WO2009110436A1 - 窒化物半導体結晶とその製造方法 - Google Patents

窒化物半導体結晶とその製造方法 Download PDF

Info

Publication number
WO2009110436A1
WO2009110436A1 PCT/JP2009/053893 JP2009053893W WO2009110436A1 WO 2009110436 A1 WO2009110436 A1 WO 2009110436A1 JP 2009053893 W JP2009053893 W JP 2009053893W WO 2009110436 A1 WO2009110436 A1 WO 2009110436A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
nitride semiconductor
plane
growth
crystal growth
Prior art date
Application number
PCT/JP2009/053893
Other languages
English (en)
French (fr)
Inventor
健史 藤戸
久保 秀一
洋子 眞重
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to US12/920,976 priority Critical patent/US8545626B2/en
Priority to EP09717726A priority patent/EP2261401A4/en
Publication of WO2009110436A1 publication Critical patent/WO2009110436A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/024Group 12/16 materials
    • H01L21/02403Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a nitride semiconductor crystal and a manufacturing method thereof. According to the production method of the present invention, a plate-like nitride semiconductor crystal can be obtained by a simple operation, and in particular, a nitride semiconductor crystal having a large-area nonpolar surface as a main surface can be obtained.
  • Nitride semiconductors typified by gallium nitride (GaN) have a large band gap, and the transition between bands is a direct transition type. Therefore, the light emitting diodes such as ultraviolet, blue and green, semiconductor lasers, etc. It is a promising material as a substrate for light emitting elements on the short wavelength side and semiconductor devices such as electronic devices.
  • GaN gallium nitride
  • the most common nitride semiconductor substrate is a substrate having a C-plane as a main surface.
  • InGaN-based blue and green LEDs and LDs using a GaN substrate with the C-plane as the main surface have a problem that a piezoelectric field is generated in the c-axis direction, which is the growth axis.
  • the piezo electric field is generated because the crystal structure of the InGaN layer is distorted and piezoelectric polarization occurs, and this polarization separates the holes and electrons injected into the light emitting layer, reducing the recombination probability contributing to light emission. For this reason, internal quantum efficiency becomes low and it leads to the fall of the external quantum efficiency of a light emitting device.
  • Nitride semiconductors have a high melting point, and the dissociation pressure of nitrogen near the melting point is high, so that bulk growth from the melt is difficult.
  • a nitride semiconductor substrate can be manufactured by using a vapor phase growth method such as a hydride vapor phase growth method (HVPE method) or a metal organic chemical vapor deposition method (MOCVD method).
  • HVPE method hydride vapor phase growth method
  • MOCVD method metal organic chemical vapor deposition method
  • the nitride semiconductor crystal grown on the seed crystal can be taken out by separating it from the support together with the seed crystal, and removing the seed crystal by a method such as polishing as necessary.
  • the present inventors proceeded with investigations as an object of the present invention to enable efficient provision of a plate-like nitride semiconductor crystal.
  • studies have been carried out for the purpose of providing a method for producing a plate-like nitride semiconductor crystal that allows a nitride semiconductor substrate to be produced by a simple method without passing through a slicing step.
  • the study is proceeding for the purpose of providing a method for producing a plate-like nitride semiconductor crystal capable of producing a nitride semiconductor substrate having a non-polar surface as a main surface and having a large area by a simple method. It was.
  • the present inventors have found that the problem can be solved by devising the crystal growth surface of the seed crystal. That is, the following present invention has been provided as means for solving the problems.
  • a method for producing a nitride semiconductor crystal comprising a crystal growth step of growing a nitride semiconductor crystal on the seed crystal by supplying a source gas to the seed crystal,
  • the nitride semiconductor crystal grown on the seed crystal is a plate crystal
  • the ratio (L / W) of the length L to the maximum width W of the projection plane obtained by projecting the crystal growth plane on the seed crystal for growing the plate crystal in the growth direction is 2 to 400, and
  • the crystal growth plane of the seed crystal is one or more planes selected from the group consisting of a + C plane, a ⁇ 10-1X ⁇ plane, and a ⁇ 11-2Y ⁇ plane.
  • the manufacturing method of the nitride semiconductor crystal of description (The said X and the said Y are integers other than 0 each independently).
  • the crystal growth surface of the seed crystal is a + C plane, a ⁇ 10-1X ⁇ plane, or both, and the main surface of the seed crystal is a substantially M plane.
  • the crystal growth surface of the seed crystal is a + C plane, a ⁇ 11-2Y ⁇ plane, or both, and the main surface of the seed crystal is a substantially A plane.
  • the manufacturing method of the nitride semiconductor crystal of description [5]
  • the seed crystal has a ⁇ 10-10 ⁇ plane, a ⁇ 11-2Z ⁇ plane, a ⁇ 10-1S ⁇ plane, or a ⁇ 11-20 ⁇ plane [2] to [4]
  • the method for producing a nitride semiconductor crystal according to any one of the above (Z and S are each independently an integer other than 0).
  • a crystal growth surface having first and second sides parallel to each other, a first side surface perpendicular to the crystal growth surface and having the first side of the crystal growth surface as one side, and the crystal At least a second side surface that is perpendicular to the growth surface and has the second side of the crystal growth surface as one side, and the distance between the first side and the second side of the crystal growth surface is 5 mm or less.
  • a source gas is applied to a seed crystal having a ratio of the average length of the first side and the second side of the crystal growth surface to the distance between the first side and the second side (average length / distance) of 2 to 400.
  • the method for producing a nitride semiconductor crystal according to [6] wherein the seed crystal is a hexagonal crystal whose crystal growth surface is a C plane and whose first side surface is an A plane.
  • the nitride semiconductor crystal is grown by the crystal growth step so that a surface parallel to the first side surface becomes a main surface.
  • the source gas is supplied toward the seed crystal from a space where the main surface of the seed crystal is expected and a space where the surface facing the main surface is expected, respectively.
  • the shape of the supply port for supplying the source gas is a slit, and the maximum length of the slit-shaped opening is not less than the length L of the projection surface of the seed crystal [1] to [20]
  • the seed crystal is placed on a support for positioning the seed crystal, and the contact surface between the seed crystal and the support is 1 mm or more away from the crystal growth surface of the seed crystal.
  • [26] The method for producing a nitride semiconductor crystal according to any one of [1] to [25], wherein a plate-like crystal having a main surface area of 2500 mm 2 or more is grown.
  • [27] The method for producing a nitride semiconductor crystal according to [26], wherein the main surface is a nonpolar surface.
  • a nitride semiconductor crystal is grown on the seed crystal by performing the crystal growth step according to any one of [1] to [27], and the grown nitride semiconductor crystal is converted into the seed crystal.
  • a plate-like nitride semiconductor crystal having a desired main surface can be efficiently produced by a simple method.
  • a nitride semiconductor crystal having a desired size and main surface can be easily manufactured by combining the type and size of the crystal growth surface of the seed crystal and the crystal growth conditions.
  • FIG. 6 is a perspective view schematically showing a state in which a crystal is grown on a seed crystal in Comparative Example 2.
  • a gallium nitride crystal may be described as an example of the nitride semiconductor crystal, but the nitride semiconductor crystal that can be employed in the present invention is not limited to this.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the seed crystal used in the present invention is a projection surface obtained by projecting a crystal growth surface for growing a plate crystal in the growth direction
  • the ratio of the length L in the longitudinal direction of the projection surface to the maximum width W (L / W) is 2 to 400, and the maximum width W is 5 mm or less.
  • the seed crystal may be of any type as long as a desired nitride semiconductor crystal can be grown on the crystal growth surface.
  • sapphire, SiC, ZnO, and a group III nitride semiconductor can be mentioned.
  • it is a case where the same or different type of nitride semiconductor seed crystal as the nitride semiconductor to be manufactured is used, and more preferably the same type as the group III element constituting the nitride semiconductor to be manufactured.
  • a case where a nitride semiconductor seed crystal containing at least a group III element is used, and a case where a nitride semiconductor seed crystal of the same type as the nitride semiconductor to be manufactured is used is more preferable.
  • the maximum width W of the projection surface obtained by projecting the crystal growth surface in the growth direction is 5 mm or less, preferably 0.2 mm to 5 mm, more preferably 0.3 mm to 3 mm, and still more preferably 0.5 mm to 2 mm.
  • the width of the projection surface may or may not be constant. The case where the width of the projection surface is constant and two long sides facing each other are preferable is preferable.
  • the width of the projection surface is constant, the width is the maximum width W of the projection surface, and when the width of the projection surface is not constant, the largest width is the maximum width W.
  • the width of the projection surface is not constant, the width is preferably continuously changing in the longitudinal direction, and the width is continuously changing at a constant rate in the longitudinal direction. More preferred.
  • the ratio (L / W) of the length L in the longitudinal direction of the projection surface to the maximum width W (L / W) is 2 to 400, preferably 3 to 270, more preferably 5 to 160.
  • the length L in the longitudinal direction is equal to the long side.
  • the average value of the lengths of these two sides is taken as the length L in the longitudinal direction.
  • the thickness of the seed crystal can usually be selected within the range of 0.1 mm to 50 mm, preferably 0.5 mm to 20 mm, and more preferably 1 mm to 10 mm.
  • the plane orientations of the projection plane are polar planes such as (0001) plane and (000-1) plane, nonpolar planes such as ⁇ 1-100 ⁇ plane and ⁇ 11-20 ⁇ plane, ⁇ 1-102 ⁇ plane, ⁇ 11 And a semipolar surface such as a ⁇ 22 ⁇ surface.
  • the (0001) plane and the (000-1) plane are preferable as the projection plane, and the (0001) plane is particularly preferable.
  • the seed crystal used in the present invention may or may not have the same plane as the projection plane as the crystal growth plane.
  • a seed crystal having the (0001) plane as the crystal growth plane may be used, or a seed crystal having a crystal growth plane such that the projection plane is the (0001) plane. May be used.
  • the crystal growth plane whose projection plane is the (0001) plane include ⁇ 10-1X ⁇ plane and ⁇ 11-2Y ⁇ plane.
  • X and Y are integers other than 0 each independently.
  • the seed crystal used in the present invention may have two or more crystal growth planes selected from the group consisting of + C plane, ⁇ 10-1X ⁇ plane and ⁇ 11-2Y ⁇ plane. In the case of having two or more crystal growth planes, the crystal growth planes must be continuous, and a plane obtained by projecting the entire continuous crystal growth plane in the crystal growth direction is referred to in the present invention. A surface.
  • the main surface of the seed crystal used in the present invention is preferably a plane perpendicular to the projection plane.
  • the main surface of the nitride semiconductor crystal to be manufactured is preferably used as the main surface of the seed crystal. By doing so, the surface having the same plane orientation as the main surface of the seed crystal becomes the main surface of the obtained plate crystal.
  • the seed crystal particularly preferably used in the present invention is a crystal whose crystal growth surface is the (0001) plane, the ⁇ 10-1X ⁇ plane, or both, and the main surface is a substantially ⁇ 1-100 ⁇ plane.
  • another seed crystal particularly preferably used in the present invention has a crystal growth plane of (0001) plane, ⁇ 11-2Y ⁇ plane, or both, and a main plane of substantially ⁇ 11-20 ⁇ plane. It is a certain crystal.
  • “substantially” means a surface whose off-angle is within ⁇ 20 °, a preferred off-angle range is within ⁇ 10 °, and a more preferred off-angle range is within ⁇ 5 °. is there.
  • Examples of the side surfaces other than the main surface in these two particularly preferable seed crystals include ⁇ 10-10 ⁇ plane, ⁇ 11-2Z ⁇ plane, ⁇ 10-1S ⁇ plane, and ⁇ 11-20 ⁇ plane.
  • Z and S are each independently an integer other than 0.
  • the ⁇ 10-10 ⁇ plane, the ⁇ 11-2Z ⁇ plane, and the ⁇ 10-1S ⁇ plane are preferable, and the ⁇ 10-10 ⁇ plane is more preferable.
  • the face orientation of the crystal growth face is not particularly limited. Since this surface is usually a surface in contact with the substrate holder of the crystal growth apparatus and does not come into contact with the source gas, it may be any surface. An example is the (000-1) plane.
  • seed crystals having various crystal planes other than the above can be used.
  • a seed crystal having at least a second side surface that is a flat surface and has the second side of the crystal growth surface as one side is also possible.
  • the ratio of the average length of the first side and the second side to the distance between the first side and the second side (average length / distance) is 2 to 400, and the distance between the first side and the second side is 5 mm or less. Is required.
  • the plane orientation of the side surface of this type of seed crystal is not particularly limited as long as it is perpendicular to the crystal growth plane, such as a polar plane such as (0001) plane, (000-1) plane, ⁇ 1-100 ⁇ plane, Nonpolar planes such as ⁇ 11-20 ⁇ plane, semipolar planes such as ⁇ 1-102 ⁇ plane and ⁇ 11-22 ⁇ plane can be mentioned.
  • a polar plane such as (0001) plane, (000-1) plane, ⁇ 1-100 ⁇ plane
  • Nonpolar planes such as ⁇ 11-20 ⁇ plane, semipolar planes such as ⁇ 1-102 ⁇ plane and ⁇ 11-22 ⁇ plane
  • the crystal growth plane is the (0001) plane or the (000-1) plane
  • the plane orientation of the side faces is the ⁇ 1-100 ⁇ plane or the ⁇ 11-20 ⁇ plane.
  • the side surface is a (0001) plane, a (000-1) plane, or a ⁇ 11-20 ⁇ plane.
  • the side surface is a (0001) plane, a (000-1) plane, or a ⁇ 1-100 ⁇ plane.
  • the first side surface and the second side surface of the seed crystal are the main surfaces of the nitride semiconductor crystal to be grown. Therefore, in the present invention, it is preferable to select and use a seed crystal having the same side as the first side or the second side as the main surface of the nitride semiconductor crystal to be manufactured.
  • the crystal growth surface is a (0001) plane or a (000-1) plane
  • the side surface orientation is a ⁇ 1-100 ⁇ plane or a ⁇ 11-20 ⁇ plane
  • the crystal growth plane is a (0001) plane. More preferably, the side surface orientation is the ⁇ 1-100 ⁇ plane or the ⁇ 11-20 ⁇ plane, the crystal growth plane is the (0001) plane, and the side plane orientation is the ⁇ 1-100 ⁇ plane. Is more preferable.
  • the “C plane” is a plane equivalent to a ⁇ 0001 ⁇ plane in a hexagonal crystal structure (wurtzite type crystal structure).
  • the “C plane” is a group III plane, and in gallium nitride, it corresponds to the Ga plane.
  • the planes equivalent to the ⁇ 0001 ⁇ plane are the (0001) plane and the (000-1) plane.
  • the ⁇ 10-10 ⁇ plane is the “M plane” and is a plane equivalent to the ⁇ 1-100 ⁇ plane in the hexagonal crystal structure (wurtzite type crystal structure).
  • a polar surface usually a cleaved surface.
  • the plane equivalent to the ⁇ 1-100 ⁇ plane is (1-100) plane, ( ⁇ 1100) plane, (01-10 plane), (0-110) plane, (10-10) plane, ( ⁇ 1010) Surface.
  • the ⁇ 11-20 ⁇ plane is the “A plane” and is a plane equivalent to the ⁇ 11-20 ⁇ plane in the hexagonal crystal structure (wurtzite type crystal structure). It is a polar surface.
  • the plane equivalent to the ⁇ 11-20 ⁇ plane is the (11-20) plane, the (-1-120) plane, the (1-210) plane, the (-12-10) plane, the (-2110) plane, (2 -1-10) surface.
  • a seed crystal having a desired surface can be obtained by cutting out the crystal as necessary.
  • a group III nitride semiconductor substrate having a C plane is formed, and then a seed crystal having the M plane or the A plane as the first side surface can be obtained by cutting so that the M plane or the A plane appears.
  • Cutting methods include scissors, grinders, inner blade slicers, wire saws (grinding, cutting), polishing methods, cleaving methods, cleaving methods, etc. Is preferably formed.
  • a diamond scriber may be used for cutting and a laser scriber device may be used. You may divide by hand as it is, and you may carry out with the braking device on other foundations.
  • a plate-like crystal is grown in a direction perpendicular to the projection surface of the seed crystal by supplying a source gas to the seed crystal.
  • the growth method include an MOCVD method and an HVPE method, but an HVPE method having a high growth rate is preferable.
  • FIG. 1 is a diagram for explaining a configuration example of a nitride semiconductor crystal manufacturing apparatus used in the present invention, but there is no particular limitation on the details of the configuration.
  • the HVPE apparatus illustrated in FIG. 1 includes a substrate holder 105 for placing a seed crystal 109 and a lifting mechanism 106 that can move the substrate holder up and down in the reactor 100.
  • introduction pipes 101 to 104 for introducing gas into the reactor 100 and an exhaust pipe 108 for exhausting are installed.
  • a heater 107 for heating the reactor 100 from the side surface is installed.
  • the reactor 100 is filled with atmospheric gas in advance before starting the reaction.
  • atmospheric gas include inert gases such as hydrogen, nitrogen, He, Ne, and Ar. These gases may be mixed and used.
  • the material of the substrate holder 105 is preferably carbon, and more preferably one whose surface is coated with SiC.
  • the shape of the substrate holder 105 is not particularly limited as long as it can hold the seed crystal 109 used in the present invention, but it is preferable that no structure is present in the vicinity of the crystal growth surface during crystal growth. . If there is a structure that can grow in the vicinity of the crystal growth surface, a polycrystal adheres to the structure, and HCl gas is generated as a product to adversely affect the crystal to be grown.
  • the contact surface between the seed crystal 109 and the substrate holder 105 is preferably separated from the crystal growth surface of the seed crystal by 1 mm or more, more preferably 3 mm or more, and further preferably 5 mm or more.
  • a source gas serving as a group III source is supplied from the introduction pipe 101.
  • a chloride gas such as gallium, aluminum, or indium may be directly introduced, or after reacting a metal raw material such as gallium, aluminum, or indium with hydrochloric acid gas in the reactor, the reaction gas is supplied. It may be introduced.
  • the carrier gas may be supplied from the introduction pipe 104 together with the raw material gas.
  • the carrier gas include hydrogen, nitrogen, an inert gas such as He, Ne, and Ar. These gases may be mixed and used.
  • a raw material gas serving as a nitrogen source is supplied. Usually, NH 3 is supplied.
  • a carrier gas is supplied from the introduction pipe 102.
  • the carrier gas the same carrier gas supplied from the introduction pipe 104 can be exemplified. This carrier gas also has an effect of separating the source gas nozzle and preventing the polycrystal from adhering to the nozzle tip.
  • a dopant gas can also be supplied from the introduction pipe 102.
  • an n-type dopant gas such as SiH 4 , SiH 2 Cl 2 , or H 2 S can be supplied.
  • the above gases supplied from the introduction pipes 101 to 104 may be exchanged with each other and supplied from different introduction pipes.
  • the source gas and the carrier gas serving as a nitrogen source may be mixed and supplied from the same introduction pipe.
  • a carrier gas may be mixed from another introduction pipe.
  • the introduction positions and introduction directions of the introduction pipes 101 to 104 are not limited to specific ones. For example, introduction from the side, introduction from the bottom, introduction from the top, and introduction from an oblique direction are possible. Introduced toward the seed crystal respectively from the space that anticipates the main surface of the seed crystal (for example, the first side surface of the seed crystal) and the space that faces the main surface (for example, the second side surface of the seed crystal), particularly FIG. As shown in Fig. 5, a preferred example is a mode in which the crystal growth surface is introduced so as to sandwich the crystal growth surface of the seed crystal from the upper right side and the upper left side.
  • the introduction pipes 101 to 103 are installed in an overlapping manner, but these introduction pipes may be installed separately from each other. However, if the introduction pipes 101 to 103 are installed in an overlapping manner, the source gas can be separated by the carrier gas, and there is an advantage that the generation of polycrystals near the supply port can be suppressed.
  • the shape of the supply port at the tip of the introduction pipe is not particularly limited.
  • it can be similar to the crystal growth surface of the seed crystal, or can be similar to the crystal growth end of the crystal growing on the seed crystal.
  • the shape of a supply port is a slit shape, and the maximum length of this slit-shaped opening part is more than the length of the 1st side of the seed crystal 109, and the 2nd side.
  • it is preferably 10 mm or more, more preferably 30 mm or more, and further preferably 50 mm or more.
  • the supply port may be composed of a plurality of slits arranged in parallel.
  • quartz, pyrolytic boron nitride (PBN), pyrolytic graphite (PG), SiC, and the like are preferable, and quartz, PBN, and PG are more preferable.
  • the gas exhaust pipe 108 can be installed on the top, bottom and side surfaces of the reactor inner wall. From the viewpoint of dust drop, it is preferably located below the crystal growth end, and more preferably a gas exhaust pipe 108 is installed on the bottom of the reactor as shown in FIG.
  • the seed crystal 209 can be placed on the substrate holder 205, and is different from the apparatus of FIG. 1 in that the seed crystal 209 can be moved downward by the lifting mechanism 206.
  • the carrier gas pipe 204 is installed immediately above the seed crystal 209.
  • the seed crystal 309 can be placed on the substrate holder 305 and is different from the apparatus of FIG. 1 in that the seed crystal 309 can be moved downward by the lifting mechanism 306.
  • the introduction pipes 301 to 303 are installed immediately above the seed crystal 309. If the growth apparatus as shown in FIG.
  • supplying toward the crystal growth end means supplying the source gas toward the crystal growth end.
  • the source gas supplied toward the crystal growth end may be at least one of the source gases used for crystal growth.
  • a source gas that is difficult to diffuse For example, when growing a GaN crystal as a nitride semiconductor crystal, NH 3 gas and GaCl gas are often used as source gases, but at this time, when only one is selected and supplied toward the crystal growth end, It is preferred to select GaCl.
  • the raw material gas not selected is supplied to the crystal growth end by diffusion, for example, by supplying it together with a carrier gas from the upper part of the reactor.
  • the distance between the supply port for supplying at least one kind of source gas and the crystal growth end is controlled to be constant. If the distance between the supply port for supplying the source gas and the crystal growth end is too close, the nitride semiconductor will adhere to the supply port and cannot be grown for a long time. The raw material efficiency is lowered and the desired crystal growth rate cannot be obtained. Therefore, the distance between the supply port and the crystal growth edge is generally preferably 1 cm to 15 cm, more preferably 3 cm to 12 cm, and even more preferably 5 cm to 10 cm.
  • the distance between the supply port and the crystal growth end is preferably controlled within ⁇ 15 mm of the distance at the start of growth, more preferably within ⁇ 10 mm, and more preferably within ⁇ 5 mm. More preferably.
  • the supply speed of the source gas from the supply port is usually 0.01 m / min to 1 m / min, preferably 0.05 m / min to 0.7 m / min, preferably 0.1 m / min to 0 m. More preferably, it is 4 m / min.
  • the method for controlling at least one kind of source gas to always be supplied toward the crystal growth end of the plate crystal there is no particular limitation on the method for controlling at least one kind of source gas to always be supplied toward the crystal growth end of the plate crystal.
  • it can be controlled by moving the position of the substrate holder holding the seed substrate and the position of the source gas supply port or changing the blowing angle of the source gas supply port and the gas supply speed along with the crystal growth.
  • These control methods may be performed in combination. These movements and changes may be performed continuously or sequentially, but are preferably performed continuously.
  • control methods include fixing the source gas supply port and moving the position of the substrate holder that holds the seed substrate along with crystal growth in the direction opposite to the crystal growth direction, or fixing the position of the substrate holder.
  • a method of moving the position of the source gas supply port in the crystal growth direction along with the crystal growth can be employed. When these methods are employed, it is preferable that the moving speed of the substrate holder and the raw material gas supply port be set to the same level as the crystal growth speed.
  • the crystal growth apparatus used in the present invention is preferably provided with a position detection mechanism for the crystal growth end.
  • the position detection mechanism of the crystal growth end is not particularly limited as long as it has a function of measuring the position of the crystal growth end in the crystal growth step and using the result for control.
  • an image observation apparatus such as a CCD (charge coupled device) can be preferably employed.
  • a heat-resistant borescope may be employed.
  • the information obtained by the position detection mechanism of the crystal growth end is preferably processed by the control mechanism.
  • the control mechanism has a function of issuing an instruction to control the position of the substrate holder, the supply port, and the blowing angle of the supply port in the crystal growth apparatus according to the position of the crystal growth end.
  • the control mechanism may be combined with an output mechanism for monitoring the control status. Details of the control mechanism and the output mechanism will be described using the mechanism shown in FIG. 4 as an example. 4 includes an A / D converter 403, a CPU (Central Processing Unit) 404, and a motor driver 405, and an output mechanism 407 includes a display 408 and a printer 409.
  • the crystal growth end position data (for example, coordinates) detected by the crystal growth end position detection mechanism 402 is converted into digital data by the A / D converter 403 and led to the CPU 404. After appropriate correction or the like is performed by the CPU 404, the data is digitized or graphed according to the output circuit in the output mechanism 407, displayed on the display 408, and printed by the printer 409. Further, the CPU 404 calculates an optimal control direction and control amount according to the obtained position information, issues an instruction to the motor driver 405, and drives the motor 406 that moves the position of the substrate holder and the source gas supply port.
  • a series of these operations can be stored in advance in a computer as a program, and can be automatically executed via the motor driver 405 or the A / D converter 403 in accordance with a command from the CPU 404.
  • the position detection mechanism 402 at the crystal growth end outputs position information as a digital signal, the A / D converter 403 can be omitted.
  • the position detection mechanism of the crystal growth edge can be omitted. Is possible. Further, instead of the crystal growth end position detection mechanism, a mechanism for measuring the temperature and pressure in the crystal growth apparatus may be used, and the position of the crystal growth end may be predicted and controlled based on the measurement results. . These modifications can be made as appropriate within the knowledge of those skilled in the art.
  • the moving distance can be determined according to the size of the crystal to be manufactured.
  • 10 mm or more is preferable, 20 mm or more is more preferable, and 50 mm or more is further more preferable.
  • Crystal growth in the present invention is usually performed at 950 ° C. to 1120 ° C., preferably 970 ° C. to 1100 ° C., more preferably 980 ° C. to 1090 ° C., and further preferably 990 ° C. to 1080 ° C. preferable.
  • the pressure in the reactor is preferably 10 kPa to 200 kPa, more preferably 30 kPa to 150 kPa, and even more preferably 50 kPa to 120 kPa.
  • the growth rate of crystal growth in the present invention varies depending on the growth method, growth temperature, raw material gas supply amount, crystal growth surface orientation, etc., but is generally in the range of 5 ⁇ m / h to 500 ⁇ m / h, and 10 ⁇ m / h to 500 ⁇ m / h is preferable, 50 ⁇ m / h to 400 ⁇ m / h is more preferable, and 100 ⁇ m / h to 300 ⁇ m / h is still more preferable.
  • the growth rate can be controlled by appropriately setting the type, flow rate, supply port-crystal growth end distance, etc. of the other carrier gas.
  • the nitride semiconductor crystal obtained by the present invention is a plate-like crystal whose main surface is a side surface during growth.
  • the main surface of the plate crystal is usually a surface perpendicular to the projection surface of the seed crystal.
  • the main surface of the obtained plate crystal is parallel to the main surface of the seed crystal.
  • a nitride semiconductor crystal obtained by the present invention using a seed crystal whose projection plane is the + C plane and whose principal plane is the M plane is a plate crystal having the M plane as the principal plane.
  • a nitride semiconductor crystal obtained by the present invention using a seed crystal whose projection plane is the + C plane and whose main surface is the A plane is a plate-like crystal having the A plane as the main plane.
  • the main surface of the obtained plate-like crystal can be made sufficiently large, it can be finished as a nitride semiconductor substrate only by grinding and polishing without using a slicing technique.
  • the “main surface” means a surface having the largest area among the surfaces constituting the crystal.
  • a nitride semiconductor substrate can be finished only by grinding and polishing without using a slicing technique can be effectively utilized particularly when a nitride semiconductor substrate having a nonpolar surface as a main surface is obtained.
  • a nitride semiconductor substrate having an M-plane as a main surface is to be manufactured, according to the conventional method, a nitride semiconductor crystal is grown on a C-plane of a seed crystal in a direction perpendicular to the C-plane, and then obtained. The obtained nitride semiconductor crystal had to be sliced in a direction perpendicular to the C plane to obtain an M plane.
  • This method has a number of steps and a disadvantage that a considerably large nitride semiconductor crystal must be grown.
  • the number of steps can be reduced because there is no need for slicing, and it is sufficient to grow a crystal slightly larger than the required substrate size. Therefore, according to the present invention, the target nitride semiconductor substrate can be obtained efficiently.
  • a plate-like nitride semiconductor crystal having a nonpolar plane as a main surface and a thickness of 1.5 mm or less can be preferably provided.
  • a plate-like nitride semiconductor crystal having a large main surface area can be easily obtained.
  • the area of the main surface can be appropriately adjusted according to the size of the crystal growth surface of the seed crystal and the crystal growth time.
  • the area of the main surface can be 2500 mm 2 or more, it is possible to 5,700 mm 2 or more, further can be a 10000 mm 2 or more.
  • the type of nitride semiconductor crystal provided by the present invention is not particularly limited. Specific examples include Group III nitride semiconductor crystals, and more specific examples include gallium nitride, aluminum nitride, indium nitride, or mixed crystals thereof.
  • the nitride semiconductor crystal obtained by the production method of the present invention can be used for various applications.
  • it is useful as a substrate for semiconductor devices such as light emitting diodes of ultraviolet, blue or green, etc., light emitting elements having relatively short wavelengths such as semiconductor lasers, and electronic devices.
  • semiconductor devices such as light emitting diodes of ultraviolet, blue or green, etc., light emitting elements having relatively short wavelengths such as semiconductor lasers, and electronic devices. It is also possible to obtain a larger nitride semiconductor crystal by using the nitride semiconductor crystal manufactured by the manufacturing method of the present invention as a base substrate.
  • Example 1 In this example, a nitride semiconductor crystal was grown using the HVPE apparatus shown in FIG.
  • the HVPE apparatus in FIG. 2 is provided with three slit-shaped nozzles, and the size of one stage of the raw material supply port is 20 mm wide and 2 mm high, and is made of PBN.
  • a GaN seed crystal 209 having the M plane as the main surface was prepared.
  • This seed crystal is a crystal obtained by slicing a crystal produced on a C-plane GaN template by the HVPE method, and is about 20.0 mm in the a-axis direction, about 8 mm in the c-axis direction, and about 8 mm in the m-axis direction. It is a rectangular parallelepiped having a length of 1 mm.
  • the seed crystal was set on the substrate holder 205 in the reactor 200 of the HVPE apparatus so that the + C plane was upward and the longitudinal direction of the slit outlet was parallel to the a-axis direction of the seed crystal.
  • the temperature of the reaction chamber was raised to 1040 ° C., and the raw material was supplied onto the + C plane to grow undoped GaN on the + C plane.
  • the growth pressure is 1.01 ⁇ 10 5 Pa
  • the partial pressure of NH 3 gas from the upper stage of the slit-shaped nozzle is 7 ⁇ 10 3 Pa
  • the partial pressure of N 2 gas from the middle stage is 3 ⁇ 10. 2 Pa
  • the partial pressure of GaCl gas was introduced at 3 ⁇ 10 2 Pa from the lower stage.
  • H 2 gas was introduced as a carrier gas. After growing for 50 hours, the temperature was lowered to room temperature, and a GaN single crystal having a square side surface (M plane) having a length of about 22.0 mm and a width of about 22.0 mm and a thickness in the m-axis direction of about 1 mm was obtained. Obtained. Area of the main surface (M plane) 484.0mm 2, the area of the growth surface (+ C plane) was 22.0 mm 2. By polishing and shaping this GaN single crystal, a free-standing substrate having a square M-plane of 20.0 mm in length, 20.0 mm in width, and 350 ⁇ m in thickness as the main surface was obtained.
  • a 2 ⁇ m (0001) plane GaN was grown thereon by MOCVD to prepare a 2 inch GaN template substrate.
  • the substrate is placed in the reactor apparatus of the HVPE apparatus, and the growth temperature is raised to 1040 ° C., and then a reaction gas of Ga and HCl is formed on the underlying GaN layer, and a carrier gas consisting essentially of only H 2.
  • the GaN layer was grown for about 40 hours while supplying the GaCl gas and the NH 3 gas which are the objects.
  • the growth pressure was 1.01 ⁇ 10 5 Pa
  • the partial pressure of GaCl gas was 3.07 ⁇ 10 2 Pa
  • the partial pressure of NH 3 gas was 1.27 ⁇ 10 4 Pa.
  • the temperature was lowered to room temperature to obtain a GaN single crystal having a thickness of about 5 mm.
  • Slicing was performed using a wire saw type device. The interval between the wires is 700 ⁇ m, and the slicing speed is 1 mm / h. The diameter of the wire was appropriately selected within the range of 0.1 to 0.2 mm.
  • a plurality of M-plane GaN substrates were obtained by slicing perpendicularly to the C-plane of the crystal and parallel to the M-plane.
  • the obtained GaN substrate had a rectangular shape with a short side of about 5 mm and a long side of about 10 to 30 mm.
  • Example 2 a nitride semiconductor crystal was grown using the HVPE apparatus shown in FIG.
  • a GaN seed crystal 309 having an M plane as a main surface was prepared.
  • This seed crystal is a crystal obtained by slicing a crystal produced on a C-plane GaN template by the HVPE method, about 20.0 mm in the a-axis direction, about 5.0 mm in the c-axis direction, and the m-axis direction.
  • a rectangular parallelepiped having a length of about 0.3 mm.
  • a seed crystal was set on the substrate holder 305 in the reactor 300 of the HVPE apparatus with the + C plane facing upward.
  • the -C surface is in contact with the substrate holder 305 and does not come into direct contact with the source gas.
  • the temperature of the reaction chamber was raised to 1040 ° C., and raw materials were supplied from the + C plane direction to grow undoped GaN.
  • the growth pressure is 1.01 ⁇ 10 5 Pa
  • the partial pressure of NH 3 gas is 7.03 ⁇ 10 3 Pa
  • the partial pressure of N 2 gas is 1.79 ⁇ 10 4 Pa
  • GaCl gas The partial pressure was 7.37 ⁇ 10 2 Pa and the partial pressure of H 2 gas was 7.53 ⁇ 10 4 Pa.
  • the temperature was lowered to room temperature.
  • the shape of the obtained GaN single crystal was a plate, and the a-axis direction was about 22.0 mm, the c-axis direction was about 12.5 mm, and the thickness in the m-axis direction was about 1.4 mm.
  • the area of the main surface (M surface) was 275.0 mm 2 .
  • Example 3 In this example, a GaN seed crystal was used except that a rectangular parallelepiped crystal having a length of about 20.0 mm in the a-axis direction, about 4.2 mm in the c-axis direction and about 4.5 mm in the m-axis direction was used. Performed exactly as in Example 2. After growing for 40 hours, the temperature was lowered to room temperature. The obtained GaN single crystal was plate-shaped, the a-axis direction was about 22.0 mm, the c-axis direction was about 11.0 mm, and the thickness in the m-axis direction was about 5.6 mm. The area of the main surface (M surface) was 187.0 mm 2 .
  • Example 2 (Comparative Example 2) In this comparative example, except that a rectangular parallelepiped crystal having a length of about 20.0 mm in the a-axis direction, about 0.4 mm in the c-axis direction and about 7.0 mm in the m-axis direction was used as the GaN seed crystal. Performed exactly as in Example 2. After growing for 40 hours, the temperature was lowered to room temperature. The obtained GaN single crystal was not plate-shaped, but had a shape in which two walls grown in the + c-axis direction were formed as shown in FIG. The a-axis direction was about 20.0 mm, the maximum length in the c-axis direction was about 10.0 mm, and the minimum length was about 5.2 mm. The length in the c-axis direction was not uniform and was uneven. The thickness of one wall in the m-axis direction was about 0.8 mm.
  • Example 4 A GaN seed crystal having an M plane ((10-10) plane) as its main plane and four side planes including a + C plane, a ( ⁇ 1-122) plane, a ⁇ C plane, and a (11-22) plane was prepared. This seed crystal has a length of about 5 mm in the c-axis direction, about 15 mm to 18 mm in the a-axis direction, and about 2 mm in the m-axis direction.
  • a seed crystal was set on the substrate holder in the reactor of the HVPE apparatus shown in FIG. 3 so that the + C plane was upward. At this time, the -C surface is in contact with the substrate holder and does not come into direct contact with the source gas.
  • the temperature of the reaction chamber was raised to 1040 ° C., and raw materials were supplied from the + C plane direction to grow undoped GaN.
  • the growth pressure is 1.01 ⁇ 10 5 Pa
  • the partial pressure of NH 3 gas is 7.03 ⁇ 10 3 Pa
  • the partial pressure of N 2 gas is 1.79 ⁇ 10 4 Pa
  • GaCl gas Were introduced with a partial pressure of 7.37 ⁇ 10 2 Pa and a partial pressure of H 2 gas of 7.53 ⁇ 10 4 Pa.
  • the temperature was lowered to room temperature.
  • the obtained GaN single crystal had no abnormal growth at the corners, and a homogeneous plate crystal was obtained.
  • the length in the c-axis direction after growth was about 15 mm.
  • Example 5 A GaN seed crystal was prepared with the M plane ((10-10) plane) as the main plane and four side planes: + C plane, (1-100) plane, -C plane, and (01-10) plane.
  • This seed crystal has a length of about 5 mm in the c-axis direction, about 15 mm to 18 mm in the a-axis direction, and about 2 mm in the m-axis direction.
  • the temperature was lowered to room temperature.
  • the obtained GaN single crystal had no abnormal growth at the corners, and a homogeneous plate crystal was obtained. In this respect, the plate crystals of Examples 4 and 5 were further superior to the plate crystals of the other examples.
  • the length in the c-axis direction after the growth of Example 5 was about 15 mm.
  • a homogeneous free-standing substrate having a 15 mm square and 330 ⁇ m thick M-plane as a main surface was obtained.
  • Example 6 A GaN seed crystal was prepared with the M surface as the main surface and the side surfaces consisting of four surfaces: the + C surface, the A surface, the -C surface, and the A surface.
  • This seed crystal is a rectangular parallelepiped having a length of about 5 mm in the c-axis direction, about 15 mm in the a-axis direction, and about 2 mm in the m-axis direction.
  • the temperature was lowered to room temperature.
  • polishing and shaping the GaN single crystal a free-standing substrate having the M plane as the main surface was obtained.
  • Example 7 GaN crystal growth is performed using an HVPE apparatus in which a CCD and a substrate holder lifting mechanism are further installed in the apparatus shown in FIG.
  • the CCD is installed so that the position of the crystal growth end that moves as the crystal grows can be accurately measured.
  • the position information of the crystal growth end measured by the CCD is processed according to the control mechanism of FIG. 4, and the substrate holder lifting mechanism is driven so that the position of the crystal growth end is always at the same position during the crystal growth process. It is set in advance. That is, when it is detected that the crystal has grown and the crystal growth end has moved upward in the figure, the substrate holder is set to move downward in the figure by the amount of the movement.
  • a GaN crystal is grown under the same conditions as in Example 1 except that such an HVPE apparatus is used. As a result, a free-standing substrate having an M surface having the same size as that of Example 1 as a main surface is obtained. Compared to Example 1, the growth rate is high, and crystal growth is observed more uniformly over the entire crystal growth surface.
  • GaN crystal growth is performed using an HVPE apparatus in which a CCD and a substrate holder lifting mechanism are further installed in the apparatus shown in FIG.
  • the CCD is installed so that the position of the crystal growth end that moves as the crystal grows can be accurately measured.
  • the position information of the crystal growth end measured by the CCD is processed according to the control mechanism shown in FIG. 4, and the nozzle lifting mechanism is installed so that the positional relationship between the crystal growth end and the nozzle supply port is always the same during the crystal growth process. It is preset to drive. That is, when it is detected that the crystal has grown and the crystal growth end has moved upward in the figure, the nozzle supply port is also set to move upward in the figure.
  • a GaN crystal is grown under the same conditions as in Example 1 except that such an HVPE apparatus is used. As a result, a free-standing substrate having an M surface having the same size as that of Example 1 as a main surface is obtained. Compared to Example 1, the growth rate is high, and crystal growth is observed more uniformly over the entire crystal growth surface.
  • Example 9 GaN crystal growth is performed using an HVPE apparatus in which a CCD and a substrate holder lifting mechanism are further installed in the apparatus shown in FIG.
  • the CCD is installed so that the position of the crystal growth end that moves as the crystal grows can be accurately measured.
  • Position information of the crystal growth end measured by CCD is processed in accordance with the control mechanism of Figure 4, the orientation of the nozzle supply port as a raw material gas toward the crystal growth end always in the crystal growth step is supplied ( The angle is controlled in advance. That is, when it is detected that the crystal has grown and the crystal growth end has moved upward in the figure, the nozzle supply port is set to face upward.
  • a GaN crystal is grown under the same conditions as in Example 1 except that such an HVPE apparatus is used. As a result, a free-standing substrate having an M surface having the same size as that of Example 1 as a main surface is obtained. Compared to Example 1, the growth rate is high, and crystal growth is observed more uniformly over the entire crystal growth surface.
  • a nitride semiconductor crystal is grown using the HVPE apparatus shown in FIG.
  • the HVPE apparatus in FIG. 1 is provided with three stages of slit-shaped nozzles.
  • the size of one stage of the raw material supply port is 20 mm wide and 2 mm high, and is made of PBN.
  • the same GaN seed crystal 109 as that of Example 1 is prepared, and the + C plane is directed downward and the longitudinal direction of the slit outlet and the a-axis direction of the seed crystal are parallel to the substrate holder 105 in the reactor 100 of the HVPE apparatus. Set the seed crystal to.
  • the temperature of the reaction chamber is raised to 1040 ° C., and the raw material is supplied in the direction of the + C plane to grow undoped GaN on the + C plane.
  • the growth pressure is 1.01 ⁇ 10 5 Pa
  • the partial pressure of NH 3 gas from the upper stage of the slit-shaped nozzle is 7 ⁇ 10 3 Pa
  • the partial pressure of N 2 gas from the middle stage is 3 ⁇ 10. 2 Pa
  • the partial pressure of GaCl gas was introduced at 3 ⁇ 10 2 Pa from the lower stage.
  • H 2 gas is introduced as a carrier gas.
  • the temperature is lowered to room temperature to obtain the same crystal as in Example 1.
  • polishing and shaping the GaN single crystal a free-standing substrate having a square M-plane as a main surface is obtained.
  • GaN crystal growth is performed using an HVPE apparatus in which a CCD and a substrate holder lifting mechanism are further installed in the apparatus shown in FIG.
  • the CCD is installed so that the position of the crystal growth end that moves as the crystal grows can be accurately measured.
  • the position information of the crystal growth end measured by the CCD is processed according to the control mechanism of FIG. 4, and the substrate holder lifting mechanism is driven so that the position of the crystal growth end is always at the same position during the crystal growth process. It is set in advance. That is, when it is detected that the crystal has grown and the crystal growth end has moved downward in the figure, the substrate holder is set so as to move upward in the figure.
  • the GaN crystal growth is performed under the same conditions as in Example 10 except that the HVPE apparatus is used. As a result, a self-supporting substrate having an M surface having the same size as that of the tenth embodiment as a main surface is obtained. Compared to Example 5, the growth rate is high, and crystal growth is observed more uniformly over the entire crystal growth surface.
  • Example 12 GaN crystal growth is performed using an HVPE apparatus in which a CCD and a substrate holder lifting mechanism are further installed in the apparatus shown in FIG.
  • the CCD is installed so that the position of the crystal growth end that moves as the crystal grows can be accurately measured.
  • the position information of the crystal growth end measured by the CCD is processed according to the control mechanism shown in FIG. 4, and the nozzle lifting mechanism is installed so that the positional relationship between the crystal growth end and the nozzle supply port is always the same during the crystal growth process. It is preset to drive. That is, when it is detected that the crystal has grown and the crystal growth end has moved downward in the figure, the nozzle supply port is also set to move downward in the figure.
  • the GaN crystal growth is performed under the same conditions as in Example 10 except that the HVPE apparatus is used. As a result, a self-supporting substrate having an M surface having the same size as that of the tenth embodiment as a main surface is obtained. Compared to Example 10, the growth rate is high, and crystal growth is observed more uniformly over the entire crystal growth surface.
  • GaN crystal growth is performed using an HVPE apparatus in which a CCD and a substrate holder lifting mechanism are further installed in the apparatus shown in FIG.
  • the CCD is installed so that the position of the crystal growth end that moves as the crystal grows can be accurately measured.
  • the position information of the crystal growth end measured by the CCD is processed according to the control mechanism of FIG. 4, and the direction (angle) of the nozzle supply port is set so that the source gas is always supplied toward the crystal growth end during the crystal growth process. ) Is pre-set to control. That is, when it is detected that the crystal has grown and the crystal growth end has moved downward in the figure, the nozzle supply port is set to face downward.
  • the GaN crystal growth is performed under the same conditions as in Example 10 except that the HVPE apparatus is used. As a result, a self-supporting substrate having an M surface having the same size as that of the tenth embodiment as a main surface is obtained. Compared to Example 10, the growth rate is high, and crystal growth is observed more uniformly over the entire crystal growth surface.
  • a desired plate-like nitride semiconductor crystal can be efficiently produced by a simple method.
  • a large-area nitride semiconductor substrate whose main surface is a nonpolar surface can be manufactured by a simple method. Therefore, according to the present invention, manufacturing cost and labor can be reduced, and a new nitride semiconductor crystal that could not be manufactured conventionally can also be provided. Therefore, the present invention has high industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 所望の主面を有する板状の窒化物半導体結晶を簡便な方法で効率よく製造する方法を提供する。種結晶上の結晶成長面を成長方向に投影した投影面の長手方向の長さLと最大幅Wの比(L/W)が2~400であって、前記最大幅Wが5mm以下である種結晶に対して、原料ガスを供給することによって前記種結晶上に板状の窒化物半導体結晶を成長させる。

Description

窒化物半導体結晶とその製造方法
 本発明は、窒化物半導体結晶とその製造方法に関する。本発明の製造方法によれば、板状の窒化物半導体結晶を簡便な操作で得ることができ、特に大面積の非極性面を主面とした窒化物半導体結晶を得ることができる。
 窒化ガリウム(GaN)に代表される窒化物半導体は、大きなバンドギャップを有し、またバンド間遷移が直接遷移型であることから、紫外、青色又は緑色等の発光ダイオード、半導体レーザー等の比較的短波長側の発光素子や、電子デバイス等の半導体デバイスの基板として有望な材料である。
 現在最も一般的な窒化物半導体基板はC面を主面とする基板である。しかしながら、C面を主面とするGaN基板を用いたInGaN系青色、緑色LEDやLDにおいては、その成長軸であるc軸方向にピエゾ電界が生じるという問題点があった。ピエゾ電界はInGaN層の結晶構造が歪んで圧電分極が生じるために発生し、この分極により発光層に注入される正孔と電子が離れ、発光に寄与する再結合確率が低下してしまう。このため内部量子効率が低くなり、発光デバイスの外部量子効率の低下につながる。前記ピエゾ電界の影響を弱めるためにGaN結晶のC面に垂直なA面、M面と呼ばれる非極性面を成長面としたInGaN系青色、緑色LEDやLD研究が盛んになりつつある(非特許文献1)。
 窒化物半導体は、高融点であり、しかも融点付近の窒素の解離圧が高いことから、融液からのバルク成長が困難である。一方、ハイドライド気相成長法(HVPE法)や有機金属化学気相堆積法(MOCVD法)等の気相成長法を用いることによって、窒化物半導体基板を製造できることが知られている。このとき、種結晶を支持体上に設置したうえで原料ガスを供給することにより、種結晶表面に窒化物半導体結晶を成長させることができる(例えば特許文献1参照)。種結晶上に成長させた窒化物半導体結晶は、種結晶とともに支持体から分離し、必要に応じて種結晶を研磨等の方法により除去することにより取り出すことができる。
特開2006-240988号公報 日経エレクトロニクス2006.8.14 P65-P70
 しかしながら、この方法によって希望どおりの主面を有する板状の窒化物半導体基板を製造しようとすると、非効率的な工程を経なければならないという問題に直面することがある。例えば、非極性面を主面とする比較的大きな板状の窒化物半導体基板を製造しようとすると、下地基板として比較的大きな非極性面を主面とする基板が存在しないため、R面サファイア基板やM面炭化ケイ素(SiC)基板等の異種下地基板上に、非極性面を成長面として成長させ、下地基板を分離し基板を得るか、または、いったん種結晶の極性面上にその極性面に垂直な方向に結晶を成長させた後に、スライスして所望の非極性面を切り出さなければならない。前者の場合、異種下地基板上の成長のため、結晶中に多くの積層欠陥が入ってしまい、高品質な結晶は得られない。後者の場合、積層欠陥のない高品質な結晶が得られるが、目的とする板状結晶よりもかなり大きな結晶を種結晶上に成長させることが必要とされ、しかもスライス工程が避けられない。また、そのような大きな結晶を成長させること自体が極めて困難な場合もあり、この方法により所望の窒化物半導体結晶を得るには限界があった。
 そこで本発明者らは、このような従来技術の課題を解決するために、板状の窒化物半導体結晶を効率よく提供することができるようにすることを本発明の目的として検討を進めた。特に、スライス工程を経ることなく、窒化物半導体基板を簡便な方法で製造することができるような板状の窒化物半導体結晶の製造方法を提供することを目的として検討を進めた。また、特に非極性面を主面とする大面積の窒化物半導体基板を簡便な方法で製造することができるような板状の窒化物半導体結晶の製造方法を提供することを目的として検討を進めた。
 本発明者らは鋭意検討を重ねた結果、種結晶の結晶成長面などを工夫することにより課題を解決しうることを見出した。すなわち、課題を解決する手段として、以下の本発明を提供するに至った。
[1] 種結晶に対して原料ガスを供給することによって前記種結晶上に窒化物半導体結晶を成長させる結晶成長工程を含む、窒化物半導体結晶の製造方法であって、
 前記種結晶上に成長させる窒化物半導体結晶が板状結晶であり、
 前記板状結晶を成長させる前記種結晶上の結晶成長面を成長方向に投影した投影面の長手方向の長さLと最大幅Wの比(L/W)が2~400であって、前記最大幅Wが5mm以下であることを特徴とする窒化物半導体結晶の製造方法。
[2] 前記種結晶の結晶成長面が、+C面、{10-1X}面および{11-2Y}面からなる群より選択される1以上の面であることを特徴とする[1]に記載の窒化物半導体結晶の製造方法(前記Xと前記Yは、各々独立に0以外の整数である)。
[3] 前記種結晶の結晶成長面が、+C面、{10-1X}面、またはその両方であって、前記種結晶の主面が略M面であることを特徴とする[2]に記載の窒化物半導体結晶の製造方法。
[4] 前記種結晶の結晶成長面が、+C面、{11-2Y}面、またはその両方であって、前記種結晶の主面が略A面であることを特徴とする[2]に記載の窒化物半導体結晶の製造方法。
[5] 前記種結晶が、{10-10}面、{11-2Z}面、{10-1S}面、または{11-20}面を有することを特徴とする[2]~[4]のいずれか一項に記載の窒化物半導体結晶の製造方法(前記Zと前記Sは、各々独立に0以外の整数である)。
[6] 互いに平行な第一辺と第二辺を有する結晶成長面と、前記結晶成長面と垂直な面であって前記結晶成長面の第一辺を一辺とする第一側面と、前記結晶成長面と垂直な面であって前記結晶成長面の第二辺を一辺とする第二側面とを少なくとも有していて、前記結晶成長面の第一辺と第二辺の距離が5mm以下であり、前記結晶成長面の第一辺と第二辺の平均長と第一辺と第二辺の距離の比(平均長/距離)が2~400である種結晶に対して、原料ガスを供給することによって、前記結晶成長面に対して垂直な方向へ板状結晶を成長させる結晶成長工程を含むことを特徴とする[1]に記載の窒化物半導体結晶の製造方法。
[7] 前記種結晶の第一側面が非極性面であることを特徴とする[6]に記載の窒化物半導体結晶の製造方法。
[8] 前記種結晶が、結晶成長面がC面であり、第一側面がM面である六方晶であることを特徴とする[6]に記載の窒化物半導体結晶の製造方法。
[9] 前記種結晶が、結晶成長面がC面であり、第一側面がA面である六方晶であることを特徴とする[6]に記載の窒化物半導体結晶の製造方法。
[10] 前記結晶成長工程によって、第一側面と平行な面が主面となるように窒化物半導体結晶を成長させることを特徴とする[6]~[9]のいずれか一項に記載の窒化物半導体結晶の製造方法。
[11] 前記結晶成長工程において、前記原料ガスの少なくとも一種類を常に前記板状結晶の結晶成長端に向けて供給するように制御することを特徴とする[1]~[10]のいずれか一項に記載の窒化物半導体結晶の製造方法。
[12] 前記原料ガスを供給する供給口と前記板状結晶の結晶成長端との距離を一定に保つように制御することを特徴とする[1]~[11]のいずれか一項に記載の窒化物半導体結晶の製造方法。
[13] 前記制御を、前記供給口と前記結晶成長端との距離を計測しながら行うことを特徴とする[12]に記載の窒化物半導体結晶の製造方法。
[14] 前記結晶成長工程において、前記板状結晶の成長に伴って前記原料ガスを供給する供給口の位置を移動させることを特徴とする[11]~[13]のいずれか一項に記載の窒化物半導体結晶の製造方法。
[15] 前記結晶成長工程において、前記板状結晶の成長に伴って前記原料ガスを供給する供給口の向きを変えることを特徴とする[11]~[14]のいずれか一項に記載の窒化物半導体結晶の製造方法。
[16] 前記結晶成長工程において、前記板状結晶の成長に伴って前記原料ガスの供給速度を変えることを特徴とする[11]~[15]のいずれか一項に記載の窒化物半導体結晶の製造方法。
[17] 前記結晶成長工程において、前記板状結晶の成長に伴って前記種結晶の位置を移動させることを特徴とする[11]~[16]のいずれか一項に記載の窒化物半導体結晶の製造方法。
[18] 前記結晶成長工程において、前記原料ガスを、前記種結晶の結晶成長面に垂直な方向から供給することを特徴とする[1]~[17]のいずれか一項に記載の窒化物半導体結晶の製造方法。
[19] 前記結晶成長工程において、前記原料ガスを、前記種結晶の主面を見込む空間と前記主面と対向する面を見込む空間からそれぞれ前記種結晶に向けて供給することを特徴とする[1]~[17]のいずれか一項に記載の窒化物半導体結晶の製造方法。
[20] 前記原料ガスを供給する供給口の形状が前記結晶成長端の形状と相似形であることを特徴とする[1]~[19]のいずれか一項に記載の窒化物半導体結晶の製造方法。
[21] 前記原料ガスを供給する供給口の形状がスリット状であり、該スリット状開口部の最大長が前記種結晶の投影面の長さL以上であることを特徴とする[1]~[20]のいずれか一項に記載の窒化物半導体結晶の製造方法。
[22] 前記種結晶を位置決めするための支持体に前記種結晶が設置されており、前記種結晶と前記支持体の接触面が、前記種結晶の結晶成長面から1mm以上離れていることを特徴とする[1]~[21]のいずれか一項に記載の窒化物半導体結晶の製造方法。
[23] 前記種結晶が、サファイア、SiC、ZnO、及びIII族窒化物半導体からなる群より選択されることを特徴とする[1]~[22]のいずれか一項に記載の窒化物半導体結晶の製造方法。
[24] 前記窒化物半導体がIII族窒化物半導体であることを特徴とする[1]~[23]のいずれか一項に記載の窒化物半導体結晶の製造方法。
[25] 前記窒化物半導体がGaN半導体であることを特徴とする[1]~[24]のいずれか一項に記載の窒化物半導体結晶の製造方法。
[26] 主面の面積が2500mm以上である板状結晶を成長することを特徴とする[1]~[25]のいずれか一項に記載の窒化物半導体結晶の製造方法。
[27] 前記主面が非極性面であることを特徴とする[26]に記載の窒化物半導体結晶の製造方法。
[28] [1]~[27]のいずれか一項に記載の結晶成長工程を実施することにより前記種結晶上に窒化物半導体結晶を成長させ、成長させた前記窒化物半導体結晶を前記種結晶から分離することを特徴とする、成長させた前記窒化物半導体結晶をスライスすることなく窒化物半導体結晶を製造する方法。
[29] [1]~[28]のいずれか一項に記載の製造方法により製造される窒化物半導体結晶。
[30] 面積が2500mm以上である非極性面を主面とし、厚みが1.5mm以下であることを特徴とする板状窒化物半導体結晶。
 本発明の窒化物半導体結晶の製造方法によれば、所望の主面を有する板状の窒化物半導体結晶を簡便な方法で効率よく製造することができる。特に、種結晶の結晶成長面の種類とサイズ、および結晶成長条件を組み合わせることにより、所望のサイズと主面を有する窒化物半導体結晶を容易に製造することができる。
本発明の結晶成長に好適に用いられるHVPE装置の概略断面図である。 本発明の結晶成長に好適に用いられる別のHVPE装置の概略断面図である。 本発明の結晶成長に好適に用いられるさらに別のHVPE装置の概略断面図である。 制御機構と出力機構の関係等を示す概略図である。 比較例2にて種結晶上に結晶成長させた状態を模式的に示す斜視図である。
符号の説明
 100,200,300 リアクター
 101,201, 導入管(スリット状ノズル上段)
 102,202, 導入管(スリット状ノズル中段)
 103,203, 導入管(スリット状ノズル下段)
 301, 302, 303  導入管(管状ノズル)
 104,204,304 導入管(キャリアガス用配管)
 105,205,305 基板ホルダー
 106,206,306 昇降機構
 107,207,307 ヒーター
 108,208,308 排気管
 109,209,309,501 種結晶
 401 制御機構
 402 結晶成長端の位置検出機構
 403 A/Dコンバーター
 404 CPU(中央処理装置)
 405 モータードライバー
 406 モーター
 407 出力機構
 408 ディスプレイ
 409 プリンター
 以下において、本発明の窒化物半導体結晶の製造方法について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。また、以下の説明では、窒化物半導体結晶として窒化ガリウム結晶を例として説明することがあるが、本発明で採用することができる窒化物半導体結晶はこれに限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
(種結晶)
 本発明において用いる種結晶は、板状結晶を成長させる結晶成長面を成長方向に投影した投影面を想定したときに、その投影面の長手方向の長さLと最大幅Wの比(L/W)が2~400であって、最大幅Wが5mm以下であることを特徴とする。
 種結晶は、結晶成長面上に所望の窒化物半導体結晶を成長させることができるものであれば、その種類は問わない。例えば、サファイア、SiC、ZnO、III族窒化物半導体を挙げることができる。好ましくは、製造しようとしている窒化物半導体と同じかまたは異なる種類の窒化物半導体の種結晶を用いる場合であり、より好ましくは、製造しようとしている窒化物半導体を構成するIII族元素と同じ種類のIII族元素を少なくとも含む窒化物半導体の種結晶を用いる場合であり、さらに好ましくは、製造しようとしている窒化物半導体と同一種の窒化物半導体の種結晶を用いる場合である。別の観点から言うと、製造しようとしている窒化物半導体結晶と格子定数が近くて、熱膨張係数の差が小さい種結晶を選択することが好ましい。
 結晶成長面を成長方向に投影した投影面の最大幅Wは5mm以下であり、0.2mm~5mmが好ましく、0.3mm~3mmがより好ましく、0.5mm~2mmがさらに好ましい。投影面の幅は一定であってもよいし、一定でなくてもよい。好ましいのは、投影面の幅が一定であって、2つの向かい合う長辺が互いに平行である場合である。投影面の幅が一定である場合は、その幅が投影面の最大幅Wとなり、投影面の幅が一定でない場合は、もっとも大きな幅が最大幅Wとなる。投影面の幅が一定でない場合は、幅が長手方向に連続的に変化しているものであることが好ましく、幅が長手方向に連続的に一定の割合で変化しているものであることがより好ましい。
 投影面の長手方向の長さLと最大幅Wの比(L/W)は2~400であり、3~270が好ましく、5~160がより好ましい。投影面が長方形である場合、長手方向の長さLは長辺に等しい。投影面の最長辺とそれに向かい合う辺の長さが異なる場合は、それら2辺の長さの平均値をもって長手方向の長さLとする。
 種結晶の厚みは、通常は0.1mm~50mmの範囲内で選択することができ、0.5mm~20mmが好ましく、1mm~10mmがより好ましい。
 投影面の面方位は(0001)面、(000-1)面等の極性面、{1-100}面や{11-20}面等の非極性面、{1-102}面、{11-22}面等の半極性面を挙げることができる。本発明では、これらの面のうち投影面としては(0001)面と(000-1)面が好ましく、(0001)面が特に好ましい。
 本発明で用いる種結晶は、投影面と同じ面を結晶成長面として有していてもよいし、有していなくてもよい。例えば、投影面が(0001)面である場合、(0001)面を結晶成長面として有する種結晶を用いてもよいし、投影面が(0001)面となるような結晶成長面を有する種結晶を用いてもよい。投影面が(0001)面となるような結晶成長面としては、{10-1X}面や{11-2Y}面を挙げることができる。ここで、XとYは、各々独立に0以外の整数である。本発明で用いる種結晶は、+C面、{10-1X}面および{11-2Y}面からなる群より選択される2以上の結晶成長面を有するものであってもよい。2つ以上の結晶成長面を有する場合は、それらの結晶成長面は連続している必要があり、それらの連続している結晶成長面全体を結晶成長方向に投影した面を本発明でいう投影面とする。
 本発明で用いる種結晶の主面は、投影面と垂直な面であることが好ましい。そして、製造したい窒化物半導体結晶の主面を種結晶の主面とすることが好ましい。そうすることにより、種結晶の主面と同じ面方位を有する面が、得られる板状結晶の主面となる。
 本発明で特に好ましく用いられる種結晶は、結晶成長面が(0001)面、{10-1X}面、またはその両方であって、主面が略{1-100}面である結晶である。また、本発明で特に好ましく用いられる別の種結晶は、結晶成長面が、(0001)面、{11-2Y}面、またはその両方であって、主面が略{11-20}面である結晶である。ここで「略」とは、オフ角度が±20°以内である面を意味するものであり、好ましいオフ角度の範囲は±10°以内であり、より好ましいオフ角度の範囲は±5°以内である。
 これら2種類の特に好ましい種結晶における主面以外の側面としては、{10-10}面、{11-2Z}面、{10-1S}面、または{11-20}面を挙げることができる。ここでZとSは、各々独立に0以外の整数である。これらの中では、{10-10}面、{11-2Z}面、{10-1S}面が好ましく、{10-10}面がより好ましい。
 また、これら2種類の特に好ましい種結晶において、結晶成長面の対面の面方位は特に制限されない。この面は通常は結晶成長装置の基板ホルダーに接する面となって原料ガスに触れないため、いずれの面であっても構わない。例えば(000-1)面を挙げることができる。
 これら2種類の特に好ましい種結晶を用いれば、結晶成長面とそれに隣接する面との間に形成される角部を起点とする多結晶の成長を効果的に抑えることができる。このため、より均一で良質な板状結晶を効率よく成長させることができる。より均一で良質な板状結晶が得られることは、得られる結晶に異常成長部がないことや、結晶の着色がないことや、X線回折法による結晶性の分布がないことで容易に確認することができる。
 本発明では、上記の他にも種々の結晶面を有する種結晶を用いることができる。例えば、互いに平行な第一辺と第二辺を有する結晶成長面と、結晶成長面と垂直な面であって結晶成長面の第一辺を一辺とする第一側面と、結晶成長面と垂直な面であって前記結晶成長面の第二辺を一辺とする第二側面とを少なくとも有する種結晶も用いることができる。ここでは、第一辺と第二辺の平均長と第一辺と第二辺の距離の比(平均長/距離)が2~400であり、第一辺と第二辺の距離が5mm以下であることが必要とされる。
 この種の種結晶の側面の面方位は結晶成長面と垂直であれば特に制限されることはなく、(0001)面、(000-1)面等の極性面、{1-100}面や{11-20}面等の非極性面、{1-102}面、{11-22}面等の半極性面を挙げることができる。例えば結晶成長面が(0001)面もしくは(000-1)面の場合、側面の面方位は{1-100}面もしくは{11-20}面となる。結晶成長面が{1-100}面の場合、側面は(0001)面、(000-1)面もしくは{11-20}面となる。結晶成長面が{11-20}面の場合、側面は(0001)面、(000-1)面もしくは{1-100}面となる。側面のうち、種結晶の第一側面と第二側面になる面は、成長させる窒化物半導体結晶の主面となる面である。したがって、製造したい窒化物半導体結晶の主面と同じ面を第一側面または第二側面として有する種結晶を、本発明では選択して用いることが好ましい。
 結晶成長面が(0001)面もしくは(000-1)面で、側面の面方位が{1-100}面もしくは{11-20}面である場合が好ましく、結晶成長面が(0001)面で、側面の面方位が{1-100}面もしくは{11-20}面である場合がより好ましく、結晶成長面が(0001)面で、側面の面方位が{1-100}面であることがさらに好ましい。
 上記の面の表記において「略」が付けられていないものについても、それぞれオフ角度を有していてもよい。オフ角度は±10°以内であることが好ましく、±5°以内であることがより好ましい。
 この明細書において、「C面」とは、六方晶構造(ウルツ鋼型結晶構造)における{0001}面と等価な面である。III-V族化合物半導体結晶では、「C面」は、III 族面であり、窒化ガリウムでは、Ga面に相当する。 {0001}面と等価な面は、(0001)面、(000-1)面である。
 この明細書において、{10-10}面とは「M面」のことであり、六方晶構造(ウルツ鋼型結晶構造)における{1-100}面と等価な面であり、これは、非極性面であり、通常は劈開面である。{1-100}面と等価な面は、(1-100)面、(-1100)面、(01-10面)、(0-110)面、(10-10)面、(-1010)面である。 
 この明細書において、{11-20}面とは「A面」のことであり、六方晶構造(ウルツ鋼型結晶構造)における{11-20}面と等価な面であり、これは、非極性面である。{11-20}面と等価な面は、(11-20)面、(-1-120)面、(1-210)面、(-12-10)面、(-2110)面、(2-1-10)面がある。
 所望の面を有する種結晶は、必要に応じて結晶を切り出すことにより得ることができる。例えば、C面を有するIII族窒化物半導体基板を形成し、その後にM面又はA面が現れるように切り出すことによってM面又はA面を第一側面とする種結晶を得ることができる。切り出し方法としては、鑢、研削盤、内周刃スライサー、ワイヤーソー等で加工(研削、切断)する方法、研磨によって磨く方法、劈開によって分割する方法などがあるが、劈開によりM面又はA面を形成することが好ましい。劈開の方法については、ダイヤモンドスクライバーによって切り欠きを入れて割ってもよいし、レーザースクライバー装置を使用してもよい。そのまま手で割ってもよいし、他の土台に乗せてのブレーキング装置で行ってもよい。
(成長装置)
 本発明では、種結晶に対して、原料ガスを供給することによって、種結晶の投影面に対して垂直な方向へ板状結晶を成長させる。成長方法としては、MOCVD法やHVPE法等が挙げられるが、成長速度の速いHVPE法が好ましい。
 図1は、本発明に用いられる窒化物半導体結晶の製造装置の構成例を説明するための図であるが、構成の詳細に特別な制限はない。図1に図示したHVPE装置は、リアクター100内に、種結晶109を載置するための基板ホルダー105と、基板ホルダーを上下させることができる昇降機構106とを備えている。また、リアクター100内にガスを導入するための導入管101~104と、排気するための排気管108が設置されている。さらに、リアクター100を側面から加熱するためのヒーター107が設置されている。
 リアクター100の材質としては、石英、焼結体窒化ホウ素、ステンレス等が用いられる。好ましい材質は石英である。リアクター100内には、反応開始前にあらかじめ雰囲気ガスを充填しておく。雰囲気ガス(キャリアガス)としては、例えば水素、窒素、He、Ne、Arのような不活性ガス等を挙げることができる。これらのガスは混合して用いてもよい。
 基板ホルダー105の材質としてはカーボンが好ましく、SiCで表面をコーティングしているものがより好ましい。基板ホルダー105の形状は、本発明で用いる種結晶109を保持することができる形状であれば特に制限されないが、結晶成長する際に結晶成長面付近に構造物が存在しないものであることが好ましい。結晶成長面付近に成長する可能性のある構造物が存在すると、そこに多結晶体が付着し、その生成物としてHClガスが発生して結晶成長させようとしている結晶に悪影響が及んでしまう。種結晶109と基板ホルダー105の接触面は、種結晶の結晶成長面から1mm以上離れていることが好ましく、3mm以上離れていることがより好ましく、5mm以上離れていることがさらに好ましい。
 導入管101からは、例えばIII族窒化物半導体を成長させる場合、III族源となる原料ガスを供給する。このとき、ガリウム、アルミニウム、インジウムなどの塩化物ガス等を直接導入してもよいし、またリアクター内でガリウム、アルミニウム、インジウムなどの金属原料と塩酸ガス等を反応させた後、その反応ガスを導入してもよい。
 その際、原料ガスとともに、導入管104からキャリアガスを供給してもよい。キャリアガスとしては、例えば水素、窒素、He、Ne、Arのような不活性ガス等を挙げることができる。これらのガスは混合して用いてもよい。
 導入管103からは、窒素源となる原料ガスを供給する。通常はNHを供給する。また、導入管102からは、キャリアガスを供給する。キャリアガスとしては、導入管104から供給するキャリアガスと同じものを例示することができる。このキャリアガスは原料ガスノズルを分離し、ノズル先端にポリ結晶が付着することを防ぐ効果もある。また、導入管102からは、ドーパントガスを供給することもできる。例えば、SiHやSiHCl、HS等のn型のドーパントガスを供給することができる。
 導入管101~104から供給する上記ガスは、それぞれ互いに入れ替えて別の導入管から供給しても構わない。また、窒素源となる原料ガスとキャリアガスは、同じ導入管から混合して供給してもよい。さらに他の導入管からキャリアガスを混合してもよい。これらの供給態様は、リアクター100の大きさや形状、原料の反応性、目的とする結晶成長速度などに応じて、適宜決定することができる。
 導入管101~104の導入位置や導入方向は、特定のものに限定されるものではない。例えば横からの導入、また下からの導入、上からの導入、斜めからの導入が可能である。種結晶の主面(例えば種結晶の第一側面)を見込む空間と主面に対向する面(例えば種結晶の第二側面)を見込む空間からそれぞれ種結晶に向けて導入する態様、特に図1に示すように、種結晶の結晶成長面の右斜め上方と左斜め上方から結晶成長面を挟み込むように導入する態様を好ましい例として挙げることができる。図1では、導入管101~103が重ねて設置されているが、これらの導入管はそれぞれ離れて設置されていても構わない。もっとも導入管101~103を重ねて設置しておけば、キャリアガスで原料ガスを分離することができ、供給口付近の多結晶体発生を抑制することができるという利点がある。
 導入管先端の供給口形状は特に制限されるものではない。例えば、種結晶の結晶成長面と相似形にしたり、種結晶上に成長する結晶の結晶成長端と相似形にしたりすることができる。なかでも、供給口の形状がスリット状であり、該スリット状開口部の最大長が種結晶109の第一辺及び第二辺の長さ以上であることが好ましい。具体的には10mm以上であることが好ましく、30mm以上であることがより好ましく、50mm以上であることが更に好ましい。また供給口が平行に配置した複数のスリットからなってもよい。供給口の材質としては石英、熱分解窒化ホウ素(PBN)、熱分解グラファイト(PG)、SiC等が好ましく、石英、PBN、PGがより好ましい。
 ガス排気管108は、リアクター内壁の上面、底面、側面に設置することができる。ゴミ落ちの観点から結晶成長端よりも下部にあることが好ましく、図1のようにリアクター底面にガス排気管108が設置されていることがより好ましい。
 別の成長装置例として、図2に示す装置を挙げることもできる。ここでは、種結晶209を基板ホルダー205の上に設置することができるようになっており、昇降機構206で下向きに移動可能になっている点が図1の装置と異なっている。また、キャリアガス用配管204が種結晶209の直上に設置されている点も異なっている。
 さらに別の成長装置として、図3に示す装置を挙げることもできる。ここでも、種結晶309を基板ホルダー305の上に設置することができるようになっており、昇降機構306で下向きに移動可能になっている点が図1の装置と異なっている。また、導入管301~303が種結晶309の直上に設置されている点も異なっている。
 図1のような成長装置を用いれば気相中で発生するパーティクルの影響を低減でき、ピットのない良質な結晶が得られるという利点があり、図2や図3のような成長装置を用いれば昇降機構等の駆動部を装置下部に設置することができメンテナンスが容易になるという利点がある。
(結晶成長工程における制御)
 本発明の窒化物半導体結晶の製造方法では、少なくとも一種類の原料ガスを常に前記板状結晶の結晶成長端に向けて供給するように制御することが好ましい。ここで、結晶成長端に向けて供給するとは、結晶成長端の方向に向けて原料ガスを供給することを意味する。従来法にしたがって固定された基板ホルダー上に種結晶を設置し、その種結晶上に窒化物半導体結晶を成長させると、結晶成長に伴って結晶成長端は移動する。この移動分を考慮しつつ、常に結晶成長端の方向に向けて原料が供給されるようにすることが好ましい。
 ここで、結晶成長端に向けて供給する原料ガスは、結晶成長に用いる原料ガスのうちの少なくとも一種類であればよい。原料ガスのうちの一種類だけを選択して結晶成長端に向けて供給する場合は、拡散しにくい原料ガスを選択することが好ましい。例えば窒化物半導体結晶としてGaN結晶を成長させるときには、原料ガスとしてNHガスとGaClガスを採用することが多いが、このときに一方だけを選択して結晶成長端に向けて供給する場合は、GaClを選択することが好ましい。選択しなかった原料ガスは、例えばリアクター上部からキャリアガスと共に供給するなどして、結晶成長端に拡散供給されるようにしておく。
 本発明の窒化物半導体結晶の製造方法では、少なくとも一種類の原料ガスを供給する供給口と結晶成長端との距離を一定に保つように制御することが好ましい。原料ガスを供給する供給口と結晶成長端の距離は、近すぎると供給口に窒化物半導体の多結晶体が付着してしまい長時間成長させることができなくなってしまうし、逆に遠すぎると原料効率が下がり所望の結晶成長速度が得られなくなってしまう。このため、供給口と結晶成長端の距離は、一般的には1cm~15cmが好ましく、3cm~12cmがより好ましく、5cm~10cmがさらに好ましい。結晶成長工程中において、供給口と結晶成長端との距離は、常に成長開始時の距離の±15mm以内に制御することが好ましく、±10mm以内に制御することがより好ましく、±5mm以内に制御することがさらに好ましい。また、供給口からの原料ガスの供給速度は、通常0.01m/min~1m/minであり、0.05m/min~0.7m/minであることが好ましく、0.1m/min~0.4m/minであることがより好ましい。
 本発明の窒化物半導体結晶の製造方法において、少なくとも一種類の原料ガスを常に前記板状結晶の結晶成長端に向けて供給するように制御する方法は特に制限されない。例えば、結晶成長と共に、種基板を保持する基板ホルダーの位置や原料ガス供給口の位置を移動させたり、原料ガス供給口の吹出角度やガス供給速度を変えたりすることにより制御することができる。これらの制御方法は組み合わせて行ってもよい。これらの移動や変化は連続的に行ってもよいし、逐次で行ってもよいが、連続的に行うことが好ましい。
 具体的な制御方法としては、原料ガス供給口を固定しておいて、結晶成長と共に種基板を保持する基板ホルダーの位置を結晶成長方向と逆向きに移動させる方法や、基板ホルダーの位置を固定しておいて、結晶成長と共に原料ガス供給口の位置を結晶成長方向に移動させる方法を採用することができる。これらの方法を採用するときには、基板ホルダーや原料ガス供給口の移動速度を結晶成長速度と同程度にすることが好ましい。また他の制御方法として、基板ホルダーの位置を固定しておいて、結晶成長と共に原料ガス供給口の吹出角度または原料ガス供給口から供給されるガス供給速度の少なくとも一方を変える方法も挙げることができる。
 上記の位置制御や角度制御を適正に行うためには、結晶成長工程中の結晶成長端の位置を正確に把握することが必要である。このため、本発明で使用する結晶成長装置には結晶成長端の位置検出機構が備えられていることが好ましい。結晶成長端の位置検出機構は、結晶成長工程中における結晶成長端の位置を測定してその結果を制御のために利用できる機能を備えたものであれば、その種類は特に制限されない。例えば、CCD(電荷結合素子)などの画像観察装置を好ましく採用することができる。また、耐熱性のボアスコープなどを採用してもよい。
 結晶成長端の位置検出機構により得られた情報は、制御機構により処理することが好ましい。制御機構は、結晶成長端の位置に応じて結晶成長装置中の基板ホルダーや供給口の位置や供給口の吹出角度を制御する指示を出す機能を備えている。制御機構は、制御状況をモニターするための出力機構と組み合わされていてもよい。制御機構と出力機構の詳細について、図4に示す機構を例にとって説明する。図4の制御機構401は、A/Dコンバーター403、CPU(中央処理装置)404、モータードライバー405からなっており、出力機構407はディプレイ408、プリンター409からなっている。結晶成長端の位置検出機構402により検出された結晶成長端の位置データ(例えば座標)は、A/Dコンバーター403によりデジタルデータに変換し、CPU404へ導く。CPU404にて適切な補正等を行った後、出力機構407内の出力回路にしたがってデータを数値化ないしグラフ化してディスプレイ408に表示させ、プリンター409によりそれらを印刷する。また、CPU404では得られた位置情報に応じて最適な制御方向と制御量を算出し、モータードライバー405に指示を出し、基板ホルダーや原料ガス供給口の位置を移動させるモーター406を駆動させる。これらの一連の動作は予めコンピュータにプログラムとしておき、CPU404の指令によりモータードライバー405やA/Dコンバーター403を介して自動で実施させることが可能である。なお、結晶成長端の位置検出機構402が位置情報をデジタル信号として出力する場合は、A/Dコンバーター403を省略することができる。
 なお、経験則などにより把握した結晶成長速度等に基づき、結晶成長工程中における結晶成長端の位置をほぼ正確に予測することが可能であれば、結晶成長端の位置検出機構は省略することが可能である。また、結晶成長端の位置検出機構の代わりに、結晶成長装置内の温度や圧力を測定する機構を用いて、それらの測定結果に基づいて結晶成長端の位置を予測して制御してもよい。これらの改変は、当業者の知識の範囲内で適宜行うことが可能である。
 本発明の製造方法にしたがって、基板ホルダーや原料ガス供給口の位置を移動させる場合、その移動距離は製造しようとする結晶の大きさに応じて決めることができる。大型の結晶を得る場合は、10mm以上が好ましく、20mm以上がより好ましく、50mm以上がさらに好ましい。
(結晶成長条件)
 本発明における結晶成長は、通常は950℃~1120℃で行い、970℃~1100℃で行うことが好ましく、980℃~1090℃で行うことがより好ましく、990℃~1080℃で行うことがさらに好ましい。リアクター内の圧力は10kPa~200kPaであるのが好ましく、30kPa~150kPaであるのがより好ましく、50kPa~120kPaであるのがさらに好ましい。
 本発明における結晶成長の成長速度は、成長方法、成長温度、原料ガス供給量、結晶成長面方位等により異なるが、一般的には5μm/h~500μm/hの範囲であり、10μm/h~500μm/hが好ましく、50μm/h~400μm/hがより好ましく、100μm/h~300μm/hであることがさらに好ましい。成長速度は、上記の他キャリアガスの種類、流量、供給口-結晶成長端距離等を適宜設定することによって制御することができる。
(窒化物半導体結晶)
 本発明により得られる窒化物半導体結晶は、成長時の側面を主面とする板状の結晶である。この板状結晶の主面は、通常は種結晶の投影面に垂直な面である。種結晶の主面が投影面に垂直である場合は、得られる板状結晶の主面は種結晶の主面と平行になる。例えば、投影面が+C面で、主面がM面である種結晶を用いて本発明により得られる窒化物半導体結晶は、M面を主面とする板状結晶である。また、投影面が+C面で、主面がA面である種結晶を用いて本発明により得られる窒化物半導体結晶は、A面を主面とする板状結晶である。本発明の製造方法によれば、得られる板状結晶の主面を十分な大きさにすることができるため、スライス技術を使うことなく、研削、研磨のみで窒化物半導体基板として仕上げることができる。なお、本明細書において「主面」とは、結晶を構成する面のうち面積が最大である面を意味する。
 スライス技術を使うことなく、研削、研磨のみで窒化物半導体基板として仕上げることができるという利点は、特に非極性面を主面とする窒化物半導体基板を得る場合に効果的に活用することができる。例えば、M面を主面とする窒化物半導体基板を製造しようとする場合、従来法によれば種結晶のC面上にC面に垂直な方向に窒化物半導体結晶を成長させた後、得られた窒化物半導体結晶をC面に垂直な方向にスライスしてM面を出さなければならなかった。この方法では、工程数が多いうえに、かなり大きな窒化物半導体結晶を成長させなければならないという欠点がある。一方、本発明の製造方法によれば、スライスの必要がないため工程数を減らすことができ、しかも必要としている基板サイズよりもやや大きめの結晶を成長させれば足りる。したがって、本発明によれば効率よく目的とする窒化物半導体基板を得ることができる。例えば、非極性面を主面とし、厚みが1.5mm以下である板状窒化物半導体結晶を好ましく提供することができる。
 本発明によれば、主面の面積が大きな板状窒化物半導体結晶を容易に得ることができる。主面の面積は、種結晶の結晶成長面のサイズや結晶成長時間により適宜調整することが可能である。本発明によれば、例えば主面の面積を2500mm以上にすることができ、5700mm以上にすることが可能であり、さらには10000mm以上にすることが可能である。
 本発明により提供される窒化物半導体結晶の種類は特に制限されない。具体的には、III族窒化物半導体結晶を挙げることができ、より具体的には、窒化ガリウム、窒化アルミニウム、窒化インジウム、又はこれらの混晶を挙げることができる。
 本発明の製造方法により得られた窒化物半導体結晶は、さまざまな用途に用いることができる。特に、紫外、青色又は緑色等の発光ダイオード、半導体レーザー等の比較的短波長側の発光素子や、電子デバイス等の半導体デバイスの基板として有用である。また、本発明の製造方法により製造した窒化物半導体結晶を下地基板として用いて、さらに大きな窒化物半導体結晶を得ることも可能である。
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
(実施例1)
 本実施例では、図2に示すHVPE装置を用いて窒化物半導体結晶の成長を行った。図2のHVPE装置には、スリット状のノズルが3段備え付けられており、この原料供給口の1段のサイズは、幅20mm、高さ2mmであり、PBN製である。
 M面を主面とするGaN種結晶209を用意した。この種結晶は、HVPE法でC面GaNテンプレート上に作製されたものをスライスして得られた結晶であり、a軸方向に約20.0mm、c軸方向に約8mm、m軸方向に約1mmの長さを有する直方体である。
 次いで、HVPE装置のリアクター200内の基板ホルダー205に、+C面が上向きで且つスリット吹出し口の長手方向と種結晶のa軸方向が平行になるように種結晶をセットした。反応室の温度を1040℃まで上げ、原料を+C面上に供給することにより、アンドープGaNを+C面上に成長させた。この成長工程においては成長圧力を1.01×10Paとし、スリット状のノズルの上段からのNHガスの分圧を7×10Pa、中段からNガスの分圧を3×10Pa、下段からGaClガスの分圧を3×10Paとし導入した。204からはキャリアガスとしてHガスを導入した。
 50時間成長した後、室温まで降温し、縦が約22.0mm、横が約22.0mmの正方形の側面(M面)を有し、m軸方向の厚さが約1mmのGaN単結晶を得た。主面(M面)の面積は484.0mm、成長面(+C面)の面積は22.0mmであった。
 このGaN単結晶を研磨、整形することにより、縦20.0mm、横20.0mm、厚さ350μmの正方形のM面を主面とする自立基板が得られた。
(比較例1)
 直径2インチ、厚さ430μmのサファイア基板を下地基板として用いて、その上にMOCVD法で2μmの(0001)面GaNを成長することにより、2インチGaNテンプレート基板を準備した。次いで、基板をHVPE装置のリアクター装置内に配置して、成長温度を1040℃に昇温した後、下地GaN層上に、実質的にHのみからなるキャリアガスと、GaとHClの反応生成物であるGaClガスと、NHガスとを供給しながら、GaN層を約40時間にわたって成長させた。この成長工程において、成長圧力を1.01×10Paとし、GaClガスの分圧を3.07×10Paとし、NHガスの分圧を1.27×10Paとした。成長終了後、室温まで降温し厚さが約5mmのGaN単結晶を得た。
 ワイヤーソータイプの装置を用いて、スライシングを行った。各ワイヤーの間隔は700μmで、スライシング速度は1mm/hである。ワイヤーの直径は0.1~0.2mmの範囲で適宜選択した。結晶のC面と垂直にM面と平行にスライシングすることにより、複数枚のM面GaN基板を得た。得られたGaN基板のサイズは短辺約5mm、長辺約10~30mmの長方形形状であった。
(実施例2)
 本実施例では、図3に示すHVPE装置を用いて窒化物半導体結晶の成長を行った。
 M面を主面とするGaN種結晶309を用意した。この種結晶は、HVPE法でC面GaNテンプレート上に作製されたものをスライスして得られた結晶であり、a軸方向に約20.0mm、c軸方向に約5.0mm、m軸方向に約0.3mmの長さを有する直方体である。
 HVPE装置のリアクター300内の基板ホルダー305に、+C面が上向きで種結晶をセットした。この時-C面は基板ホルダー305に接しており、直接原料ガスと触れることはない。反応室の温度を1040℃まで上げ、原料を+C面方向から供給することにより、アンドープGaNを成長させた。この成長工程においては成長圧力を1.01×10Paとし、NHガスの分圧を7.03×10Pa、Nガスの分圧を1.79×10Pa、GaClガスの分圧を7.37×10Pa、Hガスの分圧を7.53×10Paとし導入した。
 40時間成長した後、室温まで降温した。得られたGaN単結晶の形状は板状であり、a軸方向が約22.0mm、c軸方向が約12.5mm、m軸方向の厚さが約1.4mmであった。主面(M面)の面積は275.0mmであった。
 このGaN単結晶を研磨、整形することにより、a軸方向が20.0mm、c軸方向が11.0mm、厚さ330μmの長方形のM面を主面とする自立基板が得られた。
(実施例3)
 本実施例では、GaN種結晶としてa軸方向に約20.0mm、c軸方向に約4.2mm、m軸方向に約4.5mmの長さを有する直方体の結晶を用いた以外は、実施例2と全く同様に行った。
 40時間成長した後、室温まで降温した。得られたGaN単結晶は板状であり、a軸方向が約22.0mm、c軸方向が約11.0mm、m軸方向の厚さが約5.6mmであった。主面(M面)の面積は187.0mmであった。
 このGaN単結晶をスライス、研磨、整形することにより、a軸方向が20.0mm、c軸方向が10.0mm、厚さ330μmの長方形のM面を主面とする自立基板が5枚得られた。
(比較例2)
 本比較例では、GaN種結晶としてa軸方向に約20.0mm、c軸方向に約0.4mm、m軸方向に約7.0mmの長さを有する直方体の結晶を用いた以外は、実施例2と全く同様に行った。
 40時間成長した後、室温まで降温した。得られたGaN単結晶は板状では無く、図5に示すような、+c軸方向に成長した2つの壁が形成された形状となった。a軸方向が約20.0mm、c軸方向の最大長は約10.0mm、最小長は約5.2mmであり、c軸方向の長さは均一ではなく凸凹していた。また一つの壁のm軸方向の厚さは約0.8mmであった。
(実施例4)
 M面((10-10)面)を主面とし、側面が+C面、(-1-122)面、-C面、(11-22)面の4面からなるGaN種結晶を用意した。この種結晶は、c軸方向に約5mm、a軸方向に約15mm~18mm、m軸方向に約2mmの長さを有している。
 図3に示すHVPE装置のリアクター内の基板ホルダーに、+C面が上向きとなるように種結晶をセットした。この時-C面は基板ホルダーに接しており、直接原料ガスと触れることはない。反応室の温度を1040℃まで上げ、原料を+C面方向から供給することにより、アンドープGaNを成長させた。この成長工程においては、成長圧力を1.01×10Paとし、NHガスの分圧を7.03×10Pa、Nガスの分圧を1.79×10Pa、GaClガスの分圧を7.37×10Pa、Hガスの分圧を7.53×10Paとし導入した。
 40時間成長した後、室温まで降温した。得られたGaN単結晶は角部に異常成長はなく、均質な板状結晶が得られた。成長後のc軸方向の長さは約15mmであった。
 このGaN単結晶をスライス、研磨、整形することにより、15mm角で厚さ330μmのM面を主面とする均質な自立基板が複数枚得られた。
(実施例5)
 M面((10-10)面)を主面とし、側面が+C面、(1-100)面、-C面、(01-10)面の4面からなるGaN種結晶を用意した。この種結晶は、c軸方向に約5mm、a軸方向に約15mm~18mm、m軸方向に約2mmの長さを有している。
 実施例4と同様に40時間成長した後、室温まで降温した。得られたGaN単結晶は角部に異常成長はなく、均質な板状結晶が得られた。この点で実施例4と実施例5の板状結晶は、他の実施例の板状結晶よりもさらに優れていた。実施例5の成長後のc軸方向の長さは約15mmであった。
 このGaN単結晶を研磨、整形することにより、15mm角で厚さ330μmのM面を主面とする均質な自立基板が得られた。
(実施例6)
 M面を主面とし、側面が+C面、A面、-C面、A面の4面からなるGaN種結晶を用意した。この種結晶は、c軸方向に約5mm、a軸方向に約15mm、m軸方向に約2mmの長さを有する長方体である。
 実施例4と同様にして40時間成長した後、室温まで降温した。このGaN単結晶を研磨、整形することにより、M面を主面とする自立基板が得られた。
(実施例7)
 本実施例では、図2に示す装置に、さらにCCDと基板ホルダー昇降機構を設置したHVPE装置を用いてGaN結晶成長を行う。CCDは、結晶成長に伴って移動する結晶成長端の位置を正確に測定できるように設置されている。CCDにより測定された結晶成長端の位置情報は、図4の制御機構にしたがって処理され、結晶成長工程中に結晶成長端の位置が常に同じ位置にあるように基板ホルダー昇降機構を駆動させるようにあらかじめ設定されている。すなわち、結晶が成長し結晶成長端が図の上方に移動したことが検出されると、その移動分だけ基板ホルダーが図の下方に移動するように設定されている。このようなHVPE装置を用いた点を除いて、その他の条件は実施例1と同じにしてGaN結晶成長を行う。
 その結果、実施例1と同様のサイズを有するM面を主面とする自立基板が得られる。実施例1に比べて、成長速度が速く、結晶成長面の全体にわたってより均一に結晶成長が認められる。
(実施例8)
 本実施例では、図2に示す装置に、さらにCCDと基板ホルダー昇降機構を設置したHVPE装置を用いてGaN結晶成長を行う。CCDは、結晶成長に伴って移動する結晶成長端の位置を正確に測定できるように設置されている。CCDにより測定された結晶成長端の位置情報は、図4の制御機構にしたがって処理され、結晶成長工程中に結晶成長端とノズルの供給口の位置関係が常に同じになるようにノズル昇降機構を駆動させるようにあらかじめ設定されている。すなわち、結晶が成長し結晶成長端が図の上方に移動したことが検出されると、その移動分だけノズルの供給口も図の上方に移動するように設定されている。このようなHVPE装置を用いた点を除いて、その他の条件は実施例1と同じにしてGaN結晶成長を行う。
 その結果、実施例1と同様のサイズを有するM面を主面とする自立基板が得られる。実施例1に比べて、成長速度が速く、結晶成長面の全体にわたってより均一に結晶成長が認められる。
(実施例9)
 本実施例では、図2に示す装置に、さらにCCDと基板ホルダー昇降機構を設置したHVPE装置を用いてGaN結晶成長を行う。CCDは、結晶成長に伴って移動する結晶成長端の位置を正確に測定できるように設置されている。CCDにより測定された結晶成長端の位置情報は、図4の制御機構にしたがって処理され、結晶成長工程中にに結晶成長端に向けて原料ガスが供給されるようにノズル供給口の向き(角度)を制御するようにあらかじめ設定されている。すなわち、結晶が成長し結晶成長端が図の上方に移動したことが検出されると、ノズルの供給口の向きを上方に向くように設定されている。このようなHVPE装置を用いた点を除いて、その他の条件は実施例1と同じにしてGaN結晶成長を行う。
 その結果、実施例1と同様のサイズを有するM面を主面とする自立基板が得られる。実施例1に比べて、成長速度が速く、結晶成長面の全体にわたってより均一に結晶成長が認められる。
(実施例10)
 本実施例では、図1に示すHVPE装置を用いて窒化物半導体結晶の成長を行う。図1のHVPE装置には、スリット状のノズルが3段備え付けられており、この原料供給口の1段のサイズは、幅20mm、高さ2mmであり、PBN製である。
 実施例1と同じGaN種結晶109を用意して、HVPE装置のリアクター100内の基板ホルダー105に、+C面が下向きで且つスリット吹出し口の長手方向と種結晶のa軸方向が平行になるように種結晶をセットする。反応室の温度を1040℃まで上げ、原料を+C面の方向に供給することにより、アンドープGaNを+C面上に成長させる。この成長工程においては成長圧力を1.01×10Paとし、スリット状のノズルの上段からのNHガスの分圧を7×10Pa、中段からNガスの分圧を3×10Pa、下段からGaClガスの分圧を3×10Paとし導入した。104からはキャリアガスとしてHガスを導入する。
 50時間成長した後、室温まで降温することにより、実施例1と同様の結晶を得る。このGaN単結晶を研磨、整形することにより、正方形のM面を主面とする自立基板を得る。
(実施例11)
 本実施例では、図1に示す装置に、さらにCCDと基板ホルダー昇降機構を設置したHVPE装置を用いてGaN結晶成長を行う。CCDは、結晶成長に伴って移動する結晶成長端の位置を正確に測定できるように設置されている。CCDにより測定された結晶成長端の位置情報は、図4の制御機構にしたがって処理され、結晶成長工程中に結晶成長端の位置が常に同じ位置にあるように基板ホルダー昇降機構を駆動させるようにあらかじめ設定されている。すなわち、結晶が成長し結晶成長端が図の下方に移動したことが検出されると、その移動分だけ基板ホルダーが図の上方に移動するように設定されている。このようなHVPE装置を用いた点を除いて、その他の条件は実施例10と同じにしてGaN結晶成長を行う。
 その結果、実施例10と同様のサイズを有するM面を主面とする自立基板が得られる。実施例5に比べて、成長速度が速く、結晶成長面の全体にわたってより均一に結晶成長が認められる。
(実施例12)
 本実施例では、図1に示す装置に、さらにCCDと基板ホルダー昇降機構を設置したHVPE装置を用いてGaN結晶成長を行う。CCDは、結晶成長に伴って移動する結晶成長端の位置を正確に測定できるように設置されている。CCDにより測定された結晶成長端の位置情報は、図4の制御機構にしたがって処理され、結晶成長工程中に結晶成長端とノズルの供給口の位置関係が常に同じになるようにノズル昇降機構を駆動させるようにあらかじめ設定されている。すなわち、結晶が成長し結晶成長端が図の下方に移動したことが検出されると、その移動分だけノズルの供給口も図の下方に移動するように設定されている。このようなHVPE装置を用いた点を除いて、その他の条件は実施例10と同じにしてGaN結晶成長を行う。
 その結果、実施例10と同様のサイズを有するM面を主面とする自立基板が得られる。実施例10に比べて、成長速度が速く、結晶成長面の全体にわたってより均一に結晶成長が認められる。
(実施例13)
 本実施例では、図1に示す装置に、さらにCCDと基板ホルダー昇降機構を設置したHVPE装置を用いてGaN結晶成長を行う。CCDは、結晶成長に伴って移動する結晶成長端の位置を正確に測定できるように設置されている。CCDにより測定された結晶成長端の位置情報は、図4の制御機構にしたがって処理され、結晶成長工程中に常に結晶成長端に向けて原料ガスが供給されるようにノズル供給口の向き(角度)を制御するようにあらかじめ設定されている。すなわち、結晶が成長し結晶成長端が図の下方に移動したことが検出されると、ノズルの供給口の向きを下方に向くように設定されている。このようなHVPE装置を用いた点を除いて、その他の条件は実施例10と同じにしてGaN結晶成長を行う。
 その結果、実施例10と同様のサイズを有するM面を主面とする自立基板が得られる。実施例10に比べて、成長速度が速く、結晶成長面の全体にわたってより均一に結晶成長が認められる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2008年3月3日出願の日本特許出願(特願2008-052587号)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の窒化物半導体結晶の製造方法によれば、所望の板状の窒化物半導体結晶を簡便な方法で効率よく製造することができる。特に非極性面を主面とする大面積の窒化物半導体基板を簡便な方法で製造することができる。したがって、本発明によれば製造コストと労力を削減することが可能であるとともに、従来は製造することができなかった新しい窒化物半導体結晶を提供することもできる。したがって、本発明は産業上の利用可能性が高い。

Claims (30)

  1.  種結晶に対して原料ガスを供給することによって前記種結晶上に窒化物半導体結晶を成長させる結晶成長工程を含む、窒化物半導体結晶の製造方法であって、
     前記種結晶上に成長させる窒化物半導体結晶が板状結晶であり、
     前記板状結晶を成長させる前記種結晶上の結晶成長面を成長方向に投影した投影面の長手方向の長さLと最大幅Wの比(L/W)が2~400であって、前記最大幅Wが5mm以下であることを特徴とする窒化物半導体結晶の製造方法。
  2.  前記種結晶の結晶成長面が、+C面、{10-1X}面および{11-2Y}面からなる群より選択される1以上の面であることを特徴とする請求項1に記載の窒化物半導体結晶の製造方法(前記Xと前記Yは、各々独立に0以外の整数である)。
  3.  前記種結晶の結晶成長面が、+C面、{10-1X}面、またはその両方であって、前記種結晶の主面が略M面であることを特徴とする請求項2に記載の窒化物半導体結晶の製造方法。
  4.  前記種結晶の結晶成長面が、+C面、{11-2Y}面、またはその両方であって、前記種結晶の主面が略A面であることを特徴とする請求項2に記載の窒化物半導体結晶の製造方法。
  5.  前記種結晶が、{10-10}面、{11-2Z}面、{10-1S}面、または{11-20}面を有することを特徴とする請求項2~4のいずれか一項に記載の窒化物半導体結晶の製造方法(前記Zと前記Sは、各々独立に0以外の整数である)。
  6.  互いに平行な第一辺と第二辺を有する結晶成長面と、前記結晶成長面と垂直な面であって前記結晶成長面の第一辺を一辺とする第一側面と、前記結晶成長面と垂直な面であって前記結晶成長面の第二辺を一辺とする第二側面とを少なくとも有していて、前記結晶成長面の第一辺と第二辺の距離が5mm以下であり、前記結晶成長面の第一辺と第二辺の平均長と第一辺と第二辺の距離の比(平均長/距離)が2~400である種結晶に対して、原料ガスを供給することによって、前記結晶成長面に対して垂直な方向へ板状結晶を成長させる結晶成長工程を含むことを特徴とする請求項1に記載の窒化物半導体結晶の製造方法。
  7.  前記種結晶の第一側面が非極性面であることを特徴とする請求項6に記載の窒化物半導体結晶の製造方法。
  8.  前記種結晶が、結晶成長面がC面であり、第一側面がM面である六方晶であることを特徴とする請求項6に記載の窒化物半導体結晶の製造方法。
  9.  前記種結晶が、結晶成長面がC面であり、第一側面がA面である六方晶であることを特徴とする請求項6に記載の窒化物半導体結晶の製造方法。
  10.  前記結晶成長工程によって、第一側面と平行な面が主面となるように窒化物半導体結晶を成長させることを特徴とする請求項6~9のいずれか一項に記載の窒化物半導体結晶の製造方法。
  11.  前記結晶成長工程において、前記原料ガスの少なくとも一種類を常に前記板状結晶の結晶成長端に向けて供給するように制御することを特徴とする請求項1~10のいずれか一項に記載の窒化物半導体結晶の製造方法。
  12.  前記原料ガスを供給する供給口と前記板状結晶の結晶成長端との距離を一定に保つように制御することを特徴とする請求項1~11のいずれか一項に記載の窒化物半導体結晶の製造方法。
  13.  前記制御を、前記供給口と前記結晶成長端との距離を計測しながら行うことを特徴とする請求項12に記載の窒化物半導体結晶の製造方法。
  14.  前記結晶成長工程において、前記板状結晶の成長に伴って前記原料ガスを供給する供給口の位置を移動させることを特徴とする請求項11~13のいずれか一項に記載の窒化物半導体結晶の製造方法。
  15.  前記結晶成長工程において、前記板状結晶の成長に伴って前記原料ガスを供給する供給口の向きを変えることを特徴とする請求項11~14のいずれか一項に記載の窒化物半導体結晶の製造方法。
  16.  前記結晶成長工程において、前記板状結晶の成長に伴って前記原料ガスの供給速度を変えることを特徴とする請求項11~15のいずれか一項に記載の窒化物半導体結晶の製造方法。
  17.  前記結晶成長工程において、前記板状結晶の成長に伴って前記種結晶の位置を移動させることを特徴とする請求項11~16のいずれか一項に記載の窒化物半導体結晶の製造方法。
  18.  前記結晶成長工程において、前記原料ガスを、前記種結晶の結晶成長面に垂直な方向から供給することを特徴とする請求項1~17のいずれか一項に記載の窒化物半導体結晶の製造方法。
  19.  前記結晶成長工程において、前記原料ガスを、前記種結晶の主面を見込む空間と前記主面と対向する面を見込む空間からそれぞれ前記種結晶に向けて供給することを特徴とする請求項1~17のいずれか一項に記載の窒化物半導体結晶の製造方法。
  20.  前記原料ガスを供給する供給口の形状が前記結晶成長端の形状と相似形であることを特徴とする請求項1~19のいずれか一項に記載の窒化物半導体結晶の製造方法。
  21.  前記原料ガスを供給する供給口の形状がスリット状であり、該スリット状開口部の最大長が前記種結晶の投影面の長さL以上であることを特徴とする請求項1~20のいずれか一項に記載の窒化物半導体結晶の製造方法。
  22.  前記種結晶を位置決めするための支持体に前記種結晶が設置されており、前記種結晶と前記支持体の接触面が、前記種結晶の結晶成長面から1mm以上離れていることを特徴とする請求項1~21のいずれか一項に記載の窒化物半導体結晶の製造方法。
  23.  前記種結晶が、サファイア、SiC、ZnO、及びIII族窒化物半導体からなる群より選択されることを特徴とする請求項1~22のいずれか一項に記載の窒化物半導体結晶の製造方法。
  24.  前記窒化物半導体がIII族窒化物半導体であることを特徴とする請求項1~23のいずれか一項に記載の窒化物半導体結晶の製造方法。
  25.  前記窒化物半導体がGaN半導体であることを特徴とする請求項1~24のいずれか一項に記載の窒化物半導体結晶の製造方法。
  26.  主面の面積が2500mm以上である板状結晶を成長することを特徴とする請求項1~25のいずれか一項に記載の窒化物半導体結晶の製造方法。
  27.  前記主面が非極性面であることを特徴とする請求項26に記載の窒化物半導体結晶の製造方法。
  28.  請求項1~27のいずれか一項に記載の結晶成長工程を実施することにより前記種結晶上に窒化物半導体結晶を成長させ、成長させた前記窒化物半導体結晶を前記種結晶から分離することを特徴とする、成長させた前記窒化物半導体結晶をスライスすることなく窒化物半導体結晶を製造する方法。
  29.  請求項1~28のいずれか一項に記載の製造方法により製造される窒化物半導体結晶。
  30.  面積が2500mm以上である非極性面を主面とし、厚みが1.5mm以下であることを特徴とする板状窒化物半導体結晶。
PCT/JP2009/053893 2008-03-03 2009-03-02 窒化物半導体結晶とその製造方法 WO2009110436A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/920,976 US8545626B2 (en) 2008-03-03 2009-03-02 Nitride semiconductor crystal and its production method
EP09717726A EP2261401A4 (en) 2008-03-03 2009-03-02 NITRIDE-SEMICONDUCTOR CRYSTAL AND MANUFACTURING METHOD THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-052587 2008-03-03
JP2008052587 2008-03-03

Publications (1)

Publication Number Publication Date
WO2009110436A1 true WO2009110436A1 (ja) 2009-09-11

Family

ID=41055991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053893 WO2009110436A1 (ja) 2008-03-03 2009-03-02 窒化物半導体結晶とその製造方法

Country Status (5)

Country Link
US (1) US8545626B2 (ja)
EP (1) EP2261401A4 (ja)
JP (1) JP2009234906A (ja)
KR (1) KR20100134577A (ja)
WO (1) WO2009110436A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130000552A1 (en) * 2011-06-28 2013-01-03 Nitride Solutions Inc. Device and method for producing bulk single crystals

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308401A (ja) 2007-05-17 2008-12-25 Mitsubishi Chemicals Corp Iii族窒化物半導体結晶の製造方法、iii族窒化物半導体基板および半導体発光デバイス
US8847249B2 (en) 2008-06-16 2014-09-30 Soraa, Inc. Solid-state optical device having enhanced indium content in active regions
US8805134B1 (en) 2012-02-17 2014-08-12 Soraa Laser Diode, Inc. Methods and apparatus for photonic integration in non-polar and semi-polar oriented wave-guided optical devices
US8767787B1 (en) 2008-07-14 2014-07-01 Soraa Laser Diode, Inc. Integrated laser diodes with quality facets on GaN substrates
US8143148B1 (en) 2008-07-14 2012-03-27 Soraa, Inc. Self-aligned multi-dielectric-layer lift off process for laser diode stripes
US8284810B1 (en) 2008-08-04 2012-10-09 Soraa, Inc. Solid state laser device using a selected crystal orientation in non-polar or semi-polar GaN containing materials and methods
WO2010017148A1 (en) 2008-08-04 2010-02-11 Soraa, Inc. White light devices using non-polar or semipolar gallium containing materials and phosphors
US9531164B2 (en) * 2009-04-13 2016-12-27 Soraa Laser Diode, Inc. Optical device structure using GaN substrates for laser applications
US8634442B1 (en) 2009-04-13 2014-01-21 Soraa Laser Diode, Inc. Optical device structure using GaN substrates for laser applications
US8837545B2 (en) 2009-04-13 2014-09-16 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US9829780B2 (en) * 2009-05-29 2017-11-28 Soraa Laser Diode, Inc. Laser light source for a vehicle
US9250044B1 (en) 2009-05-29 2016-02-02 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser diode dazzling devices and methods of use
US8427590B2 (en) * 2009-05-29 2013-04-23 Soraa, Inc. Laser based display method and system
US8509275B1 (en) 2009-05-29 2013-08-13 Soraa, Inc. Gallium nitride based laser dazzling device and method
US8247887B1 (en) 2009-05-29 2012-08-21 Soraa, Inc. Method and surface morphology of non-polar gallium nitride containing substrates
US9800017B1 (en) 2009-05-29 2017-10-24 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US10108079B2 (en) * 2009-05-29 2018-10-23 Soraa Laser Diode, Inc. Laser light source for a vehicle
US8355418B2 (en) 2009-09-17 2013-01-15 Soraa, Inc. Growth structures and method for forming laser diodes on {20-21} or off cut gallium and nitrogen containing substrates
US8750342B1 (en) 2011-09-09 2014-06-10 Soraa Laser Diode, Inc. Laser diodes with scribe structures
US8905588B2 (en) 2010-02-03 2014-12-09 Sorra, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US10147850B1 (en) 2010-02-03 2018-12-04 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US8451876B1 (en) 2010-05-17 2013-05-28 Soraa, Inc. Method and system for providing bidirectional light sources with broad spectrum
US9487884B2 (en) 2010-05-31 2016-11-08 International Business Machines Corporation Producing a mono-crystalline sheet of semiconductor material
US8816319B1 (en) 2010-11-05 2014-08-26 Soraa Laser Diode, Inc. Method of strain engineering and related optical device using a gallium and nitrogen containing active region
US9048170B2 (en) 2010-11-09 2015-06-02 Soraa Laser Diode, Inc. Method of fabricating optical devices using laser treatment
US9025635B2 (en) 2011-01-24 2015-05-05 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9595813B2 (en) 2011-01-24 2017-03-14 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a substrate member
US9093820B1 (en) 2011-01-25 2015-07-28 Soraa Laser Diode, Inc. Method and structure for laser devices using optical blocking regions
JP5632322B2 (ja) * 2011-03-31 2014-11-26 古河機械金属株式会社 窒化ガリウム系半導体の製造方法、及び、基板の製造方法
US9236530B2 (en) 2011-04-01 2016-01-12 Soraa, Inc. Miscut bulk substrates
US9287684B2 (en) 2011-04-04 2016-03-15 Soraa Laser Diode, Inc. Laser package having multiple emitters with color wheel
US9646827B1 (en) 2011-08-23 2017-05-09 Soraa, Inc. Method for smoothing surface of a substrate containing gallium and nitrogen
US8971370B1 (en) 2011-10-13 2015-03-03 Soraa Laser Diode, Inc. Laser devices using a semipolar plane
US9020003B1 (en) 2012-03-14 2015-04-28 Soraa Laser Diode, Inc. Group III-nitride laser diode grown on a semi-polar orientation of gallium and nitrogen containing substrates
US9343871B1 (en) 2012-04-05 2016-05-17 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
US9800016B1 (en) 2012-04-05 2017-10-24 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
US10559939B1 (en) 2012-04-05 2020-02-11 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
JP6115212B2 (ja) * 2013-03-14 2017-04-19 三菱化学株式会社 周期表第13族金属窒化物半導体結晶の製造方法、それに用いる製造装置
TWI684680B (zh) 2013-09-04 2020-02-11 奈瑞德解決方案公司 體擴散長晶法
JP2014237584A (ja) * 2014-07-14 2014-12-18 古河機械金属株式会社 種結晶、窒化ガリウム系半導体の製造方法、及び、基板の製造方法
US9787963B2 (en) 2015-10-08 2017-10-10 Soraa Laser Diode, Inc. Laser lighting having selective resolution
JP6222293B2 (ja) * 2016-06-14 2017-11-01 株式会社リコー 13族窒化物結晶
US10771155B2 (en) 2017-09-28 2020-09-08 Soraa Laser Diode, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US10222474B1 (en) 2017-12-13 2019-03-05 Soraa Laser Diode, Inc. Lidar systems including a gallium and nitrogen containing laser light source
US10551728B1 (en) 2018-04-10 2020-02-04 Soraa Laser Diode, Inc. Structured phosphors for dynamic lighting
US11421843B2 (en) 2018-12-21 2022-08-23 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system
US11239637B2 (en) 2018-12-21 2022-02-01 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US12000552B2 (en) 2019-01-18 2024-06-04 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system for a vehicle
US11884202B2 (en) 2019-01-18 2024-01-30 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029897A (ja) * 2000-07-10 2002-01-29 Sumitomo Electric Ind Ltd 単結晶GaN基板の製造方法と単結晶GaN基板
JP2006240988A (ja) 2001-04-12 2006-09-14 Sumitomo Electric Ind Ltd 窒化ガリウム結晶への酸素ドーピング方法と酸素ドープされたn型窒化ガリウム単結晶基板
JP2006315947A (ja) * 2005-04-11 2006-11-24 Nichia Chem Ind Ltd 窒化物半導体ウエハ及びその製造方法
JP2007314357A (ja) * 2006-05-23 2007-12-06 Mitsubishi Chemicals Corp 窒化物半導体結晶とその製造方法
JP2008091837A (ja) * 2006-10-05 2008-04-17 Hitachi Cable Ltd Iii族窒化物半導体の製造装置及び製造方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3591348A (en) 1968-01-24 1971-07-06 Tyco Laboratories Inc Method of growing crystalline materials
JPS5488884A (en) 1977-12-26 1979-07-14 Nippon Telegr & Teleph Corp <Ntt> Plate crystal producing equipment
JPH10335750A (ja) 1997-06-03 1998-12-18 Sony Corp 半導体基板および半導体装置
CA2373170C (en) 1999-05-13 2009-09-01 Emf Ireland Limited Method and apparatus for epitaxially growing a material on a substrate
JP4094780B2 (ja) 1999-08-24 2008-06-04 株式会社リコー 結晶成長方法および結晶成長装置並びにiii族窒化物結晶の製造方法および結晶製造装置
JP4592198B2 (ja) 2001-03-01 2010-12-01 シャープ株式会社 Iii−v族化合物半導体製造装置及びiii−v族化合物半導体の製造方法
JP3761418B2 (ja) 2001-05-10 2006-03-29 Hoya株式会社 化合物結晶およびその製造法
SG125069A1 (en) * 2001-05-17 2006-09-29 Sumitomo Chemical Co Method and system for manufacturing III-V group compound semiconductor and III-V group compound semiconductor
US20070032046A1 (en) 2001-07-06 2007-02-08 Dmitriev Vladimir A Method for simultaneously producing multiple wafers during a single epitaxial growth run and semiconductor structure grown thereby
US20060011135A1 (en) 2001-07-06 2006-01-19 Dmitriev Vladimir A HVPE apparatus for simultaneously producing multiple wafers during a single epitaxial growth run
US7169227B2 (en) 2001-08-01 2007-01-30 Crystal Photonics, Incorporated Method for making free-standing AIGaN wafer, wafer produced thereby, and associated methods and devices using the wafer
TWI231321B (en) * 2001-10-26 2005-04-21 Ammono Sp Zoo Substrate for epitaxy
US7208393B2 (en) * 2002-04-15 2007-04-24 The Regents Of The University Of California Growth of planar reduced dislocation density m-plane gallium nitride by hydride vapor phase epitaxy
WO2003089696A1 (en) * 2002-04-15 2003-10-30 The Regents Of The University Of California Dislocation reduction in non-polar gallium nitride thin films
AU2003259125A1 (en) * 2002-12-16 2004-07-29 The Regents Of The University Of California Growth of reduced dislocation density non-polar gallium nitride by hydride vapor phase epitaxy
JP4560310B2 (ja) 2004-03-03 2010-10-13 株式会社リコー Iii族窒化物の結晶の基板の製造方法
JP2006044982A (ja) * 2004-08-04 2006-02-16 Sumitomo Electric Ind Ltd 窒化物半導体単結晶基板とその合成方法
JP5276769B2 (ja) 2004-10-01 2013-08-28 東京電波株式会社 六方晶系ウルツ鉱型単結晶、その製造方法、および六方晶系ウルツ鉱型単結晶基板
JP4735949B2 (ja) * 2005-04-08 2011-07-27 日立電線株式会社 Iii−v族窒化物半導体結晶の製造方法およびiii−v族窒化物半導体基板の製造方法
JP2006290677A (ja) 2005-04-11 2006-10-26 Hitachi Cable Ltd 窒化物系化合物半導体結晶の製造方法及び窒化物系化合物半導体基板の製造方法
EP2038456B1 (en) 2006-06-09 2014-03-05 Soitec System and process for high volume deposition of gallium nitride
JP2008308401A (ja) * 2007-05-17 2008-12-25 Mitsubishi Chemicals Corp Iii族窒化物半導体結晶の製造方法、iii族窒化物半導体基板および半導体発光デバイス
JP5040708B2 (ja) 2007-05-17 2012-10-03 三菱化学株式会社 窒化物半導体結晶の製造方法
EP2175480A4 (en) 2007-07-19 2012-12-19 Mitsubishi Chem Corp GROUP III NITRIDE SEMICONDUCTOR SUBSTRATE AND METHOD FOR CLEANING THE SAME
US7727874B2 (en) * 2007-09-14 2010-06-01 Kyma Technologies, Inc. Non-polar and semi-polar GaN substrates, devices, and methods for making them

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029897A (ja) * 2000-07-10 2002-01-29 Sumitomo Electric Ind Ltd 単結晶GaN基板の製造方法と単結晶GaN基板
JP2006240988A (ja) 2001-04-12 2006-09-14 Sumitomo Electric Ind Ltd 窒化ガリウム結晶への酸素ドーピング方法と酸素ドープされたn型窒化ガリウム単結晶基板
JP2006315947A (ja) * 2005-04-11 2006-11-24 Nichia Chem Ind Ltd 窒化物半導体ウエハ及びその製造方法
JP2007314357A (ja) * 2006-05-23 2007-12-06 Mitsubishi Chemicals Corp 窒化物半導体結晶とその製造方法
JP2008091837A (ja) * 2006-10-05 2008-04-17 Hitachi Cable Ltd Iii族窒化物半導体の製造装置及び製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NIKKEI ELECTRONICS, 14 August 2006 (2006-08-14), pages 65,70
See also references of EP2261401A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130000552A1 (en) * 2011-06-28 2013-01-03 Nitride Solutions Inc. Device and method for producing bulk single crystals

Also Published As

Publication number Publication date
US8545626B2 (en) 2013-10-01
JP2009234906A (ja) 2009-10-15
EP2261401A1 (en) 2010-12-15
KR20100134577A (ko) 2010-12-23
EP2261401A4 (en) 2012-11-28
US20110129669A1 (en) 2011-06-02

Similar Documents

Publication Publication Date Title
WO2009110436A1 (ja) 窒化物半導体結晶とその製造方法
JP5725086B2 (ja) Iii族窒化物半導体結晶の製造方法、iii族窒化物半導体基板および半導体発光デバイス
JP5370613B2 (ja) 窒化物半導体結晶およびその製造方法
WO2010140564A1 (ja) 窒化物半導体結晶およびその製造方法
JP5472513B2 (ja) 単結晶基板、それを用いて得られるiii族窒化物結晶及びiii族窒化物結晶の製造方法
JP5509680B2 (ja) Iii族窒化物結晶及びその製造方法
JP4797793B2 (ja) 窒化物半導体結晶の製造方法
JP5445105B2 (ja) Iii族窒化物結晶の製造方法及びiii族窒化物結晶
JP2012136414A (ja) Iii族窒化物半導体基板、半導体発光デバイスおよびその製造方法
JP2014047097A (ja) 窒化物半導体結晶の製造方法
JP2013075791A (ja) Iii族窒化物半導体結晶の製造方法、iii族窒化物半導体基板およびiii族窒化物半導体結晶
JP5040708B2 (ja) 窒化物半導体結晶の製造方法
JP2014088272A (ja) 周期表第13族金属窒化物半導体結晶
JP4612403B2 (ja) Iii族窒化物半導体自立基板の製造方法
JP2011195388A (ja) Iii族窒化物半導体結晶とその製造方法、およびiii族窒化物半導体結晶の成長用下地基板
JP6115212B2 (ja) 周期表第13族金属窒化物半導体結晶の製造方法、それに用いる製造装置
JP2013170096A (ja) 第13族窒化物結晶の製造方法
JP2013199412A (ja) Iii族窒化物半導体結晶の製造方法
JP2018118873A (ja) 窒化物半導体基板の製造方法
JP2013116841A (ja) 周期表第13族金属窒化物半導体結晶の製造方法、周期表第13族金属窒化物半導体基板および周期表第13族金属窒化物半導体結晶

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09717726

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107019612

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009717726

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12920976

Country of ref document: US