WO2009113215A1 - 回転電機用の固定子鉄心およびその製造方法 - Google Patents

回転電機用の固定子鉄心およびその製造方法 Download PDF

Info

Publication number
WO2009113215A1
WO2009113215A1 PCT/JP2008/072303 JP2008072303W WO2009113215A1 WO 2009113215 A1 WO2009113215 A1 WO 2009113215A1 JP 2008072303 W JP2008072303 W JP 2008072303W WO 2009113215 A1 WO2009113215 A1 WO 2009113215A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
stator core
magnetic pole
manufacturing
electrical machine
Prior art date
Application number
PCT/JP2008/072303
Other languages
English (en)
French (fr)
Inventor
高大 牧山
俊哉 寺前
恵尉 上野
裕治 榎本
芳壽 石川
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN2008801240486A priority Critical patent/CN101911432B/zh
Priority to US12/863,629 priority patent/US8294325B2/en
Priority to EP08873215.1A priority patent/EP2284976A4/en
Publication of WO2009113215A1 publication Critical patent/WO2009113215A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/145Stator cores with salient poles having an annular coil, e.g. of the claw-pole type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/022Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with salient poles or claw-shaped poles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine

Definitions

  • the present invention relates to a stator core for a rotating electrical machine including a stator and a rotor, and a method for manufacturing the same.
  • Patent Document 1 or Patent Document 2 has a problem that the inductance of the stator winding is large. For example, when the inductance of the stator winding increases in a motor or generator, there is a problem that the phase difference between current and voltage increases and the power factor, which is a main characteristic of the motor and generator, is reduced.
  • An object of the present invention is to provide a stator core of a rotating electrical machine that is excellent in stator productivity and that can reduce an increase in inductance of a stator winding.
  • a stator core for a rotating electrical machine includes a rotor that is rotatably held, and a stator having at least two stator cores arranged side by side in the direction of the rotation axis of the rotor.
  • a plurality of magnetic poles of the stator core disposed in the circumferential direction of the rotation shaft of the rotor, and formed in the axial direction of the rotation shaft between the magnetic poles of the plurality of magnetic poles
  • Each of the magnetic poles arranged in the circumferential direction is formed into a wave shape in the axial direction of the rotary shaft for each adjacent magnetic pole.
  • a stator winding can be disposed in a wave-like inner end face side of the magnetic pole and in a groove formed in the axial direction of the rotating shaft, and magnetic poles of a plurality of stator cores disposed in the circumferential direction of the rotating shaft are provided. It consists of the steel plate laminated
  • the manufacturing method of the stator iron core for rotary electric machines of this invention is the process 1 which cuts out a raw material from a steel plate, the process 2 which laminates
  • a groove is formed between the magnetic poles in the axial direction of the rotating shaft, and the axial end surfaces of the rotating shafts of the respective magnetic poles arranged in the circumferential direction are shifted in a wave shape in the axial direction of the rotating shaft for each adjacent magnetic pole. It is shaped to be placed.
  • the embodiment of the present invention there is no axially extending claw provided between the circumferential stator winding and the rotor surface, which is found in a general claw pole type stator.
  • a general claw pole type stator there is an advantage that it is easy to produce a stator core.
  • the inductance of the wire can be lowered as compared with a general claw pole type stator.
  • the inductance of the stator winding can be greatly reduced.
  • the stator windings are arranged in the direction of the rotation axis, and the rotor cores are arranged in phase units and arranged in the direction of the rotation axis as in a general slot tooth type rotating electrical machine.
  • the stator winding has a shape that is easy to produce, and the productivity is excellent.
  • the rotor-side facing surface of the stator magnetic pole is a general claw pole type magnetic pole. The efficiency can be improved.
  • the stator magnetic pole is formed by stacking the stator cores in the axial direction, so that iron loss due to eddy current can be greatly reduced. Moreover, since the laminated steel plate is used in the embodiment of the present invention, there is an effect that the mechanical strength is very strong as compared with the case where the dust core is used.
  • FIG. 1 is a perspective view showing a basic configuration of a stator according to an embodiment of the present invention.
  • FIG. 2A is a perspective view illustrating the entire basic configuration of the stator according to the embodiment.
  • 2B is a partial cross-sectional view of the basic configuration of the stator shown in FIG. 2A
  • FIG. 2C is a partial cross-sectional view showing a further change in the basic configuration of the stator shown in FIG. 2A, and rotation of the basic configuration of the stator shown in FIG. It is a fragmentary sectional view perpendicular to an axis.
  • 2B is a partial cross-sectional view of the basic configuration of the stator shown in FIG. 2A.
  • FIG. 2C is a partial cross-sectional view showing a further change in the basic configuration of the stator shown in FIG. 2A, and is a partial cross-sectional view perpendicular to the rotation axis of the basic configuration of the stator shown in FIG. 2A.
  • FIG. 3 is a perspective view showing a stator core having a basic configuration of the stator shown in FIG.
  • FIG. 4 is a perspective view showing a stator core having a basic configuration of a stator according to another embodiment shown in FIG.
  • FIG. 5 shows still another embodiment of the stator core shown in FIG.
  • FIG. 6 shows a stator winding used in the basic configuration of the stator shown in FIGS.
  • FIG. 7 is a perspective view of a stator according to an embodiment of the present invention.
  • FIG. 3 is a perspective view showing a stator core having a basic configuration of the stator shown in FIG.
  • FIG. 4 is a perspective view showing a stator core having a basic configuration of a stator
  • FIG. 8 is a development view of the stator shown in FIG.
  • FIG. 9 shows a first example of a manufacturing method according to an embodiment of the present invention.
  • FIG. 10 shows a second example of the manufacturing method according to one embodiment of the present invention.
  • FIG. 11 shows a third example of the manufacturing method according to one embodiment of the present invention.
  • FIG. 12A is a plan view of the material shape of the stator core, which is a material connected in an annular shape.
  • FIG. 12B shows a shape in which a plurality of magnetic pole portions are connected in a strip shape with a polarity.
  • FIG. 12C shows a shape in which a plurality of magnetic pole portions are connected in a strip shape on a straight line.
  • FIG. 12A is a plan view of the material shape of the stator core, which is a material connected in an annular shape.
  • FIG. 12B shows a shape in which a plurality of magnetic pole portions are connected in a strip shape with a polarity.
  • FIG. 13 is a perspective view of a manufacturing process for laminating materials in a spiral shape.
  • FIG. 14A is a perspective view of the step of forming the material into a wave shape, and shows the state before the material is formed into a wave shape.
  • FIG. 14B is a diagram showing a state after forming into a wave shape.
  • FIG. 15A is a diagram showing a single-pole pair of stator cores and a single-pole pair of the stator cores shown in FIGS. 3 to 5.
  • FIG. 15B is a diagram showing one pole pair of a hooked stator core.
  • FIG. 15C is a diagram showing a unipolar pair of still another stator core.
  • FIG. 16A is a diagram showing another embodiment of a method for manufacturing a one-phase stator.
  • FIG. 16A is a diagram showing another embodiment of a method for manufacturing a one-phase stator.
  • FIG. 16A is a diagram showing another embodiment of a method for manufacturing a one-phase
  • FIG. 16B is a diagram showing another embodiment of a method for manufacturing a one-phase stator.
  • FIG. 17 is a perspective view showing another embodiment of a one-phase stator.
  • FIG. 18A is a partial cross-sectional view of a stator winding.
  • FIG. 18B is a partial cross-sectional view of the stator winding.
  • FIG. 18C is a partial cross-sectional view of the stator winding.
  • FIG. 18D is a partial cross-sectional view of the stator winding.
  • FIG. 19A is a perspective view before assembly showing application to a rotating electrical machine.
  • FIG. 19B is a perspective view after assembly showing application to a rotating electrical machine.
  • FIG. 1 is a perspective view showing a basic configuration of a stator 102 according to an embodiment of the present invention.
  • FIGS. 2A to 2C are other examples of the basic configuration of the stator shown in FIG. 1, and are examples in which a flange 108 is provided on each magnetic pole portion 106 of the basic configuration according to the embodiment of FIG. 2A is an overall view of a basic configuration of a stator 102 according to another embodiment, FIG. 2B is a partial cross-sectional view of the basic configuration of the stator 102 shown in FIG. 2A, and FIG. 2C is a stator shown in FIG. 2A. It is the fragmentary sectional view which changed the view further of the basic composition of 102, and is a fragmentary sectional view perpendicular to the axis of rotation of the fundamental composition of the stator 102 stator shown in Drawing 2A.
  • FIG. 3 is a perspective view showing a stator core 104 having a basic configuration of the stator 102 shown in FIG. 1
  • FIG. 4 is a stator core 104 having a basic configuration of the stator 102 according to another embodiment shown in FIG.
  • FIG. 5 shows still another embodiment of the stator core 104 shown in FIG.
  • FIG. 6 shows a stator winding 122 used in the basic configuration of the stator 102 shown in FIGS.
  • the basic configuration of the stator 102 shown in FIG. 1 or FIGS. 2A to 2C includes a stator core 104 and a stator winding 122.
  • magnetic pole portions 106 that act as magnetic poles of the stator 102 are provided at equal intervals over the entire circumference.
  • the symbols 106A and 106B are alternately attached, but the magnetic pole portions 106A and 106B perform the same operation.
  • the above-described rotor is rotatably provided inside the magnetic pole portions 106A and 106B, the rotor is not shown in FIGS. 1 to 4 in order to avoid complicated explanation.
  • stator 102 there are two types of rotating electrical machines, the stator 102 being on the outside of the rotor and the stator 102 being on the inside of the rotor. Either structure may be used, but the complicated explanation is avoided. For this reason, the structure in which the stator is outside the rotor is described.
  • a Rundel type is used when the present invention is used as an AC generator.
  • a rotating electrical machine can be configured by combining the rotor and the stator 102, and the rotating electrical machine acts as a motor or a generator.
  • the basic configuration of the stator 102 shown in FIG. 1 and the basic configuration of the stator 102 shown in FIGS. 2A to 2C are almost the same, but the basic configuration of the stator 102 shown in FIGS. 2A to 2C is the rotor side of the magnetic pole portion 106.
  • the basic configuration of the stator 102 shown in FIGS. 2A to 2C is the rotor side of the magnetic pole portion 106.
  • the area of the rotor side surface of the basic structure of the stator 102 is increased to improve the output characteristics.
  • 5 is another embodiment of the stator core 104 shown in FIGS. 3 and 4, and the back surface portion 112 connecting the adjacent magnetic pole portions 106 has a curved shape, and is excellent in productivity. Yes.
  • magnetic pole portions 106 are arranged at equal intervals on a circumferential surface that is a surface perpendicular to the rotation axis, and the magnetic pole portions 106 are alternately shifted in the rotation axis direction. Therefore, every other depression is formed at the end of the basic configuration of the stator 102 in the direction of the rotation axis in accordance with the magnetic pole portion 106.
  • a stator winding 122 is arranged in the recess, and the protrusion from the stator core 104 at the rotating shaft end portion of the stator winding 122 can be reduced or eliminated.
  • FIG. 2C shows a cross-sectional view in which the magnetic pole part 106A and the magnetic pole part 106B shown in FIG. 2B are partially sectioned on a plane perpendicular to the rotation axis.
  • a groove 114 extending in the direction of the rotation axis, such as a slot, is formed between each magnetic pole part 106A and the magnetic pole part 106B, and the stator winding 122 is accommodated in this groove 114.
  • the difference from the conventional stator is that a single-phase winding is inserted into the groove 114 and the stator winding 122 has a simple configuration. For this reason, productivity is excellent and reliability is improved. As shown in FIG.
  • the magnetic pole portions 106 are connected to each other at the back surface portion 112. Further, a flange 108 is formed on the rotor side of each magnetic pole portion 106, and the rotor side of each groove 114 is narrowed by the flange 108. With this structure, the area of the surface facing the rotor is increased and the characteristics of the rotating electrical machine are improved.
  • the stator core 104 shown in FIGS. 3 to 5 is the stator core 104 having the basic configuration of the stator 102 shown in FIGS. 1 and 2, and a plurality of magnetic pole portions 106 are arranged around the entire circumference of the rotor side. Over the same interval. In this embodiment, 20 magnetic pole portions 106 are provided. These magnetic pole portions 106 are connected to the adjacent magnetic pole portions 106 at the back surface portion 112, and a space 114 or a slot 114 extending in the rotation axis direction for inserting a stator winding is formed between the adjacent magnetic pole portions 106. Has been.
  • the magnetic pole portions 106 are alternately shifted in the direction of the rotation axis, and the magnetic pole portion 106A is shifted to the other side with respect to the magnetic pole portion 106B. For this reason, a space is formed on one side of the magnetic pole portion 106, and the protrusion on one side of the stator winding 122 can be eliminated by arranging the stator winding 122 in this space. Can be reduced in size. Also, copper loss is reduced. Similarly, since the magnetic pole part 106B is shifted to one side with respect to the magnetic pole part 106A, a space is formed on the other side of the magnetic pole part 106. By arranging the stator winding 122 in this space, the protrusion on the other side of the stator winding 122 can be eliminated, and the basic configuration of the stator 102 can be reduced in size as described above. Also, copper loss is reduced.
  • the above-described alternately shifted arrangement structure of the magnetic pole portions 106 is not essential, and even if there is no shifted structure, it functions as a basic configuration of the stator 102 of the rotating electrical machine, and the winding operation of the stator winding 122 is extremely difficult. Therefore, it is very excellent in productivity with respect to a conventional stator of a rotating electric machine. Further, compared to the general claw pole type stator in which a large number of claws are provided on the rotor side described in Patent Document 1 and Patent Document 2, there is an effect that the inductance of the stator can be greatly reduced.
  • the stator core 104 shown in FIGS. 3 to 5 has a welded portion 116 in which the outer peripheral surface of the back surface portion 112 on the opposite side of the magnetic pole portion 106 is fixed by welding.
  • the stator core 104 is produced by winding a continuous thin steel plate in the circumferential direction as described later. Since the welded portion 116 is formed on the outer peripheral surface of the back surface portion 112 corresponding to each magnetic pole portion 106, the continuous thin plate-shaped magnetic steel plate is wound in the circumferential direction, and the welded portion 116 respectively has a stator and then the back surface portion 112. It is possible to easily shift the magnetic pole portion 106 in the direction of the rotation axis by forming the shape with a press or the like.
  • FIG. 6 shows a stator winding 122 used in the basic configuration of the stator 102, and in this embodiment, a wave winding stator winding 122 is shown. Concentrated windings other than wave windings can also be used, but a wave winding stator winding 122 will be described as an example.
  • the wave winding stator winding 122 shown in FIG. 6 has an interpole portion 124 of the stator winding between one magnetic pole end portion 126 of the stator winding 122 and the other magnetic pole end portion 128 of the stator winding. It has a continuous shape made by connecting.
  • the inter-magnetic pole portions 124 of the stator winding 122 are alternately connected by one magnetic pole end portion 126 of the stator winding 122 or the other magnetic pole end portion 128 of the stator winding 122.
  • One magnetic pole end portion 126 is inserted into each of the grooves 114 having a shape extending in the rotation axis direction of the stator core 104 shown in FIGS.
  • the end portions in the axial direction of the stator core 104 are alternately formed with depressions corresponding to the magnetic pole portions 106, and one magnetic pole end of the stator winding 122 is formed in the depression formed at one end of the stator core 104.
  • the portion 126 is inserted, and the other magnetic pole end portion 128 of the stator winding 122 is inserted into a recess formed at the other end of the stator core 104.
  • one magnetic pole end portion 126 of the stator winding 122 and the other magnetic pole of the stator winding 122 are not required.
  • the extreme portion 128 has a shape that protrudes from both ends of the stator core 104 in the rotation axis direction.
  • the structure When the winding shown in FIG. 6 is attached to the stator core 104 shown in FIG. 3 to FIG. 5, the structure extends alternately in the grooves 114 provided in the axial direction of the stator core 104.
  • the winding form is similar to the wave winding structure, and the winding covers all slots. For this reason, electrical characteristics are improved with respect to the claw pole type stator having a claw between the stator 102 and the rotor.
  • FIG. 7 is a perspective view of a stator 100 of a three-phase rotating electrical machine made by combining the basic configurations of the stator 102 shown in FIG. 1 or FIG.
  • FIG. 8 is a development view of the three-phase AC stator 100 shown in FIG.
  • the 7 uses the basic structure of the three stators 102 as a U-phase stator 102U, a V-phase stator 102V, and a W-phase stator 102W, respectively.
  • the U-phase stator 102U, the V-phase stator 102V, and the W-phase stator 102W are arranged separately in the rotational axis direction, but the rotor is common, and the basic configuration of the stator 102 of each phase is as follows. They are arranged in phase with each other.
  • the stators of the respective phases are arranged separately in the axial direction. If the relative positional relationship between the stators of the respective phases is a two-phase rotating electric machine, the basic configuration 102 of the stator is arranged with a phase of 90 degrees in terms of electrical angle. That is, they are arranged with a shift of 1/4 of the mechanical angle per pole pair on the rotor side.
  • stator 100 of a three-phase rotating electric machine is used, it is arranged with a phase of 120 degrees in electrical angle. That is, they are arranged with a shift of 1/3 of the mechanical angle per pole pair on the rotor side.
  • FIG. 7 shows an example of the stator 100 of the three-phase rotating electric machine.
  • FIG. 7 shows a stator of a 20-pole three-phase rotating electric machine. Since there are 20 poles, the number of pole pairs is 10. For this reason, the mechanical angle of the phase-to-phase pole shift is 1/3 of 36 degrees, which is 10 mechanical angles, that is, 12 degrees.
  • the rotor has a common structure with respect to the basic structure of each stator 102 constituting the three-phase AC stator 100 and the rotor does not have a phase.
  • Making the rotor a common structure simplifies the configuration of the entire rotating electrical machine, and is highly effective in terms of downsizing and productivity.
  • the disclosed windings can share the basic configuration of each stator 102 constituting the three-phase AC stator 100, and high output can be obtained.
  • two-phase alternating current and three-phase alternating current have been described as representatives of the stator 100 of the multi-phase rotating electrical machine, but it is possible to cope with multilayered alternating current with the same concept.
  • the stator 100 of a six-phase AC generator six basic configurations of the stator 102 may be arranged in the axial direction, and the phase may be 60 degrees in electrical angle.
  • the maximum current per phase can be reduced, and the current capacity of the rectifier circuit and the like can be reduced.
  • FIG. 7 shows a stator 100 for a three-phase AC rotating electric machine as a representative example of the stator 100 for the multilayer rotating electric machine.
  • a specific structure of the three-phase AC stator 100 will be described with reference to FIG.
  • three stator blocks of a U-phase stator 102U, a V-phase stator 102V, and a W-phase stator 102W are arranged side by side in the axial direction.
  • a magnetic insulating member having a magnetic shielding action is provided between the phases in order to reduce the leakage magnetic flux between the phases.
  • This magnetic insulating member is arranged as necessary and is not essential, but reducing the leakage magnetic flux leads to improvement in efficiency and improvement in characteristics.
  • the insulating material is preferably composed of a non-magnetic polymer material or a non-conductive substance such as ceramic. Furthermore, improvement in heat dissipation can be expected by using a material having good thermal conductivity.
  • the magnetic insulating member 3 has a fitting shape function such as a groove, a hole, a protrusion, a shaft, or an inlay for positioning the stator core, so that the stator block has high accuracy. Positioning can be realized. This positioning is because the circumferential position of the stator and the coaxiality affect the torque ripple of the rotating electrical machine.
  • this magnetic shield with a metallic material.
  • aluminum-based alloys, non-magnetic stainless alloys, copper-based alloys and the like are suitable as metals.
  • lightweight titanium is also a candidate.
  • LCP liquid crystal polymer
  • PPS polyphenylene sulfide resin
  • PBT polybutylene terephthalate resin
  • PET polyethylene resin
  • nylon reinforced with glass fiber PC (polycarbonate resin), etc.
  • Carbon fiber reinforced resins and thermosetting resins such as epoxy and unsaturated polyester are also candidates. It is desirable that these materials be determined according to the thermal and mechanical strength constraints required by the motors and generators used.
  • These manufacturing methods are aluminum, copper alloy die-cast, and stainless steel alloy machined or cold or warm forged.
  • the resin material can be manufactured by a method such as injection molding. When using a metal-based material, it is necessary to determine the shape while paying attention to the eddy current generation path.
  • the manufacturing method of the stator core 104 includes a step of cutting out the material 1001 from a steel plate, a step of laminating the material 1001, a step of bonding the material 1001, and a step of forming the material 1001 into a wave shape.
  • the stator core 104 is cut out of a steel plate, laminated the cut material 1001, joined the cut and laminated material 1001, and cut out, laminated, and joined to the corrugated material 1001 in the order of steps.
  • the steel plate is cut out as shown in FIG.
  • the cut material 1001 is laminated, the laminated material 1001 is formed into a wave shape, and the step of joining the wave shaped material 1001 is joined, or the steel plate is cut out as shown in FIG.
  • the cut material 1001 can be formed into a corrugated shape, the corrugated material 1001 can be laminated, and the laminated material 1001 can be joined in the order of steps.
  • the magnetic pole part 106 and the back surface part 112 are cut out from the base plate into a developed shape.
  • a means for cutting out the material for example, there are shearing such as punching by press, wire cutting, laser cutting, plasma cutting, water jet, machining, etc., but when considering productivity, punching by pressing Is preferred.
  • FIG. 12A to 12C show the shape of the cut material 1001.
  • FIG. 12A the magnetic pole portion 106 and the back surface portion 112 are connected in a ring shape as shown in FIG. 12BC.
  • the accuracy of the inner and outer diameters of the material 1001 is good, but the yield is poor because the material at the center is not used.
  • the yield is good, but it is necessary to ensure accuracy by a laminating process described later.
  • the magnetic pole portions 106 are laminated so that they are aligned in the rotor axial direction.
  • a concave shape previously provided on the back surface portion 112 of the material 1001 may be laminated as a guide.
  • the material shape at this time may be connected in a ring shape, or may be a shape in which the magnetic pole portion is connected to one magnetic pole, a plurality of magnetic poles, or a belt shape.
  • the linear material 1001 is formed into an arc shape by in-plane bending in the circumferential direction.
  • the back surface portion 112 of the material 1001 is tilted to bend the material 1001 in the circumferential surface.
  • the magnetic pole portions 106 are aligned in the axial direction and bonded in a stacked state.
  • it joins by "caulking” which combined the convex part and recessed part which were shape
  • “Caulking” that combines the projections and recesses formed by half punching, when cutting the material 1001, the projections and recesses are formed by half punching and then pressed by a press or the like in the direction of the rotation axis after lamination. Can be joined.
  • the magnetic pole portions 106 ⁇ / b> A and 106 ⁇ / b> B are alternately formed into a wave shape.
  • the end face in the axial direction of the magnetic pole part 106A is pressed in the direction of the rotation axis relative to the end face in the axial direction of the magnetic pole part 106B, thereby forming a wave shape.
  • the magnetic pole portions 106A and 106B are moved in the radial direction of the rotation axis, whereby the reduction in thickness and breakage due to the elongation in the circumferential direction of the material 1001 can be suppressed, and the formability is improved.
  • the inner diameter accuracy of the stator core 104 can be improved by abutting the end surfaces of the magnetic pole portions 106A and 106B in the rotational axis radial direction against the tool. it can.
  • the material may be a single material or a laminated state.
  • FIG. 14 shows an example of a step of forming into a wave shape
  • FIG. 14A shows a state before forming the wave shape
  • FIG. 14B shows a state after forming into the wave shape.
  • the tool on the upper side of the material 1001 that is 1/4 of the foreground is not shown, but in reality, the tool is arranged in the same manner as other parts in the circumferential direction.
  • the material 1001 may be a single material or a stacked state, but A to C show a state where the material 1001 is stacked.
  • the punch 1101 is arranged in the circumferential direction of the rotation axis on the end face side pushed in the axial direction of the magnetic pole portions 106A and 106B, and the counter 1102 facing the punch 1101 and the material 1001 is arranged.
  • the counter 1102 applies a force in the plate thickness direction of the material 1001 in the direction opposite to the direction in which the punch 1101 is pushed in the rotation axis direction, and restrains the deformation of the material 1001 out of the plane.
  • the magnetic pole part 106A when the magnetic pole part 106A is pushed in the rotor axial direction, the magnetic pole part 106B restrains the movement in the rotor axial direction, or when the magnetic pole part 106B is pushed in the rotor axial direction, the magnetic pole part 106A is Although the movement in the rotor axis direction is constrained, for the sake of convenience in this description, since the magnetic pole portions 106A and 106B are relative deformation in the rotor axis direction, the punch 1101A for pushing the magnetic pole portion 106A in the rotor axis direction, A punch 1101B that pushes the magnetic pole portion 106B in the direction of the rotor axis is used.
  • the counters 1102A and 1102B are attached with symbols corresponding to the punches 1101A and 1101B.
  • the direction in which the punch 1101A for pushing the magnetic pole part 106A is pushed in the rotor axial direction and the direction in which the punch 1101B for pushing the magnetic pole part 106B is pushed in the rotor axial direction are relatively opposite to each other in the rotor circumferential direction. Place them alternately.
  • counters 1102A and 1102B are alternately arranged in the circumferential direction of the rotor in accordance with the punches 1101A and 1101B. In this state, the punches 1101A and 1101B are relatively pushed in the rotor axial direction to form a wave shape as shown in FIG. 12B. According to this method, the bending radius of the back surface portion 114 that connects the magnetic pole portions 106A and 106B increases continuously as the radius increases outward from the rotor shaft.
  • the formability is improved by moving the magnetic pole part 106 in the rotor axial direction. Therefore, the frictional force between the material 1001 and the punch 1101 and the counter 1102 is reduced, or the punch 1101 and the counter 1102 are movable in the rotor radial direction, or the punch 1101 and the counter 1102 are forced by the cam mechanism.
  • By performing at least one of moving in the rotor radial direction it is possible to suppress a reduction in thickness and breakage due to the elongation in the circumferential direction of the material 1001, and improve the formability.
  • the inner diameter accuracy of the stator 104 can be improved by deforming the magnetic pole portion 106 in the rotor radial direction and finally abutting the end surface of the magnetic pole portion 106 in the rotor radial direction against the stopper 1103.
  • the counter 1102 is used to ensure the flatness of the magnetic pole part 106.
  • a mold structure for example, a die cushion, a gas damper, a spring, or the like is used to apply a force facing the punch 1101.
  • the forming method when the counter 1102 is used has been described.
  • the magnetic pole part 106 is a curved surface, there is no problem in performance. 1102 may be omitted. In this case, it is only necessary to push the magnetic pole portions 106A and 106B with the punches 1101A and 1101B.
  • the shape of the material 1001 projected in the rotor axial direction before and after the molding changes, so the material 1001 before molding is the stator after molding.
  • the iron core 104 needs to be developed.
  • the shape of the magnetic pole portion 106 is almost the same as the shape of the stator core 104 since it does not change even after being formed into a wave shape, but the length of the back surface portion 114 is the same as that when the stator core 104 is projected in the rotor axis direction. It must be longer than the length. Further, the length of the back surface portion 114 needs to be increased as the movement amount of the magnetic pole portion 106 in the rotor radial direction increases.
  • stator core 104 As shown in FIG. 5 can be manufactured by forming the laser welded material 1001 into a wave shape with a press.
  • FIGS. 15A to 15C form a stator magnetic circuit with a core shape of one pole pair (for two poles).
  • FIG. 15A shows one pole pair of the stator core 104 shown in FIGS. 3 to 5.
  • the flow of magnetic flux from the rotor covers the magnetic flux of one pole pair on the rotor side, so the flow of magnetic flux between adjacent pole pairs Do not need. Therefore, by dividing the iron core in the circumferential direction, it is possible to satisfy the same characteristics as when integrated. Therefore, the stator core 104 having teeth 106A and teeth 106B as shown in FIG. 15A is assembled and combined to assemble the stator core 104, thereby forming the stator having the above-described structure that uses a motor or a generator. It becomes possible to do.
  • symbol shows the function and effect of the same code
  • FIG. 15B shows a shape having a hook at the tip of the tooth 106A or 106B in FIG. 15A.
  • This kite has the purpose of effectively collecting the flux flowing in from the rotor and the function of preventing the winding out of the wound stator winding 122.
  • FIG. 15C shows an iron core having a shape alternately in the axial direction, but shows a structure in which the positional relationship of the magnetic poles does not overlap in the rotation axis direction.
  • the shape on the iron core side has been devised. It is an example.
  • 3 to 5 or 17 has a laminated structure of magnetic thin plates, but is not limited to a laminated structure, and may be manufactured by compression molding a dust core or the like.
  • laminated steel sheets are superior in terms of strength, reliability, and magnetic properties.
  • description is abbreviate
  • FIGS. 16A and 16B show the manufacturing concept of the stator core 104, which is a single-phase stator core, using the iron core shown in FIG. 15B.
  • the inter-magnetic pole portions 124 of the stator winding 122 shown in FIG. 6 are inserted into the grooves 114 extending in the rotation axis direction between the teeth 106A and the teeth 106B. Thereafter, the magnetic pole pairs in FIG. 16A are fixed by welding or the like, whereby the stator core 104 integrated in the circumferential direction is completed.
  • the structure shown in FIG. 16A or the structure shown in FIGS. 1 to 5 has a shape in which the groove 114 along the rotation axis exists and the inter-magnetic pole portion 124 of the stator winding of the stator winding 122 is inserted into the groove 114. It is.
  • the teeth 106A and the teeth 106B are completely displaced in the rotation axis direction.
  • the stator winding 122 can be inserted into the groove 114 with almost no bending in the rotation axis direction. For this reason, the productivity of the stator winding 122 is excellent, the insertion of the stator winding 122 into the groove 114 is easy, and the workability is excellent.
  • the basic configuration of the finally completed stator 102 is the same as in FIG. 1 and FIGS. 2A to 2C, and the stator winding 122 is used for posting that goes back and forth between one end and the other end along the rotation axis.
  • the structure shown in FIGS. 2B to 2C is wound.
  • the stator core 104 in the above drawing has a shape that partially overlaps the central portion in the rotation axis direction of the stator core 104 that constitutes the teeth 106A and the teeth 106B that are shifted in the rotation axis direction, and has a cross section shown in FIG. 2C. Further, the arrangement is almost the same as the winding arrangement of the slot tooth type rotating electrical machine.
  • the magnetic circuit is efficiently constructed on the surface facing the rotor, and excellent electrical characteristics can be obtained.
  • the stator winding 122 is greatly simplified compared to the slot teeth type rotating electric machine, and excellent productivity can be obtained. Also, since the shape of the stator winding 122 is simple, it is excellent in safety and reliability. effective.
  • FIG. 17 shows another embodiment of the stator winding 122.
  • the stator winding 122 is bent at an angle close to a substantially right angle at a portion connecting the rotation axis direction and the circumferential direction. That is, the stator winding 122 has a portion substantially parallel to the rotation axis.
  • the resin film for insulation may be damaged, and it is necessary to pay various attentions at the time of work. It is desirable to form with a certain degree of bending R (radius). In this respect, it is desirable to pay attention to the operation of forming the stator winding 122 in the shapes shown in FIGS. 1 and 2A to 2C.
  • the groove 114 between the teeth 106A and the teeth 106B is widened in the circumferential direction.
  • the gap between the magnetic poles of the iron core is loosened so that the portion of the stator winding 122 in the rotation axis direction can be arranged obliquely.
  • This structure has an advantage that the bending R (radius) can be made gentle, and the workability is improved.
  • the structure of FIGS. 1 and 2A to 2C can increase the space factor of the stator winding 122 (the ratio of the conductor cross-sectional area to the slot), and has an effect of easily obtaining a high output. In view of improving efficiency, it is desirable to take into consideration that the space factor of the stator winding 122 does not become small in the structure of FIG.
  • FIG. 18A to 18D show cross-sectional shapes of the stator winding 122 for improving the space factor.
  • FIG. 18A it is conceivable to use a magnet wire having a round cross section as a winding.
  • a flat magnet wire is used to improve the space factor.
  • the space factor can be increased.
  • the stator winding 122 is manufactured in advance as shown in FIG. 6 and then integrated with the stator core 104, a step of forming the cross-sectional shape of the stator winding 122 into a desired shape is provided. Is desirable.
  • the space factor can be increased by forming a line having a substantially circular cross section into a shape as shown in FIG. 18D.
  • FIG. 19B is a perspective view of the rotating electrical machine when the three-phase AC stator 100 shown in FIG. 7 is applied to the rotating electrical machine
  • FIG. 19A is a development view of the rotating electrical machine shown in FIG. 19B
  • a bearing 414 and a bearing 412 are fixed to the front housing 418 and the rear housing 416, respectively, and a shaft 436 is rotatably held by the bearings 414 and 412.
  • a rotor 404 is fixed to the shaft 436.
  • a three-phase AC stator 100 shown in FIG. 7 is provided outside the rotor 404 through a gap.
  • the three-phase AC stator 100 is fixed and held between the front housing 418 and the rear housing 416.
  • an outer ring 401 made of an aluminum material or the like is further provided on the outer periphery of the three-phase AC stator 100, and the rotating electrical machine is hermetically sealed.
  • the above-described three-phase AC stator 100 can be used as a generator or as a motor by being combined with various rotors, and can be used for various applications.
  • the shape of the three-phase AC stator 100 is simple, and particularly the shape of the stator winding 122 is simple, the productivity is excellent.
  • the coil ends of the stator winding 122 in the axial direction can be reduced or eliminated, the size can be reduced, and the copper loss can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

固定子巻線の生産性の向上が期待できるクローポール型の回転電機は、固定子巻線全体を磁性体で覆う構造となるため、インダクタンスが大きくなり、力率を低下する問題がある。 各相の固定子鉄心を回転子の回転軸方向に複数個、独立して配置すると共に、各固定子鉄心の磁極を回転子の回転軸の周方向に波形状に配置し、各磁極間に回転軸方向に延びる溝を形成し、磁極の波形状の内側の端面側および回転軸の軸方向に形成された溝に固定子巻線を配置可能にした回転電機の固定子鉄心とする。

Description

回転電機用の固定子鉄心およびその製造方法
 本発明は固定子および回転子を備えた回転電機用の固定子鉄心およびその製造方法に関する。
 従来のモータや発電機などの回転電機では、固定子巻線が複雑で、生産性の点で大きな課題を有していた。生産性を改善する回転電機として、例えば、特許文献1又は特許文献2に記載のクローポール型回転電機が知られている。
特開2006-296188号公報 特開2005-151785号公報
 前記特許文献1又は特許文献2に記載のクローポールモータ型回転電機では固定子巻線のインダクタンスが大きい問題がある。例えばモータや発電機において固定子巻線のインダクタンスが大きくなると、電流と電圧の位相差が大きくなりモータや発電機の主要特性である力率を低下させる問題がある。
 本発明の目的は、固定子の生産性に優れ、さらに固定子巻線のインダクタンスの増大を低減できる回転電機の固定子鉄心を提供することにある。
 本発明の回転電機用の固定子鉄心は、回転可能に保持された回転子と、前記回転子の回転軸方向に並べて配置された少なくとも2つの固定子鉄心を有する固定子とを備えた回転電機用の固定子鉄心であって、前記回転子の回転軸の周方向に配置された固定子鉄心の複数個の磁極と、前記複数個の磁極の各磁極間に前記回転軸の軸方向に形成された固定子鉄心の溝と、を有し、前記周方向に配置された各磁極の前記回転軸の軸方向の端面が隣接する磁極毎に前記回転軸の軸方向に波状に成形して、前記磁極の波状の内側の端面側および前記回転軸の軸方向に形成された溝に固定子巻線を配置可能とし、前記回転軸の周方向に配置された複数個の固定子鉄心の磁極が前記回転軸の軸方向に積層した鋼板からなることを特徴とする。
 また、本発明の回転電機用の固定子鉄心の製造方法は、鋼板から素材を切抜く工程1と、前記素材を積層する工程2と、前記素材を接合する工程3と、前記素材を波状に成形する工程4と、を備え、前記工程1乃至工程4の各工程を組み合わせて、回転電機の回転軸の周方向に固定子鉄心の複数個の磁極を形成し、前記複数個の磁極の各磁極間に前記回転軸の軸方向に溝を形成し、前記周方向に配置された各磁極の前記回転軸の軸方向の端面が隣接する磁極毎に前記回転軸の軸方向に波状にずれて配置されるよう成形することを特徴とする。
 本発明によれば、固定子巻線のインダクタンスの増大を少なく抑える、あるいは低減できる効果がある。
 また、本発明の実施の形態によれば、一般のクローポール型の固定子に見られる、周方向の固定子巻線と回転子面との間に設けられた軸方向に延びる爪が無いので、固定子鉄心を生産し易い利点がある。
 また、本発明の実施の形態では、周方向の固定子巻線と回転子面との間に回転軸方向に延び、前記固定子巻線に鎖交する形状の爪が無いので、固定子巻線のインダクタンスを一般のクローポール型の固定子に比べ低くできる効果がある。
 また、本発明の実施の形態では、一般のクローポール型の固定子に比べ、固定子巻線122を包む磁性体の領域が少ないので、固定子巻線のインダクタンスを大幅に低減できる。
 また、本発明の実施の形態では、一般のスロットティース型回転電機のように、固定子巻線を回転軸方向に配置すると共に、回転子鉄心を相単位に分けて回転軸方向に並べて配置しているので、固定子巻線が生産し易い形状となり、生産性が優れている効果がある。また、本発明の実施の形態では、周方向に配置された磁極間に回転軸方向に固定子巻線を配置しているので、固定子磁極の回転子側対向面を一般のクローポール型磁極に対して大きくでき、効率が向上する。
 また、本発明の実施の形態では、固定子磁極は固定子鉄心を軸方向に積層して形成しているので、渦電流による鉄損を大幅に低減することができる。
また、本発明の実施の形態では、積層鋼板を使用しているので、圧粉磁心を使用する場合に比べ、機械的な強度が非常に強い効果がある。
図1は本発明の一実施の形態である、固定子の基本構成を示す斜視図である。 図2Aは実施例である固定子の基本構成の全体を示す斜視図である。図2Bは図2Aに示す固定子の基本構成の部分断面図、図2Cは図2Aに示す固定子の基本構成のさらに見方を変えた部分断面図、図2Aに示す固定子の基本構成の回転軸に垂直な部分断面図である。 図2Bは図2Aに示す固定子の基本構成の部分断面図である。 図2Cは図2Aに示す固定子の基本構成のさらに見方を変えた部分断面図であり、図2Aに示す固定子の基本構成の回転軸に垂直な部分断面図である。 図3は図1に示す固定子の基本構成の固定子鉄心を示す斜視図である。 図4は図2に示す他の実施例である固定子の基本構成の固定子鉄心を示す斜視図である。 図5は図3に示す固定子鉄心のさらに他の実施の形態である。 図6は図1や図2に示す固定子の基本構成に使用される固定子巻線である。 図7は本発明の一実施の形態である、固定子の斜視図である。 図8は図7に示す固定子の展開図である。 図9は本発明の一実施の形態である、製造方法第1の例である。 図10は本発明の一実施の形態である、製造方法第2の例である。 図11は本発明の一実施の形態である、製造方法第3の例である。 図12Aは固定子鉄心の素材形状の平面図で、環状につながった素材である。 図12Bは複数の磁極部が極率をもって帯状につながっている形状である。 図12Cは複数の磁極部が直線上に帯状につながっている形状である。 図13は素材をらせん状に積層する製造工程の斜視図である。 図14Aは素材を波状に成形する工程の斜視図であり、波状に成形する前を示した図である。 図14Bは波状に成形した後を示した図である。 図15Aは、一極対の固定子鉄心を示し、図3乃至図5で示した固定子鉄心の一極対を示す図である。 図15Bは鍔付きの固定子鉄心の一極対を示す図である。 図15Cは更に他の固定子鉄心の一極対を示す図である。 図16Aは1相分固定子の製造方法の他の実施の形態を示す図である。 図16Bは1相分固定子の製造方法の他の実施の形態を示す図である。 図17は1相分固定子の他の実施の形態を示す斜視図である。 図18Aは固定子巻線の部分断面図である。 図18Bは固定子巻線の部分断面図である。 図18Cは固定子巻線の部分断面図である。 図18Dは固定子巻線の部分断面図である。 図19Aは回転電機への適用を示す組み立て前の斜視図である。 図19Bは回転電機への適用を示す組み立て後の斜視図である。
符号の説明
  100  3相交流の固定子
  102  固定子
  102U  U相固定子
  102V  V相固定子
  102W  W相固定子
  104  固定子鉄心
  104U  U相固定子鉄心
  104V  V相固定子鉄心
  104W  W相固定子鉄心
  106A  ティース
  106B  ティース
  108  鍔
  112  背面部
  114  溝
  116  溶接部
  122  固定子巻線
  122U  U相固定子巻線
  122V  V相固定子巻線
  122W  W相固定子巻線
  124  磁極間部
  126  磁極端部
  128  磁極端部  
  130  磁気絶縁板
  401  外環
  404  回転子
  412  軸受
  414  軸受
  416  後側ハウジンング
  418  前側ハウジング
  436  シャフト
  452  通しボルト
  1001  素材
  1101A  パンチ
  1101B  パンチ
  1102A  カウンタ
  1102B  カウンタ
  1103  ストッパ
 以下に、本発明の実施の形態について図面を参照して説明する。
〔固定子の基本構成の説明〕
 図1乃至図6を用いて本発明の一実施の形態である固定子102の基本構成を説明する。図1は、本発明の一実施の形態である、固定子102の基本構成を示す斜視図である。
 図2A~Cは前記図1に示す固定子の基本構成の他の実施例で、図1の実施の形態である基本構成の各磁極部106に鍔108を設けた実施例である。図2Aは他の実施例である固定子102の基本構成の全体図であり、図2Bは図2Aに示す固定子102の基本構成の部分断面図であり、図2Cは図2Aに示す固定子102の基本構成のさらに見方を変えた部分断面図であり、図2Aに示す固定子102固定子の基本構成の回転軸に垂直な部分断面図である。
 図3は、図1に示す固定子102の基本構成の固定子鉄心104を示す斜視図であり、図4は図2に示す他の実施例である固定子102の基本構成の固定子鉄心104を示す斜視図である。また図5は図3に示す固定子鉄心104のさらに他の実施の形態である。図6は図1や図2に示す固定子102の基本構成に使用される固定子巻線122である。
 図1あるいは図2A~Cに示す固定子102の基本構成は固定子鉄心104と固定子巻線122とを有している。固定子102の基本構成の回転子側には、固定子102の磁極として作用する磁極部106が全周に渡って等間隔に設けられており、後で動作を説明する都合上前記磁極部に交互に106Aと106Bの符号を付す、しかし磁極部106Aと106Bはそれぞれ同様の作用を為す。磁極部106Aと106Bの内側には上述の回転子が回転可能に設けられるが、図1乃至図4では説明の煩雑さを避けるため、回転子を図示していない。
 また、回転電機では固定子102が回転子の外側にあるものと、固定子102が回転子の内側にあるものがあり、そのいずれの構造出であっても良いが、説明の煩雑さを避けるため、固定子が回転子の外側にある構造で説明している。回転子としては、本発明を交流発電機として使用する場合はルンデルタイプを使用する。また永久磁石を表面あるいは内部に有する永久磁石回転子、D軸あるいはQ軸の磁束を制限することでリラクタンストルクを発生するフラックスバリヤ回転子、あるいはかご型回転子を使用することも可能であり、上記回転子と上記固定子102とを組み合わせて回転電機を構成することができ、本回転電機はそれぞれのモータあるいは発電機として作用する。
 図1に示す固定子102の基本構成と図2A~Cに示す固定子102の基本構成はほとんど同じであるが、図2A~Cに示す固定子102の基本構成は磁極部106の回転子側の隣接する磁極方向にそれぞれ鍔108を有し、固定子102の基本構成の回転子側面の面積を大きくし出力特性の改善を図っている。また図5に示す固定子鉄心104は図3や図4に示す固定子鉄心104のさらに他の実施の形態で、隣接する磁極部106を繋ぐ背面部112を曲線形状とし、生産性に優れている。
 図2A及び図2Bに記載の如く、回転軸に垂直な面である周方向面に磁極部106が等間隔で配置されており、前記磁極部106は交互に回転軸方向にずれて配置されているので、固定子102の基本構成の回転軸方向の端部に磁極部106に応じて1つおきに窪みが形成されている。前記窪みには固定子巻線122が配置され、固定子巻線122の回転軸端部での固定子鉄心104からの突出を少なくあるいは無くすことができる。
 図2Bに記載の磁極部106Aおよび磁極部106Bを回転軸に対し垂直な面で部分断面した断面図を図2Cに示す。図2Cに示す如く各磁極部106Aと磁極部106B間にスロットの如き回転軸方向に延びる溝114が形成され、この溝114に上記固定子巻線122が収納されている。従来の固定子と異なる点は単相の巻線が溝114に挿入されていることで、固定子巻線122が単純な構成であることである。このため生産性に優れ、信頼性が向上する。図2Cに示すとおり、各磁極部106は背面部112でそれぞれ繋がっている。また各磁極部106の回転子側には鍔108が形成されており、各溝114の回転子側は鍔108により、狭くなっている。この構造により、回転子に対向する面の面積が増大し回転電機の特性が改善される。
 図3乃至図5に示す固定子鉄心104は図1や図2に示す固定子102の基本構成の固定子鉄心104であり、複数の磁極部106を回転子側の周方向に沿って全周に渡って等間隔に有している。この実施の形態では20個の磁極部106が設けられている。これらの磁極部106は背面部112で隣接する磁極部106とそれぞれ繋がっており、隣接する磁極部106間には固定子巻線を挿入するための回転軸方向に延びる空間114あるいはスロット114が形成されている。
 図1乃至図5に示す固定子鉄心104では、磁極部106を交互に回転軸方向にずらした形状を成しており、磁極部106Aは磁極部106Bに対して他方側にずれている。このため磁極部106の一方側に空間が形成され、この空間に固定子巻線122を配置することで固定子巻線122の一方側の出っ張りをなくすることができ、固定子102の基本構成を小型にすることができる。また銅損も少なくなる。同様に磁極部106Bは磁極部106Aに対して一方側にずれているので、磁極部106の他方側に空間が形成される。この空間に固定子巻線122を配置することで固定子巻線122の他方側の出っ張りをなくすことができ、上述と同様固定子102の基本構成を小型にすることができる。また銅損も少なくなる。
 ただし、上述の磁極部106の交互のずれた配置構造は必須ではなく、ずれた構造が無くても回転電機の固定子102の基本構成として作用し、固定子巻線122の巻回作業が非常に簡単なため、従来の回転電機の固定子に対して生産性の点で非常に優れている。また特許文献1や特許文献2に記載の回転子側に多数の爪が設けられた一般的なクローポール型の固定子に対して、固定子のインダクタンスを大幅に低減できる効果がある。
 図3乃至図5に記載の固定子鉄心104は磁極部106の反対側である背面部112の外周面を溶接で固定した溶接部116を有している。後述のとおり、生産性を良くする為にまた材料の無駄を少なくするために、後述のとおり、固定子鉄心104は薄板形状の連続した磁性鋼板を周方向に巻いて生産している。各磁極部106に対応した背面部112の外周面に溶接部116を形成しているので、前記連続した薄板形状の磁性鋼板を周方向に巻いて溶接部116でそれぞれ固定子、その後背面部112をプレスなどで成形することで、簡単に磁極部106を回転軸方向にずらすことが可能となる。
 図6は固定子102の基本構成に使用される固定子巻線122で本実施例は波巻きの固定子巻線122である。波巻き以外の集中巻の巻線も使用できるが、波巻の固定子巻線122を例に説明する。図6に記載の波巻の固定子巻線122は固定子巻線の磁極間部124を固定子巻線122の一方の磁極端部126と固定子巻線の他方の磁極端部128とで繋ぐことで作られる連続した形状をしている。固定子巻線122の磁極間部124を固定子巻線122の一方の磁極端部126あるいは固定子巻線122の他方の磁極端部128で交互に繋いでおり、前記固定子巻線122の一方の磁極端部126が図2乃至図5に示す固定子鉄心104の回転軸方向に延びる形状を有する溝114にそれぞれ挿入される。
 前記固定子鉄心104の軸方向端部は磁極部106に対応して交互に窪みが形成されており、固定子鉄心104の一方端に形成された窪みに固定子巻線122の一方の磁極端部126が挿入され、固定子鉄心104の他方端に形成された窪みに固定子巻線122の他方の磁極端部128が挿入される。上述の如く、固定子鉄心104の回転軸における両端に必ずしも窪みを形成する必要がなく、その場合には前記固定子巻線122の一方の磁極端部126や固定子巻線122の他方の磁極端部128は固定子鉄心104の両端部から回転軸方向にはみ出す形状となる。
 図6に示す巻線を図3乃至図5に記載の固定子鉄心104に装着した場合、固定子鉄心104の軸方向に設けられた溝114に互い違いに渡る構造であり、スロットティース型モータの波巻構造と同様の巻線形態で、全てのスロットを巻線がカバーする構造となる。このため固定子102と回転子間に爪を有するクローポール型固定子に対し電気的特性が改善される。
〔3相交流回転電機用の固定子の説明〕
 以上説明した固定子102の基本構成は固定子全体に対して一相分の固定子として作用する。次に3相交流の固定子100を図7と図8を用いて説明する。図7は、図1あるいは図2に示す固定子102の基本構成が組み合わせられて作られた3相回転電機の固定子100の斜視図である。図8は図7に示す3相交流の固定子100の展開図である。
 図7に記載の3相交流の固定子100は3個の固定子102の基本構成をそれぞれU相固定子102UやV相固定子102V、W相固定子102Wとして使用する。U相固定子102UやV相固定子102V、W相固定子102Wはそれぞれ回転軸方向に分けられて並べて配置されているが、回転子は共通であり、各相の固定子102の基本構成は互いに位相を持って配置されている。
〔各相間の位相の説明〕
 先に説明の固定子102の基本構成を使用して多相回転電機の固定子100を構成する場合、各相の固定子を軸方向に分けて配置する。各相の固定子の相対位置関係は、2相回転電機であれば、前記固定子の基本構成102を電気角で90度の位相を持たせて配置する。すなわち回転子側の一極対あたりの機械的な角度の1/4ずらして配置する。
 また、3相回転電機の固定子100であれば、電気角で120度ずつ位相を持たせては配置する。すなわち回転子側の一極対あたりの機械的な角度の1/3ずらして配置する。上述の図7に3相回転電機の固定子100の一例を示す。図7は20極の3相回転電機の固定子を示す。20極であるから、極対数は10である。このため、相と相の極のずらしの機械角度は、極対数は10の機械角である36度の1/3、すなわち12度となる。
 上記説明は、3相交流の固定子100を構成する各固定子102の基本構成に対して回転子を共通の構造とし、回転子に位相を持たせない構造の場合である。回転子を共通の構造とすることは回転電機全体の構成を簡単化でき、小型化や生産性の点で効果が大きい。特に交流発電機として上記回転電機を使用する場合には3相交流の固定子100を構成する各固定子102の基本構成は開示巻線をそれぞれ共用でき、高出力を得ることができる。
 しかし固定子側の各相間の取り付け位置には位相を設けないで、回転子側を各相に対応して分割し、回転子側の各固定子に対応する部分の極にそれぞれ上記のように複数相回転電機を構成する位相を持たせて配置することも可能である。この位相関係は上記固定子側で説明した関係と同じである。
 上記説明では、多相回転電機の固定子100の代表として2相交流や3相交流について述べたがさらに多層の交流に対しても同様の考え方で対応できる。例えば6相交流発電機の固定子100を構成する場合は固定子102の基本構成を6個軸方向に配置すればよく、電気角で60度の位相を持たせればよい。6相の交流発電機を3相ごとに分けて整流後に並列接続することで、各相あたりの最大電流を下げることができ、整流回路などの電流容量を小さくできる効果がある。
〔3相固定子構造の説明〕
 多層回転電機の固定子100の代表例として図7に3相交流回転電機用の固定子100を記載した。この3相交流の固定子100の具体的な構造を図8を用いて説明する。図1や図2で説明した固定子102の基本構成をU相固定子102U、V相固定子102V、W相固定子102Wの3つの固定子ブロックを軸方向に並べて配置している。この構成で各相間には互いの相間の漏れ磁束を低減するために磁気的なシールド作用を有する磁気絶縁部材が設けられている。この磁気絶縁部材は、必要に応じて配置するものであり必須ではない、しかし漏れ磁束を減少させることは効率向上や特性改善に繋がる。
 前記絶縁材料は、非磁性体の高分子材料や、セラミックなどの導電性を有しない物質で構成することが望ましい。さらには、熱伝導性の良い物質とすることで、放熱性向上などが期待できる。また、ここでは図示しないが、この磁気絶縁部材3に固定子鉄心を位置決めするための溝や、穴、または突起や軸、インローなどの嵌合形状機能を有することで、固定子ブロックの高精度な位置決めが実現できる。この位置決めは、固定子の周方向位置、及び同軸度などが、回転電機のトルクリプルなどに影響を及ぼすためである。
 金属系の材料でこの磁気シールドを構成することも可能である。具体的な物質名を挙げると、金属では、アルミニウム系の合金、非磁性のステンレス合金、銅系合金などが適している。コストの問題はあるが軽量のチタンなども候補である。また、樹脂では、LCP(液晶ポリマー)、PPS(ポリフェニレンサルファイド樹脂)、PBT(ポリブチレンテレフタレート樹脂)、PET(ポリエチレン系樹脂)、またはガラス繊維で強化されたナイロン、PC(ポリカーボネート樹脂)などが候補として挙げられる。また、炭素繊維強化樹脂や、エポキシ系、不飽和ポリエステル系などの熱硬化性の樹脂も候補である。それぞれ使用するモータや発電機などが必要とする熱的、機械的な強度の制約条件などにより、これらの材質は決定されることが望ましい。
 これらの製造方法は、アルミニウム、銅合金はダイキャスト、ステンレス系の合金などは、機械加工や、冷間、温間による鍛造での製作。樹脂系材料は、射出成形などの工法によって製作することができる。金属系の材料を使用する場合は、渦電流の発生経路に注意して形状を決定する必要がある。
〔固定子鉄心104の製造方法〕
 固定子鉄心の製造方法を図9乃至図11を用いて説明する。固定子鉄心104の製造方法は鋼板から素材1001を切抜く工程と、素材1001を積層する工程と、素材1001を接合する工程と、素材1001を波状に成形する工程からなっている。固定子鉄心104は図9記載の如く鋼板を切抜き、切抜いた素材1001を積層し、切抜いて積層した素材1001を接合し、切抜いて積層し接合した素材1001を波形に成形する工程の順番か、図10記載の如く鋼板を切抜き、切抜いた素材1001を積層し、積層した素材1001を波状に成形し、波状に成形した素材1001を接合する工程の順番か、図11記載の如く鋼板を切抜き、切抜いた素材1001を波状に成形し、波状に成形した素材1001を積層し、積層した素材1001を接合する工程の順番によって製造できる。
 図9乃至図11に記載の鋼板から素材を切抜く工程では素板から磁極部106および背面部112を展開した形状に切抜く。素材を切抜く手段として、例えば、プレスによる打抜き加工等のせん断加工、ワイヤーカット、レーザーカット、プラズマ切断、ウォータージェット、機械加工などがあるが、生産性を考慮した場合には、プレスによる打抜き加工が好ましい。
 図12A~Cは切抜いた素材1001の形状を示している。図12Aのように環状につながっているか、図12BCのように磁極部106および背面部112が1磁極あるいは複数の磁極、帯状につながっている形状である。環状につながった形状の素材1001では、素材1001の内外径の精度が良い反面、中心部の材料が使われないため歩留まりが悪い。一方、磁極部106および背面部112が1磁極あるいは複数磁極帯状につながった素材形状では、歩留まりが良い反面、後述の積層工程により精度確保する必要がある。
 図9乃至図11に記載の素材1001を積層する工程では、磁極部106が回転子軸方向に揃うよう積層する。磁極部106を回転子軸方向に揃える方法としては、例えば素材1001の背面部112にあらかじめ付けた凹形状をガイドとして積層すれば良い。また、この時の素材形状は環状につながっていても、磁極部が1磁極あるいは複数の磁極、帯状につながっている形状であってもよい。磁極部106および背面部112が複数磁極帯状につながった素材形状では図13に示すようにらせん状に積層する。その際、直線状の素材1001を周方向への面内曲げにより円弧形状にする。例えば、素材1001の背面部112を傾斜圧延することにより、素材1001を周方向面内に曲げる。
 図9乃至図11に記載の素材を接合する工程では、磁極部106が軸方向に揃い、積層した状態で接合する。例えば、半抜きして成形された凸部と凹部を合わせた「かしめ」、レーザー溶接、TIG溶接、接着等により接合する。半抜きして成形された凸部と凹部を合わせた「かしめ」では、素材1001を切抜く際に凸部と凹部を半抜きにより成形し、積層後に回転軸方向にプレスなどで加圧することにより接合できる。レーザー溶接やTIG溶接の場合は磁気特性に影響の少ない背面部112で接合することが望ましい。また、磁気絶縁性のある材料で接着した場合、磁気特性は向上するが回転電機として使用した際に、接着が剥がれない温度の範囲で使用することに注意する必要がある。
 図9乃至図11記載の波状に成形する工程では、磁極部106Aと106Bとが交互に波状となるように成形する。磁極部106Aの軸方向の端面を磁極部106Bの軸方向の端面に対して、相対的に回転軸方向に押込むことで波状に成形する。またこの波状に成形する工程で、磁極部106Aと106Bを回転軸半径方向に移動させることにより、素材1001周方向の伸びによる板厚減少および破断を抑制することができ、成形性が向上する。さらに、磁極部106Aと106Bを回転軸半径方向に移動させた際、磁極部106Aと106Bの回転軸半径方向の端面を工具に突き当てることにより、固定子鉄心104の内径精度を向上させることができる。この素材1001を波状に成形する工程では、素材は1枚であっても積層した状態であっても良い。
 図14は波状に成形する工程の例を示しており、図14Aは波状に成形する前、図14Bは波状に成形した後を示している。図14では分かりやすいように手前1/4の素材1001上側の工具は表示していないが、実際には周方向他の部分と同様に工具が配置されている。また、前述の如く素材1001を波状に成形する工程では、素材は1枚であっても積層した状態であっても良いが、A~Cでは素材1001を積層させた状態を示している。
 図14Aに示すように磁極部106Aと106Bの軸方向に押込む端面側に、回転軸周方向にパンチ1101を配置し、パンチ1101と素材1001を挟んで対向するカウンタ1102を配置する。カウンタ1102は、パンチ1101が回転軸方向に押込む向きとは逆方向に素材1001の板厚方向に力をかけ、素材1001の面外への変形を拘束する。実際の成形では、磁極部106Aを回転子軸方向に押込む場合、磁極部106Bは回転子軸方向の移動を拘束するか、磁極部106Bを回転子軸方向に押込む場合、磁極部106Aは回転子軸方向の移動を拘束するが、本説明では便宜上、磁極部106Aと106Bの回転子軸方向への相対的な変形であるため、磁極部106Aを回転子軸方向へ押込むパンチ1101A、磁極部106Bを回転子軸方向へ押込むパンチ1101Bとする。
 また、パンチ1101Aと1101Bに対応させカウンタ1102Aと1102Bと符号を付ける。磁極部106Aを押込むパンチ1101Aの回転子軸方向の押込む向きと、磁極部106Bを押込むパンチ1101Bの回転子軸方向の押込む向きは相対的に逆方向となるよう回転子周方向に交互に配置する。また、パンチ1101Aと1101Bに合わせて、カウンタ1102Aと1102Bも回転子周方向に交互に配置する。この状態でパンチ1101Aと1101Bを回転子軸方向に相対的に押込むことにより図12Bに示すような波状に成形する。この方法によれば、磁極部106Aと106Bをつなぐ背面部114の曲げ半径が回転子軸の半径方向外側になるにしたがい連続的に大きくなる。
 パンチ1101を回転子軸方向に押込む工程で、磁極部106を回転子軸方向に移動させることで成形性が向上する。そのため、素材1001とパンチ1101およびカウンタ1102の摩擦力を小さくするか、あるいは、パンチ1101およびカウンタ1102を回転子半径方向へ移動自在にするか、あるいは、パンチ1101およびカウンタ1102をカム機構により強制的に回転子半径方向に移動するかの少なくとも1つを行うことで、素材1001周方向の伸びによる板厚減少および破断を抑制することができ、成形性を向上させることができる。また、磁極部106の回転子半径方向の変形を、最終的にストッパ1103に磁極部106の回転子半径方向の端面を突き当てることにより、固定子104の内径精度を高くすることができる。
 カウンタ1102は、磁極部106の平坦度を確保するために使用する。金型構造としては例えばダイクッション、ガスダンパ、バネ等を使用することで、パンチ1101に対向する力をかける。上記説明ではカウンタ1102を使用した場合の成形方法を説明してきたが、磁極部106が曲面であっても性能上問題はないので、磁極部106の平坦度を確保する必要がない場合は、カウンタ1102はなくても良い。この場合、パンチ1101Aと1101Bで磁極部106Aと106Bを押込むだけでよいので、波形を転写したような形状の金型で簡単に成形できる。
 波状に成形する工程で、磁極部106を回転子半径方向に移動させた場合、成形前後で回転子軸方向に投影した素材1001の形状が変わるため、成形前の素材1001は成形後の固定子鉄心104を展開した形状とする必要がある。磁極部106の形状は波状に成形した後もほとんど変わらないため固定子鉄心104の形状と同じでよいが、背面部114の長さを、固定子鉄心104を回転子軸方向に投影した場合の長さより長くする必要がある。また背面部114の長さは、磁極部106の回転子半径方向の移動量が多くなるにしたがい大きくする必要がある。
 ここで、固定子鉄心104の具体的な製造方法の例を説明する。まず、複数の磁極が帯状に連続的につながった素材1001を、鋼板のフープ材から打ち抜き加工により切り抜く。次に複数の磁極が帯状に連続的につながった素材1001の背面部112を傾斜圧延して面内に曲げるとともに、図13に示すようにらせん状に積層する。所望の枚数部積層した後、素材1001の背面部112をレーザー溶接により接合する。次にレーザー溶接した素材1001をプレスで波状に成形することで、図5に示すような固定子鉄心104を製造することができる。
 これまでらせん状も含め、環状につながった固定子鉄心104を中心に説明してきたが、次に幾つかの磁極毎に周方向に分割した固定子鉄心104について説明する。電気的特性からは固定子鉄心104は一体形状が必須ではない。図15A~Cは一極対(2極分)のコア形状で固定子の磁気回路を構成している。図15Aは、図3乃至図5で示した固定子鉄心104の一極対を示している。
 モータあるいは発電機である回転電機の構造では、回転子からの磁束の流れは、一極対分が回転子側の一極対分の磁束を賄うため、隣り合う極対間での磁束の流れを必要としない。したがって、鉄心を周方向に分割して配置することでも、一体とした場合と変わらない特性を満足することができる。そこで、図15Aに示すようなティース106Aとティース106Bとを有する鉄心片で構成してこれを組み合わせて固定子鉄心104を組立ることで、モータあるいは発電機使用する前述の構造の固定子を構成することが可能となる。なお、同一符号は先に説明の同一符号の機能や作用効果を示す。
 図15Bは、図15Aのティース106Aあるいは106Bの先端に鍔を有する形状としたものである。この鍔は、回転子からの流入磁束を有効に集める目的と、巻線した固定子巻線122の内側へのはみだし防止機能を有する。図15Cには、軸方向に互い違いにする形状とした鉄心を示すが、その磁極の位置関係が、回転軸方向に重ならない構造を示している。固定子巻線122を配置するためのスペースを大きく確保するため、および、固定子巻線122の形状を単純化し生産性や作業性を向上するために、鉄心側の形状に工夫を凝らした実施例である。図3乃至図5あるいは図17の固定子鉄心104は磁性薄板の積層構成であるが、積層構造に限るものではなく、圧粉磁心などを圧縮成形して製造しても良い。しかし、強度や信頼性、磁気特性の観点で、積層鋼板の方が優れている。なお、図15Bや図15Cの記載において説明を省略しているが、先の記載と同一符号は同じような作用をし、同じような効果を有する。
 図16A~Bには、図15Bに示した鉄心を使用して、一相分の固定子鉄心である固定子鉄心104の製造概念を示す。ティース106Aとティース106Bとの間の回転軸方向に延びる溝114に図6に記載の固定子巻線122の磁極間部124をそれぞれ挿入する。その後図16Aの各磁極対を溶接などで固定することで、周方向に一体化した固定子鉄心104が完成する。
 上記図16Aの構造あるいは図1乃至図5の構造は、回転軸に沿った溝114が存在し、前記溝114に固定子巻線122の固定子巻線の磁極間部124が挿入される形状である。一方、図16Bに示す実施の形態は、ティース106Aとティース106Bが完全に回転軸方向にずれている。この形状においては、固定子巻線122はほとんど回転軸方向の屈曲を設けることなく、溝114に挿入可能である。このため、固定子巻線122の生産性にすぐれている、また固定子巻線122の溝114への挿入が容易であり、作業性に優れる。しかし回転子に面する磁気回路の断面積が小さくなり、出力が低下し易い欠点がある。ただ出力が小さくても良い場合には生産コストが安価となり、有効である。
 最終的に完成した固定子102の基本構成は図1や図2A~Cと同じであり、固定子巻線122は、回転軸に沿って一方端と他方端との間を行き来する掲示用を成して巻回されており、図2B乃至図2Cに示す構造である。上記図面の固定子鉄心104は、回転軸方向にずらしたティース106Aとティース106Bを成す固定子鉄心104の回転軸方向の中央部で一部重なっている形状であり、図2Cに示す断面のように、スロットティース型回転電機の巻線配置とほぼ変わらない配置となっている。このため回転子と対向する面は効率良く磁気回路が構成され、優れた電気的な特性が得られる。一方固定子巻線122はスロットティース型回転電機に比べ大変簡素化されており、優れた生産性が得られ、また固定子巻線122の形状がシンプルなため、安全性や信頼性において優れた効果がある。
 図17に、固定子巻線122の他の実施の形態を示す。図1や図2に示した構造では、固定子巻線122が回転軸方向と周方向をつなぐ部分において略直角に近い角度で曲がっている。すなわち固定子巻線122が回転軸と略平行な部分を有している。実際の被覆付マグネットワイヤでは、直角に曲げると絶縁のための樹脂被膜が損傷する心配があり、作業時に色々注意を払うことが必要となる。ある程度の曲げR(半径)を持って形成することが望ましい。この点で、図1や図2A~Cに示す形状では固定子巻線122の形成作業に注意を払うことが望まれる。
 図17に示す形状では、ティース106Aとティース106Bとの間の溝114を周方向に広くしている。鉄心の磁極間の隙間をゆるくして、固定子巻線122の回転軸方向の部分を斜めに配置できる構造とした。この構造では曲げR(半径)をゆるやかに出来る利点が有り、作業性が向上する。ただし図1や図2A~Cの構造のほうが固定子巻線122の占積率(スロットに対する導体断面積の割合)を高くでき、高出力を得やすい効果がある。図17の構造で固定子巻線122の占積率が小さくならないように考慮することが効率向上の点で望ましい。
 図18A~Dに、占積率を向上するための固定子巻線122の断面形状を示す。通常、図18Aに示すように、丸断面のマグネットワイヤを巻線として使用することが考えられるが、占積率を向上するためには、平角のマグネットワイヤを用いて、図18Bや図18Cのように整列配置することでその占積率を高めることが可能である。また、図6に示したように固定子巻線122を予め製造し、その後固定子鉄心104と一体化する場合には、固定子巻線122の断面形状を望ましい形に成形する工程を設けることが望ましい。固定子巻線122の断面形状を成形する場合には、断面が略円形状の線を、図18Dに示すような形状に成形することで上記占積率を高めることが出来る。
〔モータ等の回転電機への応用〕
 図19Bは図7に示す3相交流の固定子100を回転電機に適用した場合の回転電機の斜視図であり、図19Aは図19Bに示す前記回転電機の展開図である。前側ハウジング418と後側ハウジング416に軸受414と軸受412とがそれぞれ固定されており、シャフト436が上記軸受414と412とに回転可能に保持されている。前記シャフト436には回転子404が固定されている。前記回転子404の外側には空隙を介して図7に記載の3相交流の固定子100が設けられている。前側ハウジング418と後側ハウジング416とを通しボルト452で固定することにより、前側ハウジング418と後側ハウジング416との間に3相交流の固定子100が固定され保持される。なお、3相交流の固定子100の外周に更にアルミニウム材などで作られた外環401が設けられ、回転電機が密閉されている。
 上述の3相交流の固定子100は色々な回転子との組合せにより、発電機として作用し、あるいはモータとして作用し、色々な用途に使用可能である。いずれにおいても3相交流の固定子100の形状がシンプルで、特に固定子巻線122の形状がシンプルとなるため、生産性に優れている。また上記実施の形態では、軸方向の固定子巻線122のコイルエンドを少なくあるいは無くすことができ、小型化でき、さらに銅損を少なくできる。

Claims (13)

  1.  回転可能に保持された回転子と、前記回転子の回転軸方向に並べて配置された少なくとも2つの固定子鉄心を有する固定子とを備えた回転電機用の固定子鉄心において、 前記回転子の回転軸の周方向に配置された固定子鉄心の複数個の磁極と、前記複数個の磁極の各磁極間に前記回転軸の軸方向に形成された固定子鉄心の溝と、を有し、前記周方向に配置された各磁極の前記回転軸の軸方向の端面が隣接する磁極毎に前記回転軸の軸方向に波状に成形して、前記磁極の波状の内側の端面側および前記回転軸の軸方向に形成された溝に固定子巻線を配置可能とし、前記回転軸の周方向に配置された複数個の固定子鉄心の磁極が前記回転軸の軸方向に積層した鋼板からなることを特徴とする回転電機用の固定子鉄心。
  2.  請求項1記載の回転電機用の固定子鉄心において、隣接する前記磁極をつなぐ固定子背面部の曲げ半径が、前記回転子の回転軸から半径方向外側になるしたがい連続的に大きくなるように形成されることを特徴とする回転電機用の固定子鉄心。
  3.  鋼板から素材を切抜く工程1と、前記素材を積層する工程2と、前記素材を接合する工程3と、前記素材を波状に成形する工程4と、を備え、前記工程1乃至工程4の各工程を組み合わせて、回転電機の回転軸の周方向に固定子鉄心の複数個の磁極を形成し、前記複数個の磁極の各磁極間に前記回転軸の軸方向に溝を形成し、前記周方向に配置された各磁極の前記回転軸の軸方向の端面が隣接する磁極毎に前記回転軸の軸方向に波状にずれて配置されるよう成形することを特徴とする回転電機用の固定子鉄心の製造方法。
  4.  請求項3記載の回転電機用の固定子鉄心の製造方法において、前記工程2では前記工程1で切抜いた前記素材を積層し、前記工程3では前記工程2で積層した前記素材を接合し、前記工程4では前記工程3で接合した前記素材を波状に成形することを特徴とする回転電機用の固定子鉄心の製造方法。
  5.  請求項3記載の回転電機用の固定子鉄心の製造方法において、前記工程2では前記工程1で切抜いた前記素材を積層し、前記工程4では前記工程2で積層した前記素材を波状に成形し、前記工程3では前記工程4で波状に成形した前記素材を接合することを特徴とする回転電機用の固定子鉄心の製造方法。
  6.  請求項3記載の回転電機用の固定子鉄心の製造方法において、前記工程4では前記工程1で切抜いた前記素材を波状に成形し、前記工程2では前記工程4波状に成形した前記素材を積層し、前記工程3では前記工程2で積層した前記素材を接合することを特徴とする回転電機用の固定子鉄心の製造方法。
  7.  請求項3記載の回転電機用の固定子鉄心の製造方法において、前記工程4では、前記磁極の回転子軸方向の端面を隣接する前記磁極の回転子軸方向の端面と相対的に回転子の回転軸方向に押込むことを特徴とする回転電機用の固定子鉄心の製造方法。
  8.  請求項3記載の回転電機用の固定子鉄心の製造方法において、前記工程4では、前記磁極を回転子の回転軸の半径方向の中心側に移動させることを特徴とする回転電機用の固定子鉄心の製造方法。
  9.  請求項3記載の回転電機用の固定子鉄心の製造方法において、前記工程4では、前記磁極の回転子の回転軸の半径方向の中心側の面を工具に突き当てることを特徴とする回転電機用の固定子鉄心の製造方法。
  10.  請求項3記載の回転電機用の固定子鉄心の製造方法において、前記工程4では、前記磁極の回転子軸方向の端面を隣接する前記磁極の回転子軸方向の端面と相対的に回転子の回転軸方向に押込む方法、あるいは、前記磁極を回転子の回転軸の半径方向の中心側に移動させる方法、あるいは、前記磁極の回転子の回転軸の半径方向の中心側の面を工具に突き当てる方法、の少なくとも2つの方法を同一工程で行うことを特徴とする回転電機用の固定子鉄心の製造方法。
  11.  請求項3記載の回転電機用の固定子鉄心の製造方法において、前記工程1では、環状につながった形状に切抜くか、あるいは、前記固定子の1磁極分または複数磁極分が帯状につながった形状に切抜くことを特徴とする回転電機用の固定子鉄心の製造方法。
  12.  請求項3記載の回転電機用の固定子鉄心の製造方法において、前記工程2では、前記環状につながった形状に切抜いた板材を積層するか、あるいは、前記固定子の1磁極分または複数磁極分が帯状につながった形状の板材を積層するか、あるいは、帯状につながった板材をらせん状に積層することを特徴とする回転電機用の固定子鉄心の製造方法。
  13.  請求項3記載の回転電機用の固定子鉄心の製造方法において、前記工程3では、半抜きして成形された凸部と凹部を合わせてかしめるか、レーザー溶接か、TIG溶接か、接着かにより板材を接合することを特徴とする回転電機用の固定子鉄心の製造方法。
PCT/JP2008/072303 2008-03-12 2008-12-09 回転電機用の固定子鉄心およびその製造方法 WO2009113215A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2008801240486A CN101911432B (zh) 2008-03-12 2008-12-09 旋转电机用的定子铁芯及其制造方法
US12/863,629 US8294325B2 (en) 2008-03-12 2008-12-09 Stator core for dynamo-electric machine and manufacturing method therefor
EP08873215.1A EP2284976A4 (en) 2008-03-12 2008-12-09 STATOR CORE FOR DYNAMOELECTRIC MACHINE AND METHOD FOR MANUFACTURING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008063062A JP5022278B2 (ja) 2008-03-12 2008-03-12 回転電機用の固定子鉄心およびその製造方法
JP2008-063062 2008-03-12

Publications (1)

Publication Number Publication Date
WO2009113215A1 true WO2009113215A1 (ja) 2009-09-17

Family

ID=41064889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072303 WO2009113215A1 (ja) 2008-03-12 2008-12-09 回転電機用の固定子鉄心およびその製造方法

Country Status (5)

Country Link
US (1) US8294325B2 (ja)
EP (1) EP2284976A4 (ja)
JP (1) JP5022278B2 (ja)
CN (1) CN101911432B (ja)
WO (1) WO2009113215A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102201720A (zh) * 2010-08-19 2011-09-28 中国航空工业第六一八研究所 带有螺旋升角的定子铁芯的成型方法和装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5022278B2 (ja) 2008-03-12 2012-09-12 株式会社日立製作所 回転電機用の固定子鉄心およびその製造方法
CN101860130B (zh) * 2010-04-08 2012-11-14 上海理工大学 径向磁场直线旋转电机定子叠片旋转错位叠压方法
DE102012001115B4 (de) * 2012-01-23 2023-06-07 Sew-Eurodrive Gmbh & Co Kg Elektromaschine
US9618003B2 (en) * 2013-12-10 2017-04-11 Electric Torque Machines Inc. High efficiency transverse flux motor fan
US9509181B2 (en) * 2013-12-10 2016-11-29 Electric Torque Machines Inc. Transverse flux stator geometry
WO2016193558A2 (fr) * 2015-05-29 2016-12-08 Francecol Technology Armature électromagnétique pour machine électrique tournante et son procédé de fabrication
US10778049B2 (en) * 2016-06-07 2020-09-15 Sapphire Motors Stator assembly with stack of coated conductors
CN105896775A (zh) * 2016-06-28 2016-08-24 无锡新大力电机有限公司 一种永磁电机护套
WO2019015030A1 (zh) * 2017-07-21 2019-01-24 深圳市配天电机技术有限公司 电动车、车轮及其开关磁阻电机
WO2019146499A1 (ja) * 2018-01-23 2019-08-01 三菱電機株式会社 回転電機の固定子及び回転電機の固定子の製造方法
CN109120120B (zh) * 2018-10-30 2023-08-25 永济优耐特绝缘材料有限责任公司 一种转子磁极盒叠压成型工艺
CN114342215B (zh) * 2019-09-24 2023-10-20 株式会社博迈立铖 旋转电机用的定子及其制造方法、旋转电机及其制造方法
CN110556995A (zh) * 2019-10-16 2019-12-10 河北工业大学 一种新型高功率密度爪极永磁电机
US11454172B2 (en) * 2019-12-26 2022-09-27 Unison Industries, Llc Starter/generator system
CN112953149B (zh) * 2021-02-24 2022-09-20 同济大学 一种径向磁通双转子电机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002345179A (ja) * 2001-05-07 2002-11-29 Jianzhun Electric Mach Ind Co Ltd 電動機のステータ組の改良構造
JP2004229403A (ja) * 2003-01-22 2004-08-12 Ichinomiya Denki:Kk クローポール型発電機
JP2005151785A (ja) 2003-11-16 2005-06-09 Yoshimitsu Okawa リング状の電機子コイルを有する同期発電機
JP2005176463A (ja) * 2003-12-09 2005-06-30 Sumitomo Electric Ind Ltd モータ
JP2006280189A (ja) * 2005-03-01 2006-10-12 Honda Motor Co Ltd ステータおよびモータ
JP2006296188A (ja) 2005-03-18 2006-10-26 Hitachi Industrial Equipment Systems Co Ltd 多相クローポール型モータ
WO2007010934A1 (ja) * 2005-07-19 2007-01-25 Denso Corporation 交流モータとその制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5355045A (en) * 1991-04-12 1994-10-11 Hisey Bradner L Torque reaction transfer in dynamoelectric machines having energy-efficient stator constructions
JP3871964B2 (ja) * 2002-05-16 2007-01-24 三菱電機株式会社 回転電機の固定子鉄心の製造方法
JP2006166637A (ja) * 2004-12-08 2006-06-22 Matsushita Electric Ind Co Ltd スピンドルモータ
JP2009005421A (ja) 2007-06-19 2009-01-08 Hitachi Ltd 回転電機
JP4604064B2 (ja) 2007-06-19 2010-12-22 日立オートモティブシステムズ株式会社 車両用交流発電機及び回転電機
JP2009027904A (ja) 2007-06-19 2009-02-05 Hitachi Ltd 回転電機
JP2009165273A (ja) 2008-01-07 2009-07-23 Hitachi Ltd 回転電機用固定子鉄心構造およびその製造方法
JP5022278B2 (ja) 2008-03-12 2012-09-12 株式会社日立製作所 回転電機用の固定子鉄心およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002345179A (ja) * 2001-05-07 2002-11-29 Jianzhun Electric Mach Ind Co Ltd 電動機のステータ組の改良構造
JP2004229403A (ja) * 2003-01-22 2004-08-12 Ichinomiya Denki:Kk クローポール型発電機
JP2005151785A (ja) 2003-11-16 2005-06-09 Yoshimitsu Okawa リング状の電機子コイルを有する同期発電機
JP2005176463A (ja) * 2003-12-09 2005-06-30 Sumitomo Electric Ind Ltd モータ
JP2006280189A (ja) * 2005-03-01 2006-10-12 Honda Motor Co Ltd ステータおよびモータ
JP2006296188A (ja) 2005-03-18 2006-10-26 Hitachi Industrial Equipment Systems Co Ltd 多相クローポール型モータ
WO2007010934A1 (ja) * 2005-07-19 2007-01-25 Denso Corporation 交流モータとその制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2284976A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102201720A (zh) * 2010-08-19 2011-09-28 中国航空工业第六一八研究所 带有螺旋升角的定子铁芯的成型方法和装置

Also Published As

Publication number Publication date
CN101911432B (zh) 2013-07-10
CN101911432A (zh) 2010-12-08
JP5022278B2 (ja) 2012-09-12
US8294325B2 (en) 2012-10-23
JP2009219319A (ja) 2009-09-24
EP2284976A1 (en) 2011-02-16
US20110062817A1 (en) 2011-03-17
EP2284976A4 (en) 2015-08-19

Similar Documents

Publication Publication Date Title
JP5022278B2 (ja) 回転電機用の固定子鉄心およびその製造方法
USRE46265E1 (en) Rotating electric apparatus and method for connecting stator coils thereof
JP6563595B2 (ja) 回転電機、及び回転電機の固定子
JP6402257B2 (ja) 固定子コイル、これを備えた固定子、およびこれを備えた回転電機
JP5480106B2 (ja) 回転電機
US10547223B2 (en) Stator coil, stator, electromagnetic device, and method of manufacturing stator coil
EP2053721A2 (en) Rotating machine
JPWO2019039518A1 (ja) 分割コア連結体および電機子の製造方法
JP2010220288A (ja) コアブロック及び該コアブロックを用いたモータ用の磁極コア
JP2009027904A (ja) 回転電機
WO2016035533A1 (ja) 回転電機のステータ、及びこれを備えた回転電機
US20240039355A1 (en) Rotating Electrical Machine, Electric Wheel, and Vehicle
JP2011223652A (ja) 回転電機巻線及び回転電機構成部材
JP6498536B2 (ja) コアおよび回転電機
CN117424358A (zh) 定子、电机、压缩机和电器设备
JP2009106044A (ja) 回転電機
JP4568639B2 (ja) ステータ
WO2018180344A1 (ja) 電動モータ用ステータおよび電動モータ
JP2019047630A (ja) 回転電機
JP2005124378A (ja) リング状の固定子コイルを有する誘導電動機
JP2009148134A (ja) 分割ステータ
WO2021256178A1 (ja) 成形コイル、ステータ及び回転電機
WO2024034364A1 (ja) コイル、ステータ及び回転電機
JP2005253280A (ja) リング状の固定子コイルを有するアウターロータ形のブラシレスdcモータ及びacサーボモータ
JP2009106045A (ja) 回転電機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880124048.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08873215

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2008873215

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008873215

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12863629

Country of ref document: US