高くできるので、最大電圧値に応じて流れる3相電流Iu、Iv、Iwの最大電流値も大きくなり、電動機7が発生する最大トルクを大きくできる。
 この結果、同じ電動機出力を得る為に必要な3相電流Iu、Iv、Iwの電流値を小さくすることができる。この場合には、固定子コイル等の抵抗分による損失を減少させて、電力効率も高くなる。
 制御装置10は、車速信号Vsに応じて、同期三角波電圧Vmの振幅値をゼロにするか否かを決定する。
 電動パワーステアリング装置1は、低速走行時(据え切り時)に、大きな操舵トルクを発生し、高速走行時に操舵トルクを大きくしないで高い分解能で転舵する。また、低速走行時には大きな操舵トルクを必要とし、高速走行時には高い分解能で転舵することを必要とする。このため、電動機7のトルクリップルが小さく、運転者の操舵フィーリングに影響を与えない。
(第2実施形態)
 制御装置10(図2)は、第1実施形態の「可変制御器」の一例として、車速信号Vsに応じて同期三角波電圧Vmの振幅値を、ゼロにするか否かを選択するスイッチ33を示した。
 第2実施形態では、このスイッチ33に代えて、同期三角波電圧Vmの振幅を可変させるような可変制御器を備えることもできる。係る場合、可変制御器は、車速信号Vsに応じて同期三角波電圧Vmの振幅を連続的に変化させる。
 このため、車速信号Vsの増加に伴い同期三角波電圧Vmの振幅も増加させることができるので、車速信号Vsに応じて運転者の操舵フィーリングを連続的に変化させることができる。
(変形例1)
 高調波発生器31は、角度信号θに基づいて3相正弦波指令電圧Vu、Vv、Vwに対して、同期した第3次の整数倍の高調波成分の信号電圧を発生することもできる。
 この場合、電動機7に印加されるPWM駆動電圧(線間電圧)の平均電圧は、第3次の整数倍の高調波成分を含まないので、波形が歪まない。
(変形例2)
 また、制御装置10は、PWMインバータ20に代えて、電力増幅器を備えることもできる。係る場合、電力増幅器は、3相変調波電圧Vu、Vv、Vwを電力増幅して電動機7に印加する。電動機7は、電力増幅された3相変調波電圧Vu、Vv、Vwに基づいて、補助トルクを発生する。このため、車速信号Vsに応じて電動機出力を変化させることができる。
(変形例3)
 さらに、本発明の電動パワーステアリング装置1には、ステアリングホイール2と操舵輪9とが機械的に切り離されたステアバイワイヤ(Steer_By_Wire)が含まれる。

Claims (5)

  1.  操舵入力に応じて駆動される多相交流モータ(7)のトルクによって車両を転舵させる電動パワーステアリング装置(1)であって、
    前記多相交流モータ(7)に印加される駆動電圧の基本波とこの基本波の高調波成分とを加算し、この加算された変調波に基づいて前記多相交流モータ(7)を駆動させる制御装置(10)を備え、
     前記制御装置(10)は、前記高調波成分を車速に応じて可変させることを特徴とする電動パワーステアリング装置(1)。
  2.  前記制御装置(10)は、
     前記多相交流モータ(7)の回転角に依存する正弦波を生成する正弦波生成手段(30)と、
     前記正弦波を前記基本波として高調波成分を生成する高調波発生器(31)と、
     前記車速に応じて前記高調波成分の振幅を変化させる可変制御器(33)と、
     前記正弦波と前記高調波成分とを加算して前記変調波を生成する多相加算器(32)と、
     前記変調波を用いて、前記多相交流モータ(7)をPWM制御するPWMインバータ(20)とを備えることを特徴とする請求の範囲第1項に記載の電動パワーステアリング装置(1)。
  3.  前記可変制御器(33)は、
    前記車速が所定値を超えるときに、前記高調波成分の振幅をゼロにした値を出力し、
    前記車速が所定値以下のときに、前記高調波成分の値をそのまま出力するスイッチ(33)であることを特徴とする請求の範囲第2項に記載の電動パワーステアリング装置(1)。
  4.  前記高調波成分は、前記基本波の奇数倍の高調波からなる三角波であることを特徴とする請求の範囲第1項乃至請求の範囲第3項の何れか1項に記載の電動パワーステアリング装置(1)。
  5.  前記高調波成分は、前記基本波に対して3次の整数倍の高調波を含んでいることを特徴とする請求の範囲第1項乃至請求の範囲第3項の何れか1項に記載の電動パワーステアリング装置(1)。
PCT/JP2009/054043 2008-03-10 2009-03-04 電動パワーステアリング装置 WO2009113431A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/921,676 US8354810B2 (en) 2008-03-10 2009-03-04 Electric power steering device
CN2009801077065A CN101959744B (zh) 2008-03-10 2009-03-04 电动助力转向装置
JP2010502780A JP5314669B2 (ja) 2008-03-10 2009-03-04 電動パワーステアリング装置
EP09719239.7A EP2256018B1 (en) 2008-03-10 2009-03-04 Electric power steering device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008059322 2008-03-10
JP2008-059322 2008-03-10

Publications (1)

Publication Number Publication Date
WO2009113431A1 true WO2009113431A1 (ja) 2009-09-17

Family

ID=41065099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054043 WO2009113431A1 (ja) 2008-03-10 2009-03-04 電動パワーステアリング装置

Country Status (5)

Country Link
US (1) US8354810B2 (ja)
EP (1) EP2256018B1 (ja)
JP (1) JP5314669B2 (ja)
CN (1) CN101959744B (ja)
WO (1) WO2009113431A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010029928A1 (de) * 2010-06-10 2011-12-15 Zf Lenksysteme Gmbh Bestimmung eines Mittengefühls für EPS-Lenksysteme
US9150243B2 (en) * 2010-11-23 2015-10-06 Steering Solutions Ip Holding Corporation Harmonic pinion torque correction
KR20130048837A (ko) * 2011-11-03 2013-05-13 주식회사 만도 랙구동형 조향장치 및 이를 구비한 랙구동형 동력 보조 조향장치
RU2628765C1 (ru) * 2013-08-21 2017-08-22 Тойота Дзидося Кабусики Кайся Аппаратура управления электродвигателя
US10166977B2 (en) * 2014-09-24 2019-01-01 Hitachi Automotive Systems, Ltd. Control apparatus for vehicle-mounted apparatus and power steering apparatus
CN105128925A (zh) * 2015-09-08 2015-12-09 苏州市博得立电源科技有限公司 一种汽车电动助力转向控制系统
US9909954B2 (en) * 2016-01-08 2018-03-06 GM Global Technology Operations LLC System and method to quantify viscous damping steering feel of a vehicle equipped with an electric power steering system
WO2018055803A1 (ja) * 2016-09-20 2018-03-29 日立オートモティブシステムズ株式会社 パワーステアリング装置
WO2020012644A1 (ja) * 2018-07-13 2020-01-16 三菱電機株式会社 電動パワーステアリング装置の制御装置
US20210070361A1 (en) * 2019-09-06 2021-03-11 Sensata Technologies, Inc. Steer by wire system with redundant angular position sensing and an end-of-travel stop
CN111082728A (zh) * 2019-12-11 2020-04-28 珠海格力电器股份有限公司 一种油泵电机低速满负荷启动的控制方法及控制系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528783U (ja) * 1991-09-28 1993-04-16 光洋精工株式会社 電動パワーステアリング装置
JPH11321691A (ja) * 1998-03-20 1999-11-24 Trw Inc ゲイン・スケジュ―ラを備えた改良されたモ―タ電流コントロ―ラを有する電気アシスト・ステアリング・システム
JP2006020381A (ja) * 2004-06-30 2006-01-19 Hitachi Ltd モータ駆動装置,電動アクチュエータおよび電動パワーステアリング装置
JP2006081230A (ja) * 2002-12-12 2006-03-23 Nsk Ltd モータ駆動制御装置および電動パワーステアリング装置
WO2006057317A1 (ja) * 2004-11-24 2006-06-01 Nsk Ltd. 無結線式モータ、その駆動制御装置及び無結線式モータの駆動制御装置を使用した電動パワーステアリング装置
JP2007116862A (ja) * 2005-10-24 2007-05-10 Nsk Ltd モータ駆動制御装置及びそれを搭載した電動パワーステアリング装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2350267Y (zh) * 1998-12-14 1999-11-24 黄华伟 车辆方向控制装置
US6498449B1 (en) * 1999-09-17 2002-12-24 Delphi Technologies, Inc. Low ripple torque control of a permanent magnet motor without using current sensors
EP1691475B1 (en) 2000-09-06 2012-06-13 GM Global Technology Operations LLC Torque ripple free electric power steering
JP3480843B2 (ja) * 2001-09-04 2003-12-22 三菱電機株式会社 電動パワーステアリング制御装置及び制御方法
US6845309B2 (en) 2002-01-30 2005-01-18 Visteon Global Technologies, Inc. Electric power assist torque check
JP2004009857A (ja) * 2002-06-05 2004-01-15 Mitsubishi Motors Corp 車両用操舵制御装置
US6864662B2 (en) * 2003-04-30 2005-03-08 Visteon Global Technologies, Inc. Electric power assist steering system and method of operation
JP4412006B2 (ja) * 2004-03-05 2010-02-10 株式会社ジェイテクト 電動パワーステアリング装置
JP4617716B2 (ja) * 2004-05-11 2011-01-26 株式会社ジェイテクト 電動パワーステアリング装置
JP4349309B2 (ja) * 2004-09-27 2009-10-21 日産自動車株式会社 車両用操舵制御装置
JP2006174692A (ja) * 2004-11-19 2006-06-29 Nippon Densan Corp ブラシレスモータ
JP4692730B2 (ja) * 2005-04-19 2011-06-01 株式会社ジェイテクト 電動パワーステアリング装置
EP1777806A2 (en) * 2005-10-21 2007-04-25 NSK Ltd. Motor drive control apparatus and electric power steering apparatus
JP4984607B2 (ja) * 2005-12-15 2012-07-25 日本精工株式会社 ステアリング装置
GB0526274D0 (en) 2005-12-23 2006-02-01 Trw Ltd Electric motor control
JP2008030675A (ja) * 2006-07-31 2008-02-14 Nsk Ltd 電動パワーステアリング装置
KR100861871B1 (ko) * 2007-09-17 2008-10-06 현대모비스 주식회사 기어 박스 타입 능동 전륜 조향 장치
JP2011194914A (ja) * 2010-03-17 2011-10-06 Honda Motor Co Ltd 電動パワーステアリング装置およびこれに用いられる電動機駆動制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528783U (ja) * 1991-09-28 1993-04-16 光洋精工株式会社 電動パワーステアリング装置
JPH11321691A (ja) * 1998-03-20 1999-11-24 Trw Inc ゲイン・スケジュ―ラを備えた改良されたモ―タ電流コントロ―ラを有する電気アシスト・ステアリング・システム
JP2006081230A (ja) * 2002-12-12 2006-03-23 Nsk Ltd モータ駆動制御装置および電動パワーステアリング装置
JP2006020381A (ja) * 2004-06-30 2006-01-19 Hitachi Ltd モータ駆動装置,電動アクチュエータおよび電動パワーステアリング装置
WO2006057317A1 (ja) * 2004-11-24 2006-06-01 Nsk Ltd. 無結線式モータ、その駆動制御装置及び無結線式モータの駆動制御装置を使用した電動パワーステアリング装置
JP2007116862A (ja) * 2005-10-24 2007-05-10 Nsk Ltd モータ駆動制御装置及びそれを搭載した電動パワーステアリング装置

Also Published As

Publication number Publication date
EP2256018B1 (en) 2014-07-02
JPWO2009113431A1 (ja) 2011-07-21
EP2256018A1 (en) 2010-12-01
CN101959744A (zh) 2011-01-26
EP2256018A4 (en) 2011-05-04
CN101959744B (zh) 2013-01-02
US20110000738A1 (en) 2011-01-06
JP5314669B2 (ja) 2013-10-16
US8354810B2 (en) 2013-01-15

Similar Documents

Publication Publication Date Title
JP5314669B2 (ja) 電動パワーステアリング装置
JP5310815B2 (ja) モータ駆動制御装置及びこれを使用した電動パワーステアリング装置
US9979340B2 (en) Apparatus for controlling three phase rotary electric machine reducing peak value of phase current
JP4498353B2 (ja) 電動機制御装置
WO2018016356A1 (ja) 電動パワーステアリング装置
JP6512372B2 (ja) 電動パワーステアリング装置
JP4350077B2 (ja) インバータ装置、モータ装置、伝達比可変装置、および操舵補助装置
JP6516857B2 (ja) 交流回転機の制御装置及びそれを備えた電動パワーステアリング装置
JP2015171251A (ja) モータ制御装置及び電動パワーステアリング装置
CN110809855B (zh) 电动机控制装置以及搭载了该电动机控制装置的电动助力转向装置
CN111418147B (zh) 马达驱动系统
JP2007099066A (ja) 電動パワーステアリング装置
JP6390489B2 (ja) インバータの制御装置
JP2008030675A (ja) 電動パワーステアリング装置
JP5975822B2 (ja) 交流電動機のpwm制御法および駆動システム
WO2021106373A1 (ja) モータ制御装置、電動アクチュエータ製品及び電動パワーステアリング装置
WO2021019662A1 (ja) 交流回転電機の制御装置及び電動パワーステアリング装置
WO2022224736A1 (ja) モータ制御装置およびモータ制御方法
JP5125535B2 (ja) 電動パワーステアリング制御装置及びモータ駆動制御装置
JP2023045904A (ja) モータ制御装置、モータ制御方法、及び電動パワーステアリング装置
JP2022135613A (ja) モータ制御装置、および、それを備えた電動パワーステアリング装置
JP2013056568A (ja) 電動パワーステアリング装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980107706.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09719239

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010502780

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12921676

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009719239

Country of ref document: EP