WO2009107840A1 - 醗酵アルコールの精製処理方法 - Google Patents

醗酵アルコールの精製処理方法 Download PDF

Info

Publication number
WO2009107840A1
WO2009107840A1 PCT/JP2009/053901 JP2009053901W WO2009107840A1 WO 2009107840 A1 WO2009107840 A1 WO 2009107840A1 JP 2009053901 W JP2009053901 W JP 2009053901W WO 2009107840 A1 WO2009107840 A1 WO 2009107840A1
Authority
WO
WIPO (PCT)
Prior art keywords
alcohol
water
condensate
distillation column
tower
Prior art date
Application number
PCT/JP2009/053901
Other languages
English (en)
French (fr)
Inventor
政夫 菊地
俊介 中西
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to US12/920,039 priority Critical patent/US8129573B2/en
Priority to CN2009801151720A priority patent/CN102015049B/zh
Priority to BRPI0908412A priority patent/BRPI0908412A2/pt
Publication of WO2009107840A1 publication Critical patent/WO2009107840A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/001Processes specially adapted for distillation or rectification of fermented solutions
    • B01D3/003Rectification of spirit
    • B01D3/004Rectification of spirit by continuous methods
    • B01D3/005Combined distillation and rectification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/42Regulation; Control
    • B01D3/4205Reflux ratio control splitter
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention is a fermentation alcohol purification treatment method, particularly in a fermentation alcohol purification treatment method that combines a mash tower, a distillation tower, an evaporator, and a membrane separation device.
  • the present invention relates to a purification method.
  • the alcohol-water mixture is separated and concentrated from the fermentation alcohol liquid (moromi) by the moromi tower, and then the azeotropic composition of the alcohol-water mixture by the concentration tower.
  • a method of concentrating to near and then obtaining high-purity anhydrous alcohol by an azeotropic distillation column was employed.
  • Patent Document 1 a membrane separation device is used instead of an azeotropic distillation column, and an alcohol-water mixture concentrated to near the azeotropic composition in the distillation column is evaporated by an evaporator and introduced into the membrane separation device for purification. A method of processing is disclosed.
  • Patent Document 2 also discloses the same system as Patent Document 1.
  • a distillation column fraction is introduced into an evaporator and heated, a mixed vapor of alcohol and water having a pressure higher than the operation pressure of the distillation column is generated, and this high pressure vapor is converted into a membrane separator.
  • the membrane separation apparatus can be operated with high efficiency.
  • the condensate obtained by condensing the fraction taken from the top of the distillation column is refluxed 10 to 90% to the distillation column to operate the distillation column.
  • a 10% by mass ethanol aqueous solution is supplied to a distillation column and concentrated to 80% by mass, and the condensate is evaporated by an evaporator and supplied to a membrane separator.
  • the equipment can be simplified and the energy efficiency can be improved.
  • the method for purifying fermentation alcohol that combines the moromi tower, distillation tower, evaporator and membrane separation device, specifically, the fermentation alcohol can be purified more easily and extremely energy-efficiently as a whole process. Sufficient consideration has not been given to whether it can be processed.
  • the object of the present invention is to supply a fermentation alcohol aqueous solution to the mash tower, heat the fermentation alcohol aqueous solution in the mash tower to distill a distillate containing a mixed steam of alcohol and water, and use the mixed steam.
  • the mash column distillate containing or the first condensate condensed with the distillate is supplied to the distillation tower, and the distillate or the first condensate is heated to produce a mixed vapor of alcohol and water.
  • a part of the second condensate obtained by distilling from the distillation tower and condensing the mixed vapor is refluxed to the distillation tower, and the remaining second condensate is supplied to the evaporator.
  • Alkaline from aqueous fermented alcohol solution In the purification treatment method for obtaining Lumpur, it is to provide a method for more convenient and extremely energy efficient purification treatment as a whole step.
  • the present invention relates to the following items. 1. (Step 1) Supplying the fermentation alcohol aqueous solution to the mash tower, heating the fermentation alcohol aqueous solution in the mash tower to distill the mixed steam of alcohol and water, or the mash tower distillate containing this mixed steam, or The first condensate obtained by condensing the distillate is supplied to the distillation tower, and (step 2) the distillate or the first condensate is heated to distill the mixed vapor of alcohol and water from the distillation tower.
  • Step 3 a part of the second condensate condensed with the mixed vapor is refluxed to the distillation column, and the remaining second condensate is supplied to the evaporator, and then (Step 3) in the evaporator
  • the second condensate is heated to produce a mixed vapor of alcohol and water, the mixed vapor of alcohol and water is supplied to the membrane separator, and water vapor is selectively removed from the mixed vapor of alcohol and water.
  • the alcohol concentration of the mixed steam of alcohol and water distilled off by the mash tower in step 1 is less than 50% by mass (of course more than the concentration of the fermentation alcohol aqueous solution), preferably 12% by mass or more and less than 50% by mass, more preferably Is a mixed steam of alcohol and water that controls the mash tower so that it becomes 20 mass% or more and less than 50 mass%, more preferably 30 mass% or more and less than 50 mass%, and is distilled by the distillation tower in step 2.
  • Purification for obtaining anhydrous alcohol from an aqueous fermentation alcohol solution characterized by controlling the reflux amount of the condensate to the distillation column so that the alcohol concentration of the alcohol is 65 to 85% by mass, preferably 65 to 78% by mass Processing method.
  • step 1 and step 2 the operating pressures of the mash column and the distillation column are both 50 to 150 kPa (absolute pressure), preferably atmospheric pressure.
  • step 3 the operating pressure of the evaporator is 150 kPa (absolute pressure) or more, Item 2.
  • step 2 the second condensate obtained by heating the distillate or the first condensate supplied from the mash column in the distillation column to distill the mixed vapor of alcohol and water and condensing the mixed vapor.
  • Item 5 The purification treatment method for obtaining anhydrous alcohol from the fermentation alcohol aqueous solution according to any one of Items 1 to 4, wherein an alkaline component is added and neutralized before the fermentation alcohol aqueous solution is supplied to the mash tower.
  • the fermentation alcohol aqueous solution is supplied to the mash tower, the fermentation alcohol aqueous solution in the mash tower is heated to distill a distillate containing a mixed vapor of alcohol and water, and the distillate or distillate.
  • the first condensate obtained by condensing the product is supplied to the distillation tower, the first condensate is heated to distill the mixed vapor of alcohol and water from the distillation tower, and the second condensate is obtained by condensing the mixed vapor.
  • FIG. 1 shows an outline of an example of an embodiment according to the present invention.
  • anhydrous alcohol has a purity of 99.0% by mass or more, preferably 99.5% by mass or more, more preferably 99.7% by mass or more, and particularly preferably 99.8% by mass or more.
  • the alcohol includes lower alkyl alcohols such as methyl alcohol, propyl alcohol, and butyl alcohol, and is preferably ethanol.
  • the fermented alcohol aqueous solution is not limited.
  • it is a fermented alcohol aqueous solution obtained by fermenting raw materials such as saccharides, starches, and celluloses. These materials are fermented in a fermenter to form a fermented alcohol aqueous solution.
  • the alcohol concentration of the aqueous fermentation alcohol solution is usually about 5 to 12% by mass.
  • this fermented alcohol aqueous solution includes alcohols such as yeast, fungus, methanol, fatty acids such as formic acid, acetic acid, succinic acid, lactic acid, butyric acid, aldehydes such as acetaldehyde, formaldehyde, Esters such as ethyl acetate and butyl acetate, acetals such as diethyl acetal, ketones such as acetone and methyl ethyl ketone, amines such as pyridine, picoline, 3-methylamine and 4-methylpyridine, and higher alcohols and fatty acid esters It contains various by-produced compounds such as so-called fusel oil which is a mixture. Moreover, normally, unfermented raw material components and the like remain as insoluble components to form a slurry.
  • alcohols such as yeast, fungus, methanol
  • fatty acids such as formic acid, acetic acid, succinic acid, lactic acid, butyric acid
  • This aqueous fermentation alcohol solution is supplied directly to the mash tower 10 directly from the fermentation tank or after being temporarily stored in the tank. It is preferable that a large insoluble component is removed from the fermentation alcohol aqueous solution by rough filtration before being supplied to the mash tower.
  • the fermented alcohol aqueous solution after fermenting in the fermenter may have a pH of about 3 to 5 depending on by-product fatty acids. For this reason, it is preferable to neutralize the acid component contained in the fermentation alcohol aqueous solution by adding an alkali component or the like. By performing this neutralization treatment, it is possible to reliably prevent the acid from being mixed into the purified anhydrous alcohol.
  • Suitable examples of the alkali component to be added include water-soluble alkali compounds such as sodium hydroxide, potassium hydroxide, and potassium permanganate.
  • the fermentation alcohol aqueous solution is heated to distill a distillate containing a mixed vapor of alcohol and water, and a condensate obtained by condensing the distillate is supplied to the distillation tower 20.
  • the distillate containing a mixture of alcohol and water is preferably a mixed vapor of alcohol and water (in a gaseous state), but a mixture containing droplets of a fermented alcohol aqueous solution in a mixed vapor of alcohol and water ( It may be a gas-liquid mixed state).
  • the main role of the moromi tower 10 is to suppress the discharge (loss) of alcohol to the outside of the system as much as possible, from the fermented alcohol aqueous solution, insoluble components such as unfermented raw material components, and high-boiling components such as fusel oil. Is preferably separated and removed together with low-boiling by-product components and water.
  • the moromi tower is not particularly limited, and a conventionally known type can be suitably used. Simple distillation or continuous distillation may be used. The number of distillation stages is preferably about several stages. For example, a shelf-type tray such as a mountain cap tray or a baffle tray with little adhesion of scale can be suitably used. Furthermore, it may be a single distillation type such as flash distillation or a combination of a plurality of them.
  • the operating pressure of the moromi tower is preferably reduced pressure or atmospheric pressure.
  • the raw fermentation alcohol aqueous solution is introduced into the tower from a feed port relatively close to the top of the moromi tower 10.
  • steam steam
  • This water vapor rises in the tower while exchanging heat and materials with the liquid flowing down the tower.
  • the steam component at the bottom of the tower is almost water, and the alcohol concentration in the steam increases near the top of the tower.
  • water containing almost no alcohol is discharged from the bottom of the tower together with insoluble components as a bottom liquid.
  • a method in which a part of the tower bottom liquid discharged from the tower bottom is vaporized by a reboiler and introduced into the tower can be used.
  • the distillate containing a mixed vapor of alcohol and water taken out from the top of the moromi tower 10 or the concentration stage is sent to the condenser 11 and condensed. A part of this condensate is refluxed to the mash column, and the remaining condensate is supplied to the distillation column 20.
  • the alcohol concentration of the distillate supplied from the mash tower 10 to the distillation tower 20 can be controlled by changing the ratio of the condensed liquid refluxed to the mash tower 10.
  • the distillate containing a mixed vapor of alcohol and water taken out from the top of the mash tower 10 or the concentration stage is not condensed and is in a gaseous state or a gas-liquid mixture. It can also be supplied to the distillation column 20 in a state.
  • a part of the distillate containing a mixed vapor of alcohol and water was supplied to the distillation column 20 and the remaining distillate was condensed by a condenser. The entire amount of the condensate can be refluxed to the mash tower.
  • the alcohol concentration of the distillate supplied from the mash column 10 to the distillation column 20 can be controlled by the ratio of the distillate supplied to the condenser.
  • the top of the mash column 10 is used to protect the separation membrane.
  • the distillate extracted from the water is partially condensed (some low-boiling components remain as vapor, and other alcohol-water mixed vapor is condensed), and low-boiling components such as aldehyde are mixed with alcohol and water. It is preferable to separate from the vapor and remove it from the system.
  • the alcohol concentration of the distillate supplied from the mash column 10 to the distillation column 20 is (in order to improve the energy efficiency of the entire process from the mash column to the membrane separator, It is controlled to be less than 50% by mass, preferably 12% by mass or more and less than 50% by mass, more preferably 20% by mass or more and less than 50% by mass, and further preferably 30% by mass or more and less than 50% by mass.
  • the above-mentioned role of the mash tower insoluble components such as unfermented raw material components and high-boiling components such as fusel oil are preferably added to the low-boiling side while suppressing the discharge of alcohol as much as possible.
  • the role of concentrating the alcohol is excessively added, so that it is necessary to further increase the concentration stage above the supply port of the fermentation alcohol aqueous solution of the mash tower 10 Therefore, the size and complexity of the device cannot be avoided.
  • the alcohol concentration of the distillate supplied to the distillation tower 20 is less than 50% by mass (which is naturally higher than the concentration of the fermentation alcohol aqueous solution), preferably 12% by mass or more and less than 50% by mass, more preferably 20% by mass or more and 50% by mass. %, More preferably 30% by mass or more and less than 50% by mass can be easily achieved with a simple apparatus having a distillation stage of several stages or less, and even if the mixed vapor of alcohol and water is condensed, This is because the rate of refluxing can be made extremely low even when refluxing, so that rapid processing becomes possible and energy consumption can be suppressed.
  • the ratio of the condensate refluxed in the moromi tower is preferably 20% or less, more preferably 10% or less.
  • the role of the distillation column 20 in the present invention is that the distillate from the mash column is an alcohol having an alcohol concentration of 65 to 85% by mass, preferably 65 to 78% by mass, at an operating pressure of 50 to 150 kPa, preferably atmospheric pressure. Concentrate to a vapor mixture of water and water.
  • a mixed vapor of alcohol and water having an alcohol concentration of 65 to 85% by mass, preferably 65 to 78% by mass is supplied as a condensate to the evaporator 30 and is vaporized by the evaporator 30 and supplied to the membrane separation device 40. And purified to absolute alcohol.
  • the alcohol concentration in the distillation tower 20 is only concentrated to less than 65% by mass, the energy consumption in the evaporator in the next process will increase, and the fermentation alcohol will be refined more easily and extremely efficiently as a whole process. Thus, it is not preferable because anhydrous alcohol cannot be obtained.
  • the alcohol concentration is concentrated to more than 85% by mass (for example, close to the azeotropic composition) in the distillation column 20, the fermentation alcohol can be refined more easily and extremely efficiently as a whole process to obtain anhydrous alcohol. It is not preferable because it becomes impossible to do so.
  • the distillation column 20 is not particularly limited as long as it is suitable for a normal distillation operation, such as a plate type or a packed column.
  • a supply section for supplying the distillate of the mash tower or the condensate of the distillate is disposed in the middle stage of the distillation tower.
  • a part of the column bottom liquid is heated by the reboiler 21 to become vapor, and rises in the column while exchanging heat and materials with the liquid flowing down in the column.
  • the mixed vapor of alcohol and water distilled from the top of the column or the concentration stage has an alcohol concentration of 65% by mass or more, preferably 70% by mass or more and 85% by mass or less, preferably 80% by mass or less, more preferably. It is concentrated to 78% by mass or less and sent to the condenser.
  • the bottom liquid of the distillation column 20 may contain alcohol to be recovered, and is preferably circulated and supplied to the mash column 10.
  • the operating pressure of the distillation column 20 is preferably in the range of 50 to 150 kPa (absolute pressure), and is usually atmospheric pressure. If the operating pressure exceeds 150 kPa (absolute pressure), the construction cost of the distillation tower is increased, and the heating temperature is increased, resulting in an increase in energy consumption. On the other hand, if the operating pressure is less than 50 kPa (absolute pressure), the condensation temperature of the mixed vapor of alcohol and water distilled from the top of the column or the concentrating stage becomes low, which is not preferable because the energy consumption in the condenser increases.
  • the reboiler 21 that heats the bottom liquid of the distillation column 20 can use the condensation heat of steam supplied from the outside, but the condensation heat of the non-permeated vapor of the membrane separation device 40 can be suitably used as preheating, for example. it can.
  • the condenser 22 cools the mixed vapor of alcohol and water distilled from the top of the column or the concentration stage to form a condensate.
  • the condensate may be temporarily stored in the condensate tank 23. A part of this condensate is refluxed to the top of the column or the concentration stage by, for example, a condensate pump, and the remainder is sent to the evaporator 30.
  • the alcohol concentration of the mixed vapor of alcohol and water obtained at the top of the distillation column or at the concentration stage can be suitably controlled by the ratio of the condensate refluxed to the distillation column 20.
  • the alcohol concentration of the mixed vapor of alcohol and water obtained at the top of the distillation column 20 or at the concentration stage is adjusted to 65 to 85 mass by adjusting the ratio of the condensate refluxed to the distillation column 20. Control to be in the range of%.
  • the ratio of the condensed liquid to be refluxed is relatively low. Is preferred. Preferably it is less than 50% of the condensate, more preferably less than 35%, even more preferably less than 20%, particularly preferably less than 10%.
  • the condensation heat of the condenser 22 may be used for preheating the distillate supplied to the distillation column.
  • the distillate fed is preferably preheated to near its boiling point. At that time, it is preferable that the steam that cannot be condensed by the condenser 22 is condensed by cooling water by the auxiliary condenser.
  • an aqueous alcohol solution having an alcohol concentration of 65 to 85% by mass is supplied from the distillation column 20 through the condenser 22 to the evaporator 30.
  • the role of the evaporator 30 is to heat the alcohol aqueous solution to evaporate the whole amount and supply it to the membrane separation device 40 as a mixed vapor of alcohol and water.
  • the evaporator 30 has a sufficient heating function, and the pressure of the resulting mixed alcohol and water vapor is 100 kPa (absolute pressure) or higher, preferably 120 kPa (absolute pressure) or higher, more preferably 200 kPa (absolute pressure) or higher. Those that can be operated at high pressure are preferred.
  • the upper limit of the pressure is usually about 700 kPa (absolute pressure) or less.
  • the total amount of the mixed steam of alcohol and water obtained in the evaporator 30 is supplied to the membrane separation device 40 and purified.
  • the mixture is heated to a temperature of about 5 ° C. or higher by a superheater before being supplied to the membrane separator.
  • the operating pressure of the evaporator 30 can be suitably performed by adjusting (limiting) the flow rate of the steam flowing through the non-permeating side of the membrane separation device 40.
  • FIG. This makes it possible to use the non-permeate vapor of the membrane separator 40 as a heat source for the reboiler of the distillation column 20.
  • a relatively low concentration aqueous alcohol solution having an alcohol concentration of 65 to 85% by mass is supplied to the evaporator.
  • trace amounts of impurities such as so-called fusel oil contained in the aqueous fermentation alcohol solution may remain in the condensate supplied to the evaporator.
  • the impurities may accumulate in the evaporator and cause bumping. Therefore, in the present invention, it is preferable to operate while removing part of the evaporator bottom liquid continuously or intermittently to remove accumulated impurities.
  • the mixed vapor of alcohol and water flows while contacting the selectively permeable separation membrane.
  • the mixed vapor having a reduced alcohol concentration mainly composed of water vapor is recovered on the permeation side of the separation membrane.
  • the alcohol concentration of this mixed steam is about several to several tens of mass% (for example, 20 mass% of alcohol), but in order to increase the recovery rate of alcohol (condensed as a condensate or as a stripping vapor as it is) It is preferable to circulate and supply to the distillation column 20.
  • water vapor is removed on the non-permeating side of the separation membrane, high-purity anhydrous alcohol can be recovered.
  • the permeation amount of water vapor that permeates the separation membrane is proportional to the difference in the partial pressure of water vapor on both sides of the membrane. Therefore, in the present invention, a vapor mixture of alcohol and water having a relatively high pressure of 100 kPa (absolute pressure) or more, preferably about 120 to 700 kPa (absolute pressure) is generated in the evaporator 30 and supplied to the membrane separation apparatus. Is preferred. At the same time, it is also preferable to reduce the pressure on the permeate side of the separation membrane.
  • the space on the permeate side of the separation membrane is connected to a vacuum pump 42 via a heat exchanger (condenser) 41 to reduce the pressure, and the permeated vapor that has permeated the separation membrane is condensed in the condenser to be condensed.
  • This condensate is preferably stored in the condensate tank 43 and then circulated and supplied to the distillation column 20.
  • the membrane separation device 40 is not limited as long as it can separate water vapor from the mixed vapor of water vapor and ethanol vapor with a separation membrane.
  • the separation membrane is not particularly limited as long as it selectively permeates water vapor with respect to alcohol vapor. It may be made of a polymer such as polyimide, polyetherimide, polycarbonate, polysulfone or high molecular weight polyvinyl alcohol, or may be made of an inorganic material such as zeolite or zirconia.
  • the form of the membrane separation device is also a hollow fiber separation membrane module made of, for example, an asymmetric polyimide hollow fiber membrane, a shell-and-tube module comprising a tubular separation membrane element in which a zeolite is formed on a porous tubular support, etc.
  • the conventionally known ones can be suitably used. Examples of these include, but are not limited to, Japanese Unexamined Patent Application Publication Nos. 2000-262828 and 2001-62257 using polyimide hollow fiber membranes, and Japanese Unexamined Patent Application Publication No. 2003-93844 using zeolite membranes. Preferred examples include those described in JP-A-2006-263574, JP-A-2007-203210 and the like.
  • the water vapor transmission rate (P ′ H 2 O 2 ) is preferably 0.5 ⁇ 10 ⁇ 3 cm 3 (STP) / cm 2 ⁇ sec ⁇ cm Hg or more, more preferably 1.0 in use.
  • ⁇ 10 ⁇ 3 cm 3 (STP) / cm 2 ⁇ sec ⁇ cmHg or more, ratio of water vapor transmission rate (P ′ H 2 O ) to alcohol transmission rate (P ′ alcohol ) (P ′ H 2 O / P ′ alcohol ) Is preferably 50 or more, more preferably 100 or more.
  • FIG. 2 shows an outline of another example of the embodiment according to the present invention.
  • the bottom liquid discharged from the mash tower 10 is used for preheating the aqueous fermentation alcohol solution supplied to the mash tower 10, and the non-permeate vapor (anhydrous alcohol vapor) of the membrane separation device 40 is used as a reboiler for the distillation tower 20.
  • the non-permeate vapor (anhydrous alcohol vapor) of the membrane separation device 40 is used as a reboiler for the distillation tower 20.
  • Example 1 The fermented ethanol aqueous solution having an ethanol concentration of 7.3% by mass obtained in the fermenter was refined using 72.7 tons per hour using the apparatus schematically shown in FIG. 2, and 99.8% by mass absolute ethanol was purified. An attempt was made to obtain 5 tons per hour.
  • Process 1 A fermented ethanol aqueous solution having an ethanol concentration of 7.3% by mass is preheated with a preheater, and is fed at a flow rate of 72.7 t / hour to a mash tower having a theoretical plate number equivalent to 5 with a liquid feed pump.
  • Water vapor (steam 1) necessary for carrying out a distillation process by evaporating the supplied aqueous solution of fermentation ethanol is directly blown into the bottom of the mash column.
  • the mixed vapor of ethanol and water distilled from the moromi tower and sent from the top of the tower is condensed in the condenser.
  • a part of the condensate is refluxed to the mash column, and the remaining condensate is supplied to the distillation column.
  • the reflux amount is adjusted so that the ethanol concentration at the top of the mash column is 39% by mass.
  • the mixed vapor of ethanol and water distilled in the distillation column and sent from the top of the column is condensed in the condenser.
  • a part of the condensate is refluxed to the distillation column, and the remaining condensate is supplied to the evaporator.
  • the reflux amount is adjusted so that the ethanol concentration at the top of the distillation column is 70% by mass.
  • the condensate supplied to the evaporator is 8.1 t per hour. (Process 3)
  • the condensate to be supplied to the evaporator (ethanol aqueous solution having an ethanol concentration of 70% by mass) is heated by steam 3 and mixed with ethanol and water having an ethanol concentration of 70% by mass at a total pressure of 300 kPa (gauge pressure). Vaporized, heated to 135 ° C. by a superheater (steam 3), and supplied to the membrane separator.
  • the membrane separation device is a module as described in Japanese Patent Application Laid-Open No. 2000-262838, and has a water vapor transmission rate (P ′ H2O ) at 135 ° C. of 1.2 ⁇ 10 ⁇ 3 cm 3 (STP) / cm.
  • P ′ H2O water vapor transmission rate
  • a module containing 27 modules made of hollow fiber separation membranes having an effective membrane area of 125 m 2 is used.
  • a vacuum pump is provided on the permeate side of the membrane separation device via a condenser (condenser) so that the vapor that permeates the separation membrane is completely condensed by the condenser so that the degree of vacuum on the permeate side of the separation membrane is maintained.
  • a part of the non-permeated vapor discharged from the membrane separation device is configured to be supplied to the permeation side of the membrane separation device as a purge gas for increasing the separation efficiency of the membrane separation device.
  • the vapor on the permeate side of the separation membrane of the membrane separation apparatus (permeate vapor and vapor supplied as purge gas) is condensed, preheated with non-permeate vapor, and circulated and supplied to the distillation column.
  • the non-permeated vapor collected from the non-permeate side of the separation membrane of the membrane separation apparatus is heat-recovered by the above preheating and then cooled to the product tank as absolute ethanol having an ethanol concentration of 99.8% by mass. Collect at 5 tons per hour.
  • Example 2 and 3 The conditions shown in Table 1 were changed, and 72.7 mass% of the fermented ethanol aqueous solution was purified by 72.7 t per hour in the same manner as in Example to obtain 5 t of 99.8 mass% absolute ethanol per hour. I tried to do that. The results are shown in Table 1.
  • Example 1 the distillation column and the membrane separation apparatus are simple, and the fermentation alcohol can be purified with extremely high energy efficiency.
  • energy efficiency is low and a large separation membrane device is required.
  • Comparative Example 2 the reflux ratio of the condensate in the distillation column is increased to reduce energy efficiency, and a large distillation column is required.
  • a fermentation alcohol aqueous solution is supplied to the mash tower, and the fermentation alcohol aqueous solution in the mash tower is heated to distill a distillate containing a mixed vapor of alcohol and water.
  • the first condensate obtained by condensing the product is supplied to the distillation tower, and the distillate or the first condensate supplied from the mash tower in the distillation tower is heated to produce a mixed vapor of alcohol and water from the distillation tower.
  • a part of the second condensate obtained by distilling and condensing the mixed vapor is refluxed to the distillation column, and the remaining second condensate is supplied to the evaporator, and then the second condensate in the evaporator is supplied.
  • Anhydrous alcohol from fermented alcohol aqueous solution In the purification treatment method for obtaining, it is possible to provide a method for more convenient and extremely energy efficient purification treatment as a whole step.
  • the solid line indicates the flow of liquid or gas (vapor), and the broken line indicates the connection of the control system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)
  • Alcoholic Beverages (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

 本発明は、もろみ塔により留出させるアルコールと水との混合蒸気のアルコール濃度が50質量%未満になるようにもろみ塔を制御し、且つ、蒸留塔により留出させるアルコールと水との混合蒸気のアルコール濃度が65~85質量%となるように、蒸留塔への凝縮液の還流量を制御することを特徴とする醗酵アルコール水溶液から無水アルコールを得るための精製処理方法に関する。本方法によれば、もろみ塔、蒸留塔、蒸発器、及び膜分離装置によって、醗酵アルコール水溶液から無水アルコールを得るための精製処理方法において、工程全体としてより簡便で且つ極めてエネルギー効率よく精製処理することができる。

Description

醗酵アルコールの精製処理方法
 本発明は、醗酵アルコールの精製処理方法であって、特にもろみ塔と蒸留塔と蒸発器と膜分離装置とを組合せた醗酵アルコールの精製処理方法において、より簡便に且つ極めてエネルギー効率よく醗酵アルコールを精製処理する方法に関する。
 醗酵槽から取出した醗酵アルコール液を精製処理する方法として、従来、もろみ塔によって醗酵アルコール液(もろみ)からアルコール-水混合液を分離濃縮後、更に濃縮塔によってアルコール-水混合液を共沸組成近くまで濃縮し、次いで共沸蒸留塔によって高純度の無水アルコールを得る方法が採用されていた。
 特許文献1には、共沸蒸留塔の代わりに膜分離装置を用いて、蒸留塔で共沸組成近くまで濃縮したアルコール-水混合液を蒸発器で蒸発して膜分離装置へ導入して精製処理する方法が開示されている。
 特許文献2にも、特許文献1と同じシステムが開示されている。この文献では、同システムにおいて、蒸留塔の留分を蒸発器に導入して加熱すると、蒸留塔の操作圧力より高圧のアルコールと水との混合蒸気が生成し、この高圧の蒸気を膜分離器に導入するので、膜分離装置を高効率で操作できることが説明されている。なお、蒸留塔の塔頂から取出した留分を凝縮して得られた凝縮液はその10~90%を蒸留塔へ還流して蒸留塔が操作されることが記載されているが、エネルギー効率を考慮した好ましい操作条件については記載がない。実施例では蒸留塔へ10質量%のエタノール水溶液を供給して80質量%まで濃縮し、その凝縮液を蒸発器で蒸発させて膜分離装置へ供給している。
特開昭63-258602号公報 WO2004/073841号公報
 共沸蒸留塔の代わりに膜分離装置を用いれば、設備を簡便にでき且つエネルギー効率も向上できる。しかしながら、もろみ塔と蒸留塔と蒸発器と膜分離装置とを組合せた醗酵アルコールの精製処理方法において、具体的にどのようにすれば、工程全体としてより簡便で且つ極めてエネルギー効率よく醗酵アルコールを精製処理できるかについては十分な検討がされていなかった。
 すなわち、本発明の目的は、醗酵アルコール水溶液をもろみ塔へ供給し、もろみ塔内の醗酵アルコール水溶液を加熱してアルコールと水との混合蒸気を含む留出物を留出させ、この混合蒸気を含むもろみ塔の留出物、またはこの留出物を凝縮した第1の凝縮液を蒸留塔へ供給し、前記留出物又は第1の凝縮液を加熱してアルコールと水との混合蒸気を蒸留塔より留出させ、この混合蒸気を凝縮した第2の凝縮液の一部を前記蒸留塔に還流するとともに、残りの第2の凝縮液を蒸発器へ供給し、次いで、蒸発器内の凝縮液を加熱してアルコールと水との混合蒸気を生成し、このアルコールと水との混合蒸気を膜分離装置へ供給して、アルコールと水との混合蒸気から水蒸気を選択的に除去する工程を有する醗酵アルコール水溶液から無水アルコールを得るための精製処理方法において、工程全体としてより簡便で且つ極めてエネルギー効率よく精製処理する方法を提供することである。
 本発明は以下の次項に関する。
1. (工程1)醗酵アルコール水溶液をもろみ塔へ供給し、もろみ塔内の醗酵アルコール水溶液を加熱してアルコールと水との混合蒸気を留出させ、この混合蒸気を含むもろみ塔の留出物、またはこの留出物を凝縮した第1の凝縮液を蒸留塔へ供給し、(工程2)前記留出物または第1の凝縮液を加熱してアルコールと水との混合蒸気を蒸留塔より留出させ、この混合蒸気を凝縮した第2の凝縮液の一部を前記蒸留塔に還流するとともに、残りの第2の凝縮液を蒸発器へ供給し、次いで、(工程3)前記蒸発器内の第2の凝縮液を加熱してアルコールと水との混合蒸気を生成し、このアルコールと水との混合蒸気を膜分離装置へ供給し、アルコールと水との混合蒸気から水蒸気を選択的に除去する、工程を有する醗酵アルコール水溶液から無水アルコールを得るための精製処理方法において、
 工程1のもろみ塔により留出させるアルコールと水との混合蒸気のアルコール濃度が(当然醗酵アルコール水溶液の濃度以上であって)50質量%未満、好ましくは12質量%以上50質量%未満、より好ましくは20質量%以上50質量%未満、更に好ましくは30質量%以上50質量%未満になるように、もろみ塔を制御し、且つ、工程2の蒸留塔により留出させるアルコールと水との混合蒸気のアルコール濃度が65~85質量%、好ましくは65~78質量%となるように、蒸留塔への凝縮液の還流量を制御することを特徴とする醗酵アルコール水溶液から無水アルコールを得るための精製処理方法。
2. 工程1及び工程2において、もろみ塔及び蒸留塔の操作圧力がいずれも50~150kPa(絶対圧)、好ましくは大気圧であり、工程3において、蒸発器の操作圧力が150kPa(絶対圧)以上、好ましくは200kPa(絶対圧)以上であることを特徴とする項1に記載の醗酵アルコール水溶液から無水アルコールを得るための精製処理方法。
3. 工程2において、蒸留塔内のもろみ塔から供給された留出物又は第1の凝縮液を加熱してアルコールと水との混合蒸気を留出させ、この混合蒸気を凝縮した第2の凝縮液の50%未満、好ましくは35%未満、より好ましくは20%未満、特に好ましくは10%未満を前記蒸留塔に還流することを特徴とする項1~2のいずれかに記載の醗酵アルコール水溶液から無水アルコールを得るための精製処理方法。
4. 工程2の蒸留塔の塔底液が工程1のもろみ塔へ循環供給され、工程3の膜分離装置の膜透過成分が凝縮されて凝縮液として工程2の蒸留塔へ循環供給されることを特徴とする項1~3のいずれかに記載の醗酵アルコール水溶液から無水アルコールを得るための精製処理方法。
5. 醗酵アルコール水溶液をもろみ塔へ供給する前にアルカリ成分を添加して中和処理することを特徴とする項1~4のいずれかに記載の醗酵アルコール水溶液から無水アルコールを得るための精製処理方法。
 本発明によって、醗酵アルコール水溶液をもろみ塔へ供給し、もろみ塔内の醗酵アルコール水溶液を加熱してアルコールと水との混合蒸気を含む留出物を留出させ、この留出物、または留出物を凝縮した第1の凝縮液を蒸留塔へ供給し、第1の凝縮液を加熱してアルコールと水との混合蒸気を蒸留塔より留出させ、この混合蒸気を凝縮した第2の凝縮液の一部を前記蒸留塔に還流するとともに、残りの凝縮液を蒸発器へ供給し、次いで、蒸発器内の第2の凝縮液を加熱してアルコールと水との混合蒸気を生成し、このアルコールと水との混合蒸気を膜分離装置へ供給して、アルコールと水との混合蒸気から水蒸気を選択的に除去する工程を有する醗酵アルコール水溶液から無水アルコールを得るための精製処理方法において、工程全体としてより簡便で且つ極めてエネルギー効率よく精製処理する方法を提供することができる。
 本発明に係る実施態様の一例の概略を図1に示す。以下、図1によって本発明の醗酵アルコール水溶液から無水アルコールを得るための精製処理方法を説明する。なお、本発明はこの態様に限定されるものではない。また、本発明において、無水アルコールとは、99.0質量%以上、好ましくは99.5質量%以上、より好ましくは99.7質量%以上、特に好ましくは99.8質量%以上の純度を有するアルコールを意味する。
 また、本発明において、アルコールは、メチルアルコール、プロピルアルコール、ブチルアルコールなどの低級アルキルアルコールも含むが、好ましくはエタノールである。
 本発明において、醗酵アルコール水溶液は、限定されるものではない。例えば糖質系、デンプン系、セルロース系などの原料を醗酵して得られる醗酵アルコール水溶液である。これらの材料が醗酵槽で醗酵されて醗酵アルコール水溶液となる。この醗酵アルコール水溶液のアルコール濃度は通常は5~12質量%程度である。この醗酵アルコール水溶液には、主成分の水とアルコールの他に、酵母や菌、メタノールなどのアルコール類、蟻酸、酢酸、コハク酸、乳酸、酪酸等の脂肪酸類、アセトアルデヒド、ホルムアルデヒドなどのアルデヒド類、酢酸エチル、酢酸ブチルなどのエステル類、ジエチルアセタールなどのアセタール類、アセトン、メチルエチルケトンなどのケトン類、ピリジン、ピコリン、3-メチルアミン、4-メチルピリジンなどのアミン類、更に高級アルコールと脂肪酸エステルの混合物である所謂フーゼル油など、副生した種々の化合物が含まれている。また、通常は未醗酵の原料成分などが不溶成分として残存しスラリーになっている。
 この醗酵アルコール水溶液は、醗酵槽から直接的に或いは一旦タンクで貯蔵された後で間接的にもろみ塔10へ供給される。もろみ塔へ供給される前に醗酵アルコール水溶液は粗ろ過によって大きな不溶成分が除去されることが好ましい。また、醗酵槽で醗酵した後の醗酵アルコール水溶液は副生した脂肪酸類などによってpHが3~5程度になっている場合がある。このため、醗酵アルコール水溶液中に含まれる酸成分をアルカリ成分の添加などによって中和処理を施すことが好ましい。この中和処理を施すことによって精製後の無水アルコールへの酸の混入を確実に防ぐことができるので好適である。添加するアルカリ成分としては、水酸化ナトリウム、水酸化カリウム、過マンガン酸カリウムなど水溶性のアルカリ化合物を好適に例示できる。
 もろみ塔10内では醗酵アルコール水溶液を加熱して、アルコールと水との混合蒸気を含む留出物を留出させ、この留出物を凝縮した凝縮液を蒸留塔20へ供給する。アルコールと水との混合物を含む留出物は、好ましくはアルコールと水との混合蒸気(気体の状態)であるが、アルコールと水との混合蒸気に醗酵アルコール水溶液の飛沫などを含んだ混合物(気液混合の状態)であっても構わない。
 本発明において、もろみ塔10の主たる役割は、アルコールの系外への排出(ロス)を極力抑制しながら、醗酵アルコール水溶液から、未醗酵の原料成分などの不溶成分やフーゼル油などの高沸点成分を、好ましくは低沸の副生物成分や水とともに、分離して除去することにある。この目的を達成できるものであれば、もろみ塔は特に限定されるものではなく、従来公知の型式のものを好適に用いることができる。単蒸留式でも連続蒸留式でも構わない。蒸留段は数段程度のものが好適であり、例えば山型キャップ式トレー、或いはスケールの付着の少ないバッフル式トレーなどの棚段式のものを好適に使用できる。さらにフラッシュ蒸留などの単蒸留式のものでもよく、それを複数個組合せたものでも構わない。なお、もろみ塔の操作圧力は好ましくは減圧又は大気圧である。
 図1に示しているように、原料の醗酵アルコール水溶液はもろみ塔10の比較的塔頂に近い供給口から塔内へ導入される。一方、塔底近くの導入口から水蒸気(スチーム)が吹き込まれる。この水蒸気は塔内を流下する液体と熱交換及び物質交換しながら塔内を上昇する。このため、塔底での蒸気成分はほとんど水になり、塔頂近くでは蒸気中のアルコール濃度が大きくなる。この結果、塔底からはアルコールをほとんど含まない水が不溶成分とともに塔底液として排出される。なお、塔底から水蒸気を導入する代わりに塔底から排出する塔底液の一部をリボイラーによって蒸気化して塔内に導入する方法を用いることもできる。
 もろみ塔10の塔頂或いは濃縮段から取出されるアルコールと水との混合蒸気を含む留出物は、凝縮器11に送られ凝縮される。この凝縮液の一部はもろみ塔へ還流され、残りの凝縮液は蒸留塔20へ供給される。この凝縮液のもろみ塔10へ還流する割合を変えることによってもろみ塔10から蒸留塔20へ供給される留出物のアルコール濃度を制御することもできる。
 なお、図1に記載した態様ではないが、もろみ塔10の塔頂或いは濃縮段から取出されるアルコールと水との混合蒸気を含む留出物は、凝縮せず気体の状態または気液混合の状態で蒸留塔20へ供給することもできる。この態様では、限定するものではないが、アルコールと水との混合蒸気を含む留出物の一部を蒸溜塔20へ供給するとともに、残りの留出物を凝縮器で凝縮し、得られた凝縮液の全量をもろみ塔へ還流することもできる。その際、凝縮器へ供給する留出物の割合によってもろみ塔10から蒸留塔20へ供給される留出物のアルコール濃度を制御することができる。
 また、アルコールと水との混合蒸気に膜分離装置40の分離膜へ悪影響を与えるアルデヒド化合物などの低沸成分が多く含まれる場合には、分離膜を保護のために、もろみ塔10の塔頂から取出した留出物を分縮(一部の低沸成分を蒸気のままとし、それ以外のアルコールと水との混合蒸気を凝縮)し、アルデヒドなどの低沸成分をアルコールと水との混合蒸気から分離して系外へ除去することが好適である。
 本発明において、もろみ塔10から蒸留塔20へ供給される留出物のアルコール濃度は、もろみ塔から膜分離装置までの工程全体でのエネルギー効率を向上させるために、(当然醗酵アルコール水溶液の濃度以上であって)50質量%未満、好ましくは12質量%以上50質量%未満、より好ましくは20質量%以上50質量%未満、更に好ましくは30質量%以上50質量%未満になるように制御される。もろみ塔である程度までアルコールが濃縮することによって、蒸留塔20で加熱蒸気化するために必要とするエネルギー消費量を抑制できる。しかし、50質量%以上では、もろみ塔の前記役割(アルコールが排出することを極力抑制しながら、未醗酵の原料成分などの不溶成分やフーゼル油などの高沸点成分を、好ましくは低沸の副生物成分や水とともに、分離して除去する)に加えて、アルコールをより濃縮する役割が過大に加わるので、もろみ塔10の醗酵アルコール水溶液の供給口よりも上側に更に濃縮段を増やす必要が生じ、装置の大型化、複雑化が免れなくなる。そのような大型化、複雑化したもろみ塔に不溶成分(粗ろ過しても完全に除去されていない)や高沸成分を含む醗酵アルコール水溶液を供給すると、不溶成分や高沸成分が蒸気に同伴して濃縮段へ持ち込まれるので、スケールとして堆積するなどの問題が生じ、もろみ塔を安定的且つエネルギー効率よく運転することが極めて難しくなる。
 蒸留塔20へ供給する留出物のアルコール濃度を(当然醗酵アルコール水溶液の濃度以上であって)50質量%未満、好ましくは12質量%以上50質量%未満、より好ましくは20質量%以上50質量%未満、更に好ましくは30質量%以上50質量%未満とするのは、蒸留段が数段程度以下の簡便な装置で容易に達成できるし、アルコールと水との混合蒸気を凝縮してもろみ塔へ還流する場合でも、還流する割合を極めて低くできるので、迅速な処理が可能になりエネルギー消費量を抑制できるからである。
 アルコールと水との混合蒸気を凝縮してもろみ塔へ還流する場合に、還流の割合が高くなると、単位操作あたりのもろみの処理量が少なくなり、逆に言えば単位アルコールあたりのエネルギー消費量が多くなるので工程全体でのエネルギー効率を低下させる。
 もろみ塔での還流する凝縮液の割合は、好ましくは20%以下、より好ましくは10%以下である。
 本発明における蒸留塔20の役割は、もろみ塔からの留出物を、50~150kPa、好ましくは大気圧の操作圧力で、アルコール濃度が65~85質量%、好ましくは65~78質量%のアルコールと水との混合蒸気まで濃縮することである。
 このアルコール濃度が65~85質量%、好ましくは65~78質量%のアルコールと水との混合蒸気は凝縮液として蒸発器30へ供給され、蒸発器30で蒸気化されて膜分離装置40へ供給されて、無水アルコールまで精製処理される。
 蒸留塔20で、アルコール濃度が65質量%未満までしか濃縮しないと、次工程の蒸発器でのエネルギー消費量が大きくなって、工程全体としてより簡便で且つ極めてエネルギー効率よく醗酵アルコールを精製処理して無水アルコールを得ることができないので好ましくない。一方、蒸留塔20で、アルコール濃度が85質量%超(例えば共沸組成近く)まで濃縮した場合も、工程全体としてより簡便で且つ極めてエネルギー効率よく醗酵アルコールを精製処理して無水アルコールを得ることができなくなるので好ましくない。
 蒸留塔20は棚段式、充填塔等、通常の蒸留操作に適したものであれば特に限定されない。蒸留塔の中段にもろみ塔の留出物又は留出物の凝縮液を供給するための供給部が配置される。塔底液の一部はリボイラー21によって加熱されて蒸気となり、塔内を流下する液体と熱交換及び物質交換をしながら塔内を上昇する。塔頂或いは濃縮段から留出したアルコールと水の混合蒸気は、アルコール濃度が65質量%以上、好ましくは70質量%以上であって、85質量%以下、好ましくは80質量%以下、より好ましくは78質量%以下まで濃縮されて凝縮器に送られる。蒸留塔20の塔底液は回収すべきアルコールを含んでいてもよく、好適にはもろみ塔10へ循環供給される。
 蒸留塔20の操作圧力は好ましくは50~150kPa(絶対圧)の範囲であり、通常は大気圧である。操作圧力が150kPa(絶対圧)を越えると、蒸留塔の建設コストが高くなり、加熱温度が高くなるためにエネルギー消費が増えるので好ましくない。また操作圧力が50kPa(絶対圧)未満では、塔頂或いは濃縮段から留出したアルコールと水の混合蒸気の凝縮温度が低くなるから、凝縮器でのエネルギー消費量が増えるので好ましくない。
 蒸留塔20の塔底液を加熱するリボイラー21は、外部から供給したスチームの凝縮熱を用いることもできるが、膜分離装置40の非透過蒸気の凝縮熱を例えば予熱として好適に利用することができる。
 凝縮器22は塔頂或いは濃縮段から留出したアルコールと水の混合蒸気を冷却して凝縮液とする。凝縮液は凝縮液槽23に一旦溜めても構わない。この凝縮液の一部は、例えば凝縮液ポンプにより塔頂或いは濃縮段へ還流され、残りが蒸発器30に送られる。凝縮液のうちの蒸留塔20へ還流する割合によって、蒸留塔の塔頂或いは濃縮段で得られるアルコールと水との混合蒸気のアルコール濃度を好適に制御できる。本発明においては、凝縮液のうちの蒸留塔20へ還流する割合を調節することによって、蒸留塔20の塔頂或いは濃縮段で得られるアルコールと水との混合蒸気のアルコール濃度を65~85質量%の範囲になるように制御する。
 還流の割合が高くなると蒸留塔20における処理量が少なくなって、処理速度が遅くなり、エネルギー消費量が多くなるなど効率の低下を招くので、還流する凝縮液の割合は比較的低めであることが好ましい。好ましくは凝縮液の50%未満、より好ましくは35%未満、更に好ましくは20%未満、特に好ましくは10%未満である。
 凝縮器22の凝縮熱は、蒸留塔に供給される留出物の予備加熱に利用してもよい。供給される留出物はその沸点近くまで予備加熱するのが好ましい。その際、凝縮器22で凝縮しきれない蒸気は、補助凝縮器で冷却水により凝縮することが好ましい。
 本発明においては、蒸留塔20から凝縮器22を介してアルコール濃度が65~85質量%のアルコール水溶液が蒸発器30へ供給される。蒸発器30の役割は、前記アルコール水溶液を加熱して全量蒸発させてアルコールと水との混合蒸気として膜分離装置40へ供給することである。蒸発器30は十分な加熱機能を備え、得られるアルコールと水の混合蒸気の圧力が100kPa(絶対圧)以上、好ましくは120kPa(絶対圧)以上、より好ましくは200kPa(絶対圧)以上の比較的高い圧力で操作できるものが好適である。なお、圧力の上限は通常は700kPa(絶対圧)程度以下である。
 蒸発器30で得られたアルコールと水の混合蒸気は全量が膜分離装置40へ供給されて精製処理が行われる。この操作中に混合蒸気が凝縮することを防ぐために、膜分離装置への供給前に過熱器によって5℃程度以上高温になるように過熱されることが好適である。なお、蒸発器30の操作圧力は、膜分離装置40の非透過側を流れる蒸気の流量を調節(制限)することによって好適に行うことができる。そして、蒸発器30内の蒸発温度は蒸留塔20の塔底の温度より5℃程度以上高くなるように蒸発器内の圧力を調節するのが好ましい。これにより膜分離装置40の非透過蒸気を蒸留塔20のリボイラ-の熱源として利用することが可能になる。
 本発明においては、蒸留塔での分離精製を簡便にした結果として、蒸発器へアルコール濃度が65~85質量%の比較的低濃度のアルコール水溶液が供給される。このため、蒸発器へ供給される凝縮液に醗酵アルコール水溶液中に含まれる所謂フーゼル油などの不純物が微量残存する場合がある。その場合に連続的な運転を続けると、蒸発器内に前記不純物が蓄積して突沸などの原因になることがある。したがって、本発明においては、蒸発器の塔底液の一部を連続的或いは断続的に排出して蓄積した不純物を取り除きながら運転することが好適である。
 膜分離装置40において、アルコールと水との混合蒸気は選択透過性を有する分離膜に接触しながら流れる。その際、水蒸気は分離膜を選択的に透過するので、分離膜の透過側では、主に水蒸気からなりアルコール濃度が低下した混合蒸気が回収される。この混合蒸気のアルコール濃度は数~数十質量%程度(例えばアルコール20質量%)であるが、アルコールの回収率を高めるために(凝縮して凝縮液として、或いは蒸気のままストリッピング蒸気として)蒸留塔20へ循環供給されることが好適である。一方、分離膜の非透過側では水蒸気が除かれるので高純度の無水アルコールを回収することができる。
 一般に、水蒸気が分離膜を透過する透過量は、膜を挟んだ両側の水蒸気の分圧の差に比例している。このため、本発明では、蒸発器30で100kPa(絶対圧)以上、好ましくは120~700kPa(絶対圧)程度の比較的高圧のアルコールと水との混合蒸気を発生させて膜分離装置へ供給することが好適である。同時に、分離膜の透過側を減圧にすることも好適である。具体的には、分離膜の透過側の空間を熱交換器(コンデンサー)41を介して真空ポンプ42に接続して減圧にするとともに、分離膜を透過した透過蒸気をコンデンサーで凝縮して凝縮液とする。この凝縮液は好ましくは凝縮液槽43に溜められ次いで蒸留塔20へ循環供給されるのが好ましい。
 膜分離装置40としては、水蒸気とエタノール蒸気との混合蒸気から水蒸気を分離膜で分離できるものであれば限定されるものではない。また、分離膜もアルコール蒸気に対して水蒸気を選択的に透過するものであれば特に限定されない。ポリイミド、ポリエーテルイミド、ポリカーボネート、ポリスルフォン、高分子量ポリビニルアルコールなどのポリマーからなるものでも、ゼオライト、ジルコニア等の無機物からなるものでも構わない。そして、膜分離装置の形態も、例えば非対称ポリイミド中空糸膜からなる中空糸分離膜モジュール、多孔質からなる管状の支持体にゼオライトを成膜した管状分離膜エレメントを具備するシェルアンドチューブ型モジュールなどの従来公知のものなどを好適に用いることができる。これらの例としては、限定するものではないが、ポリイミド中空糸膜を用いた特開2000-262838号公報、特開2001-62257号公報など、ゼオライト膜を用いた特開2003-93844号公報、特開2006-263574号公報、特開2007-203210号公報などに記載されたものを好適に挙げることができる。
 分離膜の透過性能としては、使用時において、好ましくは水蒸気透過速度(P’H2O)が0.5×10-3cm(STP)/cm・sec・cmHg以上、より好ましくは1.0×10-3cm(STP)/cm・sec・cmHg以上であって、水蒸気透過速度(P’H2O)とアルコール透過速度(P’alcohol)との比(P’H2O/P’alcohol)が好ましくは50以上、より好ましくは100以上のものが好適である。
 図2は、本発明に係る実施態様の別の一例の概略を示すものである。
 すなわち、もろみ塔10から排出される塔底液はもろみ塔10へ供給される醗酵アルコール水溶液の予備加熱に用いられ、膜分離装置40の非透過蒸気(無水アルコール蒸気)は、蒸留塔20のリボイラ-の予備加熱、及び膜分離装置40の透過蒸気の凝縮液を蒸留塔20へ循環供給する際の予備加熱に用いられている。
 本発明を以下の実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。
〔実施例1〕
 醗酵槽で得られたエタノール濃度が7.3質量%の醗酵エタノール水溶液を1時間当り72.7t、図2に概略を示した装置を用いて精製処理し、99.8質量%の無水エタノールを1時間当り5t得ることを試みた。
(工程1)
 エタノール濃度が7.3質量%の醗酵エタノール水溶液を予備加熱器で予熱し、送液ポンプで理論段数が5段相当のもろみ塔へ72.7t/時間の流量で供給する。このもろみ塔の塔底には、供給された醗酵エタノール水溶液を蒸発させて蒸留処理を行うために必要な水蒸気(スチーム1)を直接吹き込む。もろみ塔内で留出させ塔頂から送出したエタノールと水との混合蒸気は凝縮器で全量凝縮する。凝縮液の一部はもろみ塔へ還流し、残りの凝縮液は蒸留塔へ供給する。この還流量は、もろみ塔の塔頂のエタノール濃度が39質量%になるように調節する。
(工程2)
 送液ポンプによって、1時間当り16.4tのエタノール濃度が39質量%のエタノール水溶液を理論段数4段相当の蒸留塔へ供給する。この蒸留塔の塔底にはリボイラーが備えられ、塔底から抜き出された塔底液は、膜分離装置の非透過蒸気(無水エタノール蒸気)によって予備加熱され、さらに十分な伝熱面積と循環量を有し且つ必要量のスチーム2が供給されるリボイラーによって混合蒸気にされ蒸留塔へ循環供給する。同時に塔底から抜き出された塔底液は1時間当り8.3tの流量でもろみ塔へ循環供給する。塔底液はエタノール濃度が2.5質量%以下程度に保持する。
 蒸留塔内で留出させ塔頂から送出したエタノールと水との混合蒸気は凝縮器で全量凝縮する。凝縮液の一部は蒸留塔へ還流し、残りの凝縮液は蒸発器へ供給する。この還流量は、蒸留塔の塔頂のエタノール濃度が70質量%になるように調節する。蒸発器へ供給された凝縮液は1時間当り8.1tである。
(工程3)
 蒸発器へ供給する凝縮液(エタノール濃度が70質量%のエタノール水溶液)は、スチーム3によって加熱して、全量が300kPa(ゲージ圧)の圧力でエタノール濃度が70質量%のエタノールと水との混合蒸気とし、過熱器(スチーム3)によって135℃まで過熱して、膜分離装置へ供給する。
 膜分離装置としては、特開2000-262838号公報に記載されたようなモジュールであって、135℃における水蒸気透過速度(P’H2O)が1.2×10-3cm(STP)/cm・sec・cmHg、水蒸気透過速度(P’H2O)とエタノール透過速度(P’EtOH)との比(P’H2O/P’EtOH)が143の、外径が500μm、内径が310μmのポリイミド非対称中空糸分離膜からなる有効膜面積が125mのモジュールを、27本収納したものを用いる。
 膜分離装置の透過側には凝縮器(コンデンサー)を介して真空ポンプが備えられ、分離膜を透過した蒸気はコンデンサーで全量凝縮して、分離膜の透過側の減圧度が保たれるように構成する。また、膜分離装置から排出される非透過蒸気の一部は、膜分離装置の分離効率を高めるためのパージガスとして膜分離装置の透過側へ供給されるように構成する。
 膜分離装置の分離膜を透過側の蒸気(透過蒸気とパージガスとして供給された蒸気)は全量凝縮した後、非透過蒸気によって予備加熱し、蒸留塔へ循環供給する。また、膜分離装置の分離膜の非透過側から回収した非透過蒸気は前記の予備加熱で熱回収された後、冷却されてエタノールの濃度が99.8質量%の無水エタノールとして製品タンクへ、1時間当り5tで回収する。
 このような方法で99.8質量%の無水エタノールを得たときに、99.8質量%の無水エタノール1kgを得るために必要な熱量を、全工程で使用するスチームの合計量(スチーム1~4)から換算した。結果を表1に示した。
〔実施例2、3〕
 表1に示した条件を変更して、実施例と同様に7.3質量%の醗酵エタノール水溶液を1時間当り72.7t精製処理し、99.8質量%の無水エタノールを1時間当り5t得ることを試みた。結果を表1に示した。
〔比較例1、2〕
 表1に示した条件を変更して、実施例と同様に7.3質量%の醗酵エタノール水溶液を1時間当り72.7t精製処理し、99.8質量%の無水エタノールを1時間当り5t得ることを試みた。結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 表1に示したように、実施例1~3では、蒸留塔も膜分離装置も簡便であって、且つ極めてエネルギー効率よく醗酵アルコールを精製処理することができる。比較例1では、エネルギー効率が低いとともに、大型の分離膜装置が必要になる。比較例2では、蒸留塔における凝縮液の還流割合が大きくなってエネルギー効率が低くなるとともに、大型の蒸留塔が必要になる。
 本発明によって、醗酵アルコール水溶液をもろみ塔へ供給し、もろみ塔内の醗酵アルコール水溶液を加熱してアルコールと水との混合蒸気を含む留出物を留出させ、この留出物又はこの留出物を凝縮した第1の凝縮液を蒸留塔へ供給し、蒸留塔内のもろみ塔から供給された留出物又は第1の凝縮液を加熱してアルコールと水との混合蒸気を蒸留塔より留出させ、この混合蒸気を凝縮した第2の凝縮液の一部を前記蒸留塔に還流するとともに、残りの第2の凝縮液を蒸発器へ供給し、次いで、蒸発器内の第2の凝縮液を加熱してアルコールと水との混合蒸気を生成し、このアルコールと水との混合蒸気を膜分離装置へ供給して、アルコールと水との混合蒸気から水蒸気を選択的に除去する工程を有する醗酵アルコール水溶液から無水アルコールを得るための精製処理方法において、工程全体としてより簡便で且つ極めてエネルギー効率よく精製処理する方法を提供することができる。
本発明の醗酵アルコール水溶液から無水アルコールを得るための精製処理方法に係る実施態様の一例の概略図(ブロック図)である。 本発明の醗酵アルコール水溶液から無水アルコールを得るための精製処理方法に係る実施態様の別の一例の概略図(ブロック図)である。
 なお、図面中、実線は液体又は気体(蒸気)の流れを示し、破線は制御系のつながりを示す。
符号の説明
10   もろみ塔
11   凝縮器
12   凝縮液槽
20   蒸留塔
21   リボイラー
22   凝縮器
23   凝縮液槽
30   蒸発器
40   膜分離装置
41   熱交換器(コンデンサー)
42   真空ポンプ
43   凝縮液槽
FIC: 流量調節器
LIC: 液面調節器
TIC: 温度調節器
PIC: 圧力調節器

Claims (5)

  1.  (工程1)醗酵アルコール水溶液をもろみ塔へ供給し、もろみ塔内の醗酵アルコール水溶液を加熱してアルコールと水との混合蒸気を含む留出物を留出させ、この留出物、またはこの留出物を凝縮した第1の凝縮液を蒸留塔へ供給し、(工程2)前記留出物または第1の凝縮液を加熱してアルコールと水との混合蒸気を蒸留塔より留出させ、この混合蒸気を凝縮した第2の凝縮液の一部を前記蒸留塔に還流するとともに、残りの第2の凝縮液を蒸発器へ供給し、次いで、(工程3)前記蒸発器内の第2の凝縮液を加熱してアルコールと水との混合蒸気を生成し、このアルコールと水との混合蒸気を膜分離装置へ供給し、アルコールと水との混合蒸気から水蒸気を選択的に除去する、工程を有する醗酵アルコール水溶液から無水アルコールを得るための精製処理方法において、
     工程1のもろみ塔により留出させるアルコールと水との混合蒸気のアルコール濃度が50質量%未満になるように、もろみ塔を制御し、且つ、工程2の蒸留塔により留出させるアルコールと水との混合蒸気のアルコール濃度が65~85質量%となるように、蒸留塔への凝縮液の還流量を制御することを特徴とする醗酵アルコール水溶液から無水アルコールを得るための精製処理方法。
  2.  工程1及び工程2において、もろみ塔及び蒸留塔の操作圧力がいずれも50~150kPa(絶対圧)であり、工程3において、蒸発器の操作圧力が150kPa(絶対圧)以上であることを特徴とする請求項1に記載の醗酵アルコール水溶液から無水アルコールを得るための精製処理方法。
  3.  工程2において、蒸留塔内のもろみ塔から供給された留出物又は第1の凝縮液を加熱してアルコールと水との混合蒸気を留出させ、この混合蒸気を凝縮した第2の凝縮液の50%未満を前記蒸留塔に還流することを特徴とする請求項1~2のいずれかに記載の醗酵アルコール水溶液から無水アルコールを得るための精製処理方法。
  4.  工程2の蒸留塔の塔底液が工程1のもろみ塔へ循環供給され、工程3の膜分離装置の膜透過成分が凝縮されて凝縮液として工程2の蒸留塔へ循環供給されることを特徴とする請求項1~3のいずれかに記載の醗酵アルコール水溶液から無水アルコールを得るための精製処理方法。
  5.  醗酵アルコール水溶液をもろみ塔へ供給する前にアルカリ成分を添加して中和処理することを特徴とする請求項1~4のいずれかに記載の醗酵アルコール水溶液から無水アルコールを得るための精製処理方法。
PCT/JP2009/053901 2008-02-29 2009-03-02 醗酵アルコールの精製処理方法 WO2009107840A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/920,039 US8129573B2 (en) 2008-02-29 2009-03-02 Method for purifying fermentation alcohol
CN2009801151720A CN102015049B (zh) 2008-02-29 2009-03-02 发酵酒精的纯化方法
BRPI0908412A BRPI0908412A2 (pt) 2008-02-29 2009-03-02 método para purificar álcool de fermentação

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-050584 2008-02-29
JP2008050584 2008-02-29
JP2008-092425 2008-03-31
JP2008092425 2008-03-31

Publications (1)

Publication Number Publication Date
WO2009107840A1 true WO2009107840A1 (ja) 2009-09-03

Family

ID=41016221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053901 WO2009107840A1 (ja) 2008-02-29 2009-03-02 醗酵アルコールの精製処理方法

Country Status (5)

Country Link
US (1) US8129573B2 (ja)
JP (1) JP5369765B2 (ja)
CN (1) CN102015049B (ja)
BR (1) BRPI0908412A2 (ja)
WO (1) WO2009107840A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102126922A (zh) * 2010-01-13 2011-07-20 中国石油化工集团公司 差压蒸馏中粗酒气的处理方法
CN102126921A (zh) * 2010-01-13 2011-07-20 中国石油化工集团公司 制共沸乙醇的三塔加热方法
US9120724B2 (en) 2011-09-09 2015-09-01 Takara Shuzo Co., Ltd. Method for producing absolute alcohol and absolute alcohol

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8053610B2 (en) * 2008-03-31 2011-11-08 Ube Industries, Ltd. Method for purifying fermentation alcohol
CN102180768B (zh) * 2011-03-21 2013-11-20 安徽中粮生化燃料酒精有限公司 一种制备无水乙醇的方法
TWI622577B (zh) * 2012-09-14 2018-05-01 Technip E&C Limited 醇類的處理
CN103409301B (zh) * 2013-08-27 2016-02-10 宜宾金喜来酒业有限公司 一种经膜蒸馏提质的清香型白酒的基酒及其膜蒸馏方法
CN103409305B (zh) * 2013-08-27 2016-02-10 宜宾金喜来酒业有限公司 一种经膜蒸馏提质的凤香型白酒的基酒及其膜蒸馏方法
CN103589620B (zh) * 2013-11-11 2016-07-06 河南景源果业有限责任公司 三效蒸酒工艺
US10486079B1 (en) 2016-01-08 2019-11-26 Whitefox Technologies Limited Process and system for dehydrating a byproduct stream in ethanol production
JP2018020985A (ja) * 2016-08-05 2018-02-08 三菱ケミカル株式会社 アルコールの製造方法
US10729987B1 (en) 2016-12-09 2020-08-04 Whitefox Technologies Limited Process and system for heat integration in ethanol production
CN112118897B (zh) 2018-05-07 2022-07-01 怀弗克斯技术有限公司 在具有分子筛和膜的乙醇生产中使产物流脱水的方法和系统
CN110404285A (zh) * 2019-07-18 2019-11-05 肥城金塔酒精化工设备有限公司 四塔蒸馏与膜分离集成系统及其蒸馏乙醇的方法
CN112827204A (zh) * 2021-02-07 2021-05-25 吉林凯莱英医药化学有限公司 真空提纯装置及提纯系统
EP4415844A1 (en) 2021-10-15 2024-08-21 Whitefox Technologies Limited Heat integrated process and system for organic solvent production using vapor recompression

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232871A (ja) * 1985-08-02 1987-02-12 Mitsubishi Heavy Ind Ltd アルコ−ル生産装置
JPS63258602A (ja) * 1987-04-15 1988-10-26 Ube Ind Ltd 揮発性混合物の分離方法
JPH02184388A (ja) * 1989-01-12 1990-07-18 Tsusho Sangiyoushiyou Kiso Sangiyoukiyokuchiyou アルコールの濃縮精製方法及びその装置
JP2000342901A (ja) * 1999-06-08 2000-12-12 Tadashi Yazaki 蒸留方法およびそれに用いる蒸留装置
JP2001269553A (ja) * 2000-01-19 2001-10-02 Ube Ind Ltd ガス分離膜および分離方法
JP2002345495A (ja) * 2001-05-25 2002-12-03 Takara Holdings Inc エタノールの精製方法
WO2004073841A1 (ja) * 2003-02-21 2004-09-02 Bussan Nanotech Research Institute, Inc. 水溶性有機物の濃縮方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60127734T2 (de) * 2000-01-19 2007-12-27 Ube Industries, Ltd., Ube Gastrennungsmembran und seine Verwendung
JP4414922B2 (ja) * 2005-03-23 2010-02-17 三井造船株式会社 蒸留−膜分離ハイブリッド装置、および蒸留と膜分離を組み合わせた分離方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232871A (ja) * 1985-08-02 1987-02-12 Mitsubishi Heavy Ind Ltd アルコ−ル生産装置
JPS63258602A (ja) * 1987-04-15 1988-10-26 Ube Ind Ltd 揮発性混合物の分離方法
JPH02184388A (ja) * 1989-01-12 1990-07-18 Tsusho Sangiyoushiyou Kiso Sangiyoukiyokuchiyou アルコールの濃縮精製方法及びその装置
JP2000342901A (ja) * 1999-06-08 2000-12-12 Tadashi Yazaki 蒸留方法およびそれに用いる蒸留装置
JP2001269553A (ja) * 2000-01-19 2001-10-02 Ube Ind Ltd ガス分離膜および分離方法
JP2002345495A (ja) * 2001-05-25 2002-12-03 Takara Holdings Inc エタノールの精製方法
WO2004073841A1 (ja) * 2003-02-21 2004-09-02 Bussan Nanotech Research Institute, Inc. 水溶性有機物の濃縮方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOHEI NINOMIYA ET AL.: "Yuki Joki Dassuimaku ni yoru Alcohol Yoeki no Dassui Noshuku Genkai ni Tsuite", KAGAKU KOGAKUKAI DAI 57 NENKAI KENKYU HAPPYO KOEN YOSHISHU, 2 March 1992 (1992-03-02), pages 12 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102126922A (zh) * 2010-01-13 2011-07-20 中国石油化工集团公司 差压蒸馏中粗酒气的处理方法
CN102126921A (zh) * 2010-01-13 2011-07-20 中国石油化工集团公司 制共沸乙醇的三塔加热方法
US9120724B2 (en) 2011-09-09 2015-09-01 Takara Shuzo Co., Ltd. Method for producing absolute alcohol and absolute alcohol

Also Published As

Publication number Publication date
CN102015049A (zh) 2011-04-13
JP2009263335A (ja) 2009-11-12
US20110009677A1 (en) 2011-01-13
JP5369765B2 (ja) 2013-12-18
BRPI0908412A2 (pt) 2017-10-17
US8129573B2 (en) 2012-03-06
CN102015049B (zh) 2013-05-08

Similar Documents

Publication Publication Date Title
JP5369765B2 (ja) 醗酵アルコールの精製処理方法
JP5593629B2 (ja) 醗酵アルコールの精製処理方法
WO2009123223A1 (ja) 醗酵アルコールの精製処理方法
US9266803B2 (en) Liquid separation by membrane assisted vapor stripping process
EP1614458B1 (en) Method for concentrating water-soluble organic material
JP4414922B2 (ja) 蒸留−膜分離ハイブリッド装置、および蒸留と膜分離を組み合わせた分離方法
JP6196807B2 (ja) 水溶性有機物の濃縮方法及び水溶性有機物の濃縮装置
EP1888194B1 (en) New stripper configuration for the production of ethylene oxide
JP4831934B2 (ja) 水溶性有機物濃縮装置
US20170203230A1 (en) System for the Purification of an Organic Solvent and a Process for the use Thereof
JP2007275690A (ja) 有機液体水溶液からの有機液体分離回収方法
JPH0463110A (ja) アルコール含有反応液の分離精製法
JP2020075864A (ja) アルコールの製造方法
JP4360194B2 (ja) 水溶性有機物の濃縮方法及び濃縮装置
KR101330035B1 (ko) 정제 알코올 증류 시스템
JP2780323B2 (ja) 揮発性有機液体水溶液の濃縮液製造方法
JP2532042B2 (ja) 有機酸の回収方法
JPH02253802A (ja) 低沸点溶剤水溶液の脱水分離において蒸留と膜分離の組合せによる熱量節減方法
KR20180018955A (ko) 아세트산 정제 공정 및 장치
JPH025441B2 (ja)
JPH0533978B2 (ja)
JPH04300843A (ja) アルコールの脱水濃縮方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980115172.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09715626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12920039

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09715626

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0908412

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100830