WO2009107318A1 - 電池缶、その製造方法および製造装置、並びにそれを用いた電池 - Google Patents

電池缶、その製造方法および製造装置、並びにそれを用いた電池 Download PDF

Info

Publication number
WO2009107318A1
WO2009107318A1 PCT/JP2009/000226 JP2009000226W WO2009107318A1 WO 2009107318 A1 WO2009107318 A1 WO 2009107318A1 JP 2009000226 W JP2009000226 W JP 2009000226W WO 2009107318 A1 WO2009107318 A1 WO 2009107318A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
cutting
cut
spindle
blade
Prior art date
Application number
PCT/JP2009/000226
Other languages
English (en)
French (fr)
Inventor
石川俊樹
合田佳生
徳本忠寛
森脇正次
加藤誠一
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US12/602,732 priority Critical patent/US8202646B2/en
Priority to CN2009800005642A priority patent/CN101743652B/zh
Priority to EP09714601.3A priority patent/EP2262034B1/en
Priority to KR1020097027291A priority patent/KR101110996B1/ko
Priority to PL09714601T priority patent/PL2262034T3/pl
Publication of WO2009107318A1 publication Critical patent/WO2009107318A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D21/00Machines or devices for shearing or cutting tubes
    • B23D21/14Machines or devices for shearing or cutting tubes cutting inside the tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D21/00Machines or devices for shearing or cutting tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D23/00Machines or devices for shearing or cutting profiled stock
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D31/00Shearing machines or shearing devices covered by none or more than one of the groups B23D15/00 - B23D29/00; Combinations of shearing machines
    • B23D31/001Shearing machines or shearing devices covered by none or more than one of the groups B23D15/00 - B23D29/00; Combinations of shearing machines for trimming deep drawn products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D35/00Tools for shearing machines or shearing devices; Holders or chucks for shearing tools
    • B23D35/001Tools for shearing machines or shearing devices; Holders or chucks for shearing tools cutting members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • H01M50/56Cup shaped terminals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D19/00Shearing machines or shearing devices cutting by rotary discs
    • B23D19/04Shearing machines or shearing devices cutting by rotary discs having rotary shearing discs arranged in co-operating pairs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12229Intermediate article [e.g., blank, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12292Workpiece with longitudinal passageway or stopweld material [e.g., for tubular stock, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T82/00Turning
    • Y10T82/16Severing or cut-off
    • Y10T82/16147Cutting couple straddling work
    • Y10T82/16196Rotary shear pair
    • Y10T82/16213Tool axes parallel to axis of work rotation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/04Processes
    • Y10T83/0596Cutting wall of hollow work

Definitions

  • the present invention relates to a battery can manufactured by cutting off an unnecessary portion of an opening from a material can of a bottomed cylindrical battery can, a manufacturing method and a manufacturing apparatus thereof, and a battery manufactured using the battery can. It is.
  • battery canisters that contain the power generation elements are also increasingly required to have an increased volume ratio and lighter weight. It is coming.
  • battery cans are mainly manufactured by drawing ironing, which can produce a thin can with a small amount of material. Drawing and ironing is performed by punching a steel sheet into a circular blank and simultaneously drawing it to form a bottomed cylindrical can-shaped member. A material for a bottom cylindrical battery can (hereinafter referred to as a material can) is formed. Due to the anisotropy of the material, a wavy convex portion (earring) is formed at the opening end of the material can formed by drawing and ironing. For this reason, the cutting process which cuts the opening end part of a material can is performed so that the earring may be removed, the opening end part may be shaped, and the longer material can may have a specified size.
  • FIG. 17 shows a can manufacturing apparatus (trimmer) used in such a cutting process (see Patent Documents 1 and 2).
  • the trimmer 100 in the illustrated example includes a mandrel 102 on which the material can 101 is fitted so as to position the material can 101 of the beverage aluminum can, and a main shaft 103 to which the mandrel 102 is attached.
  • the main shaft 103 is connected to the outer blade support shaft 104 through a gear or the like so as to rotate together with the outer blade support shaft 104.
  • an annular inner blade 105 is provided at the base end portion of the mandrel 102.
  • the inner blade 105 and the arcuate outer blade 106 supported by the outer blade support shaft 104 cross each other with a predetermined clearance to cut the can wall of the material can 101 sandwiched therebetween in the circumferential direction.
  • the mandrel 102 has a hollow structure, and a plurality of suction holes are formed in the peripheral wall thereof, and the hollow portion is connected to the intake device.
  • the can wall of the material can 101 is sucked into the peripheral surface of the mandrel 102.
  • the suction holes are opened in a plurality of axially extending streak recesses provided on the peripheral surface of the mandrel 102, and the sucked material can 101 is deformed in the shape of the recesses. Thereby, idle rotation of the material can 101 with respect to the mandrel 102 being cut is prevented.
  • JP-A-10-76420 Japanese Patent Laid-Open No. 10-76418
  • the can wall of the material can is not deformed following the recess, and the material can is not idle. It is difficult to hold. For example, when using a material can formed by drawing and ironing a cold rolled steel sheet, it is difficult to hold the material can so as not to idle.
  • the can wall can be aligned with the recess.
  • distortion occurs on the can wall of the material can, resulting in poor appearance.
  • the outer peripheral surface of the electrode group may be damaged by burrs when the spirally wound electrode group is inserted into the battery can in the battery assembly process. is there. Further, if the burr is dropped and falls into the battery can, an internal short circuit may occur during charge / discharge after the battery is assembled, which may cause abnormal heat generation or rupture of the battery can. Thus, the occurrence of high burrs becomes a factor that reduces the safety of the battery.
  • an annular inner blade that comes into contact with the can wall from the inside of the material can, and an arc-shaped outside that comes into contact with the can wall from the outside of the material can are rotated while crossing the blades with a predetermined clearance to cut the can wall in the circumferential direction.
  • the cutting resistance until the outer blade penetrates the can wall of the material can at the initial stage of cutting is high, and thereafter the cutting resistance decreases. Therefore, it is difficult to cut while keeping the deflection of the spindle constant. That is, since the cutting resistance is high at the initial stage of cutting, the main shaft is easily bent, and the actual clearance is wider than the set clearance. On the other hand, the cutting resistance is small at the end of cutting, and the actual clearance and the set clearance are almost equal.
  • the clearance is widened due to the deflection of the main shaft, the cut surface is formed at a high position although the clearance is slightly smaller than when the clearance is relatively narrow. Further, the vicinity of the opening is elastically deformed by the cutting resistance at the initial stage of cutting. For this reason, when the can wall of the material can is cut in the circumferential direction, it is very difficult to finish the cut start portion and the cut end portion on the same plane without dimensional error.
  • recutting occurs in which the cutting start portion is cut again by the cutter that has made one round.
  • thin thread-like chips 110 are generated on the cut surface 108 of the can wall as shown in FIG. If the chips remain and remain attached to the outside of the battery can, an external short circuit may occur in which the positive electrode terminal and the negative electrode terminal are short-circuited after the battery is assembled.
  • the present invention has been made in view of the above-described conventional problems, and is a battery can made by cutting off unnecessary portions from the opening of the material can, and the height of the burr formed at the time of cutting is kept small.
  • an object of the present invention is to provide a battery can in which generation of chips due to recutting of a cut surface is suppressed.
  • the present invention can reduce the height of the burr when cutting unnecessary parts from the opening of the material can to reduce the generation of chips by recutting the cut surface. It is an object of the present invention to provide a battery can manufacturing method and a manufacturing apparatus. Another object of the present invention is to provide a safer battery using the battery can described above.
  • the battery can of the present invention is a battery can produced by cutting out the unnecessary portion from a material can of a bottomed cylindrical battery can having an unnecessary portion in an opening,
  • the cut surface obtained by cutting the can wall of the material can in the circumferential direction so as to cut out the unnecessary portion is configured such that the cut end portion is higher than the cut start portion.
  • the cut end portion of the cut surface is made higher by 10 to 50 ⁇ m than the cut start portion.
  • the cut surface comprises a shear surface and a fracture surface
  • the ratio of the shear surface to the entire cut surface is in the range of 0.90 to 0.50.
  • the present invention also provides a battery comprising a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolytic solution enclosed in the battery can described above.
  • the positive electrode comprises a positive electrode mixture paint obtained by kneading and dispersing an active material containing a lithium-containing composite oxide, a conductive material, and a binder with a dispersion medium.
  • Composed of a positive electrode plate coated with The negative electrode is composed of a negative electrode plate configured by applying an active material made of a material capable of holding lithium, and a negative electrode mixture paint obtained by kneading and dispersing a binder with a dispersion medium on a current collector for negative electrode.
  • the electrolyte is composed of a non-aqueous electrolyte.
  • the present invention is a method of manufacturing a battery can by cutting off the unnecessary part from a material can of a bottomed cylindrical battery can having an unnecessary part in an opening
  • a method for manufacturing a battery can wherein the step of cutting out the unnecessary portion is performed by cutting the can wall of the material can in the circumferential direction so that the cut end portion of the cut surface is higher than the cut start portion.
  • the present invention is an apparatus for manufacturing a battery can by cutting off the unnecessary portion from a material can of a bottomed cylindrical battery can having an unnecessary portion in an opening,
  • Material can support means for rotatably supporting the material can;
  • An annular inner blade that comes into contact with the can wall of the material can from the inside;
  • An arcuate outer blade that comes into contact with the can wall of the material can from the outside so as to cross the inner blade with a predetermined clearance;
  • a can manufacturing apparatus is provided.
  • the outer blade is formed such that the edge line of the blade edge extending in the circumferential direction of rotation is inclined from a plane perpendicular to the axial direction of rotation.
  • the inner blade has a clearance between the blade edge of the inner blade and the inner peripheral surface of the material can within a range of 20 ⁇ m to 50 ⁇ m.
  • the outer diameter is set.
  • the material can support means,
  • the pair of spindles are coaxially arranged, and the pair of spindles is composed of one spindle on which the material can is fitted and the other spindle having a recess in which the bottom of the material can is fitted.
  • the one can and the other spindle are configured to sandwich the bottom of the material can and support the material can.
  • the other spindle has a magnetic force generating means for generating a magnetic force so as to attract the material can fitted in the recess. Is done.
  • the value of the ratio of the peripheral speed of the outer blade edge to the peripheral speed of the inner peripheral surface of the material can is 1.0 to 1. Is within the range of 2.
  • the other spindle has at least a portion provided with the recess made of a non-magnetic material, and the magnetic force generating means includes: It is composed of permanent magnets embedded in the site.
  • the one spindle has a tip abutting against the bottom of the material can from the inside and pushes the material can that is externally fitted to the spindle.
  • a can push-out pin urged toward the other spindle for removal is accommodated so as to be able to advance and retreat.
  • the cutting end portion of the cut surface obtained by cutting the can wall of the material can in the circumferential direction is higher than the cutting start portion, so that the cutting start portion is recut.
  • the ratio of the shear plane to the cut plane is in the range of 0.90 to 0.50, the height of the burr is kept low. Therefore, a highly safe battery can be provided.
  • the bottom of the bottomed cylindrical material can is sandwiched by a pair of spindles, and the can wall is cut while holding the material can. Even if a large cutting resistance occurs, it is possible to perform cutting while suppressing slippage of the material can.
  • the pair of spindles are also in a state of supporting each other, even if a large cutting resistance occurs, the deflection can be suppressed. Thereby, the height of a burr
  • FIG. 1 It is sectional drawing which shows schematic structure of the manufacturing apparatus applied to the manufacturing method of the battery can which concerns on Embodiment 1 of this invention. It is a perspective view which shows the external appearance of the raw material can of the battery can processed by the manufacturing apparatus same as the above. It is a perspective view which shows the external appearance of the raw material can after processed with the manufacturing apparatus same as the above. It is sectional drawing which shows the clearance between an inner blade and a raw material can. It is sectional drawing which shows the structure of an outer blade. It is sectional drawing of a preparatory stage when implementing the cutting process by a manufacturing apparatus same as the above. It is sectional drawing of the state in which support of the raw material can was completed when implementing cutting processing by a manufacturing apparatus same as the above.
  • the present invention relates to a battery can manufactured by cutting off an unnecessary portion from a material can of a cylindrical battery can with a bottom having an unnecessary portion in an opening.
  • the cut surface obtained by cutting the can wall of the material can in the circumferential direction so as to cut out the unnecessary portion has a cut end portion higher than the cut start portion.
  • the cut end portion of the cut surface be higher by 10 to 50 ⁇ m than the cut start portion.
  • the cut surface is composed of a shear surface and a fracture surface.
  • the ratio of the shear surface to the entire cut surface is preferably in the range of 0.90 to 0.50.
  • the present invention also relates to a battery configured by sealing a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolytic solution in the battery can described above.
  • the battery of the present invention is manufactured using a battery can in which chips generated by recutting the cut surface are not attached and the height of the burr generated at the cut edge is low. As a result, it is possible to reduce the occurrence of quality defects in the manufacturing stage, that is, the defects related to the height of burrs, the occurrence of defects when the electrode group is inserted into the battery can, and the occurrence of quality defects during use. Therefore, it is possible to provide a battery with high yield and high safety.
  • the positive electrode is formed by applying a positive electrode mixture paint obtained by kneading and dispersing an active material containing a lithium-containing composite oxide, a conductive material, and a binder in a dispersion medium onto a positive electrode current collector.
  • the negative electrode is composed of an active material made of a material capable of holding lithium, and a negative electrode mixture paint obtained by kneading and dispersing a binder in a dispersion medium.
  • the negative electrode plate and the electrolyte solution is composed of a non-aqueous electrolyte solution, thereby reducing the occurrence of quality defects in the manufacturing stage of lithium ion batteries and the occurrence of quality defects during use. . Therefore, it is possible to provide a lithium ion battery with high yield and high safety.
  • the present invention also relates to a method of manufacturing a battery can by cutting out the unnecessary part from a material can of a bottomed cylindrical battery can having an unnecessary part in an opening.
  • the step of cutting away the unnecessary portion is executed by cutting the can wall of the material can in the circumferential direction so that the end of the cut surface of the cut surface is higher than the start portion.
  • the present invention also relates to an apparatus for manufacturing a battery can by cutting out the unnecessary part from a material can of a bottomed cylindrical battery can having an unnecessary part in an opening.
  • the apparatus includes a material can support means for rotatably supporting a material can, an annular inner blade that comes into contact with the can wall of the material can from the inside, an inner blade support means for rotatably supporting the inner blade, and an inner blade And an outer cutter supporting means for rotatably supporting the outer cutter so as to cross with a predetermined clearance.
  • the shape of the outer blade is set so that the end portion of the cut surface obtained by cutting the can wall of the material can in the circumferential direction by the inner blade and the outer blade is higher than the start portion. This avoids recutting the cutting start portion of the cut surface. Therefore, thin thread-like chips are generated by recutting, and the chips remain attached to the battery can, thereby eliminating the danger of internal short circuit and external short circuit.
  • the outer blade is formed such that the edge line of the blade edge extending in the circumferential direction of rotation is inclined from a plane perpendicular to the axial direction of rotation.
  • the concept of the start and end of cutting will be described in more detail by taking as an example the case where the manufacturing apparatus is used.
  • cutting is started such that the cutting edge penetrates the inner peripheral surface of the material can.
  • the trajectory of the edge of the outer blade from the contact to the outer peripheral surface of the material can until it penetrates the inner peripheral surface of the material can is defined as the boundary line, and the cutting start part and the cutting end part are adjacent to each other. Is done.
  • the boundary line described above is not a short line perpendicular to the circumferential direction of the material can but a relatively long line extending in the circumferential direction of the material can. Waste will be generated. Therefore, if such chips remain attached to the battery can, an external short circuit and an internal short circuit are caused.
  • the present invention can suppress the generation of such chips.
  • the present invention also relates to a battery can manufacturing apparatus in which the outer diameter of the inner blade is set so that the clearance between the cutting edge of the inner blade and the inner peripheral surface of the material can is in the range of 20 ⁇ m to 50 ⁇ m.
  • the clearance between the cutting edge of the annular inner blade and the inner peripheral surface of the material can is set to a relatively small value, it is possible to prevent the material can from sagging and shaking during cutting.
  • the ratio of the fracture surface in the cut surface can be reduced.
  • the ratio of the fracture surface is reduced, it is possible to reduce the burrs generated due to the fracture of the material. Therefore, when the electrode group is stored in the battery can, the risk of damaging the electrode group is reduced, and the occurrence of poor quality can be suppressed.
  • the material can support means includes a pair of spindles arranged coaxially, and the pair of spindles includes one spindle on which the material can is fitted and a bottom portion of the material can.
  • the present invention relates to an apparatus for manufacturing a battery can comprising the other spindle having a recessed portion to be fitted.
  • the material can support means supports the material can by holding the bottom portion of the material can between the one spindle and the other spindle described above.
  • the area which a raw material can and a support means contact can be made small. Therefore, since a raw material can becomes difficult to be damaged, generation
  • the present invention also relates to a battery can manufacturing apparatus having a magnetic force generating means for generating a magnetic force so that the other spindle attracts the material can fitted in the recess.
  • a magnetic force generating means for generating a magnetic force so that the other spindle attracts the material can fitted in the recess.
  • the present invention also relates to a battery can manufacturing apparatus in which the value of the ratio of the peripheral speed of the outer blade edge to the peripheral speed of the inner peripheral surface of the material can is in the range of 1.0 to 1.2.
  • the value of the ratio of the peripheral speed of the outer blade edge to the peripheral speed of the inner peripheral surface of the material can is in the range of 1.0 to 1.2.
  • the present invention relates to a battery can manufacturing apparatus including a permanent magnet.
  • a battery can manufacturing apparatus including a permanent magnet.
  • the one spindle is urged toward the other spindle for pushing the material can that is fitted on itself, the tip of which is in contact with the bottom of the material can from the inside.
  • the present invention relates to an apparatus for manufacturing a battery can in which a push-out pin is accommodated so as to be able to advance and retract.
  • FIG. 1 is a cross-sectional view of the battery can manufacturing apparatus according to the first embodiment.
  • disconnected by the manufacturing apparatus is shown with a perspective view.
  • FIG. 3 shows a state after the material can has been cut by the manufacturing apparatus.
  • the manufacturing apparatus 10 is an apparatus that manufactures a battery can 30 by cutting a cylindrical material can 15 having a bottom portion 15a. More specifically, the manufacturing apparatus 10 is an apparatus that cuts and shapes the earrings 15b formed in the opening of the material can 15 produced by drawing and ironing. The unnecessary portion 15c in the vicinity of the opening is cut off so as to have a prescribed dimension.
  • the manufacturing apparatus 10 in the illustrated example includes an upper spindle 11, a lower spindle 12 arranged coaxially therewith, and an outer blade support shaft 13.
  • the upper spindle 11, the lower spindle 12, and the outer blade support shaft 13 are rotated by a drive source such as an electric motor (not shown).
  • a drive source such as an electric motor (not shown).
  • the upper spindle 11 is a shaft for rotatably supporting the inner blade 18 that abuts against the can wall of the material can 15 from the inside, and for rotatably supporting the material can 15 in cooperation with the lower spindle 12.
  • the outer blade support shaft 13 is a shaft that rotatably supports the outer blade 28 that contacts the can wall of the material can 15 from the outside.
  • the upper spindle 11 is composed of a substantially cylindrical can outer fitting portion 14 to which a bottomed cylindrical material can 15 is fitted, and a base portion 16 that supports the can outer fitting portion 14.
  • An annular inner blade 18 is disposed between the can outer fitting portion 14 and the base portion 16.
  • a female screw (not shown) is provided on the inner peripheral portion of the inner blade 18, while a convex portion 16 a provided on the distal end side (lower side) of the base portion 16 of the upper spindle 11 is screwed with the female screw of the inner blade 18.
  • a male screw that does not work is formed.
  • the inner blade 18 is fixed to the base portion 16 by tightening the inner blade 18 into the male screw.
  • a female screw (not shown) that engages with a male screw provided on the convex portion 16 a of the base portion 16 is also formed on the rear side end portion (upper end portion) of the can outer fitting portion 14.
  • the female screw of the inner blade 18 is fixed so as not to loosen by tightening the female screw into the convex portion 16a of the base portion 16 following the inner blade 18.
  • the structure for fixing the inner blade 18 to the upper spindle 11 shown here is merely an example, and the present invention is not limited to this.
  • the structure for fixing the inner blade 18 to the upper spindle 11 may be any structure as long as the inner blade 18 can be fixed to the upper spindle 11 with a required strength.
  • the blade edge (edge portion) of the inner blade 18 is not clearly shown in the drawing, it is formed so as to go around the edge of the upper end portion of the inner blade 18, and the tip (lower end) of the can outer fitting portion 14.
  • the distance from the inner blade 18 to the cutting edge is set according to the inner length of the battery can.
  • the outer diameter of the inner blade 18 is set so that the clearance L between the cutting edge of the inner blade 18 and the inner peripheral surface of the material can 15 is 20 to 50 ⁇ m over the entire circumference. Thereby, the height of the burr
  • the upper spindle 11 is provided with a pin insertion hole (not shown) so as to penetrate the center up and down, and a can push-out pin 24 is accommodated in the hole so as to be movable up and down.
  • the pin (lower end) of the can pushing-out pin 24 pushes the material can 15 out of the can outer fitting portion 14 by abutting from the inside to the bottom portion 15a of the material can 15 fitted into the can outer fitting portion 14. Is.
  • the can push-out pin 24 is urged downward by the elastic body 26.
  • a spring or rubber can be used for the elastic body 26.
  • the can push-out pin 24 may be biased by an air cylinder.
  • the lower spindle 12 is provided coaxially with the upper spindle 11 and is disposed so as to be rotatable and vertically movable so as to rotate at the same speed as the upper spindle 11.
  • the lower spindle 12 includes a can bottom fitting portion 21 disposed to face the can outer fitting portion 14 and a base portion 20 that detachably supports the can bottom fitting portion 21.
  • the can bottom fitting portion 21 is formed with a concave portion 21 a that fits the bottom portion of the material can 15 on the surface facing the can outer fitting portion 14.
  • the can bottom fitting portion 21 is made of a non-magnetic material (for example, stainless steel, aluminum alloy, resin), and has a 1 for adsorbing and holding the material can 15 by magnetic force therein.
  • a plurality of magnets 22 are embedded.
  • a lower end (not shown) of the lower spindle 12 is attached to an actuator composed of an air cylinder or the like, and the lower spindle 12 is fixed toward the upper spindle 11 with the material can 15 interposed therebetween by the actuator. Pressed with pressure.
  • a pressing mechanism is not limited to an air cylinder but may be a mechanical sizing mechanism.
  • the outer blade support shaft 13 is disposed in parallel with the upper spindle 11 and the lower spindle 12 at a predetermined distance from the upper spindle 11 and the lower spindle 12.
  • a flange-shaped outer blade mounting portion 13a is provided at the lower end of the outer blade support shaft 13, and an arc-shaped outer blade 28 is mounted on the outer blade mounting portion 13a.
  • the outer cutter 28 is not arranged in direct alignment with the inner cutter 18 and is not clearly shown in the drawing, it crosses the inner cutter 18 with a predetermined clearance (see FIG. 13 below).
  • the can wall of the material can 15 is cut along the circumferential direction.
  • FIG. 5 is a cross-sectional view of the outer blade 28 taken along line V-V in FIG.
  • the length of the edge portion (cutting edge) 28 a of the outer blade 28 and the turning radius R of the edge portion 28 a are set according to the outer peripheral length of the material can 15.
  • the upper spindle 11, the lower spindle 12, and the outer blade support shaft 13 are connected by a gear and are rotated by the drive source described above.
  • the gear ratio is set such that the ratio of the peripheral speed of the edge portion 28a of the outer blade 28 to the peripheral speed of the inner peripheral surface of the material can 15 is in the range of 1.0 to 1.2. . Thereby, the slip between the raw material can 15 and the inner blade 18 when cutting the can wall of the raw material can 15 along the circumferential direction is suppressed.
  • FIG. 6 to 9 show the steps of processing the material can 15 using the manufacturing apparatus 10 in order.
  • the material can 15 is installed on the can bottom fitting portion 21 of the lower spindle 12. At this time, it installs so that the bottom part 15a of the raw material can 15 may fit in the recessed part 21a of the can bottom fitting part 21.
  • FIG. In this state the bottom portion 15 a of the material can 15 is attracted by the magnet 22 embedded in the can bottom fitting portion 21.
  • the material can 15 is held by the lower spindle 12 with the opening facing upward so that the axis of the material can 15 coincides with the axis of the upper spindle 11.
  • the can push-out pin 24 has a tip protruding from the tip of the can outer fitting portion 14 of the upper spindle 11 by the urging force of the elastic body 26.
  • the lower spindle 12 is raised to a position where the bottom portion 15 a of the material can 15 comes into contact with the distal end portion of the can outer fitting portion 14, and the material can 15 is fitted onto the upper spindle 11.
  • the material can 15 has the bottom 15a fitted in the recess 21a of the can bottom fitting portion 21 of the lower spindle 12, and the can outer fitting portion 14 of the upper spindle 11 and the can bottom fitting portion of the lower spindle 12. 21 and is fixed between. Since the material can 15 is fixed in this way, when the can wall of the material can 15 is cut along the circumferential direction, the material can 15 can be prevented from sagging and shaking.
  • the can releasing pin 24 is pushed up by the bottom 15a of the material can 15 and is accommodated in the upper spindle 11 up to the tip.
  • the outer blade support shaft 13 is rotated to bring the outer blade 28 into contact with the can wall of the material can 15. Thereafter, the outer blade support shaft 13 is further rotated to cut the can wall of the material can 15 along the circumferential direction so as to cut off the unnecessary portion 15c.
  • the inner blade 18 is rotated by the upper spindle 11 and the material can 15 is also rotated by the rotation of the upper spindle 11 and the lower spindle 12.
  • the outer blade support shaft 13 rotates in the opposite direction to the upper spindle 11 and the lower spindle 12 so that the feeding direction of the outer blade 28 is the same as the feeding direction of the inner blade 18 and the material can 15. Is done.
  • FIG. 9 shows a state in the middle.
  • the battery can 30 produced from the material can 15 is attracted by the magnet 22 embedded in the can bottom fitting portion 21 of the lower spindle 12 and extracted from the upper spindle 11.
  • the tip of the can push-out pin 24 protrudes from the tip of the can outer fitting portion 14 by the urging force of the elastic body 26, thereby assisting the removal of the battery can 30 from the upper spindle 11.
  • the unnecessary portion 15 c is also dropped from the upper spindle 11 together with the battery can 30.
  • the cut surface of the opening part of the battery can 30 is expanded and shown.
  • the cut surface 32 in the illustrated example includes an outer peripheral shear surface 34 and an inner peripheral fracture surface 36.
  • the shear surface 34 is a portion that is actually cut by the blade, that is, a portion that is sheared by the blade.
  • the thinned can wall of the material can 15 is pushed by the outer blade 28 and pushed into the inside of the material can 15, and tensile stress in the inner direction is generated on the remaining can wall.
  • FIG. 11 shows a burr formed at the time of cutting.
  • the burr 37 is formed so as to protrude to the inside of the material can 15 as shown in FIG. 11 because the material of the material can 15 is torn to the inside at the fracture surface 36.
  • the ratio of the shear surface 34 to the entire cut surface 32 is preferably in the range of 0.5 to 0.9.
  • the ratio of the fracture surface 36 to the entire cut surface 32 is preferably 0.5 to 0.1.
  • the height of the burr can be suppressed to 20 ⁇ m or less, the risk that the burr penetrates the separator can be greatly reduced. This is because a commonly used separator has a thickness of about 20 ⁇ m. In consideration of the safety factor, the height of the burr is more preferably suppressed to 15 ⁇ m or less.
  • a material can 15 having an inner diameter of 18 mm, a side wall thickness of 0.2 mm, and a total height of 70 mm was produced by squeezing a cold rolled steel sheet.
  • a battery can was produced for the material can 15 by the procedure shown in FIGS.
  • the clearance L between the inner peripheral surface of the material can 15 and the edge portion of the inner blade 18 is 10 ⁇ m (Comparative Example 1), 20 ⁇ m (Example 1), 30 ⁇ m (Example 2), 40 ⁇ m (Example 3), Set to 50 ⁇ m (Example 4), 60 ⁇ m (Comparative Example 2), and 70 ⁇ m (Comparative Example 3), 1000 battery cans were produced.
  • the ratio of the peripheral speed of the edge portion 28a of the outer blade 28 to the peripheral speed of the inner peripheral surface of the material can 15 was set to 1.0.
  • the cause is that the clearance L between the inner peripheral surface of the material can 15 and the outer peripheral portion of the inner blade 18 is too wide, so that the can wall of the material can 15 bends inward at the start of cutting, and shearing by the outer blade 11 is performed. This is considered to be because the fracture occurred at the same time. This is because a large tensile stress is generated on the can wall in a state where the shearing process is not sufficiently performed, the fracture surface becomes large, and the height of the burr increases.
  • the clearance L is preferably set to 20 to 50 ⁇ m from the viewpoint of facilitating attachment / detachment of the material can / battery can to the upper spindle while keeping the burr 37 smaller.
  • the value of the ratio of the peripheral speed of the outer blade 28 to the peripheral speed of the inner peripheral surface of the material can 15 is 1.0 to It can be said that setting in the range of 1.2 is preferable.
  • Example 8 Comparative Examples 7 to 9 >> Using the same material can 15 as the material can 15 used in Examples 1 to 4, battery cans were produced in the same procedure as in Examples 1 to 4. At this time, when the can spindle release pin 24 is provided on the upper spindle 11 and one magnet 22 is provided on the lower spindle 12 (Embodiment 8), cutting is performed 100 times, and the upper spindle is processed after the processing. The case where the battery can was not automatically discharged from 11 (referred to as a removal error) was counted.
  • Example 8 having both the can push-out pin 24 and the magnet 22, there was no mistake in detaching the material can 15 from the upper spindle 11. Further, in the case where only one of the can push-out pin 24 and the magnet 22 was present (Comparative Examples 7 and 8), the takeout error was 10 times each. Further, in the case where both the can push-out pin 24 and the magnet 22 were not present, the take-out error was 80 times.
  • the reason why the removal error did not occur in the eighth embodiment is that the bottom portion of the material can 15 is pressed from the inside by the can push-out pin 24, and the bottom portion is attracted to the lower spindle 12 by the magnet 22 so that the material can 15 This is considered to be because it can be pulled out in a state parallel to the axis of the upper pindle 11. As a result, the material can 15 can be smoothly extracted without causing the inner blade 18 to be caught by the burr 37 or increasing the contact resistance between the inner peripheral surface of the material can 15 and the upper spindle 11.
  • Example 9 A material can 15 having the same dimensions as the material can 15 of Examples 1 to 4 was produced from aluminum, and 1000 battery cans were produced by using the material can in the same procedure as in Examples 1 to 4 (implementation) Example 9).
  • the ratio of the peripheral speed of the edge portion 28a of the outer blade 28 to the peripheral speed of the inner peripheral surface of the material can 15 is set to 1.0, and the inner peripheral surface of the material can 15 and the edge portion of the inner blade 28 are set.
  • the clearance L was set to 20 ⁇ m.
  • the height of the burr flash inside an opening edge part was measured about 1000 produced battery cans, and the average value of the measured value was computed. As a result, the average height of the burrs 37 was 8 ⁇ m. Thus, it was confirmed that even if the material of the material can 15 was changed to aluminum, the height of the burr could be 20 ⁇ m or less.
  • Embodiment 2 shows a state where the outer blade 28A of the manufacturing apparatus of the second embodiment is viewed in the direction of arrow A in FIG.
  • the outer blade 28A is attached to the outer blade support shaft 13 so that the ridge line of the edge portion 28a is inclined at an angle C at the maximum with respect to the plane S perpendicular to the axis HH of the upper spindle 11 that supports the material can 15. It is attached.
  • the direction of the inclination is set so that the position of the edge portion 28a that contacts the material can 15 at the end of cutting is higher than the position of the edge portion 28a that contacts the material can 15 at the beginning of cutting.
  • the clearance Ls between the inner blade 18 and the outer blade 28 is larger at the end of cutting (see FIG. 14) than the clearance Ls at the beginning of cutting (see FIG. 13).
  • the ratio of the shear surface 34 and the fracture surface 36 constituting the cut surface 32 changes in the circumferential direction of the material can 15. The reason is that when the clearance Ls between the inner blade 18 and the outer blade 28 increases, the ratio of the shear surface 34 tends to decrease while the ratio of the fracture surface 36 tends to increase.
  • the can wall of the material can 15 pushed by the outer blade 28 can be easily escaped inward without being cut.
  • the thickness of the can wall of the material can 15 sheared by the outer blade 28 is reduced.
  • the tensile stress in the direction indicated by the arrow 40 is increased on the can wall of the material can 15 and the fracture surface of the can wall is increased.
  • the can wall of the material can 15 is difficult to escape inward even when pushed by the outer blade 28, and the material can in the portion that is sheared by the outer blade 28.
  • the thickness of 15 can walls is increased.
  • the tensile stress generated in the can wall of the material can 15 in the direction indicated by the arrow 42 is also reduced, and the fracture surface 36 is also narrowed.
  • the cutting surface 32 is cut more than the cutting start portion 40 of the cutting surface 32 as shown in FIG.
  • the end portion 42 is higher by the height difference 44.
  • the cutting start portion 40 and the cutting end portion 42 of the cut surface 32 penetrate through the can wall of the material can 15 after the outer blade 28 abuts against the can wall of the material can 15 and starts cutting.
  • the angle shown in FIG. 15 is an angle measured in the direction of cutting the can wall of the material can 15 with the starting position of 0 ° being 0 °.
  • a lithium ion secondary battery as a non-aqueous secondary battery manufactured using the battery can manufactured by the manufacturing apparatus according to any of the first and second embodiments.
  • this invention is not limited to a lithium ion secondary battery, It can apply to all the batteries which have a bottomed cylindrical battery can, such as a dry battery, a lithium primary battery, and a nickel hydride storage battery.
  • the positive electrode plate 51 is made of an aluminum or aluminum alloy foil or non-woven fabric, and includes a positive electrode current collector having a thickness of 5 ⁇ m to 30 ⁇ m.
  • a positive electrode active material, a conductive material, and a binder are mixed and dispersed in a dispersion medium by a dispersing machine such as a planetary mixer to prepare a positive electrode mixture paint.
  • the positive electrode mixture paint is applied to one or both sides of the positive electrode current collector described above, dried, and rolled as a whole to produce the positive electrode plate 51.
  • the positive electrode active material examples include lithium cobaltate and modified products thereof (such as lithium cobaltate in which aluminum or magnesium is dissolved), lithium nickelate and modified products thereof (such as nickel partially substituted with cobalt). And lithium manganate and modified products thereof.
  • the conductive material for example, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, or other carbon black, or various graphites are used alone or in combination.
  • the positive electrode binder for example, a polyvinylidene fluoride (PVdF) and a modified product thereof, polytetrafluoroethylene (PTFE), or a rubber particle binder having an acrylate unit is used.
  • the negative electrode plate 52 includes a negative electrode current collector made of a rolled copper foil, an electrolytic copper foil, or a copper fiber non-woven fabric and having a thickness of 5 ⁇ m to 25 ⁇ m.
  • a negative electrode active material, a binder, and, if necessary, a conductive material and a thickener are mixed and dispersed in a dispersion medium by a dispersing machine such as a planetary mixer to prepare a negative electrode mixture paint.
  • the negative electrode mixture paint is applied to one or both sides of the negative electrode current collector described above, dried, and rolled as a whole to produce the negative electrode plate 52.
  • the negative electrode active material is a material that can hold lithium.
  • various natural graphites and artificial graphites, or silicon-based composite materials such as silicide and various alloy composition materials can be used.
  • Various binders such as PVdF and modified products thereof can be used as the binder.
  • SBR styrene-butadiene copolymer rubber particles
  • a viscous material can be used as an aqueous solution such as polyethylene oxide (PEO) or polyvinyl alcohol (PVA).
  • PEO polyethylene oxide
  • PVA polyvinyl alcohol
  • CMC carboxymethyl cellulose
  • non-aqueous electrolyte solution sealed in the battery can 30 together with the positive electrode plate 51 and the negative electrode plate 52 a solution in which various lithium compounds such as LiPF 6 and LiBF 4 as electrolyte salts are dissolved in a non-aqueous solvent is used.
  • a non-aqueous solvent ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and methyl ethyl carbonate (MEC) can be used alone or in combination.
  • vinylene carbonate (VC), cyclohexylbenzene (CHB), and a modified product thereof are used as an electrolyte. It is also preferable to add.
  • the positive electrode plate 51 and the negative electrode plate 52 are spirally wound with the separator 53 interposed therebetween, and the electrode group 54 is produced.
  • the electrode group 54 is accommodated together with the insulating plate 55 in the bottomed cylindrical battery can 30.
  • a negative electrode lead (not shown) derived from the lower part of the electrode group 54 is connected to the bottom of the battery can 30.
  • the positive electrode lead 56 led out from the upper part of the electrode group 54 is connected to the sealing plate 57.
  • a sealing plate 57 with a sealing gasket 58 attached to the periphery is inserted into the opening of the battery can 30, and the battery The opening of the can 30 is bent inward and caulked and sealed.
  • Example 10 The same material can 15 as used in Examples 1 to 4 was cut with the angle C in FIG. 12 set to 0.1 ° to produce 1000 battery cans. And about the 1000 battery cans, while measuring the height difference 44 shown by FIG. 15, the position of each angle (0 degree, 90 degrees, 180 degrees, and 270 degrees) from the cutting start shown by FIG. The height of the burr 37 was measured. Further, by examining the cut surface 32 using a microscope, it was confirmed whether or not chips were generated due to recutting of the cutting start portion of the cut surface 32. Further, the ratio of the fracture surface at each angle position from the start of cutting was examined. The results are shown in Table 4.
  • the height difference 44 was in the range of 25 to 35 ⁇ m at a position of 0 ° angle. Further, no chips were observed at a position of 0 ° through all the battery cans. The reason why the chips were not generated is that the cutting edge 32 is formed so that the cutting end portion 42 is positioned higher than the cutting start portion 40 by cutting the outer blade 28 with the inclination angle C. Therefore, it is considered that this is because it was possible to prevent the cutting start portion 40 from being cut again.
  • the height T of the burr 37 was highest at the angle 0 °, and was 7 to 16 ⁇ m. In contrast, the height of the burr 37 was 8 ⁇ m at the maximum at each of the positions of angles 90 °, 180 °, and 270 °. The reason why the height of the burr 37 at the angle position 0 ° is high is that the cutting start portion 40 and the cutting end portion 42 overlap at the angle 0 ° position. This is probably because the height of the burr 37 in the end portion 42 has increased.
  • the ratio of the fracture surface 36 in the cut surface 32 varies between 0.15 and 0.40 so as to increase from the angle 0 ° toward the angle 270 °.
  • the ratio of the shear surface 34 changes between 0.85 and 0.60. The cause is considered to be because the clearance Ls is changed from the cutting start portion 40 to the cutting end portion 42 of the cutting surface 32 so as to increase.
  • the height difference 44 shown in FIG. 15 is 10 ⁇ m or less.
  • the equipment cost will increase significantly, leading to an increase in production cost.
  • the height difference 44 is 50 ⁇ m or more, the clearance between the inner blade 18 and the outer blade 28 increases, and the ratio of the fracture surface 36 increases as described above.
  • the burr height 37 is 20 ⁇ m or more and breaks through the separator 53. Therefore, it can be said that the height difference 44 is preferably 10 to 50 ⁇ m from the viewpoint of productivity and safety.
  • the inclination angle C of the outer cutter 28 by adjusting the inclination angle C of the outer cutter 28 so that the height difference 44 is in the range of 10 to 50 ⁇ m, the generation of chips is suppressed and the fracture surface ratio is 0.15 to 0.00 mm.
  • the height of the burr can be made 20 ⁇ m or less which is the thickness of a general separator. Thereby, when inserting an electrode group into a battery can, it can avoid that the burr
  • Example 11 a lithium ion secondary battery was produced using the battery can produced in Example 10. First, 100 parts by weight of lithium cobalt oxide as a positive electrode active material, 2 parts by weight of acetylene black as a conductive material, and 2 parts by weight of polyvinylidene fluoride as a binder were added in an appropriate amount of N-methyl-2- A positive electrode mixture paint was prepared by stirring and kneading with pyrrolidone in a double arm kneader.
  • the coating material was applied to both surfaces of a positive electrode current collector made of aluminum foil having a thickness of 15 ⁇ m, and a precursor of a positive electrode plate having a mixture layer thickness of 100 ⁇ m on one side after drying was produced. Furthermore, the positive electrode plate was pressed so that the total thickness was 165 ⁇ m. Thereby, the thickness of the single side
  • the precursor was pressed to a total thickness of 170 ⁇ m. Thereby, the thickness of the single side
  • the positive electrode plate and the negative electrode plate were wound with a separator having a thickness of 20 ⁇ m between them, and cut at a predetermined length to constitute an electrode group.
  • the electrode group was inserted into the battery can described above. Thereafter, a nonaqueous electrolytic solution in which 1M LiPF 6 and 3 parts by weight of VC are dissolved is injected into a mixed solvent of EC, DMC, and MEC, the battery can is sealed, and the cylindrical lithium ion secondary battery is sealed. Was made. In this way, 100 lithium ion secondary batteries were manufactured.
  • the test contents were as follows. First, a voltage of 250 V was applied between the positive electrode terminal and the negative electrode terminal, the internal resistance was measured with a tester, and the poorly insulated lithium ion secondary batteries having an internal resistance of 100 m ⁇ or less were counted. As a result, none was detected as an insulation failure. The cause is considered to be that there was no generation of chips due to recutting the cutting start portion of the cut surface 32 and the height of the burr was kept small.
  • the present invention provides a battery using a battery can that has no thread-like chips due to recutting a cutting start portion of a cut surface when cutting an unnecessary portion and has a small burr height at the time of cutting. can do. Therefore, since it is possible to improve safety, it is useful for application to a lithium ion secondary battery in which improvement of safety is particularly required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Primary Cells (AREA)

Abstract

 開口部に不要部分を有する有底円筒形状の電池缶の素材缶から、缶壁を周方向に刃物により切断するようにして不要部分が切除されて、電池缶が作製される。ここで、缶壁の切断は、切断面の切り終わりの部分が切り始めの部分よりも高くなるようにして行われる。これにより、切断面の切り始めの部分を、一周してきた刃物により再切断することが避けられる。その結果、切断面を再切断することによって糸状の切り屑が生じるのを避けることができる。

Description

電池缶、その製造方法および製造装置、並びにそれを用いた電池
 本発明は、有底円筒形状の電池缶の素材缶から開口部の不要部分を切り落として製造される電池缶、その製造方法および製造装置、並びにその電池缶を使用して製造された電池に関するものである。
 近年、電池の高容量化および軽量化に対する要求がますます高まるのに伴って、その発電要素を収容する電池缶についても、その容積率の向上と軽量化とがますます要求されるようになってきている。そのような要求に応えるために、電池缶の製造は、少ない材料量により薄い缶を作製することが可能な絞りしごき加工によるのが主流となっている。
 絞りしごき加工は鋼板を円状のブランクに打ち抜くと同時に絞り加工を行い、有底円筒状の缶状部材を形成した後、缶状部材にしごき加工を施して、薄肉かつ、軸方向に長い有底円筒状の電池缶の素材(以下、素材缶という)を成形するものである。絞りしごき加工により成形された素材缶の開口端部には、材料の異方性に起因して、波状にうねった凸部(イヤリング)が形成される。このため、そのイヤリングを除去して、開口端部を整形するとともに、長めに形成された素材缶を規定の寸法とするように、素材缶の開口端部を切断する切断工程が行われる。
 図17に、そのような切断工程に使用される缶製造装置(トリマー)を示す(特許文献1および2参照)。図示例のトリマー100は、飲料用アルミニウム缶の素材缶101の位置決めをするように素材缶101が外嵌されるマンドレル102と、そのマンドレル102が取り付けられる主軸103とを備えている。
 主軸103は、外刃支持軸104とともに回転するように、ギアなどを介して外刃支持軸104と接続されている。一方、マンドレル102の基端部には、円環状の内刃105が設けられている。内刃105と、外刃支持軸104に支持された円弧状の外刃106とは所定のクリアランスで交叉して、間に挟まれた素材缶101の缶壁を周方向に切断する。
 マンドレル102は中空構造となっているとともに、その周壁に複数の吸引孔が形成されており、その中空部分は吸気装置と接続されている。吸気装置によりマンドレル102の中空部の空気を吸引することによって、素材缶101は、缶壁がマンドレル102の周面に吸引される。
 上記吸引孔は、マンドレル102の周面に設けられた、軸方向に延びる筋状の複数の凹部の中に開口しており、吸引された素材缶101は、凹部の形にならって変形する。これにより、切断中のマンドレル102に対する素材缶101の空回りが阻止される。
特開平10-76420号公報 特開平10-76418号公報
 しかしながら、上述した従来の缶製造装置は、アルミニウム以外の、より固い材料の素材缶を使用した場合には、上記凹部にならって素材缶の缶壁が変形せず、素材缶を空回りしないように保持することが困難である。例えば、冷間圧延鋼板を絞りしごき加工により成形した素材缶を使用した場合には、素材缶を空回りしないように保持することは困難である。
 さらには、アルミニウムよりも固い材料であっても缶壁の厚みの小さい素材缶であれば、上記凹部に缶壁をならわせることは可能である。しかし、この場合には、素材缶の缶壁にひずみが生じ、外観不良となる。
 また、上記いずれの場合においても、空気の吸引力により保持するだけでは、金属製の缶壁を切断するときの切断抵抗よりも大きな保持力で素材缶を保持することは容易ではない。このため、切断中に素材缶のマンドレルに対するすべりが生じ、精度よく切断することは困難である。また、素材缶の保持が不安定になることから、切断の際に生ずるバリの高さが大きくなってしまうという問題もある。
 そして、高いバリが発生した缶を電池缶として使用すると、電池の組み立て工程において、渦巻状に巻回した電極群を電池缶に挿入する際に、電極群の外周面をバリにより損傷するおそれがある。また、バリが脱落して電池缶の内部に落ち込むと、電池の組立後の充放電時に内部短絡を発生し、異常発熱や電池缶の破裂を引き起こすおそれがある。このように、高いバリの発生は、電池の安全性を低下させる要因となる。
 さらには、特許文献1および2に示したような缶製造装置においては、素材缶の内側から缶壁に当接する円環状の内刃と、素材缶の外側から缶壁に当接する円弧状の外刃とを、所定のクリアランスをおいて交叉させながら、素材缶と、内刃および外刃とを回転させて、缶壁を周方向に切断している。
 このとき、切断の初期に外刃が素材缶の缶壁を貫くまでの切断抵抗は高く、その後は、切断抵抗は小さくなる。したがって、主軸のたわみを一定に保ちながら切断することは難しい。つまり、切断の初期段階では切断抵抗が高いために、主軸がたわみやすく、実際のクリアランスは設定したクリアランスよりも広くなる。一方、切断の終了時には切断抵抗が小さく、実際のクリアランスと設定したクリアランスはほぼ等しくなる。主軸のたわみによりクリアランスが広がる場合は、クリアランスが相対的に狭い時よりも僅かではあるが切断面は高い位置に形成される。また切断初期の切断抵抗により開口部の近傍が弾性変形する。このため、素材缶の缶壁を周方向に切断する場合に、切断面の切り始めの部分と切り終わりの部分とを寸法誤差無く同一平面上に仕上げることは非常に困難である。
 その結果、切断の切り始めの部分が、一周してきた刃物により再び切断されるという再切断が発生する。
 再切断が発生すると、図18に示すように、缶壁の切断面108には、細い糸状の切り屑110が発生する。この切り屑が残存して、電池缶の外部に付着したままとなると、電池の組立て後に正極端子と負極端子とが短絡される外部短絡が発生する可能性がある。
 また、その切り屑が電池缶の内部に混入すると、電極群の最外周に配置されたセパレータを突き破り、正極板と負極板とを短絡させて、熱暴走を発生させる危険性がある。このため切断時において切り屑の発生を抑制することは極めて重要な課題である。
 また、上述したような切り屑の発生のみならず、切断面に発生するバリも電池の外部短絡を引き起こす要因となるために、バリの高さが高くならないように切断を行うことも極めて重要である。
 本発明は上記従来の課題に鑑みてなされたものであり、素材缶の開口部から不要部分を切り落として作製された電池缶であって、切断の際に形成されたバリの高さが小さく抑えられているとともに、切断面を再切断することによる切り屑の発生が抑制された電池缶を提供することを目的としている。
 また、本発明は、素材缶の開口部から不要部分を切り落として電池缶を作製するに際して、バリの高さを小さく抑えることができるとともに、切断面を再切断することによる切り屑の発生を抑制することができる電池缶の製造方法および製造装置を提供することを目的としている。
 また、本発明は、上記した電池缶を使用した、安全性のより高い電池を提供することを目的としている。
 上記目的を達成するために、本発明の電池缶は、開口部に不要部分を有する有底円筒形状の電池缶の素材缶から前記不要部分を切除して作製される電池缶であって、
 前記不要部分を切除するように、前記素材缶の缶壁を周方向に切断した切断面は、切り終わりの部分が切り始めの部分よりも高くなっているように構成されている。
 本発明の電池缶において、好ましい形態においては、前記切断面の切り終わりの部分が切り始めの部分よりも、10~50μmだけ高くされる。
 また、本発明の電池缶において、別の好ましい形態においては、前記切断面が、せん断面と破断面とからなり、
 前記せん断面の前記切断面全体に対する比率が、0.90~0.50の範囲とされる。
 また、本発明は、正極と、負極と、前記正極と負極との間に介在されるセパレータと、電解液とを、上記した電池缶に封入して構成された電池を提供する。
 本発明の電池において、好ましい形態においては、前記正極が、リチウム含有複合酸化物を含む活物質、導電材および結着材を分散媒により混練分散した正極合剤塗料を、正極用集電体上に塗布して構成される正極板から構成され、
 前記負極が、リチウムを保持し得る材料よりなる活物質、および結着材を分散媒により混練分散した負極合剤塗料を、負極用集電体上に塗布して構成される負極板から構成され、
 前記電解液が非水電解液から構成される。
 また、本発明は、開口部に不要部分を有する有底円筒形状の電池缶の素材缶から、その不要部分を切除して、電池缶を製造する方法であって、
 前記不要部分を切除する工程を、切断面の切り終わりの部分が切り始めの部分よりも高くなるように、前記素材缶の缶壁を周方向に切断して実行する電池缶の製造方法を提供する。
 また、本発明は、開口部に不要部分を有する有底円筒形状の電池缶の素材缶から、その不要部分を切除して、電池缶を製造する装置であって、
 前記素材缶を回転自在に支持する素材缶支持手段と、
 前記素材缶の缶壁に内側から当接する環状の内刃と、
 前記内刃を回転自在に支持する内刃支持手段と、
 前記内刃と所定のクリアランスをおいて交叉するように、前記素材缶の缶壁に外側から当接する円弧状の外刃と、
 前記外刃を回動自在に支持する外刃支持手段とを備え、
 前記外刃の形状が、前記内刃と外刃とにより前記素材缶の缶壁を周方向に切断した切断面の切り終わりの部分が切り始めの部分よりも高くなるように設定されている電池缶の製造装置を提供する。
 本発明の電池缶の製造装置において、好ましい形態においては、前記外刃は、回転の周方向に延びる刃先の稜線が、回転の軸方向と垂直な平面から傾くように形成される。
 また、本発明の電池缶の製造装置において、別の好ましい形態においては、前記内刃の刃先と前記素材缶の内周面とのクリアランスが20μm~50μmの範囲となるように、前記内刃の外径が設定される。
 また、本発明の電池缶の製造装置において、別の好ましい形態においては、前記素材缶支持手段は、
 同軸に配された一対のスピンドルから構成されるとともに、前記一対のスピンドルは、前記素材缶が外嵌される一方のスピンドルと、前記素材缶の底部が嵌る凹部を有する他方のスピンドルとから構成されており、
 前記一方のスピンドルと前記他方のスピンドルとにより前記素材缶の底部を挟持して前記素材缶を支持するように構成される。
 また、本発明の電池缶の製造装置において、別の好ましい形態においては、前記他方のスピンドルが、前記凹部に嵌った前記素材缶を吸着するように磁力を発生する磁力発生手段を有するように構成される。
 また、本発明の電池缶の製造装置において、別の好ましい形態においては、前記外刃の刃先の周速度の、前記素材缶の内周面の周速度に対する比の値が1.0~1.2の範囲内とされる。
 また、本発明の電池缶の製造装置において、別の好ましい形態においては、前記他方のスピンドルは、少なくとも前記凹部の設けられた部位が非磁性体材料から構成されており、前記磁力発生手段は、その部位に埋設された永久磁石から構成される。
 また、本発明の電池缶の製造装置において、別の好ましい形態においては、前記一方のスピンドルは、先端が前記素材缶の底部に内側から当接して、自身に外嵌された前記素材缶を押し外すための、前記他方のスピンドルに向かって付勢された缶押し外し用ピンを進退可能に収容している。
 本発明の電池缶によれば、素材缶の缶壁を周方向に切断した切断面の切り終わりの部分が切り始めの部分よりも高くなっていることから、切り始めの部分を再切断することにより発生する切り屑が付着している可能性が低い。また、切断面におけるせん断面の比率が、0.90~0.50の範囲であるのでバリの高さが低く抑えられている。したがって、安全性の高い電池を提供することが可能となる。
 さらには、本発明の電池缶の製造方法および製造装置によれば、有底円筒形状の素材缶の底部を一対のスピンドルにより挟持して、素材缶を保持しながら缶壁を切断することから、大きな切断抵抗が生じても、素材缶のすべりを抑制して切断を行うことができる。加えて、一対のスピンドルも相互に支持し合う状態となっていることから、大きな切断抵抗が生じても、そのたわみを抑制することができる。これにより、バリの高さをより小さく抑えることができる。また、素材缶の側壁部を把持する場合と比較して、外観不良を招くおそれも小さい。
本発明の実施の形態1に係る電池缶の製造方法に適用される製造装置の概略構成を示す断面図である。 同上製造装置により加工される電池缶の素材缶の外観を示す斜視図である。 同上製造装置により加工された後の素材缶の外観を示す斜視図である。 内刃と素材缶とのクリアランスを示す断面図である。 外刃の構成を示す断面図である。 同上製造装置による切断加工を実施するときの準備段階の断面図である。 同上製造装置による切断加工を実施するときの、素材缶の支持が完了した状態の断面図である。 同上製造装置による切断加工を実施するときの、切断開始時の断面図である。 同上製造装置による切断加工を実施するときの、切断が終了し、素材缶を取り外すときの断面図である。 同上製造装置により切断加工された切断面を拡大した平面図である。 同上製造装置により切断加工された切断面のバリを示す電池缶の要部の縦断面図である。 本発明の実施の形態2に係る電池缶の製造方法に適用される製造装置の要部を拡大して示す側面図である。 同上装置による素材缶の切断加工の切断開始時点の状態を示す断面図である。 同上装置による素材缶の切断加工の切断終了時点の状態を示す断面図である。 同上製造装置により切断加工された切断面を拡大した斜視図である。 本発明の各実施の形態により製造された電池缶を使用して作製された電池の一部を切断した状態を示す斜視図である。 従来の缶製造装置の一例を示す正面図である。 従来の缶製造装置による缶壁の切断面を拡大して示す平面図である。
 本発明は、開口部に不要部分を有する有底円筒形状の電池缶の素材缶から不要部分を切除して作製される電池缶に関する。その電池缶においては、上記不要部分を切除するように、素材缶の缶壁を周方向に切断した切断面は、切り終わりの部分が切り始めの部分よりも高くなっている。これにより、切断面の切り始めの部分を、一周した後に再切断することが回避できる。したがって、再切断により細い糸状の切り屑が発生して、その切り屑が電池缶に付着したままとなり、内部短絡および外部短絡が発生する危険性を排除することが可能となる。
 このとき、切断面の切り終わりの部分が切り始めの部分よりも、10~50μmだけ高くなるようにするのがよい。
 また、その切断面は、せん断面と破断面とから構成される。そして、せん断面の切断面全体に対する比率は、0.90~0.50の範囲とするのがよい。
 切断面におけるせん断面の比率をこの範囲とすることで、素材缶の内側に発生するバリの高さも低く抑えることができる。したがって、上述した切り屑に起因する弊害を免れることができることに加えて、電池缶の内部に電極群等の発電要素を挿入する際に、発電要素の最外周に配された部材、例えばセパレータが上記バリにより損傷される危険性を低減することができる。その結果、安全性のより高い電池缶を提供することが可能となる。
 また、本発明は、正極と、負極と、その正極と負極との間に介在されるセパレータと、電解液とを、上記した電池缶に封入して構成された電池に関する。本発明の電池は、切断面を再切断することにより発生する切り屑が付着しておらず、且つ切り口に発生しているバリの高さが低い電池缶を使用して作製されている。これにより、製造段階における品質不良の発生、つまりバリの高さに関する不良および電極群を電池缶に挿入する際の不良の発生、並びに使用中の品質不良の発生を低減することができる。したがって、歩留まりが高く、且つ安全性の高い電池を提供することが可能となる。
 また、その正極が、リチウム含有複合酸化物を含む活物質、導電材および結着材を分散媒にて混練分散した正極合剤塗料を、正極用集電体上に塗布して構成される正極板から構成され、その負極が、リチウムを保持し得る材料よりなる活物質、および結着材を分散媒にて混練分散した負極合剤塗料を、負極用集電体上に塗布して構成される負極板から構成され、電解液が非水電解液から構成されるものとすることによって、リチウムイオン電池の製造段階における品質不良の発生、および使用中の品質不良の発生を低減することができる。したがって、歩留まりが高く、且つ安全性の高いリチウムイオン電池を提供することが可能となる。
 また、本発明は、開口部に不要部分を有する有底円筒形状の電池缶の素材缶から、その不要部分を切除して、電池缶を製造する方法に関する。ここで、上記不要部分を切除する工程は、切断面の切り終わりの部分が切り始めの部分よりも高くなるように、上記素材缶の缶壁を周方向に切断して実行される。
 これにより、切断面の切り始めの部分を再切断することが回避できる。したがって、再切断により細い糸状の切り屑が発生して、その切り屑が電池缶に付着したままとなり、内部短絡および外部短絡が発生する危険性を排除することが可能となる。
 また、本発明は、開口部に不要部分を有する有底円筒形状の電池缶の素材缶から、その不要部分を切除して、電池缶を製造する装置に関する。その装置は、素材缶を回転自在に支持する素材缶支持手段と、素材缶の缶壁に内側から当接する環状の内刃と、内刃を回転自在に支持する内刃支持手段と、内刃と所定のクリアランスをおいて交叉するように、素材缶の缶壁に外側から当接する円弧状の外刃と、外刃を回動自在に支持する外刃支持手段とを備えている。その外刃の形状は、内刃と外刃とにより素材缶の缶壁を周方向に切断した切断面の切り終わりの部分が切り始めの部分よりも高くなるように設定されている。
 これにより、切断面の切り始めの部分を再切断することが回避される。したがって、再切断により細い糸状の切り屑が発生して、その切り屑が電池缶に付着したままとなり、内部短絡および外部短絡が発生する危険性を排除することが可能となる。
 より具体的には、外刃は、回転の周方向に延びる刃先の稜線が、回転の軸方向と垂直な平面から傾くように形成されている。
 ここで、切り始め、および切り終わり、という概念について、上記製造装置を使用した場合を例にさらに詳しく説明する。上述の製造装置による切断面においては、外刃の刃先が素材缶の外周面に当接した後、その刃先が素材缶の内周面に突き抜けるようにして、切断が開始される。素材缶の外周面に当接してから素材缶の内周面に突き抜けるまでの外刃の刃先の軌跡を境界線として、その両側に、切り始めの部分と切り終わりの部分とが隣接して形成される。上述した境界線は、素材缶の周方向と垂直な短い線ではなく、素材缶の周方向にも伸びる比較的長い線であるので、切り始めの部分の再切断が生じると、糸状の長い切り屑が生じてしまう。したがって、そのような切り屑が電池缶に付着したまま残存すると、外部短絡および内部短絡が引き起こされる。本発明は、そのような切り屑の発生を抑えることができるものである。
 また、本発明は、上記内刃の刃先と素材缶の内周面とのクリアランスが20μm~50μmの範囲となるように、内刃の外径が設定されている電池缶の製造装置に関する。
 このように、円環状の内刃の刃先と、素材缶の内周面とのクリアランスが比較的小さい値に設定されていることから、切断時において素材缶のたおれや振れを抑制することが可能となり、切断面における破断面の割合を小さくすることができる。破断面の割合が小さくなると、材料の破断により発生するバリを小さくすることが可能となる。したがって、電池缶に電極群を収納する際に、電極群を損傷する危険性が小さくなり、品質不良の発生を抑えることが可能となる。
 また、本発明は、上記素材缶支持手段が、同軸に配された一対のスピンドルから構成されるとともに、その一対のスピンドルは、素材缶が外嵌される一方のスピンドルと、素材缶の底部が嵌る凹部を有する他方のスピンドルとから構成された電池缶の製造装置に関する。ここで、素材缶支持手段は、上述した一方のスピンドルと他方のスピンドルとにより素材缶の底部を挟持して素材缶を支持するものである。
 このように、素材缶の底部を挟持して素材缶を支持するものとすることによって、大きな切断抵抗が生じても、スピンドルのたわみを極めて小さくすることができ、素材缶の位置がずれたり、振れたりすることなく、切断を行うことができる。また、素材缶の側壁部を把持して支持する場合と比較して、素材缶と支持手段とが接触する面積を小さくすることができる。これにより、素材缶に傷が付きにくくなるので電池缶の外観不良の発生を低減することができる。
 また、本発明は、上記他方のスピンドルが、上記凹部に嵌った素材缶を吸着するように磁力を発生する磁力発生手段を有する電池缶の製造装置に関する。
 このように、磁力発生手段により、他方のスピンドルに素材缶を吸着させるものとすることによって、回転振動や切断抵抗による素材缶の振れを招くことなく素材缶を切断することが可能となる。これにより、外刃の切込量を一定に保ちながら素材缶を切断することが可能となる。また、他方のスピンドルに素材缶を磁力により吸着保持した状態で、素材缶を一方のスピンドルに外嵌することができるために、その工程が容易となる。さらには、切断工程の終了後、上記一方のスピンドルに外嵌された素材缶を抜き取る際に、その磁力を利用して抜き取ることが可能となり、製造工程を円滑に進めることが可能となる。
 また、本発明は、外刃の刃先の周速度の、素材缶の内周面の周速度に対する比の値が1.0~1.2の範囲内である電池缶の製造装置に関する。
 このように、両者の周速度を設定することによって、素材缶を内刃と外刃とにより挟み込んで切断する際に、2つの刃と素材缶との間に滑りを生じることなく切断することができる。これにより、切断面におけるバリの高さを更に抑制することができる。
 また、本発明は、上記他方のスピンドルは、少なくとも素材缶と当接する部位が非磁性体材料から構成されており、上記磁力発生手段は、その非磁性体材料から構成された部位に埋設された永久磁石から構成される電池缶の製造装置に関する。
 このように、他方のスピンドルの素材缶と当接する部位を、非磁性体材料から構成することによって、その部位が永久磁石により磁化されることが抑止できる。したがって、メンテナンスの際に、永久磁石を取り外すことによって、付着した金属異物を容易に取り除くことができる。
 また、本発明は、上記一方のスピンドルは、先端が素材缶の底部に内側から当接して、自身に外嵌された素材缶を押し外すための、上記他方のスピンドルに向かって付勢された押し外し用ピンを進退可能に収容している電池缶の製造装置に関する。
 これにより、不要部分の切断工程が終了した後に、上記一方のスピンドルに外嵌された素材缶をスムーズに取り外すことができる。
 《実施の形態1》
 以下、本発明の実施の形態1に係る電池缶製造装置を、図面を参照して説明する。
 図1に、実施の形態1の電池缶の製造装置を断面図により示す。図2に、その製造装置により切断加工される素材缶を斜視図により示す。図3に、素材缶が、その製造装置により切断加工された後の状態を示す。
 製造装置10は、底部15aを有する円筒形状の素材缶15を切断加工して、電池缶30を製造する装置である。より具体的には、製造装置10は、絞りしごき加工により作製された素材缶15の開口部に形成されたイヤリング15bを切除して整形する装置であり、あらかじめ長めに形成された素材缶15を規定の寸法とするように、開口部近傍の不要部分15cを切り落とすものである。
 図示例の製造装置10は、上スピンドル11と、それと同軸に配された下スピンドル12と、外刃支持軸13とを備えている。上スピンドル11、下スピンドル12および外刃支持軸13は、図示しない電動機等の駆動源により回転される。なお、これらの部材の上および下という位置関係の呼称は、図示例の装置に即して付した便宜上のものであり、本発明を限定するものではない。
 上スピンドル11は、素材缶15の缶壁に内側から当接する内刃18を回転自在に支持するとともに、下スピンドル12と協働して素材缶15を回転自在に支持するための軸である。外刃支持軸13は、素材缶15の缶壁に外側から当接する外刃28を回転自在に支持する軸である。
 以下に、これらの各構成要素をより具体的に説明する。
 上スピンドル11は、有底円筒形状の素材缶15が外嵌される、概略円柱状の缶外嵌部14と、缶外嵌部14を支持する基部16とから構成される。缶外嵌部14と基部16との間には、円環状の内刃18が配設される。
 内刃18の内周部には図示しない雌ねじが設けられる一方、上スピンドル11の基部16の先端側(下側)に設けられた凸部16aには、内刃18の雌ねじと螺合する図示しない雄ねじが形成されている。その雄ねじに内刃18を締め込むことによって、内刃18が基部16に固定される。また、缶外嵌部14の後側端部(上端部)にも、基部16の凸部16aに設けられた雄ねじと螺合する図示しない雌ねじが形成されている。その雌ねじを、内刃18に続いて基部16の凸部16aに締め込むことにより、内刃18の雌ねじが緩まないように固定される。なお、ここで示した内刃18の上スピンドル11への固定構造は一例であり、これに限定されるものではない。内刃18の上スピンドル11への固定構造は、内刃18を上スピンドル11に必要な強度で固定し得る構造であれば、どのような構造であってもよい。
 内刃18の刃先(エッジ部)は、図には明瞭に示されていないが、内刃18の上端部の縁を一周するように形成されており、缶外嵌部14の先端(下端)から内刃18の刃先までの距離は、電池缶の内側の長さに応じて設定される。
 図4に示すように、内刃18の外径は、内刃18の刃先と素材缶15の内周面とのクリアランスLが全周に亘って20~50μmとなるように設定されている。これにより、切断により生ずるバリの高さを抑えることができる。
 また、上スピンドル11は、中心を上下に貫通するようにピン挿通孔(図示せず)が設けられており、その孔に、缶押し外し用ピン24を上下動可能に収容している。缶押し外し用ピン24は、その先端(下端)が、缶外嵌部14に外嵌された素材缶15の底部15aに内側から当接することにより素材缶15を缶外嵌部14から押し外すものである。缶押し外し用ピン24は、弾性体26により下に向けて付勢されている。ここで、弾性体26にはバネまたはゴムを使用することができる。また、弾性体26に代えて、エアシリンダにより缶押し外し用ピン24を付勢するようにしても良い。
 下スピンドル12は、上スピンドル11と同軸に設けられており、上スピンドル11と同じ速度で回転するように回転自在、且つ上下動自在に配設されている。下スピンドル12は、缶外嵌部14と対向して配置される缶底嵌合部21と、缶底嵌合部21を着脱可能に支持する基部20とから構成される。缶底嵌合部21には、缶外嵌部14と対向する面に素材缶15の底部と嵌合する凹部21aが形成されている。
 また、缶底嵌合部21は、非磁性体材料(例えば、ステンレス鋼、アルミニウム合金、樹脂)から構成されており、その内部には、素材缶15を磁力により吸着して保持するための1または複数個のマグネット22が埋設されている。マグネット22を複数個設ける場合には、それらが、上スピンドル11および下スピンドル12の軸芯と垂直な1つの平面上に並ぶように配置するのが好ましい。
 下スピンドル12の下端(図示せず)は、エアシリンダ等から構成されるアクチュエータに取り付けられており、下スピンドル12は、そのアクチュエータにより素材缶15を間に挟んで上スピンドル11に向かって一定の圧力で押しつけられる。なお、そのような押し付け機構は、エアシリンダに限らず、機械式の定寸機構でも良い。
 外刃支持軸13は、上スピンドル11および下スピンドル12と所定の距離をおいて、上スピンドル11および下スピンドル12と平行に配設されている。外刃支持軸13の下端にはフランジ状の外刃取付部13aが設けられており、その外刃取付部13aの上に、円弧状の外刃28が取り付けられている。外刃28は、内刃18とは正対して配置されておらず、図には明瞭に示されていないが、内刃18と所定のクリアランスをおいて交叉して(後の図13参照)、素材缶15の缶壁を周方向に沿って切断する。
 図5に、図1のV-V線による、外刃28の断面図を示す。外刃28のエッジ部(刃先)28aの長さ、並びにそのエッジ部28aの旋回半径Rは、素材缶15の外周長に応じて設定される。上スピンドル11、下スピンドル12および外刃支持軸13はギアにより接続されており、上述した駆動源により回転される。そのギア比は、外刃28のエッジ部28aの周速度の、素材缶15の内周面の周速度に対する比の値が、1.0~1.2の範囲となるように設定されている。これにより、素材缶15の缶壁を周方向に沿って切断するときの素材缶15と内刃18との間のすべりが抑制される。
 次に、製造装置10を使用して素材缶15を加工する工程を説明する。
 図6~図9に、製造装置10を使用して素材缶15を加工する工程を順番に示す。
 まず、図6に示すように、素材缶15を下スピンドル12の缶底嵌合部21の上に設置する。このとき、素材缶15の底部15aが缶底嵌合部21の凹部21aに嵌り込むように設置する。この状態で、素材缶15の底部15aは、缶底嵌合部21に埋設されたマグネット22により吸着される。これにより、素材缶15は、その軸心が、上スピンドル11の軸心と一致するように、開口部を上に向けて下スピンドル12により保持される。
 また、このとき、缶押し外し用ピン24は、先端部が、弾性体26の付勢力により上スピンドル11の缶外嵌部14の先端から突き出した状態となっている。
 次いで、図7に示すように、素材缶15の底部15aが缶外嵌部14の先端部と当接する位置まで下スピンドル12を上昇させて、素材缶15を上スピンドル11に外嵌する。これにより、素材缶15は、底部15aが下スピンドル12の缶底嵌合部21の凹部21aに嵌り込んだ状態で、上スピンドル11の缶外嵌部14と下スピンドル12の缶底嵌合部21との間に挟み込まれて固定される。このようにして素材缶15が固定されることから、素材缶15の缶壁を周方向に沿って切断する際に、素材缶15のたおれや振れが抑えられる。
 またこのとき、缶押し外し用ピン24は素材缶15の底部15aにより押し上げられて、先端部まで上スピンドル11の内部に収容される。
 次いで、図8に示すように、外刃支持軸13を回転させて、外刃28を素材缶15の缶壁と当接させる。この後、さらに外刃支持軸13を回転させて、不要部分15cを切り落とすように素材缶15の缶壁を周方向に沿って切断する。同時に、内刃18は上スピンドル11により回転されるとともに、素材缶15も上スピンドル11および下スピンドル12の回転により回転される。
 このとき、外刃支持軸13は、外刃28の送りの方向が、内刃18および素材缶15の送りの方向と同じになるように、上スピンドル11および下スピンドル12とは逆方向に回転される。
 切断工程が終了すると、下スピンドル12が図6により示した初期位置まで下降される。図9はその途中の状態を示している。
 これにより、素材缶15から作製された電池缶30は、下スピンドル12の缶底嵌合部21に埋設されたマグネット22により吸着されて、上スピンドル11から抜き取られる。
 このとき、弾性体26の付勢力により缶押し外し用ピン24の先端が缶外嵌部14の先端から突出し、これにより電池缶30の上スピンドル11からの取り外しが助けられる。またこのとき、不要部分15cも電池缶30とともに、上スピンドル11から抜け落ちる。
 図10に、電池缶30の開口部の切断面を拡大して示す。図示例の切断面32は、外周側のせん断面34と内周側の破断面36とで構成される。せん断面34は、刃物により実際に切断された部分、つまり刃物によりせん断加工された部分である。破断面36は、せん断加工が進んで薄くなった素材缶15の缶壁が、外刃28に押されて素材缶15の内側に押し込まれ、その残りの缶壁に内側方向の引張応力が生じ、その引張応力により破断が発生して形成される面である。
 図11に、切断の際に形成されたバリを示す。バリ37は、破断面36における素材缶15の材料が内側に向かって引きちぎられて発生するために、図11に示すように、素材缶15の内側に突出するように形成される。
 このとき、せん断面34の切断面32全体に占める割合は、0.5~0.9の範囲となっているのが好ましい。これに対応して、破断面36の切断面32全体に占める割合は、0.5~0.1となっているのが好ましい。実施の形態1の製造装置においては、素材缶15の切断中の回転振動や切断抵抗を抑えることにより、素材缶を半径方向に揺らさず常に外刃の切込量を同じに保った状態で切断することできる。このため、切断面32全体に対するせん断面34の割合を、0.5~0.9に維持することが可能となる。その結果、バリの高さを20μm以下に抑制することも可能となる。
 バリの高さを20μm以下に抑制することができれば、バリがセパレータを貫通する危険性を大きく低減することができる。一般的に用いられるセパレータの厚みは約20μmだからである。なお、安全率を考慮すれば、バリの高さは15μm以下に抑えるのがより好ましい。
 以下に、実施の形態1に係る製造装置を使用して実際に電池缶を製造した実施例について説明する。なお、本発明は以下の実施例により限定されるものではない。
 《実施例1~4、比較例1~3》
 冷間圧延鋼板に絞りしごき加工により、内径が、18mm側壁の厚みが0.2mm、総高が70mmとした素材缶15を作製した。その素材缶15に対して、図6~図9により示した手順で電池缶を作製した。このとき、素材缶15の内周面と内刃18のエッジ部とのクリアランスLを10μm(比較例1)、20μm(実施例1)、30μm(実施例2)、40μm(実施例3)、50μm(実施例4)、60μm(比較例2)、および70μm(比較例3)に設定して、それぞれ1000個の電池缶を作製した。
 また、素材缶15の内周面の周速度に対する外刃28のエッジ部28aの周速度の比の値は1.0に設定した。
 そして、作製された合計7000個の電池缶について開口縁部の内側のバリ37の高さTと、切断面全体に対する破断面の割合とを測定し、その測定値の平均値をクリアランスLの大きさ毎に算出した。その算出結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より明らかなように、クリアランスが50μm以下である実施例1~4および比較例1においては、破断面の割合は0.50以下に抑えられている。また、バリの高さは15μm以下に抑えられている。
 これに対して、クリアランスが60μm以上である比較例2および3においては、破断面の割合が0.50を超えている。また、比較例2においてはバリの高さは15μmを超え、比較例3においては、バリの高さは20μmを超えている。その原因は、素材缶15の内周面と内刃18の外周部とのクリアランスLが広すぎるために、切断開始時に素材缶15の缶壁が内側へ折れ曲がり、外刃11によるせん断加工が行われると同時に破断が発生したためであると考えられる。これにより、十分にせん断加工が行われない状態で、缶壁に大きな引張応力が発生し、破断面が大きくなって、バリの高さが高くなるからである。
 一方、クリアランスLが10μmである比較例1は、破断面の割合およびバリの高さは低減されているものの、クリアランスLが小さすぎるために、電池缶を上スピンドル11から抜き取る際に、バリ37が内刃18に引っかかり、電池缶をスムーズに取り外せないという問題が生じた。
 以上の結果によれば、バリ37をより小さく抑えながら、素材缶・電池缶の上スピンドルへの着脱を容易にするという観点から、クリアランスLは20~50μmに設定することが好ましいといえる。
 《実施例5~7、比較例4~6》
 実施例1~4において使用した素材缶15と同じ素材缶15を使用して、実施例1~4におけると同様の手順で電池缶を作製した。このとき、素材缶15の内周面の周速度に対する外刃28のエッジ部28aの周速度の比の値を、0.8(比較例4)、0.9(比較例5)、1.0(実施例5)、1.1(実施例6)、1.2(実施例7)、および1.3(比較例6)のそれぞれに設定して、それぞれ1000個の電池缶を作製した。
 また、素材缶の内周面と内刃の外周部とのクリアランスLは20μmに設定した。
 そして、作製された合計6000個の電池缶について開口縁部の内側のバリ37の高さを測定し、その測定値の平均値を周速度の比の値毎に算出した。その算出結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2より明らかなように、外刃28の周速度の比の値が1.0~1.2であると、バリの高さを20μm以下に抑えることができる。これに対して、外刃28の周速度の比の値が1.3である比較例6においては、バリ37の高さは20μmを超えている。
 また、外刃28の周速度の比の値が0.9以下である比較例4および5においては、外刃28が素材缶15の回転速度に追従することができず、外刃28のエッジ部28aが素材缶15により削りとられて磨耗してしまい、切断加工を継続して実施することができなかった。
 したがって、バリの高さを抑えながら、切断に使用する刃の寿命を延ばすためには、外刃28の周速度の素材缶15の内周面の周速度に対する比の値は、1.0~1.2の範囲に設定することが好ましいといえる。
 《実施例8、比較例7~9》
 実施例1~4において使用した素材缶15と同じ素材缶15を使用して、実施例1~4におけると同様の手順で電池缶を作製した。
 このとき、上スピンドル11に缶押し外し用ピン24を設けるとともに、下スピンドル12に1個のマグネット22を設けた場合(実施例8)について、100回 の切断加工を実施し、加工後に上スピンドル11から電池缶が自動的に排出されなかった場合(取り外しミスと称する)を計数した。
 また、缶押し外し用ピン24のみを設けた場合(比較例7)、マグネット22のみを設けた場合(比較例8)、並びに缶押し外し用ピン24およびマグネット22の両方を設けなかった場合(比較例9)についても、それぞれ100回の切断加工を実施し、加工後に上スピンドル11から電池缶が自動的に排出されなかった場合を計数した。
 以上の結果を、表3に示す。
 ここで、素材缶15の内周面の周速度に対する外刃28のエッジ部28aの周速度の比の値は1.0に設定し、素材缶15の内周面と内刃18のエッジ部とのクリアランスLは20μmに設定した。
Figure JPOXMLDOC01-appb-T000003
 表3より明らかなように、缶押し外し用ピン24とマグネット22の両方を有する実施例8においては、素材缶15の上スピンドル11からの取り外しミスは生じなかった。また、缶押し外し用ピン24およびマグネット22のいずれか一方のみが有る場合(比較例7および8)は、取り出しミスはそれぞれ10回であった。また、缶押し外し用ピン24とマグネット22の両方が無い場合は、取り出しミスが80回であった。
 実施例8において取り外しミスが発生しなかった原因は、素材缶15の底部を内側から缶押し外し用ピン24により押し付け、さらにマグネット22でその底部を下スピンドル12に吸着することにより、素材缶15を上ピンドル11の軸芯と平行な状態で引き抜くことが可能となるからであると考えられる。その結果、内刃18をバリ37に引っ掛からせたり、素材缶15の内周面と上スピンドル11との間の接触抵抗を増大させたりすることなく、スムーズに素材缶15を抜き取ることができる。
 これに対して、缶押し外し用ピン24およびマグネット22のいずれか一方のみを設けた比較例7および8においては、その両方を設けていない比較例9と比較して、大幅に取り外しミスは減少しているものの、取り外しミスを完全に抑えることはできていない。
 以上の結果によれば、缶押し外し用ピン24およびマグネット22の両方を設置するのが好ましいことが分かる。
 《実施例9》
 アルミニウムから実施例1~4の素材缶15と同じ寸法の素材缶15を作製し、その素材缶を使用して、実施例1~4におけると同様の手順で電池缶を1000個作製した(実施例9)。
 ここで、素材缶15の内周面の周速度に対する外刃28のエッジ部28aの周速度の比の値は1.0に設定し、素材缶15の内周面と内刃28のエッジ部とのクリアランスLは20μmに設定した。
 そして、作製された1000個の電池缶について開口縁部の内側のバリの高さを測定し、その測定値の平均値を算出した。その結果、バリ37の高さは平均で8μmであった。
 このように、素材缶15の材料をアルミニウムに変えても、バリの高さを20μm以下とすることが可能であることが確かめられた。
 《実施の形態2》
 次に、本発明の実施の形態2の製造装置を、図面を参照して説明する。
 図12は、実施の形態2の製造装置の外刃28Aを図1の矢印Aの方向に見た様子を示す。外刃28Aは、エッジ部28aの稜線が素材缶15を支持する上スピンドル11の軸心H-Hと垂直な平面Sに対して、最大で角度Cだけ傾くように、外刃支持軸13に取り付けられている。その傾きの方向は、切断の終わりに素材缶15と当接するエッジ部28aの位置が、切断の始めに素材缶15と当接するエッジ部28aの位置よりも高くなるように設定されている。
 この結果、図13および図14に示すように、内刃18と外刃28とのクリアランスLsは、切断初期(図13参照)におけるクリアランスLsよりも切断終期(図14参照)におけるクリアランスLsが大きくなる。
 その結果、図15に示すように、切断面32を構成するせん断面34と破断面36の比率は、素材缶15の周方向において変化する。その理由は、内刃18と外刃28とのクリアランスLsが広がると、せん断面34の割合が減少する一方、破断面36の割合が増加する傾向があるからである。
 より詳しく説明すると、上記クリアランスLsが広い場合には、図14に示すように、外刃28により押された素材缶15の缶壁が切断されずに内方向へ逃げやすくなる。その結果、外刃28によりせん断加工される素材缶15の缶壁の厚みは小さくなる。一方、素材缶15の缶壁に矢印40により示す方向の引張応力が大きくなり、缶壁の破断面が大きくなる。
 一方、図13に示すように、クリアランスLsが小さい場合は、外刃28により押されても、素材缶15の缶壁が内方向に逃げにくく、外刃28によりせん断加工される部分の素材缶15の缶壁の厚みが大きくなる。その結果、矢印42により示す方向の素材缶15の缶壁に生ずる引張応力も小さくなって、破断面36も狭くなる。
 また、切り始めの位置から切り終わりの位置に向かってクリアランスLsを大きくするように変化させた場合は、図15に示すように、切断面32の切り始めの部分40よりも切断面32の切り終わりの部分42の方が、高低差44だけ高くなる。
 ここで、切断面32の切り始めの部分40および切り終わりの部分42とは、外刃28が素材缶15の缶壁に当接し、切断を開始してから、素材缶15の缶壁を貫通するまでの間の外刃28のエッジ部28aの軌跡38を間に挟んだ両側の部分をいう。
 なお、図15に図示した角度は、切り始めの位置を0°として、素材缶15の缶壁を切断する方向に測った角度を示している。
 このように、切断面32が、切り始めの部分40よりも切り終わりの部分42の方の高さが高くなることから、切り始めの部分40の再切断が回避される。これにより、糸状の切り屑の発生を抑止することができる。
 以下、上記実施の形態1および2のいずれかの製造装置により製造された電池缶を使用して製造された非水系二次電池としてのリチウムイオン二次電池について説明する。なお、本発明は、リチウムイオン二次電池に限定されるものではなく、乾電池およびリチウム一次電池、ニッケル水素蓄電池等の有底円筒形状の電池缶を有するあらゆる電池に適用することができる。
 先ず、リチウムイオン二次電池50の電極板の構成について図16を参照して説明する。正極板51は、アルミニウム製ないしはアルミニウム合金製の箔または不織布からなり、厚みが5μm~30μmである正極集電体を含む。正極活物質、導電材および結着材をプラネタリーミキサー等の分散機により分散媒中に混合分散させて、正極合剤塗料を調製する。その正極合剤塗料を上記した正極集電体の片面または両面に塗布し、乾燥し、全体を圧延して正極板51は作製される。
 正極活物質としては、例えばコバルト酸リチウムおよびその変性体(コバルト酸リチウムにアルミニウムやマグネシウムを固溶させたものなど)、ニッケル酸リチウムおよびその変性体(一部ニッケルをコバルト置換させたものなど)、並びにマンガン酸リチウムおよびその変性体が挙げられる。導電材には、例えばアセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック、または各種グラファイトを単独あるいは組み合わせて用いる。正極用結着材には、例えばポリフッ化ビニリデン(PVdF)およびその変性体、ポリテトラフルオロエチレン(PTFE)、またはアクリレート単位を有するゴム粒子結着材を用いる。
 一方、負極板52は、圧延銅箔、電解銅箔、または銅繊維の不織布からなり、厚みが5μm~25μmである負極集電体を含む。負極活物質、結着材、必要に応じて導電材、および増粘剤をプラネタリーミキサー等の分散機により分散媒中に混合分散させて、負極合剤塗料を調製する。その負極合剤塗料を上記した負極集電体の片面または両面に塗布し、乾燥し、全体を圧延して負極板52は作製される。
 負極活物質には、リチウムを保持しうる材料を使用する。例えば各種天然黒鉛および人造黒鉛、またはシリサイドなどのシリコン系複合材料および各種合金組成材料を使用することができる。結着材としてはPVdFおよびその変性体をはじめ各種バインダーを用いることができるが、リチウムイオン受入れ性向上の観点からは、スチレン-ブタジエン共重合体ゴム粒子(SBR)およびその変性体等を用いるのが好ましい。増粘剤には、ポリエチレンオキシド(PEO)やポリビニルアルコール(PVA)などの水溶液として粘性を有する材料を使用することができる。また、合剤塗料の分散性および増粘性を向上させる観点からは、カルボキシメチルセルロース(CMC)をはじめとするセルロース系樹脂およびその変性体を用いるのが好ましい。
 また、正極板51および負極板52とともに電池缶30に封入される非水系電解液には、電解質塩としてのLiPF6、LiBF4などの各種リチウム化合物を非水溶媒に溶解したものを用いることができる。非水溶媒としては、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、およびメチルエチルカーボネート(MEC)を単独または組み合わせて用いることができる。また正極板および負極板の上に良好な皮膜の形成を促すとともに、過充電時の安定性を保証するために、ビニレンカーボネート(VC)、またはシクロヘキシルベンゼン(CHB)およびその変性体を電解液に添加することも好ましい。
 次に、リチウムイオン二次電池50の構造を説明する。正極板51と負極板52とをセパレータ53を間に挟んで渦巻状に巻回して、電極群54を作製する。電極群54を有底円筒形の電池缶30の内部に絶縁板55と共に収容する。電極群54の下部より導出した図示しない負極リードを電池缶30の底部に接続する。次いで、電極群54の上部より導出した正極リード56を封口板57に接続する。電池缶30に所定量の非水溶媒からなる非水系電解液(図示せず)を注液した後、電池缶30の開口部に封口ガスケット58を周縁に取り付けた封口板57を挿入し、電池缶30の開口部を内方向に折り曲げて、かしめ封口する。
 以下に、実施の形態2に係る製造装置を使用して実際に電池缶を製造した実施例について説明する。なお、本発明は以下の実施例により限定されるものではない。
 《実施例10》
 実施例1~4に使用したのと同じ素材缶15を、図12における角度Cを0.1°に設定して切断加工を行い、1000個の電池缶を作製した。
 そして、その1000個の電池缶について、図15により示した高低差44を測定するとともに、図15により示した、切り始めからの各角度(0°、90°、180°および270°)の位置におけるバリ37の高さを測定した。また、顕微鏡を使用して切断面32を調べることにより、切断面32の切り始めの部分の再切断による切り屑の発生の有無を確認した。また、上記切り始めからの各角度の位置における破断面の割合を調べた。その結果を、表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、角度0°の位置においては、高低差44は25~35μmの範囲内であった。また、全ての電池缶を通じて、角度0°の位置において切り屑は確認されなかった。切り屑が生じなかったのは、外刃28に傾斜角度Cを設けて切断したことにより、切断面32が、切り始めの部分40よりも切り終わりの部分42が高い位置となるように形成されたため、切り始めの部分40を再切断することが防止できたためであると考えられる。
 また、バリ37の高さTは、角度0°の位置におけるものが一番高く、7~16μmであった。これに対して、角度90°、180°および270°の各位置においては、バリ37の高さは、最大で8μmとなった。角度位置0°におけるバリ37の高さが高くなっている原因は、角度0°の位置においては、切り始めの部分40と切り終わりの部分42とが重なっているために、クリアランスLsの大きい切り終わりの部分42におけるバリ37の高さが大きくなったためであると考えられる。
 また、切断面32における破断面36の割合は、角度0°から角度270°の位置に向かって増大するように、0.15~0.40の間で変化している。これに応じて、せん断面34の割合は、0.85~0.60の間で変化している。その原因は、切断面32の切り始めの部分40から切り終わりの部分42に向かって、クリアランスLsが増大するように、変化したからであると考えられる。
 また、図15に示した高低差44を10μm以下とするように、角度Cを0.1°以下に設定することは実際には困難であり、そのような設定を無理に行うと、再切断の可能性が発生する。より詳しく説明すれば、外刃28、並びに上下のスピンドル11および12の芯振れおよび面振れ等を抑えるように機械精度を向上させて、電池缶15が振れないように保持することは可能である。しかしながら、それを実現しようとすると、設備コストが著しく増大するために生産コストの上昇を招く。一方、高低差44が50μm以上となると、内刃18と外刃28とのクリアランスが大きくなり、上述したように破断面36の割合が大きくなってしまう。これにより、バリ高さ37が20μm以上となってセパレータ53を突き破る可能性が生じてくる。そこで生産性と安全性の観点より、高低差44は10~50μmにすることが好ましいものといえる。
 このように、高低差44が10~50μmの範囲内となるように外刃28の傾斜角度Cを調節することによって、切り屑の発生を抑えながら、破断面の割合を0.15~0.40の間に抑えて、バリの高さを、一般的なセパレータの厚みである20μm以下とすることができる。これにより、電極群を電池缶に挿入するときに、バリ37がセパレータを突き破り、正極と負極とを短絡させて、電池を熱暴走させるのを回避できる。
 《実施例11》
 本実施例11においては、実施例10において作製した電池缶を使用してリチウムイオン二次電池を作製した。
 まず、正極活物質としての100重量部のコバルト酸リチウムと、導電材としての2重量部のアセチレンブラックと、結着材としての2重量部のポリフッ化ビニリデンとを適量のN-メチル-2-ピロリドンと共に双腕式練合機にて攪拌し、混練することで、正極合剤塗料を調製した。
 次いで、その塗料を厚みが15μmであるアルミニウム箔の正極集電体の両面に塗布し、乾燥後の片面の合剤層の厚みが100μmである正極板の前駆体を作製した。さらに、その正極板を総厚が165μmとなるようにプレスした。これにより、合剤層の片面の厚みは75μmとなった。その後、上記前駆体を規定の幅にスリット加工して、正極板を作製した。
 また、負極活物質としての100重量部の人造黒鉛と、結着材としての2.5重量部(結着材の固形分換算で1重量部)のスチレン-ブタジエン共重合体ゴム粒子分散体(固形分40重量%)と、増粘剤としての1重量部のカルボキシメチルセルロースとを適量の水とともに双腕式練合機にて攪拌し、負極合剤塗料を調製した。そして、その塗料を厚みが10μmである銅箔の負極集電体に、幅方向に塗布して、両面に塗布し、乾燥後の合剤層の片面の厚みが100μmである負極板の前駆体を作製した。
 さらに、その前駆体を総厚が170μmとなるようにプレスした。これにより、合剤層の片面の厚みは80μmとなった。その後、上記前駆体を規定の幅にスリット加工して、負極板を作製した。
 それらの正極板および負極板を、間に厚みが20μmであるセパレータを挟んで巻回し、所定の長さで切断して、電極群を構成した。その電極群を、上述した電池缶に挿入した。その後、EC、DMCおよびMECの混合溶媒に、1MのLiPF6と3重量部のVCとを溶解させた非水電解液を注入し、電池缶を封口して、円筒形のリチウムイオン二次電池を製作した。このようにして、100個のリチウムイオン二次電池を製作した。
 そして、作製された全てのリチウムイオン二次電池に対して、内部短絡試験を行った。その試験内容は、先ず正極端子と負極端子との間に250Vの電圧を印加し、内部抵抗をテスターにて測定し、内部抵抗が100mΩ以下である絶縁不良のリチウムイオン二次電池を計数した。
 その結果、絶縁不良として検出されるものはなかった。その原因は、切断面32の切り始めの部分を再切断することによる切り屑の発生が無く、またバリの高さが小さく抑えられていたためであると考えられる。
 本発明は、不要部分を切除する際の切断面の切り始めの部分を再切断することによる糸状の切り屑がなく、且つ切断の際のバリの高さの小さい電池缶を使用した電池を提供することができる。したがって、安全性を向上させることが可能であることから、特に安全性の向上が求められているリチウムイオン二次電池に適用するのに有用である。

Claims (14)

  1.  開口部に不要部分を有する有底円筒形状の電池缶の素材缶から前記不要部分を切除して作製される電池缶であって、
     前記不要部分を切除するように、前記素材缶の缶壁を周方向に切断した切断面は、切り終わりの部分が切り始めの部分よりも高くなっている電池缶。
  2.  前記切断面の切り終わりの部分が切り始めの部分よりも、10~50μmだけ高くなっている請求項1記載の電池缶。
  3.  前記切断面が、せん断面と破断面とからなり、
     前記せん断面の前記切断面全体に対する比率が、0.90~0.50の範囲である請求項1記載の電池缶。
  4.  正極と、負極と、前記正極と負極との間に介在されるセパレータと、電解液とを、請求項1記載の電池缶に封入して構成された電池。
  5.  前記正極が、リチウム含有複合酸化物を含む活物質、導電材および結着材を分散媒により混練分散した正極合剤塗料を、正極用集電体上に塗布して構成される正極板から構成され、
     前記負極が、リチウムを保持し得る材料よりなる活物質、および結着材を分散媒により混練分散した負極合剤塗料を、負極用集電体上に塗布して構成される負極板から構成され、
     前記電解液が非水電解液から構成される請求項4記載の電池。
  6.  開口部に不要部分を有する有底円筒形状の電池缶の素材缶から、その不要部分を切除して、電池缶を製造する方法であって、
     前記不要部分を切除する工程を、切断面の切り終わりの部分が切り始めの部分よりも高くなるように、前記素材缶の缶壁を周方向に切断して実行する電池缶の製造方法。
  7.  開口部に不要部分を有する有底円筒形状の電池缶の素材缶から、その不要部分を切除して、電池缶を製造する装置であって、
     前記素材缶を回転自在に支持する素材缶支持手段と、
     前記素材缶の缶壁に内側から当接する環状の内刃と、
     前記内刃を回転自在に支持する内刃支持手段と、
     前記内刃と所定のクリアランスをおいて交叉するように、前記素材缶の缶壁に外側から当接する円弧状の外刃と、
     前記外刃を回動自在に支持する外刃支持手段とを備え、
     前記外刃の形状が、前記内刃と外刃とにより前記素材缶の缶壁を周方向に切断した切断面の切り終わりの部分が切り始めの部分よりも高くなるように設定されている電池缶の製造装置。
  8.  前記外刃は、回転の周方向に延びる刃先の稜線が、回転の軸方向と垂直な平面から傾くように形成されている請求項7記載の電池缶の製造装置。
  9.  前記内刃の刃先と前記素材缶の内周面とのクリアランスが20μm~50μmの範囲となるように、前記内刃の外径が設定されている請求項7記載の電池缶の製造装置。
  10.  前記素材缶支持手段は、
     同軸に配された一対のスピンドルから構成されるとともに、前記一対のスピンドルは、前記素材缶が外嵌される一方のスピンドルと、前記素材缶の底部が嵌る凹部を有する他方のスピンドルとから構成されており、
     前記一方のスピンドルと前記他方のスピンドルとにより前記素材缶の底部を挟持して前記素材缶を支持する請求項7記載の電池缶の製造装置。
  11.  前記他方のスピンドルが、前記凹部に嵌った前記素材缶を吸着するように磁力を発生する磁力発生手段を有する請求項9記載の電池缶の製造装置。
  12.  前記外刃の刃先の周速度の、前記素材缶の内周面の周速度に対する比の値が1.0~1.2の範囲内である請求項7記載の電池缶の製造装置。
  13.  前記他方のスピンドルは、少なくとも前記凹部の設けられた部位が非磁性体材料から構成されており、前記磁力発生手段は、その部位に埋設された永久磁石から構成される請求項11記載の電池缶の製造装置。
  14.  前記一方のスピンドルは、先端が前記素材缶の底部に内側から当接して、自身に外嵌された前記素材缶を押し外すための、前記他方のスピンドルに向かって付勢された缶押し外し用ピンを進退可能に収容している請求項7記載の電池缶の製造装置。
PCT/JP2009/000226 2008-02-25 2009-01-22 電池缶、その製造方法および製造装置、並びにそれを用いた電池 WO2009107318A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/602,732 US8202646B2 (en) 2008-02-25 2009-01-22 Battery can with cutting-edge portion higher than cutting start portion, manufacturing method and manufacturing device therefore, and battery using the same
CN2009800005642A CN101743652B (zh) 2008-02-25 2009-01-22 电池罐、其制造方法和制造装置、以及使用其的电池
EP09714601.3A EP2262034B1 (en) 2008-02-25 2009-01-22 Battery can, method for manufacturing the same and device for manufacturing the same, and battery using batery can
KR1020097027291A KR101110996B1 (ko) 2008-02-25 2009-01-22 전지 케이스, 그 제조방법 및 제조장치, 및 그것을 이용한 전지
PL09714601T PL2262034T3 (pl) 2008-02-25 2009-01-22 Puszka baterii, sposób jej wytwarzania i urządzenie do jej wytwarzania, oraz bateria wykorzystująca puszkę baterii

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008042469 2008-02-25
JP2008-042469 2008-02-25
JP2008-166815 2008-06-26
JP2008166815 2008-06-26

Publications (1)

Publication Number Publication Date
WO2009107318A1 true WO2009107318A1 (ja) 2009-09-03

Family

ID=41015725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000226 WO2009107318A1 (ja) 2008-02-25 2009-01-22 電池缶、その製造方法および製造装置、並びにそれを用いた電池

Country Status (7)

Country Link
US (1) US8202646B2 (ja)
EP (1) EP2262034B1 (ja)
JP (1) JP2010034025A (ja)
KR (1) KR101110996B1 (ja)
CN (1) CN101743652B (ja)
PL (1) PL2262034T3 (ja)
WO (1) WO2009107318A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120047982A1 (en) * 2010-08-26 2012-03-01 Samsung Sdi Co., Ltd. Swaging apparatus
KR20180083939A (ko) 2015-12-03 2018-07-23 도요 고한 가부시키가이샤 전지 용기용 표면 처리 강판
CN117086387A (zh) * 2023-10-20 2023-11-21 成都市凯林机械贸易有限责任公司 一种具有保护结构的切割设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6238105B2 (ja) * 2012-04-17 2017-11-29 株式会社Gsユアサ 装置筐体及び装置筐体の製造方法
CN102922035B (zh) * 2012-10-29 2015-07-01 深圳市科达利实业股份有限公司 双偏心轴结构的动力电池外壳剪切装置
US9711786B2 (en) * 2013-03-04 2017-07-18 Sekisui Chemical Co., Ltd. Fine particle-exfoliated graphite composite, negative electrode material for lithium ion secondary battery, and methods for producing the same, and lithium ion secondary battery
RU2684604C1 (ru) * 2018-07-26 2019-04-10 Пётр Александрович Зимовец Устройство для разрезания отработанных электрических батареек или аккумуляторов
KR102179963B1 (ko) * 2019-03-20 2020-11-17 대주코레스(주) 배터리 셀 케이스의 제조방법 및 이 방법에 의해 제조된 배터리 셀 케이스

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1076418A (ja) 1996-08-30 1998-03-24 Mitsubishi Materials Corp トリマー
JPH1076420A (ja) 1996-08-30 1998-03-24 Mitsubishi Materials Corp トリマー
JPH1080819A (ja) * 1996-09-06 1998-03-31 Mitsubishi Materials Corp トリマー
JP2001307686A (ja) * 2000-04-19 2001-11-02 Matsushita Electric Ind Co Ltd 電池缶及びその製造方法と電池
JP2005161426A (ja) * 2003-11-28 2005-06-23 Dainippon Ink & Chem Inc ドラム容器の切断機
JP2005288631A (ja) * 2004-03-31 2005-10-20 Toyo Seikan Kaisha Ltd 金属缶用トリマー装置
JP2008166190A (ja) * 2006-12-28 2008-07-17 Matsushita Electric Ind Co Ltd 電池缶の製造方法及び密閉型電池の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4491208B2 (ja) * 2003-08-29 2010-06-30 パナソニック株式会社 電池缶およびその製造方法ならびに電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1076418A (ja) 1996-08-30 1998-03-24 Mitsubishi Materials Corp トリマー
JPH1076420A (ja) 1996-08-30 1998-03-24 Mitsubishi Materials Corp トリマー
JPH1080819A (ja) * 1996-09-06 1998-03-31 Mitsubishi Materials Corp トリマー
JP2001307686A (ja) * 2000-04-19 2001-11-02 Matsushita Electric Ind Co Ltd 電池缶及びその製造方法と電池
JP2005161426A (ja) * 2003-11-28 2005-06-23 Dainippon Ink & Chem Inc ドラム容器の切断機
JP2005288631A (ja) * 2004-03-31 2005-10-20 Toyo Seikan Kaisha Ltd 金属缶用トリマー装置
JP2008166190A (ja) * 2006-12-28 2008-07-17 Matsushita Electric Ind Co Ltd 電池缶の製造方法及び密閉型電池の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2262034A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120047982A1 (en) * 2010-08-26 2012-03-01 Samsung Sdi Co., Ltd. Swaging apparatus
US8833125B2 (en) * 2010-08-26 2014-09-16 Samsung Sdi Co., Ltd. Swaging apparatus
KR20180083939A (ko) 2015-12-03 2018-07-23 도요 고한 가부시키가이샤 전지 용기용 표면 처리 강판
KR20180087388A (ko) 2015-12-03 2018-08-01 도요 고한 가부시키가이샤 전지 용기용 표면 처리 강판
US10950828B2 (en) 2015-12-03 2021-03-16 Toyo Kohan Co., Ltd. Surface-treated steel sheet for battery containers
US11196114B2 (en) 2015-12-03 2021-12-07 Toyo Kohan Co., Ltd. Surface-treated steel plate for cell container
KR20230078836A (ko) 2015-12-03 2023-06-02 도요 고한 가부시키가이샤 전지 용기용 표면 처리 강판
KR20230078837A (ko) 2015-12-03 2023-06-02 도요 고한 가부시키가이샤 전지 용기용 표면 처리 강판
US11799156B2 (en) 2015-12-03 2023-10-24 Toyo Kohan Co., Ltd. Surface-treated steel sheet for cell container
US11824212B2 (en) 2015-12-03 2023-11-21 Toyo Kohan Co., Ltd. Surface-treated steel plate for cell container
CN117086387A (zh) * 2023-10-20 2023-11-21 成都市凯林机械贸易有限责任公司 一种具有保护结构的切割设备
CN117086387B (zh) * 2023-10-20 2023-12-19 成都市凯林机械贸易有限责任公司 一种具有保护结构的切割设备

Also Published As

Publication number Publication date
CN101743652A (zh) 2010-06-16
KR101110996B1 (ko) 2012-02-15
CN101743652B (zh) 2013-01-02
PL2262034T3 (pl) 2014-08-29
US8202646B2 (en) 2012-06-19
US20100183911A1 (en) 2010-07-22
JP2010034025A (ja) 2010-02-12
EP2262034B1 (en) 2014-03-12
EP2262034A4 (en) 2013-05-08
KR20100025540A (ko) 2010-03-09
EP2262034A1 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
WO2009107318A1 (ja) 電池缶、その製造方法および製造装置、並びにそれを用いた電池
JP4602254B2 (ja) リチウムイオン二次電池
JP4527190B1 (ja) 非水系電池用正極板、非水系電池用電極群およびその製造方法、並びに、角形非水系二次電池およびその製造方法
JP4355356B2 (ja) 電池用電極板、電池用極板群、リチウム二次電池、及び電池用電極板の製造方法
WO2006061940A1 (ja) リチウムイオン二次電池およびその負極の製造方法
US20140302367A1 (en) Battery including spiral electrode assembly and method for manufacturing the same
JP2010267632A (ja) リチウムイオン二次電池
JP3877619B2 (ja) 密閉型電池
WO2009142013A1 (ja) 電池
JP2005235414A (ja) 渦巻状電極群を備えた電池およびその製造方法
WO2011048769A1 (ja) 扁平形二次電池用電極群及びその製造方法並びに扁平形二次電池用電極群を備えた扁平形二次電池
JP2003132876A (ja) 密閉型電池および注液孔の封止方法
JP2007324015A (ja) 二次電池およびその製造方法
JP2008226500A (ja) 捲回式電池
JP2009193842A (ja) 非水系二次電池とその製造方法およびその製造装置
JP2024075802A (ja) 円筒形電池
JP2024069736A (ja) 円筒形電池
JP2010055753A (ja) 巻回状電極体を備えた電池の製造方法
JP2010277785A (ja) 密閉型電池およびその製造方法
JP5453989B2 (ja) リチウムイオンキャパシタの製造方法および製造装置
JP2008171632A (ja) 非水電解質二次電池
JP4171198B2 (ja) 電池
WO2023153194A1 (ja) 円筒形電池およびその製造方法
WO2019082748A1 (ja) 非水電解質二次電池の製造方法
EP4135112A1 (en) Method of manufacturing battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980000564.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09714601

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009714601

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12602732

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20097027291

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE