WO2009110042A1 - 表示装置、液晶表示装置、有機el表示装置、薄膜基板及び表示装置の製造方法 - Google Patents

表示装置、液晶表示装置、有機el表示装置、薄膜基板及び表示装置の製造方法 Download PDF

Info

Publication number
WO2009110042A1
WO2009110042A1 PCT/JP2008/002939 JP2008002939W WO2009110042A1 WO 2009110042 A1 WO2009110042 A1 WO 2009110042A1 JP 2008002939 W JP2008002939 W JP 2008002939W WO 2009110042 A1 WO2009110042 A1 WO 2009110042A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
film
layer
display
substrate
Prior art date
Application number
PCT/JP2008/002939
Other languages
English (en)
French (fr)
Inventor
安松拓人
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN200880123794.3A priority Critical patent/CN101911158B/zh
Priority to US12/746,072 priority patent/US20100283056A1/en
Publication of WO2009110042A1 publication Critical patent/WO2009110042A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • H01L27/1266Multistep manufacturing methods with a particular formation, treatment or coating of the substrate the substrate on which the devices are formed not being the final device substrate, e.g. using a temporary substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • H10K71/421Thermal treatment, e.g. annealing in the presence of a solvent vapour using coherent electromagnetic radiation, e.g. laser annealing

Definitions

  • the present invention relates to a display device, a thin film substrate, and a method for manufacturing the display device.
  • a technique has been devised in which a thin film device is formed on a separately prepared support substrate and transferred onto a desired substrate.
  • Patent Document 1 Such a technique is disclosed in, for example, Patent Document 1.
  • a first separation layer made of an amorphous silicon film containing hydrogen is formed on a first substrate in a first step, and then the first separation layer is formed in a second step.
  • a thin film device layer is formed.
  • the first separation layer is irradiated with laser light to transform the phase transition from the amorphous silicon film to the polysilicon film and hydrogen gas. Is generated, a peeling phenomenon is generated in the first separation layer, and the first substrate is peeled off to produce a thin film device.
  • JP 2001-51296 A JP 2001-51296 A
  • a display device includes a first substrate having a base layer and a display element layer provided on the base layer, and the base layer of the first substrate is a colorless and transparent resin film deposited at room temperature. It is characterized by comprising.
  • a display device is provided so as to face the first substrate, and includes a base layer made of a colorless and transparent resin film, and a second display element layer provided on the base layer.
  • a substrate may be further provided.
  • the sacrificial film formed of a resin material having a heat resistant temperature of 150 ° C. or higher and a thermal expansion coefficient of 10 ppm / ° C. or lower corresponds to the non-display region of the display element layer. It may be formed between the layer and the base layer.
  • the display element layer includes a plurality of pixel areas and a light shielding area provided so as to partition the pixel area, and the non-display area of the display element layer corresponding to the sacrificial film May be a light shielding area.
  • the display element layer may include a peripheral circuit area
  • the non-display area of the display element layer corresponding to the sacrificial film may be a peripheral circuit area
  • the sacrificial film may be a polyimide resin.
  • the colorless and transparent resin film may be a polyparaxylene resin.
  • the display device according to the present invention may further include an element layer protective film between the base layer and the display element layer.
  • the base layer may be formed to a thickness that governs the bending or warping of the display device.
  • a liquid crystal display device includes a base layer composed of a colorless and transparent resin film deposited at room temperature, a display element layer including a TFT (thin film transistor; Thin Film Transistor) element provided on the base layer, And a CF (color filter) substrate having a base layer and a display element layer provided with a color filter provided on the base layer, opposite to the TFT substrate through a liquid crystal material. It is characterized by that.
  • a bottom emission type organic EL (electroluminescence) display device includes a base layer composed of a colorless and transparent resin film deposited at room temperature, a first electrode provided on the base layer, and a first electrode. An organic EL layer provided on the electrode and a second electrode provided on the organic EL layer are provided.
  • the bottom emission type organic EL display device may further include a sealing film provided on the second electrode and configured by a laminate of a resin film and an inorganic film.
  • the thin film substrate according to the present invention includes a base layer made of a colorless and transparent resin film deposited at room temperature, and a display element layer provided on the base layer.
  • the manufacturing method of the display device includes a first step of preparing a support substrate provided with a sacrificial film formed of a resin material having a heat resistant temperature of 150 ° C. or higher and a thermal expansion coefficient of 10 ppm / ° C. or lower; A second step of forming an element layer protective film on the sacrificial film; a third step of forming a display element layer on the element layer protective film; a fourth step of removing the support substrate from the sacrificial film; and an element layer protective film And a sixth step of forming a base layer by depositing a colorless and transparent resin film at room temperature on the protective film from which the sacrificial film has been removed. .
  • the method for manufacturing a display device after forming two support substrates on which the display element layers are formed by repeating the first to third steps, these are bonded substrates with the display element layers facing each other.
  • the base layer may be formed by depositing a colorless and transparent resin film at room temperature on the element layer protective film from which the sacrificial film has been removed.
  • the sacrificial film corresponding to the non-display area of the display element layer may be left and the sacrificial film corresponding to the other area may be removed.
  • the display element layer includes a plurality of pixel regions and a light-shielding region provided so as to partition the pixel region, and the display element layer is not left as a sacrificial film.
  • the display area may be a light shielding area.
  • the display element layer may include a peripheral circuit area
  • the non-display area of the display element layer leaving the sacrificial film may be a peripheral circuit area
  • the sacrificial film may be removed by plasma etching in the fifth step.
  • the sacrificial film may be removed by microwave plasma etching in the fifth step.
  • the sacrificial film may be a polyimide resin.
  • the colorless and transparent resin film may be a paraxylene resin.
  • the support substrate in the fourth step, may be removed from the sacrificial film by laser beam irradiation.
  • FIG. 1 is a plan view of a liquid crystal display device according to Embodiment 1.
  • FIG. 1 is a cross-sectional view of a liquid crystal display device according to Embodiment 1.
  • FIG. It is sectional drawing of the glass substrate in which the element layer protective film was formed. It is sectional drawing of the glass substrate in which the TFT element and the metal wiring were formed. It is sectional drawing of the glass substrate in which the element layer protective film was formed. It is sectional drawing of the glass substrate in which the color filter layer was formed. It is sectional drawing of the glass substrate in which the counter electrode was formed. It is sectional drawing of the bonded glass substrate (bonded substrate). It is sectional drawing of the bonding board
  • FIG. 6 is a cross-sectional view of a liquid crystal display device according to Embodiment 2.
  • FIG. 6 is a cross-sectional view of a liquid crystal display device according to Embodiment 3.
  • FIG. 6 is a cross-sectional view of an organic EL display device according to Embodiment 4.
  • FIG. It is sectional drawing of the glass substrate in which the element layer protective film was formed.
  • a display device according to an embodiment of the present invention will be described in detail based on the drawings.
  • the present invention is not limited to the following embodiment.
  • a display device a liquid crystal display device and an organic EL display device will be described as examples.
  • FIG. 1 schematically shows a plan view of a liquid crystal display device 10 according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram schematically showing a cross section of the liquid crystal display device 10 according to Embodiment 1 of the present invention.
  • the liquid crystal display device 10 includes a display area 12 composed of, for example, a plurality of pixels arranged in a matrix, and a peripheral circuit area 11 provided around the display area 12.
  • a driver unit 13 In the peripheral circuit region 11, a driver unit 13, a control unit 14, and the like are provided.
  • the gate driver and source driver corresponding to the driver unit 13 can be monolithic by adopting p-Si or ⁇ -Si for the TFT element.
  • the liquid crystal display device 10 has a base layer made of polyparaxylene as described later. Since it is formed of resin or the like, for example, a wide area as indicated by a dotted frame 15 in FIG. 1 has good flexibility.
  • the flexible region is not limited to the region indicated by the dotted frame 15 in FIG. 1, and can be formed in a desired range by adjusting the configuration of the film substrate.
  • the liquid crystal display device 10 includes a liquid crystal display panel including a TFT substrate 20, a TFT substrate 20, a liquid crystal material 19, and a CF substrate 21 disposed to face each other with a spacer (not shown), and further includes a polarization (not shown). A plate, a backlight unit, and the like are attached.
  • the TFT substrate 20 includes a base layer 22 composed of a colorless and transparent resin film deposited at room temperature.
  • a colorless and transparent resin film constituting the base layer 22 for example, polyparaxylene resin, acrylic resin, or the like can be used.
  • the element layer protective film 23 is formed on the base layer 22.
  • the element layer protective film 23 is made of, for example, SiO 2 .
  • the display element layer includes a TFT element 24 formed on the element layer protective film 23, an interlayer insulating film 25 provided so as to cover the TFT element 24, and a planarizing film 26 provided on the interlayer insulating film 25.
  • the metal wiring 28 penetrates the interlayer insulating film 25 and the planarizing film 26 and is electrically connected to the TFT element 24, and the alignment film 27 provided on the planarizing film 26. .
  • the TFT element 24 includes a semiconductor layer in which an active region is formed, a gate oxide film, a gate electrode, and the like.
  • the active region of the semiconductor layer is composed of a channel region and source and drain regions formed on the left and right sides thereof.
  • the gate oxide film is formed on the channel region of the semiconductor layer.
  • the gate electrode is formed on the gate oxide film.
  • the metal wiring 28 electrically connected to the TFT element 24 is formed of a transparent conductor such as ITO (indium-tin oxide) or IZO (indium-zinc oxide).
  • the interlayer insulating film 25 and the planarizing film 26 are formed using, for example, a TEOS film or a SiN film.
  • the CF substrate 21 includes a base layer 32 made of a colorless and transparent resin film deposited at room temperature.
  • a colorless and transparent resin film constituting the base layer 32 for example, a polyparaxylene resin, an acrylic resin, or the like can be used.
  • an element layer protective film 33 made of an inorganic film such as SiO 2 , SiON, or SiNx for protecting the color filter layer at the time of manufacture is formed.
  • a color filter layer composed of color layers 34 and 35 and a light shielding layer (black matrix) 36 is formed.
  • the light shielding layer 36 is made of a metal such as Cr (chromium) or a black resin.
  • the color layers 34 and 35 include three types of red (R), green (G), and blue (B), and any one color is arranged for each pixel of the liquid crystal display panel.
  • One pixel is constituted by three pixels of the adjacent red pixel, green pixel, and blue pixel, and various colors can be displayed.
  • the light shielding layer 36 is formed so as to partition these pixels.
  • a transparent resin layer 37 and a counter electrode 38 are formed on the color filter layer.
  • the transparent resin layer 37 is made of, for example, an acrylic resin.
  • the counter electrode 38 is formed of a transparent conductor such as ITO or IZO, for example.
  • a vertical alignment film (not shown) is formed on the counter electrode 38.
  • a glass substrate 42 having a thickness of about 0.7 mm is prepared as a support substrate.
  • a sacrificial film 40 made of a resin material having a heat resistant temperature of 150 ° C. or higher and a thermal expansion coefficient of 10 ppm / ° C. or lower is formed on the glass substrate 42 with a thickness of about 1 ⁇ m, for example.
  • a resin material of the sacrificial film 40 satisfying such conditions for example, a polyimide resin or a fluorene epoxy resin can be used.
  • the element layer protective film 23 is formed on the sacrificial film 40 with a thickness of about 500 nm using SiO 2 or the like. This element layer protective film 23 is for satisfactorily suppressing the display element layer from being etched when the sacrificial film 40 is removed.
  • a metal film, a semiconductor film, a gate insulating film, and the like are formed and patterned on the element layer protective film 23 to form the TFT element 24.
  • the element layer protective film 23 on which the TFT element 24 is formed for example, a TEOS film, a SiN film or the like is used to form the interlayer insulating film 25 and the planarizing film 26 with a thickness of about 1 to 2 ⁇ m. To form.
  • a TEOS film, a SiN film or the like is used to form the interlayer insulating film 25 and the planarizing film 26 with a thickness of about 1 to 2 ⁇ m.
  • a contact hole is provided from the surface of the planarizing film 26 to the TFT element 24, and a metal wiring 28 electrically connected to the TFT element 24 is formed. Further, a transparent conductive film such as an ITO film is formed and patterned on the surface of the planarizing film 26, and a pixel electrode (not shown) is also formed for each pixel.
  • a transparent conductive film such as an ITO film is formed and patterned on the surface of the planarizing film 26, and a pixel electrode (not shown) is also formed for each pixel.
  • an alignment film 27 is formed on the planarizing film 26 using a transparent resin.
  • a glass substrate 43 having a thickness of, for example, about 0.7 mm is prepared as a support substrate.
  • a sacrificial film 41 made of a resin material having a heat resistant temperature of 150 ° C. or higher and a thermal expansion coefficient of 10 ppm / ° C. or lower is formed on the glass substrate 43 with a thickness of about 1 ⁇ m, for example.
  • a resin material of the sacrificial film 41 satisfying such conditions for example, a polyimide resin or a fluorene epoxy resin can be used.
  • the element layer protective film 33 is formed on the sacrificial film 41 with a thickness of about 500 nm using SiO 2 , SiON, SiNx, or the like.
  • the element layer protective film 33 is for satisfactorily suppressing the etching of the color filter layer when the sacrificial film 41 is removed.
  • a light shielding layer 36 is formed on a predetermined region of the element layer protective film 33 with a metal such as Cr or a black resin.
  • red, green and blue color layers 34 and 35 are formed on the element layer protective film 33 using a red photosensitive resin, a green photosensitive resin and a blue photosensitive resin.
  • a transparent resin layer 37 having a thickness of, for example, about 1 to 3 ⁇ m is formed on the color filter layer composed of the color layers 34 and 35 using SiO 2 or the like.
  • the substrate in FIG. 4 and the substrate in FIG. 7 are bonded to each other with their element sides facing each other.
  • an opening is provided and bonded to each other with a frame-shaped sealing material, and then the liquid crystal material is injected between both substrates using the opening of the sealing material as a liquid crystal injection port.
  • the glass substrates 42 and 43 are peeled from the bonded substrate as shown in FIG. 10 by irradiating laser light (arrows in FIG. 9) from the glass substrates 42 and 43 side.
  • the removal of the glass substrates 42 and 43 may not be peeling by laser light irradiation.
  • the glass substrates 42 and 43 may be removed using a polishing apparatus.
  • the sacrificial films 40 and 41 exposed by removing the glass substrates 42 and 43 are removed by plasma etching, respectively.
  • the removal of the sacrificial films 40 and 41 is not limited to plasma etching, and may be performed by, for example, microwave plasma etching.
  • the base layers 22 and 32 made of a colorless and transparent resin film as shown in FIG. It is formed with a thickness of about 10 ⁇ m.
  • the base layers 22 and 32 are formed by using, for example, paraxylene-based resin by CVD (chemical vapor deposition) at room temperature (for example, 50 ° C. or less).
  • a polarizing plate and a backlight unit are provided on the TFT substrate 20 side, and the liquid crystal display device 10 is completed.
  • the first substrate is peeled off. Since it is difficult to completely eliminate the property and there is a possibility that peeling failure may occur, it is difficult to manufacture a device particularly on a large substrate, and it is also difficult to manufacture a very thin device.
  • the liquid crystal display device 10 according to Embodiment 1 of the present invention uses a colorless and transparent resin film as the base layers 22 and 32, it has good visibility and flexibility. Further, since the base layers 22 and 32 are deposited at room temperature, high temperature heat is not applied to the display element layer when the base layers 22 and 32 are formed on the display element layer. Therefore, the display characteristics of the device are improved.
  • the entire display device is more flexible and has better display characteristics.
  • a colorless and transparent resin film used for the base layers 22 and 32 is formed of a polyparaxylene resin or the like.
  • a polyimide film (3.5 ⁇ m thickness), which is a typical resin conventionally used as a base layer, and changes with the wavelength (nm) at that time.
  • permeability (%) of the obtained light is shown.
  • light is transmitted through the polyparaxylene resin (polyparaxylene film (10 ⁇ m thickness)) used for the base layers 22 and 32 according to the present embodiment, and the wavelength (nm) at that time is set.
  • permeability (%) of the light which changed with it is shown. From the graph of FIG. 11, the substrate layer using polyimide has a sharply deteriorated transmittance when the wavelength is 500 nm or less, and the transmitted light is colored. On the other hand, as can be seen from the graph of FIG. 12, the base layers 22 and 32 using polyparaxylene stably show a transmittance of about 90% even when the wavelength changes. For this reason, the liquid crystal display device 10 using such base layers 22 and 32 has very good display visibility.
  • the base layers 22 and 32 of the TFT substrate 61 and the CF substrate 21 are formed of paraxylene resin or the like after the step of applying heat, a polyimide film or the like that has undergone the step of applying heat. Unlike the base layer formed in (1), a specific warp does not occur, the flexibility is further improved, and a complete scroll can be obtained. For this reason, the apparatus can be stored and moved in a safe and space-saving manner, and there are advantages in terms of manufacturing efficiency and manufacturing cost.
  • the manufacturing method of the liquid crystal display device 10 is as follows. First, a sacrificial film 40 formed of a resin material having a heat resistant temperature of 150 ° C. or higher and a thermal expansion coefficient of 10 ppm / ° C. or lower on a support substrate (glass substrates 42 and 43). 41 (polyimide resin) is provided. For this reason, even if the heating in the formation process of the display element layer is applied, the good bonding state between the sacrificial films 40 and 41 and the support substrate can be maintained.
  • the sacrificial films 40 and 41 are removed to the display element layer when the sacrificial films 40 and 41 are removed by etching or the like. Can be suppressed satisfactorily. Furthermore, since the support substrate is peeled off from the sacrificial films 40 and 41 by laser light irradiation, the support substrate can be easily and completely peeled off. Further, since the base layers 22 and 32 are formed on the element layer protective films 23 and 33 from which the sacrificial films 40 and 41 have been removed by depositing polyparaxylene resin at room temperature, high temperature heat is applied to the display elements. The display characteristics of the device are good. Furthermore, since the base layers 22 and 32 are formed by vapor deposition after the sacrificial films 40 and 41 are securely removed, an extremely thin flexible device can be manufactured even with a large substrate.
  • the sacrificial films 40 and 41 when the sacrificial films 40 and 41 are removed by plasma etching, the sacrificial films 40 and 41 can be easily removed, and the manufacturing efficiency is improved. Further, when the sacrificial films 40 and 41 are removed by microwave plasma etching, the sacrificial films 40 and 41 can be removed at a low temperature, so that the display element is not affected by heat. Therefore, the display characteristics of the device are better.
  • Embodiment 2 Next, a liquid crystal display device 50 according to Embodiment 2 of the present invention will be described.
  • the same components as those of the liquid crystal display device 10 are denoted by the same reference numerals, and the description thereof is omitted.
  • FIG. 13 schematically shows a cross-sectional view of the liquid crystal display device 50.
  • the liquid crystal display device 50 is different from the liquid crystal display device 10 shown in the first embodiment in that only the regions corresponding to the light shielding layers 36 of the base layers 22 and 32, that is, the non-display regions are replaced with the sacrificial films 40 and 41. Only the point is different.
  • the sacrificial films 40 and 41 are not completely removed, and only the region corresponding to the light shielding layer 36 (light shielding region) of the CF substrate 21 that partitions a plurality of pixel regions is left. .
  • the base layers 22 and 32 are formed in the region where the sacrificial films 40 and 41 are removed.
  • the sacrificial films 40 and 41 are present, the withstand pressure strength and the like are better than that of the base layers 22 and 32 on the entire surface of the element layer protective films 23 and 33. It becomes. Further, even if a colored resin film is used as the sacrificial films 40 and 41, it can be prevented from adversely affecting the display by being formed only on the light shielding layer 36.
  • FIG. 14 is a diagram schematically showing a cross section of the liquid crystal display device 60.
  • the liquid crystal display device 60 includes a TFT substrate 61 and a CF substrate 62.
  • Base layers 63 and 64 having the same configuration as the base layers 22 and 32 of the liquid crystal display devices 10 and 50 are formed on the surfaces of the TFT substrate 61 and the CF substrate 62.
  • sacrificial films 65 and 66 are formed in place of the base layers 63 and 64 in a region (peripheral circuit region) corresponding to the periphery of the TFT substrate 61 and the CF substrate 62 which are non-display regions.
  • the peripheral circuit can be formed more stably. Further, even if a colored resin film is used as the sacrificial films 65 and 66, it can be prevented from adversely affecting the display because it is formed only in the peripheral circuit region.
  • FIG. 14 shows a configuration in which the peripheral circuit region is provided on each of the TFT substrate 61 and the CF substrate 62.
  • the present invention is not limited to this, and the peripheral circuit region is provided only on the TFT substrate 61 side. Corresponding to this, it may be provided only on the TFT substrate 61 side.
  • FIG. 15 is a diagram schematically showing a cross section of an organic EL display device 70 according to Embodiment 4 of the present invention.
  • the organic EL display device 70 includes a base layer 71 made of a colorless and transparent resin film deposited at room temperature.
  • a colorless and transparent resin film for example, paraxylene resin or acrylic resin can be used.
  • the element layer protective film 72 is formed on the base layer 71.
  • the element layer protective film 72 is made of, for example, SiO 2 .
  • a display element layer including a TFT element 74 and the like is formed on the element layer protective film 72.
  • the display element layer penetrates through the TFT element 74 formed on the element layer protective film 72, the interlayer insulating film 75 such as a TEOS film or SiN film provided so as to cover the TFT element 74, and the interlayer insulating film 75.
  • a metal wiring electrically connected to the TFT element 74 The metal wiring further extends on the interlayer insulating film 75 to form the first electrode 77.
  • An insulating film 76 such as a TEOS film or a SiN film is further formed on the interlayer insulating film 75.
  • the TFT element 74 includes a semiconductor layer in which an active region is formed, a gate oxide film, a gate electrode, and the like.
  • the active region of the semiconductor layer is composed of a channel region and source and drain regions formed on the left and right sides thereof.
  • the gate oxide film is formed on the channel region of the semiconductor layer.
  • the gate electrode is formed on the gate oxide film.
  • the organic EL display device 70 is a bottom emission type in which light emission is extracted from the first electrode 77 side
  • the first electrode 77 has a high work such as ITO or SnO 2 from the viewpoint of improving the light extraction efficiency. It is preferable to use a thin film of a material having a function and high light transmittance.
  • the organic EL layer 78 is formed on the first electrode 77.
  • the organic EL layer 78 includes a hole transport layer and a light emitting layer.
  • the hole transport layer is not limited as long as the hole injection efficiency is good.
  • organic materials such as a triphenylamine inducer, a polyparaphenylene vinylene (PPV) inducer, and a polyfluorene derivative can be used.
  • the light emitting layer is not particularly limited, and for example, 8-hydroxyquinolol inducer, thiazole inducer, benzoxazole inducer and the like can be used. Moreover, you may combine 2 or more types among these materials, and may combine additives, such as dopant material.
  • the organic EL layer 78 has a two-layer structure of a hole transport layer and a light emitting layer, but is not limited to this configuration. That is, the organic EL layer 78 may have a single-layer structure composed of only the light emitting layer. Further, the organic EL layer 78 may be configured by one or more of a hole transport layer, a hole injection layer, an electron injection layer, and an electron transport layer, and a light emitting layer.
  • the second electrode 79 is formed on the organic EL layer 78 and the insulating film 76.
  • the second electrode 79 has a function of injecting electrons into the organic EL layer 78.
  • the second electrode 79 can be formed of a thin film such as Mg, Li, Ca, Ag, Al, In, Ce, or Cu, but is not limited thereto.
  • the first electrode 77 has a function of injecting holes into the organic EL layer 78
  • the second electrode 79 has a function of injecting electrons into the organic EL layer 78.
  • the holes and electrons injected from the first electrode 77 and the second electrode 79 are recombined in the organic EL layer 78, whereby the organic EL layer 78 emits light.
  • the base layer 71 and the first electrode 77 are configured to be light transmissive
  • the second electrode 79 is configured to be light reflective. Light emission is transmitted through the first electrode 77 and the base layer 71 and extracted from the organic EL layer 78. (Bottom emission method).
  • a planarizing film 80 such as a TEOS film or a SiN film is formed.
  • a sealing film 81 composed of a laminate of resin films 82, 84, 86 and inorganic films 83, 85 is formed.
  • the resin films 82, 84, and 86 may be formed using the same resin material as that of the base layer 71, or may be formed using other resin materials.
  • the inorganic films 83 and 85 are formed using, for example, SiNx, SiO 2 or Al 2 O 3 .
  • the sealing film 81 may not be formed by stacking the resin film and the inorganic film in layers as described above, and may be formed by one layer each. Furthermore, the sealing film 81 may be configured using a metal thin film.
  • a glass substrate 91 having a thickness of about 0.7 mm is prepared as a support substrate.
  • a sacrificial film 90 made of a resin material having a heat resistant temperature of 400 ° C. or lower and a thermal expansion coefficient of 10 ppm / ° C. or lower is formed on the glass substrate 91 with a thickness of about 1 ⁇ m, for example.
  • a resin material of the sacrificial film 90 that satisfies such conditions for example, a polyimide resin or a fluorene epoxy resin can be used.
  • the element layer protective film 72 is formed on the sacrificial film 90 with a thickness of about 500 nm using SiO 2 or the like. This element layer protective film 72 is for satisfactorily suppressing the etching of the display element layer when the sacrificial film 90 is removed.
  • a TFT element 74 is formed on the element layer protective film 72 by forming and patterning a metal film or a semiconductor film.
  • an interlayer insulating film 75 is formed on the element layer protective film 72 on which the TFT element 74 is formed using, for example, a TEOS film, a SiN film, or the like so as to have a thickness of about 1 to 2 ⁇ m.
  • a contact hole is provided from the surface of the interlayer insulating film 75 to the TFT element 74, a metal wiring electrically connected to the TFT element 74 is formed by a transparent conductive material such as ITO, and further, for example, about 150 nm by patterning or the like.
  • a first electrode 77 having a thickness is formed.
  • an insulating film 76 having a thickness of, for example, about 500 nm is formed on the interlayer insulating film 75, a portion corresponding to the first electrode 77 is removed by etching.
  • an organic EL layer 78 is provided by forming a hole transport layer and a light emitting layer on the first electrode 77.
  • a hole transport material paint in which an organic polymer material that is a hole transport material is dissolved or dispersed in a solvent is supplied onto the first electrode 77 exposed by, for example, an ink jet method. Then, a hole transport layer is formed by performing a baking treatment.
  • an organic light-emitting material paint in which an organic polymer material that is a light-emitting material is dissolved or dispersed in a solvent is supplied so as to cover the hole transport layer by, for example, an inkjet method. Then, a light emitting layer is formed by performing a baking process.
  • the second electrode 79 is formed on the insulating film 76 and the organic EL layer 78 by sputtering or the like using Mg, Li, Ca, Ag, Al, In, Ce, Cu, or the like.
  • the thickness of the second electrode 79 is about 150 nm, for example.
  • a planarizing film 80 is formed by forming a TEOS film, a SiN film, or the like on the second electrode 79 and polishing the surface by chemical mechanical polishing (CMP) or the like.
  • CMP chemical mechanical polishing
  • a sealing film 81 is formed by depositing a resin film 82, an inorganic film 83, a resin film 84, an inorganic film 85, and a resin film 86 in this order on the planarizing film 80.
  • the resin films 82, 84, and 86 are formed using, for example, paraxylene-based resin or the like so as to have a thickness of about 10 ⁇ m.
  • the inorganic films 83 and 85 are formed using SiNx, SiO 2 , Al 2 O 3 or the like so as to have a thickness of about 500 nm, respectively.
  • the glass substrate 91 is peeled off by irradiating laser light (arrows in FIG. 19) from the glass substrate 91 side.
  • the removal of the glass substrate 91 may not be peeling by laser light irradiation.
  • the glass substrate 91 may be removed using a polishing and etching apparatus.
  • the sacrificial film 90 exposed by removing the glass substrate 91 is removed by plasma etching.
  • the removal of the sacrificial film 90 is not limited to plasma etching, and may be performed by, for example, microwave plasma etching.
  • a base layer 71 made of a colorless and transparent resin film as shown in FIG. 15 is formed on the element layer protective film 72 exposed by removing the sacrificial film 90 with a thickness of about 10 ⁇ m, for example.
  • the base layer 71 is formed by, for example, CVD (chemical vapor deposition) at room temperature (for example, 50 ° C. or lower) using a polyparaxylene resin.
  • CVD chemical vapor deposition
  • FIG. 20 is a diagram schematically showing a cross section of the organic EL display device 100.
  • the organic EL display device 100 is different from the organic EL display device 70 shown in Embodiment 4 in that a base layer 71 that is the thickest of the constituent layers of the device shown in FIG. Is different.
  • FIG. 21 is a diagram schematically showing a cross section of the organic EL display device 110.
  • the organic EL display device 110 is different from the organic EL display device 100 in that a base layer 71 having the maximum thickness among the constituent layers of the device is provided only in the lowermost layer.
  • FIG. 22 is a diagram schematically showing a cross section of the organic EL display device 120.
  • the organic EL display device 110 is different from the organic EL display device 100 in that a base layer 71 having the maximum thickness among the constituent layers of the device is provided only in the uppermost layer.
  • the organic EL display devices 100, 110, and 120 are governed by the base layer 71 that is the thickest of the constituent layers of the device, such as bending, warping, and rounding. . Therefore, it is possible to satisfactorily suppress warping or bending of the device itself formed in the apparatus, and the quality of the display device is further improved.
  • the configuration in which the base layer is made thickest to control the degree of bending or warping of the device is not limited to the organic EL display device, and may be used for the liquid crystal display device shown in the embodiment of the present invention.
  • the organic EL display device 70 according to Embodiment 4 of the present invention uses a colorless and transparent resin film as the base layer 71, it has good visibility and flexibility. Further, since the base layer 71 is deposited at room temperature, high temperature heat is not applied to the display element layer when the base layer 71 is formed on the display element layer. Therefore, the display characteristics of the device are improved.
  • the organic EL display device 70 also includes the base layer 71 in the sealing film 81, the entire display device has better flexibility and display characteristics.
  • the colorless and transparent resin film used for the base layer 71 is formed of para-xylene resin or the like, display visibility is very good.
  • the base layer 71 is made of polyparaxylene-based resin or the like, unlike a base layer formed of a general polyimide film or the like, no specific warpage occurs and the flexibility is further improved. And can be made into a complete scroll. For this reason, the apparatus can be stored and moved in a safe and space-saving manner, and there are advantages in terms of manufacturing efficiency and manufacturing cost.
  • the organic EL display device 70 is manufactured by a sacrificial film 90 (polyimide) formed on a support substrate (glass substrate 91) with a resin material having a heat resistant temperature of 150 ° C. or higher and a thermal expansion coefficient of 10 ppm / ° C. or lower. System resin). For this reason, even if heating or the like in the process of forming the display element layer is applied, a good bonding state between the sacrificial film 90 and the support substrate can be maintained.
  • the element layer protective film 72 is formed on the sacrificial film 90 before forming the display element layer, it is preferable that the display element layer is removed when the sacrificial film 90 is removed by etching or the like. Can be suppressed.
  • the support substrate is peeled off from the sacrificial film 90 by laser light irradiation, the support substrate can be easily and completely peeled off.
  • the base layer 71 is formed by depositing paraxylene-based resin or the like at room temperature on the element layer protective film 72 from which the sacrificial film 90 has been removed, the display element is not subjected to high-temperature heat, and the display characteristics of the device Becomes better.
  • the base layer 71 is formed by vapor deposition after the sacrificial film 90 is securely removed, an ultrathin flexible device can be manufactured even with a large substrate.
  • the sacrificial film 90 can be easily removed, and the manufacturing efficiency is improved. Further, when the sacrificial film 90 is removed by microwave plasma etching, the sacrificial film 90 can be removed at a low temperature, so that the display element is not affected by heat. Therefore, the display characteristics of the device are better.
  • the display device is related to LCD (liquid crystal display) and organic EL (organic electroluminescence), but electrophoresis (electrophoretic), PD (plasma display); Plasma display), PALC (plasma addressed liquid crystal display), inorganic EL (inorganic electroluminescence), FED (field emission display), or SED (surface-conduction electron-emitter display) It may be a display device related to an electric field display.
  • the present invention is useful for a display device, a thin film substrate, and a method for manufacturing a display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

液晶表示装置(10)は、基体層(22)と、基体層(22)上に設けられた表示素子層(24)と、を有する第1基板(20)を備え、第1基板(20)の基体層(22)は、室温で蒸着された無色透明の樹脂膜で構成されている。

Description

表示装置、液晶表示装置、有機EL表示装置、薄膜基板及び表示装置の製造方法
 本発明は、表示装置、薄膜基板及び表示装置の製造方法に関する。
 近年、ディスプレイ分野では、フレキシブル性、耐衝撃性や軽量性の点でガラス基板に比べて大きなメリットのあるプラスチック基板等を用いたフレキシブル基板が非常に注目を浴びており、ガラス基板のディスプレイでは不可能であった新たなディスプレイが創出される可能性を秘めている。
 フレキシブル基板のような薄膜デバイスを形成する場合は、別に準備した支持基板上に薄膜デバイスを形成しておき、それを所望の基板上へ転写する技術が考案されている。
 このような技術は、例えば特許文献1等に開示されている。特許文献1によれば、まず、第1の工程で第1の基材上に水素含有のアモルファスシリコン膜からなる第1の分離層を形成した後、第2の工程で第1の分離層上に薄膜デバイス層を形成する。次に、第3の工程で薄膜デバイス層の上に第2の基材を接着した後、第1の分離層にレーザ光を照射してアモルファスシリコン膜からポリシリコン膜への相転移と水素ガスの発生を行い、第1の分離層で剥離現象を発生させ、第1の基材を剥がすことで、薄膜デバイスを作製している。
特開2001-51296号公報
 本発明に係る表示装置は、基体層と、基体層上に設けられた表示素子層と、を有する第1基板を備え、第1基板の基体層は、室温で蒸着された無色透明の樹脂膜で構成されたことを特徴とする。
 また、本発明に係る表示装置は、第1基板に対向するように設けられ、無色透明の樹脂膜で構成された基体層と、基体層上に設けられた表示素子層と、を有する第2基板をさらに備えてもよい。
 さらに、本発明に係る表示装置は、耐熱温度が150℃以上で、熱膨張係数が10ppm/℃以下の樹脂材料で形成された犠牲膜が、表示素子層の非表示領域に対応して表示素子層と基体層との間に形成されていてもよい。
 また、本発明に係る表示装置は、表示素子層が、複数の画素領域と、画素領域を区画するように設けられた遮光領域と、を備え、犠牲膜が対応する表示素子層の非表示領域は、遮光領域であってもよい。
 さらに、本発明に係る表示装置は、表示素子層が、周辺回路領域を備え、犠牲膜が対応する表示素子層の非表示領域は、周辺回路領域であってもよい。
 また、本発明に係る表示装置は、犠牲膜が、ポリイミド系樹脂であってもよい。
 さらに、本発明に係る表示装置は、無色透明の樹脂膜が、ポリパラキシレン系樹脂であってもよい。
 また、本発明に係る表示装置は、基体層と表示素子層との間に、素子層保護膜をさらに備えてもよい。
 さらに、本発明に係る表示装置は、基体層が、表示装置の曲がり又は反りを支配する厚さに形成されていてもよい。
 本発明に係る液晶表示装置は、室温で蒸着された無色透明の樹脂膜で構成された基体層と、基体層上に設けられたTFT(薄膜トランジスタ;Thin Film Transistor)素子を備える表示素子層と、を有するTFT基板と、TFT基板と液晶材料を介して対向すると共に、基体層と、基体層上に設けられたカラーフィルタを備える表示素子層と、を有するCF(カラーフィルタ)基板と、を備えたことを特徴とする。
 本発明に係るボトムエミッション型の有機EL(エレクトロルミネッセンス)表示装置は、室温で蒸着された無色透明の樹脂膜で構成された基体層と、基体層上に設けられた第1電極と、第1電極上に設けられた有機EL層と、有機EL層上に設けられた第2電極と、を備えたことを特徴とする。
 また、本発明に係るボトムエミッション型の有機EL表示装置は、第2電極上に設けられ、樹脂膜及び無機膜の積層体により構成された封止膜をさらに備えてもよい。
 本発明に係る薄膜基板は、室温で蒸着された無色透明の樹脂膜で構成された基体層と、基体層上に設けられた表示素子層と、を備えたことを特徴とする。
 本発明に係る表示装置の製造方法は、耐熱温度が150℃以上で、熱膨張係数が10ppm/℃以下の樹脂材料で形成された犠牲膜が設けられた支持基板を準備する第1ステップと、犠牲膜上に素子層保護膜を形成する第2ステップと、素子層保護膜上に表示素子層を形成する第3ステップと、犠牲膜から支持基板を除去する第4ステップと、素子層保護膜から犠牲膜を除去する第5ステップと、犠牲膜を除去した保護膜上に室温で無色透明の樹脂膜を蒸着することにより基体層を形成する第6ステップと、を備えたことを特徴とする。
 また、本発明に係る表示装置の製造方法は、第1から第3ステップを繰り返すことによって表示素子層を形成した支持基板を二つ形成した後、これらを表示素子層を対向させて貼り合わせ基板を形成する貼り合わせ基板形成ステップをさらに備え、第4ステップでは貼り合わせ基板の犠牲膜から支持基板をそれぞれ除去し、第5ステップでは貼り合わせ基板の素子層保護膜から犠牲膜をそれぞれ除去し、第6ステップでは犠牲膜を除去した素子層保護膜上に室温で無色透明の樹脂膜を蒸着することにより基体層をそれぞれ形成してもよい。
 さらに、本発明に係る表示装置の製造方法は、第5ステップで、表示素子層の非表示領域に対応する犠牲膜を残し、それ以外の領域に対応する犠牲膜を除去してもよい。
 また、本発明に係る表示装置の製造方法は、表示素子層が、複数の画素領域と、画素領域を区画するように設けられた遮光領域と、を備え、犠牲膜を残す表示素子層の非表示領域は、遮光領域であってもよい。
 さらに、本発明に係る表示装置の製造方法は、表示素子層が、周辺回路領域を備え、犠牲膜を残す表示素子層の非表示領域は、周辺回路領域であってもよい。
 また、本発明に係る表示装置の製造方法は、第5ステップで、犠牲膜の除去をプラズマエッチングにより行ってもよい。
 さらに、本発明に係る表示装置の製造方法は、第5ステップで、犠牲膜の除去をマイクロ波プラズマエッチングにより行ってもよい。
 また、本発明に係る表示装置の製造方法は、犠牲膜が、ポリイミド系樹脂であってもよい。
 さらに、本発明に係る表示装置の製造方法は、無色透明の樹脂膜が、パラキシレン系樹脂であってもよい。
 また、本発明に係る表示装置の製造方法は、第4ステップで、犠牲膜から支持基板をレーザ光照射により剥離させて除去してもよい。
実施形態1に係る液晶表示装置の平面図である。 実施形態1に係る液晶表示装置の断面図である。 素子層保護膜が形成されたガラス基板の断面図である。 TFT素子及びメタル配線が形成されたガラス基板の断面図である。 素子層保護膜が形成されたガラス基板の断面図である。 カラーフィルタ層が形成されたガラス基板の断面図である。 対向電極が形成されたガラス基板の断面図である。 貼り合わされたガラス基板(貼り合わせ基板)の断面図である。 レーザ光が照射された貼り合わせ基板の断面図である。 ガラス基板が剥離した貼り合わせ基板の断面図である。 ポリイミド膜(3.5μm厚)の光透過率のグラフである。 ポリパラキシレン膜(10μm厚)の光透過率のグラフである。 実施形態2に係る液晶表示装置の断面図である。 実施形態3に係る液晶表示装置の断面図である。 実施形態4に係る有機EL表示装置の断面図である。 素子層保護膜が形成されたガラス基板の断面図である。 第1電極、有機EL層及び第2電極が形成されたガラス基板の断面図である。 封止膜が形成されたガラス基板の断面図である。 レーザ光が照射されたガラス基板の断面図である。 最厚の基体層が最上層及び最下層に形成された有機EL表示装置の断面図である。 最厚の基体層が最下層に形成された有機EL表示装置の断面図である。 最厚の基体層が最上層に形成された有機EL表示装置の断面図である。
 以下、本発明の実施形態に係る表示装置を、図面に基づいて詳細に説明する。尚、本発明は、以下の実施形態に限定されるものではない。また、表示装置として、液晶表示装置及び有機EL表示装置を例に挙げて説明する。
 (実施形態1)
 (液晶表示装置10の構成)
 図1は、本発明の実施形態1に係る液晶表示装置10の平面図を模式的に示したものである。図2は、本発明の実施形態1に係る液晶表示装置10の断面を模式的に示した図である。
 液晶表示装置10は、例えばマトリクス状に配置された複数の画素等で構成される表示領域12、及び、表示領域12の周辺に設けられた周辺回路領域11を備えている。周辺回路領域11には、ドライバ部13やコントロール部14等が設けられている。ドライバ部13にあたるゲートドライバやソースドライバは、TFT素子をp-Siもしくはμ―Siを採用する事によりモノリシック化が可能であり、液晶表示装置10は、後述するように基体層がポリパラキシレン系樹脂等で形成されているため、例えば、図1の点線枠15に示すような広範囲な領域が良好なフレキシブル性を有している。また、フレキシブルな領域は、図1の点線枠15で示す領域に限らず、フィルム基板の構成等を調節することにより、所望の範囲に形成することができる。
 液晶表示装置10は、TFT基板20と、TFT基板20と液晶材料19及び不図示のスペーサを介して対向配置されたCF基板21と、で構成される液晶表示パネルを備え、さらに不図示の偏光板やバックライトユニット等を取り付けて構成されている。
 TFT基板20は、室温で蒸着された無色透明の樹脂膜で構成された基体層22を備えている。基体層22を構成する無色透明の樹脂膜としては、例えば、ポリパラキシレン系樹脂、あるいは、アクリル系樹脂等を用いることができる。
 基体層22上には、素子層保護膜23が形成されている。素子層保護膜23は、例えば、SiO等で形成されている。
 素子層保護膜23上には、TFT素子24等を備えた表示素子層が形成されている。表示素子層は、素子層保護膜23上に形成されたTFT素子24と、TFT素子24を覆うように設けられた層間絶縁膜25と、層間絶縁膜25上に設けられた平坦化膜26と、層間絶縁膜25及び平坦化膜26を貫通してTFT素子24に電気的に接続されたメタル配線28と、及び、平坦化膜26上に設けられた配向膜27と、で構成されている。
 TFT素子24は、活性領域が形成された半導体層、ゲート酸化膜、及び、ゲート電極等を備えている。半導体層の活性領域は、チャネル領域と、その左右両側に形成されたソース領域及びドレイン領域とにより構成されている。ゲート酸化膜は、半導体層のチャネル領域上に形成されている。ゲート電極は、ゲート酸化膜上に形成されている。
 TFT素子24に電気的に接続されたメタル配線28は、例えば、ITO(インジウム-錫酸化物)又はIZO(インジウム-亜鉛酸化物)等の透明導電体で形成されている。
 層間絶縁膜25及び平坦化膜26は、例えば、TEOS膜やSiN膜等を用いて形成されている。
 CF基板21は、室温で蒸着された無色透明の樹脂膜で構成された基体層32を備えている。基体層32を構成する無色透明の樹脂膜としては、例えば、ポリパラキシレン系樹脂、あるいは、アクリル系樹脂等を用いることができる。
 基体層32上には、製造時におけるカラーフィルタ層の保護のためのSiO、SiON、又は、SiNx等の無機膜で構成された素子層保護膜33が形成されている。
 素子層保護膜33上には、色層34,35及び遮光層(ブラックマトリクス)36で構成されたカラーフィルタ層が形成されている。遮光層36は、Cr(クロム)等の金属又は黒色樹脂により形成されている。色層34,35には、赤色(R)、緑色(G)及び青色(B)の3種類があり、液晶表示パネルの画素毎にいずれか1色が配置されている。隣接する赤色画素、緑色画素及び青色画素の3つの画素により1つのピクセルが構成され、種々の色の表示を可能としている。また、遮光層36は、これらの画素をそれぞれ区画するように形成されている。
 カラーフィルタ層上には、透明樹脂層37及び対向電極38が形成されている。透明樹脂層37は、例えば、アクリル樹脂で形成されている。対向電極38は、例えば、ITO又はIZO等の透明導電体で形成されている。対向電極38上には垂直配向膜(不図示)が形成されている。
 (液晶表示装置10の製造方法)
 次に、本発明の実施形態に係る液晶表示装置10の製造方法について説明する。尚、以下に示す製造方法は単なる例示であり、本発明に係る液晶表示装置10は以下に示す方法により製造されたものに限定されるものではない。
 まず、図3に示すように、支持基板として、例えば厚さ0.7mm程度のガラス基板42を準備する。
 次に、ガラス基板42上に、耐熱温度が150℃以上で、熱膨張係数が10ppm/℃以下の樹脂材料で形成された犠牲膜40を、例えば1μm程度の厚さで形成する。このような条件を満たす犠牲膜40の樹脂材料としては、例えば、ポリイミド系樹脂、又は、フルオレン系エポキシ樹脂を用いることができる。
 次いで、犠牲膜40上にSiO等により素子層保護膜23を500nm程度の厚さで形成する。この素子層保護膜23は、犠牲膜40を除去する際に表示素子層がエッチングされるのを良好に抑制するためのものである。
 続いて、図4に示すように、素子層保護膜23上に、金属膜、半導体膜、及び、ゲート絶縁膜等の形成及びパターニング等を行い、TFT素子24を形成する。
 次に、TFT素子24を形成した素子層保護膜23上に、例えば、TEOS膜やSiN膜等を用いて、層間絶縁膜25及び平坦化膜26を、それぞれ厚さが1~2μm程度となるように形成する。
 続いて、平坦化膜26の表面からTFT素子24までコンタクトホールを設け、TFT素子24と電気的に接続するメタル配線28を形成する。また、平坦化膜26の表面には、例えばITO膜等の透明導電膜を形成してパターニングし、画素ごとに画素電極(不図示)も形成する。
 次いで、平坦化膜26上に透明樹脂を用いて配向膜27を形成する。
 次に、上記の工程とは別に、図5に示すように、支持基板として、例えば厚さ0.7mm程度のガラス基板43を準備する。
 次に、ガラス基板43上に、耐熱温度が150℃以上で、熱膨張係数が10ppm/℃以下の樹脂材料で形成された犠牲膜41を、例えば1μm程度の厚さで形成する。このような条件を満たす犠牲膜41の樹脂材料としては、例えば、ポリイミド系樹脂、又は、フルオレン系エポキシ樹脂を用いることができる。
 次いで、犠牲膜41上にSiO、SiON、又は、SiNx等により素子層保護膜33を500nm程度の厚さで形成する。この素子層保護膜33は、犠牲膜41を除去する際にカラーフィルタ層がエッチングされるのを良好に抑制するためのものである。
 続いて、図6に示すように、素子層保護膜33の所定の領域上に、Cr等の金属又は黒色樹脂により遮光層36を形成する。
 次に、赤色感光性樹脂、緑色感光性樹脂及び青色感光性樹脂を使用して、素子層保護膜33上に赤色、緑色及び青色の色層34,35を形成する。
 次いで、図7に示すように、色層34,35で構成されたカラーフィルタ層上に、例えば、1~3μm程度の厚さの透明樹脂層37を、SiO等を用いて形成する。
 次に、透明樹脂層37上にITOをスパッタリングして対向電極38を形成した後、対向電極38の上に垂直配向膜を形成する。
 続いて、図8に示すように、図4における基板と、図7における基板とを、互いの素子側を対向させて貼り合わせる。基板貼り合わせの際は、開口部を設け枠状のシール材により互いに接着させ、その後、シール材の開口部を液晶注入口として液晶材料を両基板間に注入する。
 次いで、図9に示すように、ガラス基板42,43側からレーザ光(図9における矢印)を照射することにより、図10に示すように貼り合わせ基板からガラス基板42,43をそれぞれ剥離させる。
 ここで、ガラス基板42,43の除去は、レーザ光照射による剥離でなくてもよい。例えば、研磨装置を用いてガラス基板42,43を除去してもよい。
 次に、ガラス基板42,43を除去したことにより剥き出しとなった犠牲膜40,41を、それぞれプラズマエッチングにより除去する。
 ここで、犠牲膜40,41の除去は、プラズマエッチングに限らず、例えば、マイクロ波プラズマエッチングにより行ってもよい。
 続いて、犠牲膜40,41を除去したことにより剥き出しとなった素子層保護膜23,33上に、図2に示すような無色透明の樹脂膜で構成された基体層22,32を、例えば10μm程度の厚さで形成する。ここで、基体層22,32は、例えば、パラキシレン系樹脂を用いて、室温(例えば50℃以下)でのCVD(化学蒸着:Chemical Vapor Deposition)により形成する。
 続いて、偏光板及びバックライトユニット(不図示)をTFT基板20側に設けて、液晶表示装置10が完成する。
 -作用効果-
 次に、本発明の実施形態1の作用効果について説明する。
 従来の、レーザ光を照射して、犠牲膜としてのアモルファスシリコン膜からポリシリコン膜への相転移と水素ガスを発生させて第1の基材を剥がす技術では、第1の分離層での密着性を完全に無くすことが難しく、剥離不良が生じるおそれがあるため、特に大型基板でのデバイスの作製が困難であり、さらに、極めて薄いデバイスの作製も困難となる。
 しかしながら、本発明の実施形態1に係る液晶表示装置10は、基体層22,32として無色透明の樹脂膜を用いているため、良好な視認性及びフレキシブル性を備えている。また、基体層22,32が室温で蒸着されているため、表示素子層に基体層22,32を形成する際、表示素子層に高温の熱が加わらない。従って、装置の表示特性が良好となる。
 また、液晶表示装置10は、TFT基板61とCF基板21とがそれぞれ上記基体層22,32を備えているため、表示装置全体でよりフレキシブル性が良好となり、且つ、表示特性が良好となる。
 さらに、液晶表示装置10は、基体層22,32に用いる無色透明の樹脂膜が、ポリパラキシレン系樹脂等で形成されている。ここで、図11に、従来、基体層として用いられている代表的な樹脂であるポリイミド膜(3.5μm厚)に対して、光を透過させ、そのときの波長(nm)に伴って変化した光の透過率(%)のグラフを示す。また、図12に、本実施形態に係る基体層22,32に用いるポリパラキシレン系樹脂(ポリパラキシレン膜(10μm厚))に対して、光を透過させ、そのときの波長(nm)に伴って変化した光の透過率(%)のグラフを示す。図11のグラフから、ポリイミドを用いた基体層は、波長が500nm以下となると急激に透過率が悪くなり、透過光が色味を帯びてしまう。これに対し、図12のグラフからわかるように、ポリパラキシレンを用いた基体層22,32は、波長が変化しても安定的に透過率が90%程度を示している。このため、このような基体層22,32を用いた液晶表示装置10は、その表示の視認性が非常に良好となる。
 また、液晶表示装置10は、TFT基板61及びCF基板21の基体層22,32を、熱が加わる工程以降、パラキシレン系樹脂等で形成しているため、熱が加わる工程を経たポリイミド膜等で形成された基体層と異なり、特有の反りも発生せず、さらにフレキシブル性も、より良好となっており、完全な巻物状にすることができる。このため、安全且つ省スペースで装置の保管や移動を行うことができ、製造効率や製造コストの面でも利点がある。
 液晶表示装置10の製造方法は、支持基板(ガラス基板42,43)上に、まず、耐熱温度が150℃以上で、熱膨張係数が10ppm/℃以下の樹脂材料で形成された犠牲膜40,41(ポリイミド系樹脂)を設けている。このため、表示素子層の形成工程における加熱等を加えても、犠牲膜40,41と支持基板との良好な接合状態を保つことができる。また、表示素子層を形成する前に、犠牲膜40,41上に素子層保護膜23,33を形成しているため、犠牲膜40,41をエッチング等で除去する際に表示素子層まで除去されることを良好に抑制することができる。さらに、犠牲膜40,41から支持基板をレーザ光照射により剥離させるため、支持基板を容易に且つ完全に剥離することができる。また、犠牲膜40,41を除去した素子層保護膜23,33上に室温でポリパラキシレン系樹脂等を蒸着させて基体層22,32を形成するため、表示素子に高温の熱を加えることがなく、装置の表示特性が良好となる。さらに、犠牲膜40,41を確実に除去した後に基体層22,32を蒸着によって形成するため、大型の基板でも極薄のフレキシブルデバイスの作製が可能となる。
 また、犠牲膜40,41の除去をプラズマエッチングにより行うと、犠牲膜40,41を容易に除去することができ、製造効率が良好となる。さらに、犠牲膜40,41の除去をマイクロ波プラズマエッチングにより行うと、低温状態で犠牲膜40,41を除去することができるため、表示素子に熱による影響を与えない。従って、装置の表示特性がより良好となる。
 (実施形態2)
 次に、本発明の実施形態2に係る液晶表示装置50について説明する。液晶表示装置50において、上記液晶表示装置10と同様の構成要素は同符号を付し、その説明を省略する。
 図13は、液晶表示装置50の断面図を模式的に示している。液晶表示装置50は、実施形態1で示した液晶表示装置10に対して、基体層22,32の遮光層36に対応する領域、すなわち、非表示領域のみが犠牲膜40,41に置き換わっている点のみ異なっている。液晶表示装置50は、その製造工程において、犠牲膜40,41を完全には除去せず、複数の画素領域を区画するCF基板21の遮光層36(遮光領域)に対応する領域のみ残しておく。そして、犠牲膜40,41を除去した領域に基体層22,32を形成することで製造される。
 このような構成によれば、犠牲膜40,41があることで、その分、素子層保護膜23,33上の全面に基体層22,32があるものと比べて、より耐圧強度等が良好となる。また、犠牲膜40,41として色がついた樹脂膜を用いても、遮光層36にのみ形成していることによって、表示に悪影響を及ぼすことを抑制することができる。
 (実施形態3)
 次に、本発明の実施形態3に係る液晶表示装置60について説明する。図14は、液晶表示装置60の断面を模式的に示した図である。液晶表示装置60は、TFT基板61とCF基板62とで構成されている。TFT基板61とCF基板62との表面には、液晶表示装置10、50の基体層22,32と同様の構成の基体層63,64が形成されている。液晶表示装置60は、非表示領域であるTFT基板61及びCF基板62の周辺に対応する領域(周辺回路領域)に基体層63,64に換わって犠牲膜65,66が形成されている。
 このような構成によれば、犠牲膜65,66が周辺回路領域にあることで、周辺回路をより安定的に形成することができる。また、犠牲膜65,66として色がついた樹脂膜を用いても、周辺回路領域にのみ形成していることによって、表示に悪影響を及ぼすことを抑制することができる。
 尚、図14では、周辺回路領域をTFT基板61及びCF基板62のそれぞれに設けた構成を示しているが、これに限らず、周辺回路領域がTFT基板61側のみに設けられ、犠牲膜65がこれに対応してTFT基板61側のみに設けられたものであってもよい。
 (実施形態4)
 (有機EL表示装置70の構成)
 図15は、本発明の実施形態4に係る有機EL表示装置70の断面を模式的に示した図である。
 有機EL表示装置70は、室温で蒸着された無色透明の樹脂膜で構成された基体層71を備える。基体層71を構成する無色透明の樹脂膜としては、例えば、パラキシレン系樹脂、あるいは、アクリル系樹脂等を用いることができる。
 基体層71上には、素子層保護膜72が形成されている。素子層保護膜72は、例えば、SiO等で形成されている。
 素子層保護膜72上には、TFT素子74等を備えた表示素子層が形成されている。表示素子層は、素子層保護膜72上に形成されたTFT素子74と、TFT素子74を覆うように設けられたTEOS膜やSiN膜等の層間絶縁膜75と、層間絶縁膜75を貫通してTFT素子74に電気的に接続されたメタル配線と、で構成されている。メタル配線はさらに層間絶縁膜75上に延長して第1電極77を構成している。層間絶縁膜75上には、さらにTEOS膜やSiN膜等の絶縁膜76が形成されている。
 TFT素子74は、活性領域が形成された半導体層、ゲート酸化膜、及び、ゲート電極等を備えている。半導体層の活性領域は、チャネル領域と、その左右両側に形成されたソース領域及びドレイン領域とにより構成されている。ゲート酸化膜は、半導体層のチャネル領域上に形成されている。ゲート電極は、ゲート酸化膜上に形成されている。
 有機EL表示装置70は、第1電極77側から発光を取り出すボトムエミッション型であるため、発光の取り出し効率を向上する観点から、第1電極77は、例えば、ITOや、SnO等の高い仕事関数を有し、かつ、光透過率の高い材料の薄膜により構成することが好ましい。
 第1電極77上には、有機EL層78が形成されている。有機EL層78は、ホール輸送層と発光層とからなる。ホール輸送層は、ホール注入効率がよいものであれば、何ら限定されるものではない。ホール輸送層の材料としては、例えば、トリフェニルアミン誘動体、ポリパラフェニレンビニレン(PPV)誘動体、ポリフルオレン誘導体などの有機材料等を用いることができる。
 発光層は、特に限定されるものではなく、例えば、8-ヒドロキシキノリロール誘動体、チアゾール誘動体、ベンズオキサゾール誘動体等を用いることができる。また、これらの材料のうち2種以上を組み合わせたり、ドーパント材料などの添加剤を組み合わせてもよい。
 尚、有機EL層78をホール輸送層と発光層との2層構造としているが、何らこの構成に限定されるものではない。すなわち、有機EL層78は、発光層のみからなる単層構造であっても構わない。また、有機EL層78を、ホール輸送層、ホール注入層、電子注入層、及び、電子輸送層のうちの1層または2層以上と、発光層とにより構成してもよい。
 第2電極79は、有機EL層78及び絶縁膜76上に形成されている。第2電極79は、有機EL層78に電子を注入する機能を有する。第2電極79は、例えば、Mg、Li、Ca、Ag、Al、In、Ce又はCu等の薄膜により構成することができるが、何らこれに限定されるものではない。
 有機EL表示装置70では、第1電極77は有機EL層78にホールを注入する機能を有し、また、第2電極79は有機EL層78に電子を注入する機能を有する。第1電極77と、第2電極79とからそれぞれ注入されたホールと電子とが有機EL層78で再結合することにより、有機EL層78が発光する仕組みとなっている。また、基体層71及び第1電極77は光透過性に、第2電極79は光反射性に構成されており、発光は第1電極77及び基体層71を透過して有機EL層78から取り出される仕組みとなっている(ボトムエミッション方式)。
 第2電極79上には、TEOS膜やSiN膜等の平坦化膜80が形成されている。
 平坦化膜80上には、樹脂膜82,84,86及び無機膜83,85の積層体により構成された封止膜81が形成されている。樹脂膜82,84,86は、それぞれ基体層71と同様の樹脂材料を用いて形成してもよく、その他の樹脂材料を用いて形成してもよい。無機膜83,85は、例えば、SiNx、SiO又はAl等を用いて形成されている。
 また、封止膜81は、樹脂膜と無機膜とが上記のように何重にも積層されていなくてもよく、それぞれ1層ずつ形成されていてもよい。さらに、封止膜81は、金属薄膜を用いて構成してもよい。
 (有機EL表示装置70の製造方法)
 次に、本発明の実施形態に係る有機EL表示装置70の製造方法について説明する。尚、以下に示す製造方法は単なる例示であり、本発明に係る有機EL表示装置70は以下に示す方法により製造されたものに限定されるものではない。
 まず、図16に示すように、支持基板として、例えば厚さ0.7mm程度のガラス基板91を準備する。
 次に、ガラス基板91上に、耐熱温度が400℃以下で、熱膨張係数が10ppm/℃以下の樹脂材料で形成された犠牲膜90を、例えば1μm程度の厚さで形成する。このような条件を満たす犠牲膜90の樹脂材料としては、例えば、ポリイミド系樹脂、又は、フルオレン系エポキシ樹脂を用いることができる。
 次いで、犠牲膜90上にSiO等により素子層保護膜72を500nm程度の厚さで形成する。この素子層保護膜72は、犠牲膜90を除去する際に表示素子層がエッチングされるのを良好に抑制するためのものである。
 続いて、図17に示すように、素子層保護膜72上に、金属膜や半導体膜等の形成及びパターニング等を行い、TFT素子74を形成する。
 次に、TFT素子74を形成した素子層保護膜72上に、例えば、TEOS膜やSiN膜等を用いて、層間絶縁膜75を厚さが1~2μm程度となるように形成する。
 続いて、層間絶縁膜75の表面からTFT素子74までコンタクトホールを設け、ITO等の透明導電材料によってTFT素子74と電気的に接続するメタル配線を形成し、さらにパターニング等によって、例えば150nm程度の厚さの第1電極77を形成する。
 次に、層間絶縁膜75上に、例えば500nm程度の厚さの絶縁膜76を形成後、第1電極77対応部分をエッチング除去する。
 次いで、第1電極77上にホール輸送層と発光層とを形成することにより、有機EL層78を設ける。ホール輸送層としては、まず、溶剤にホール輸送材料である有機高分子材料を溶解又は分散させたホール輸送材料塗料を、例えば、インクジェット法等により露出している第1電極77上に供給する。その後、焼成処理を施すことによりホール輸送層を形成する。次に、発光層としては、溶剤に発光材料である有機高分子材料を溶解又は分散させた有機発光材料塗料を、例えば、インクジェット法等によりホール輸送層を覆うように供給する。その後、焼成処理を施すことにより発光層を形成する。
 続いて、絶縁膜76及び有機EL層78上に、スパッタ法等によりMg、Li、Ca、Ag、Al、In、Ce、又はCu等を用いて第2電極79を形成する。第2電極79の厚さは、例えば150nm程度とする。
 次に、第2電極79上に、TEOS膜やSiN膜等を成膜し、化学機械研磨(CMP)等により表面を研磨することにより平坦化膜80を形成する。
 次いで、図18に示すように、平坦化膜80上に、樹脂膜82、無機膜83、樹脂膜84、無機膜85及び樹脂膜86をこの順で成膜することにより封止膜81を形成する。樹脂膜82,84,86は、例えば、パラキシレン系樹脂等を用いて厚さがそれぞれ10μm程度となるように形成する。また、無機膜83,85は、例えば、SiNx、SiO、Al等を用いて厚さがそれぞれ500nm程度となるように形成する。
 続いて、図19に示すように、ガラス基板91側からレーザ光(図19における矢印)を照射することにより、ガラス基板91を剥離させる。
 ここで、ガラス基板91の除去は、レーザ光照射による剥離でなくてもよい。例えば、研磨及びエッチング装置を用いてガラス基板91を除去してもよい。
 次に、ガラス基板91を除去したことにより剥き出しとなった犠牲膜90をプラズマエッチングにより除去する。ここで、犠牲膜90の除去は、プラズマエッチングに限らず、例えば、マイクロ波プラズマエッチングにより行ってもよい。
 続いて、犠牲膜90を除去したことにより剥き出しとなった素子層保護膜72上に、図15に示すような無色透明の樹脂膜で構成された基体層71を、例えば10μm程度の厚さで形成する。ここで、基体層71は、例えば、ポリパラキシレン系樹脂を用いて、室温(例えば50℃以下)でのCVD(化学蒸着:Chemical Vapor Deposition)により形成する。以上により、有機EL表示装置70が完成する。
 (実施形態5)
 図20~22は、本発明の実施形態5を示す。
 図20は、有機EL表示装置100の断面を模式的に示した図である。有機EL表示装置100は、実施形態4で示した有機EL表示装置70に対し、最下層及び最上層に、図20で示す装置の構成層の中で最厚となる基体層71が設けられている点で異なっている。
 図21は、有機EL表示装置110の断面を模式的に示した図である。有機EL表示装置110は、有機EL表示装置100に対し、最下層にのみ、装置の構成層の中で最厚となる基体層71が設けられている点で異なっている。
 図22は、有機EL表示装置120の断面を模式的に示した図である。有機EL表示装置110は、有機EL表示装置100に対し、最上層にのみ、装置の構成層の中で最厚となる基体層71が設けられている点で異なっている。
 このように、有機EL表示装置100,110,120は、装置の構成層の中で最厚となる基体層71によって、その曲がりや反り、さらには、丸まり等の程度が支配されることとなる。したがって、装置に形成したデバイス自体の反りや曲がり等を良好に抑制することができ、表示装置の品質がより良好となる。
 なお、基体層を最厚にして、装置の曲がりや反り等の程度を支配させる構成は、有機EL表示装置に限らず、本発明の実施形態で示した液晶表示装置に用いてもよい。
 -作用効果-
 次に、本発明の実施形態4の作用効果について説明する。
 本発明の実施形態4に係る有機EL表示装置70は、基体層71として無色透明の樹脂膜を用いているため、良好な視認性及びフレキシブル性を備えている。また、基体層71が室温で蒸着されているため、表示素子層に基体層71を形成する際、表示素子層に高温の熱が加わらない。従って、装置の表示特性が良好となる。
 また、有機EL表示装置70は、封止膜81にも基体層71を備えているため、表示装置全体でよりフレキシブル性が良好となり、且つ、表示特性が良好となる。
 さらに、有機EL表示装置70は、基体層71に用いる無色透明の樹脂膜が、パラキシレン系樹脂等で形成されているため、表示の視認性が非常に良好となる。また、基体層71をポリパラキシレン系樹脂等で形成しているため、一般的なポリイミド膜等で形成された基体層と異なり、特有の反りも発生せず、さらにフレキシブル性もより良好となっており、完全な巻物状にすることができる。このため、安全且つ省スペースで装置の保管や移動を行うことができ、製造効率や製造コストの面でも利点がある。
 有機EL表示装置70の製造方法は、支持基板(ガラス基板91)上に、まず、耐熱温度が150℃以上で、熱膨張係数が10ppm/℃以下の樹脂材料で形成された犠牲膜90(ポリイミド系樹脂)を設けている。このため、表示素子層の形成工程における加熱等を加えても、犠牲膜90と支持基板との良好な接合状態を保つことができる。また、表示素子層を形成する前に、犠牲膜90上に素子層保護膜72を形成しているため、犠牲膜90をエッチング等で除去する際に表示素子層まで除去されることを良好に抑制することができる。さらに、犠牲膜90から支持基板をレーザ光照射により剥離させるため、支持基板を容易に且つ完全に剥離することができる。また、犠牲膜90を除去した素子層保護膜72上に室温でパラキシレン系樹脂等を蒸着させて基体層71を形成するため、表示素子に高温の熱を加えることがなく、装置の表示特性が良好となる。さらに、犠牲膜90を確実に除去した後に基体層71を蒸着によって形成するため、大型の基板でも極薄のフレキシブルデバイスの作製が可能となる。
 また、犠牲膜90の除去をプラズマエッチングにより行うと、犠牲膜90を容易に除去することができ、製造効率が良好となる。さらに、犠牲膜90の除去をマイクロ波プラズマエッチングにより行うと、低温状態で犠牲膜90を除去することができるため、表示素子に熱による影響を与えない。従って、装置の表示特性がより良好となる。
 尚、本実施形態1~4では、表示装置としてLCD(liquid crystal display;液晶表示ディスプレイ)及び有機EL(organic electro luminescence )に係るものについて示したが、電気泳動(electrophoretic)、PD(plasma display;プラズマディスプレイ)、PALC(plasma addressed liquid crystal display;プラズマアドレス液晶ディスプレイ)、無機EL(inorganic electro luminescence )、FED(field emission display;電界放出ディスプレイ)、又は、SED(surface-conduction electron-emitter display;表面電界ディスプレイ)等に係る表示装置であってもよい。
 以上説明したように、本発明は、表示装置、薄膜基板及び表示装置の製造方法について有用である。

Claims (23)

  1.  基体層と、該基体層上に設けられた表示素子層と、を有する第1基板を備え、
     上記第1基板の基体層は、室温で蒸着された無色透明の樹脂膜で構成された表示装置。
  2.  請求項1に記載された表示装置において、
     上記第1基板に対向するように設けられ、無色透明の樹脂膜で構成された基体層と、該基体層上に設けられた表示素子層と、を有する第2基板をさらに備えた表示装置。
  3.  請求項1に記載された表示装置において、
     耐熱温度が150℃以上で、熱膨張係数が10ppm/℃以下の樹脂材料で形成された犠牲膜が、上記表示素子層の非表示領域に対応して該表示素子層と上記基体層との間に形成された表示装置。
  4.  請求項3に記載された表示装置において、
     上記表示素子層は、複数の画素領域と、該画素領域を区画するように設けられた遮光領域と、を備え、
     上記犠牲膜が対応する上記表示素子層の非表示領域は、上記遮光領域である表示装置。
  5.  請求項3に記載された表示装置において、
     上記表示素子層は、周辺回路領域を備え、
     上記犠牲膜が対応する上記表示素子層の非表示領域は、上記周辺回路領域である表示装置。
  6.  請求項3に記載された表示装置において、
     上記犠牲膜は、ポリイミド系樹脂である表示装置。
  7.  請求項1に記載された表示装置において、
     上記無色透明の樹脂膜は、ポリパラキシレン系樹脂である表示装置。
  8.  請求項1に記載された表示装置において、
     上記基体層と上記表示素子層との間に、素子層保護膜をさらに備えた表示装置。
  9.  請求項1に記載された表示装置において、
     上記基体層は、上記表示装置の曲がり又は反りを支配する厚さに形成された表示装置。
  10.  室温で蒸着された無色透明の樹脂膜で構成された基体層と、該基体層上に設けられたTFT素子を備える表示素子層と、を有するTFT基板と、
     上記TFT基板と液晶材料を介して対向すると共に、室温で蒸着された無色透明の樹脂膜で構成された基体層と、該基体層上に設けられたカラーフィルタを備える表示素子層と、を有するCF基板と、
    を備えた液晶表示装置。
  11.  室温で蒸着された無色透明の樹脂膜で構成された基体層と、
     上記基体層上に設けられた第1電極と、
     上記第1電極上に設けられた有機EL層と、
     上記有機EL層上に設けられた第2電極と、
    を備えたボトムエミッション型の有機EL表示装置。
  12.  請求項11に記載された有機EL表示装置において、
     上記第2電極上に設けられ、上記樹脂膜及び無機膜の積層体により構成された封止膜をさらに備えた有機EL表示装置。
  13.  室温で蒸着された無色透明の樹脂膜で構成された基体層と、該基体層上に設けられた表示素子層と、を備えた薄膜基板。
  14.  耐熱温度が150℃以上で、熱膨張係数が10ppm/℃以下の樹脂材料で形成された犠牲膜が設けられた支持基板を準備する第1ステップと、
     上記犠牲膜上に素子層保護膜を形成する第2ステップと、
     上記素子層保護膜上に表示素子層を形成する第3ステップと、
     上記犠牲膜から上記支持基板を除去する第4ステップと、
     上記素子層保護膜から上記犠牲膜を除去する第5ステップと、
     上記犠牲膜を除去した素子層保護膜上に室温で無色透明の樹脂膜を蒸着することにより基体層を形成する第6ステップと、
    を備えた表示装置の製造方法。
  15.  請求項14に記載された表示装置の製造方法において、
     上記第1から第3ステップを繰り返すことによって上記表示素子層を形成した上記支持基板を二つ形成した後、これらを該表示素子層を対向させて貼り合わせ基板を形成する貼り合わせ基板形成ステップをさらに備え、
     上記第4ステップでは上記貼り合わせ基板の上記犠牲膜から上記支持基板をそれぞれ除去し、
     上記第5ステップでは上記貼り合わせ基板の上記素子層保護膜から上記犠牲膜をそれぞれ除去し、
     上記第6ステップでは上記犠牲膜を除去した保護膜上に室温で無色透明の樹脂膜を蒸着することにより基体層をそれぞれ形成する表示装置の製造方法。
  16.  請求項14に記載された表示装置の製造方法において、
     上記第5ステップで、上記表示素子層の非表示領域に対応する上記犠牲膜を残し、それ以外の領域に対応する該犠牲膜を除去する表示装置の製造方法。
  17.  請求項16に記載された表示装置の製造方法において、
     上記表示素子層は、複数の画素領域と、該画素領域を区画するように設けられた遮光領域と、を備え、
     上記犠牲膜を残す上記表示素子層の非表示領域は、上記遮光領域である表示装置の製造方法。
  18.  請求項16に記載された表示装置の製造方法において、
     上記表示素子層は、周辺回路領域を備え、
     上記犠牲膜を残す上記表示素子層の非表示領域は、上記周辺回路領域である表示装置の製造方法。
  19.  請求項14に記載された表示装置の製造方法において、
     上記第5ステップで、上記犠牲膜の除去をプラズマエッチングにより行う表示装置の製造方法。
  20.  請求項14に記載された表示装置の製造方法において、
     上記第5ステップで、上記犠牲膜の除去をマイクロ波プラズマエッチングにより行う表示装置の製造方法。
  21.  請求項14に記載された表示装置の製造方法において、
     上記犠牲膜は、ポリイミド系樹脂である表示装置の製造方法。
  22.  請求項14に記載された表示装置の製造方法において、
     上記無色透明の樹脂膜は、ポリパラキシレン系樹脂である表示装置の製造方法。
  23.  請求項14に記載された表示装置の製造方法において、
     上記第4ステップで、上記犠牲膜から上記支持基板をレーザ光照射により剥離させて除去する表示装置の製造方法。
PCT/JP2008/002939 2008-03-06 2008-10-16 表示装置、液晶表示装置、有機el表示装置、薄膜基板及び表示装置の製造方法 WO2009110042A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200880123794.3A CN101911158B (zh) 2008-03-06 2008-10-16 显示装置、液晶显示装置、有机el显示装置、薄膜基板以及显示装置的制造方法
US12/746,072 US20100283056A1 (en) 2008-03-06 2008-10-16 Display apparatus, liquid crystal display apparatus, organic el display apparatus, thin-film substrate, and method for manufacturing display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008056768 2008-03-06
JP2008-056768 2008-03-06

Publications (1)

Publication Number Publication Date
WO2009110042A1 true WO2009110042A1 (ja) 2009-09-11

Family

ID=41055624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/002939 WO2009110042A1 (ja) 2008-03-06 2008-10-16 表示装置、液晶表示装置、有機el表示装置、薄膜基板及び表示装置の製造方法

Country Status (3)

Country Link
US (1) US20100283056A1 (ja)
CN (1) CN101911158B (ja)
WO (1) WO2009110042A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110223697A1 (en) * 2010-03-09 2011-09-15 Samsung Mobile Display Co., Ltd. Method of manufacturing flexible display device
JP2014235294A (ja) * 2013-05-31 2014-12-15 株式会社ジャパンディスプレイ 表示装置及びその製造方法
JP2016177878A (ja) * 2015-03-18 2016-10-06 株式会社ジャパンディスプレイ 表示装置及び表示装置の製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8518798B2 (en) * 2010-09-23 2013-08-27 Infineon Technologies Ag Semiconductor structure and method for making same
JP5674707B2 (ja) * 2012-05-22 2015-02-25 株式会社東芝 表示装置
CN102769109B (zh) * 2012-07-05 2015-05-13 青岛海信电器股份有限公司 柔性显示器的制作方法以及制作柔性显示器的基板
KR101991863B1 (ko) * 2012-08-28 2019-06-24 삼성디스플레이 주식회사 봉지용 시트, 이를 이용한 유기 발광 디스플레이 장치의 제조 방법 및 유기 발광 디스플레이 장치
TWI596751B (zh) * 2012-08-30 2017-08-21 財團法人工業技術研究院 軟性顯示器與其製法
JP6182909B2 (ja) * 2013-03-05 2017-08-23 株式会社リコー 有機el発光装置の製造方法
WO2015000095A1 (en) 2013-07-05 2015-01-08 Industrial Technology Research Institute Flexible display and method for fabricating the same
KR102092707B1 (ko) * 2013-09-17 2020-03-25 삼성디스플레이 주식회사 플렉서블 디스플레이 장치와, 이의 제조 방법
CN103760719B (zh) * 2014-01-15 2017-03-15 北京京东方光电科技有限公司 一种显示基板及显示装置
JP6486848B2 (ja) * 2016-02-25 2019-03-20 株式会社ジャパンディスプレイ 表示装置およびその製造方法
CN106057857B (zh) * 2016-07-26 2018-12-28 武汉华星光电技术有限公司 一种柔性有机发光二极管显示器及其制作方法
CN106157818B (zh) * 2016-09-05 2022-06-24 京东方科技集团股份有限公司 一种柔性显示面板、其制作方法及显示装置
WO2019003417A1 (ja) * 2017-06-30 2019-01-03 シャープ株式会社 可撓性表示装置及び可撓性表示装置の製造方法
US20220130929A1 (en) * 2019-03-29 2022-04-28 Sharp Kabushiki Kaisha Display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218935A (ja) * 1986-03-20 1987-09-26 Fujitsu Ltd 相転移型液晶表示素子
JPH11312811A (ja) * 1998-02-25 1999-11-09 Seiko Epson Corp 薄膜デバイスの剥離方法、薄膜デバイスの転写方法、薄膜デバイス、アクティブマトリクス基板および液晶表示装置
JP2004140267A (ja) * 2002-10-18 2004-05-13 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP2007012781A (ja) * 2005-06-29 2007-01-18 Alps Electric Co Ltd 回路基板の製造方法及び回路基板及び表示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4472056B2 (ja) * 1999-07-23 2010-06-02 株式会社半導体エネルギー研究所 エレクトロルミネッセンス表示装置及びその作製方法
TWI226205B (en) * 2000-03-27 2005-01-01 Semiconductor Energy Lab Self-light emitting device and method of manufacturing the same
JP2004012802A (ja) * 2002-06-06 2004-01-15 Nec Lcd Technologies Ltd 液晶表示装置
JP4774679B2 (ja) * 2004-03-31 2011-09-14 大日本印刷株式会社 有機半導体装置
JP4870949B2 (ja) * 2004-12-07 2012-02-08 日本化学工業株式会社 導電性材料、その製造方法、液晶組成物、半導体素子及び情報記録媒体
CN101072846A (zh) * 2004-12-07 2007-11-14 日本化学工业株式会社 导电性液晶材料、其制造方法、液晶组合物、液晶半导体元件和信息存储介质
JP2007059128A (ja) * 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP5026019B2 (ja) * 2006-08-08 2012-09-12 三菱電機株式会社 薄膜トランジスタ基板、薄膜トランジスタの製造方法、及び表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218935A (ja) * 1986-03-20 1987-09-26 Fujitsu Ltd 相転移型液晶表示素子
JPH11312811A (ja) * 1998-02-25 1999-11-09 Seiko Epson Corp 薄膜デバイスの剥離方法、薄膜デバイスの転写方法、薄膜デバイス、アクティブマトリクス基板および液晶表示装置
JP2004140267A (ja) * 2002-10-18 2004-05-13 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP2007012781A (ja) * 2005-06-29 2007-01-18 Alps Electric Co Ltd 回路基板の製造方法及び回路基板及び表示装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110223697A1 (en) * 2010-03-09 2011-09-15 Samsung Mobile Display Co., Ltd. Method of manufacturing flexible display device
US8211725B2 (en) * 2010-03-09 2012-07-03 Samsung Mobile Display Co., Ltd. Method of manufacturing flexible display device
JP2014235294A (ja) * 2013-05-31 2014-12-15 株式会社ジャパンディスプレイ 表示装置及びその製造方法
US9666832B2 (en) 2013-05-31 2017-05-30 Japan Display Inc. Display device and method of manufacturing the same
JP2016177878A (ja) * 2015-03-18 2016-10-06 株式会社ジャパンディスプレイ 表示装置及び表示装置の製造方法
US10319943B2 (en) 2015-03-18 2019-06-11 Japan Display Inc. Display device

Also Published As

Publication number Publication date
US20100283056A1 (en) 2010-11-11
CN101911158B (zh) 2015-04-01
CN101911158A (zh) 2010-12-08

Similar Documents

Publication Publication Date Title
WO2009110042A1 (ja) 表示装置、液晶表示装置、有機el表示装置、薄膜基板及び表示装置の製造方法
JP6515537B2 (ja) 有機el装置の製造方法、有機el装置、電子機器
US9887384B2 (en) Method for producing flexible display device, and flexible display device
JP5620921B2 (ja) プラスチック基板を有する電子デバイス及びその製造方法
US8027000B2 (en) Colour active matrix displays
WO2011125307A1 (ja) 表示装置
JP2018022322A (ja) 表示装置
US10952342B2 (en) Window panel, display device including the window panel, and manufacturing method of the window panel
KR101904012B1 (ko) 유기 발광 표시 장치 및 이의 제조 방법
WO2012147322A1 (ja) 表示装置、それを備えた電子機器、及び表示装置の製造方法
WO2019146264A1 (ja) 表示装置及びその製造方法
JP5071152B2 (ja) 表示装置の製造方法および照明装置の製造方法
US7872255B2 (en) Organic light-emitting device
US8698152B2 (en) Display panel and thin film transistor substrate
JP6462325B2 (ja) 表示装置の製造方法および表示装置の端子露出方法
KR102100656B1 (ko) 유기전계발광 표시소자 및 그 제조방법
WO2012011258A1 (ja) 基板及びその製造方法、表示装置
JP2018021993A (ja) 半導体基板及びそれを用いた表示装置
JP6917779B2 (ja) 表示装置
JP5493791B2 (ja) 電気光学装置の製造方法
JP2017044714A (ja) 表示装置
JP2011023265A (ja) 電気光学装置、電気光学装置の製造方法
JP2015201256A (ja) 有機エレクトロルミネッセンス装置の製造方法および電子機器
JP4190259B2 (ja) アクティブマトリクス基板、その製造方法および表示装置
US20150015837A1 (en) Color filter substrate, display panel and method for producing color filter substrate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880123794.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08873180

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12746072

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 08873180

Country of ref document: EP

Kind code of ref document: A1