WO2009104539A1 - 電線被覆用樹脂材料、当該電線被覆用樹脂材料を用いた電線、及び難燃ケーブル - Google Patents

電線被覆用樹脂材料、当該電線被覆用樹脂材料を用いた電線、及び難燃ケーブル Download PDF

Info

Publication number
WO2009104539A1
WO2009104539A1 PCT/JP2009/052501 JP2009052501W WO2009104539A1 WO 2009104539 A1 WO2009104539 A1 WO 2009104539A1 JP 2009052501 W JP2009052501 W JP 2009052501W WO 2009104539 A1 WO2009104539 A1 WO 2009104539A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric wire
resin
resin material
component
covering
Prior art date
Application number
PCT/JP2009/052501
Other languages
English (en)
French (fr)
Inventor
肇 芹澤
真澄 谷北
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to CN200980105584.6A priority Critical patent/CN101946289B/zh
Priority to EP09711978.8A priority patent/EP2254128B1/en
Priority to US12/918,386 priority patent/US8822603B2/en
Publication of WO2009104539A1 publication Critical patent/WO2009104539A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L45/00Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L31/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid; Compositions of derivatives of such polymers
    • C08L31/02Homopolymers or copolymers of esters of monocarboxylic acids
    • C08L31/04Homopolymers or copolymers of vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/442Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from aromatic vinyl compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/06Copolymers with vinyl aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes

Definitions

  • the present invention relates to an electric wire covering resin material containing a cyclic olefin resin, an electric wire using the electric wire covering resin material, and a flame retardant cable.
  • Non-halogen flame retardant materials express flame retardancy by adding a flame retardant containing no halogen to the resin.
  • the flame retardant include metal hydrates such as magnesium hydroxide and aluminum hydroxide.
  • the resin includes polyethylene, ethylene / 1-butene copolymer, ethylene / propylene copolymer, ethylene / vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-propylene-diene ternary. Copolymers are used.
  • UL1581 Reference Standard for Electrical Wires, Cables, Cables, and There are demands for vertical flame tests (Vertical Flame Tests)
  • VW-1 Vertical Flame Tests
  • horizontal flame retardant standards 60-degree inclined flame retardant characteristics defined in JIS C3005, and the like.
  • such a wire coating material may be required to have a certain level or more in a tensile elongation test, a tensile strength test, a heat deformation test, etc. defined in JIS C3005.
  • the above-mentioned resin materials for covering wires using cyclic olefin-based resins can obtain the level required in the thermal deformation test, but it is difficult to obtain a material exceeding the level required particularly in the tensile elongation test. Therefore, there is a demand for a resin material for covering an electric wire in which all required physical properties are above a certain level.
  • the present invention has been made in order to solve the above-described problems.
  • the object of the present invention is to use a cyclic olefin-based resin, and to provide all the required physical properties at a certain level or more.
  • An object of the present invention is to provide an electric wire using a resin material and a flame retardant cable.
  • the resin material for covering the wire is (A) an olefin resin, (B) an elastomer resin, (C) a cyclic olefin resin having a glass transition point of 120 to 170 ° C., and (D) a flame retardant.
  • the content of the component (D) is from 60 parts by mass to 150 parts by mass with respect to the total amount of 100 parts by mass of the component (A), the component (B), and the component (C), and the tensile elongation It has been found that the above-mentioned problems can be solved by using a material having (JIS C3005 compliant) of 250% or more and heat deformation (JIS C3005 compliant) of 40% or less, and has completed the present invention. More specifically, the present invention provides the following.
  • the content of the component (D) is from 60 parts by mass to 150 parts by mass with respect to 100 parts by mass of the total amount of the component (A), the component (B), and the component (C).
  • JIS C3005 compliant is 250% or higher, and heat-deformation (JIS C3005 compliant) is 40% or lower.
  • component (A) includes an olefin resin having a polar group.
  • the mass ratio [(A) / ((B) + (C))] of the component (A) and the total amount of the component (B) and the component (C) is 80/20. To 60/40 of (1) or (2).
  • the resin material for covering wires includes (A) an olefin resin, (B) an elastomer resin, (C) a cyclic olefin resin having a glass transition point of 120 ° C. to 170 ° C., and (D)
  • the flame retardant is contained, and the content of the component (D) is 60 parts by mass to 150 parts by mass with respect to 100 parts by mass of the total amount of the component (A), the component (B), and the component (C). Because the tensile elongation (conforming to JIS C3005) is 250% or more and the heat deformation (conforming to JIS C3005) is 40% or less, all the physical properties required for each material are above a certain level. Materials, electric wires using the electric wire covering resin material, and flame-retardant cables can be obtained.
  • the polyolefin resin is formed by polymerizing an olefin monomer having a polymerizable double bond in the molecule.
  • the olefinic monomer is not particularly limited, and examples thereof include ⁇ - such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 4-methyl-1-pentene. Examples include dienes such as olefin and butadiene.
  • the olefin resin may have a polar group.
  • the polar group include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an ester group, a carboxyl group, a carboxylic acid group, a carboxylic acid anhydride group, a carboxylic acid ester group, a carboxylic acid halide group, and a carboxylic acid amide group.
  • Carboxylic acid derivatives such as carboxylic acid imide groups and carboxylic acid groups, sulfonic acid groups, sulfonic acid ester groups, sulfonic acid chloride groups, sulfonic acid amide groups, sulfonic acid groups, epoxy groups, amino groups, oxazoline groups, epoxy groups Etc. It is preferable that the olefin resin has a polar group because flame retardancy can be improved.
  • the olefin resin may be an acid-modified resin.
  • Acid-modified resins include resins such as polyethylene, polypropylene, and ethylene vinyl acetate copolymers, unsaturated carboxylic acids such as maleic acid, itaconic acid, and fumaric acid, or maleic acid monoesters, maleic acid diesters, fumaric acid diesters, and maleic anhydride. It is modified with an unsaturated carboxylic acid diester such as acid or itaconic anhydride.
  • An acid-modified resin is preferable because it can improve mechanical properties such as tensile strength and tensile elongation. Moreover, since the dispersibility of the metal hydrate mentioned later can be improved, it is preferable.
  • olefin resin examples include polyethylene acrylate copolymers such as polyethylene, polypropylene, ethylene vinyl acetate copolymer (EVA), ethylene ethyl acrylate copolymer (EEA), and ethylene.
  • EVA ethylene vinyl acetate copolymer
  • ESA ethylene ethyl acrylate copolymer
  • ⁇ -olefin copolymer ethylene methyl acrylate copolymer, ethylene butyl acrylate copolymer, ethylene methyl methacrylate copolymer, ethylene acrylic acid copolymer, partially saponified EVA, maleic anhydride modified polyolefin, ethylene An acrylic ester maleic anhydride copolymer or the like can be used.
  • polyethylene, polypropylene, ethylene vinyl acetate copolymer, ethylene ethyl acrylate copolymer, and maleic anhydride modified ethylene vinyl acetate copolymer are preferable. These may be used alone or in combination of two or more.
  • the olefinic resin does not have a polar group, it is preferable to add 5 to 10 parts by mass of the acid-modified olefin component with respect to 100 parts by mass of the olefinic resin because the flame retardant dispersion is improved.
  • the polymerization method of the olefin resin is not particularly limited, and can be performed according to a known method. It may be random copolymerization or block copolymerization.
  • the resin material for covering electric wires of the present invention contains an elastomer resin.
  • the tensile elongation of the resin material for covering a wire can be improved.
  • elastomer resin examples include styrene-based elastomers, olefin-based elastomers, vinyl chloride-based elastomers, urethane-based elastomers, polyester-based elastomers, polyamide-based elastomers, and acrylic-based elastomers. These may be used alone or as necessary. Two or more types can be used in combination.
  • an olefin elastomer is preferred. This is because it is possible to prevent a decrease in electrical characteristics of the electric wire.
  • the resin material for covering electric wires of the present invention is used as a sheath, since it is not a material that directly covers a conductor, there is no need to consider a decrease in electrical characteristics.
  • a styrene elastomer can be preferably used.
  • preferable styrenic elastomers include, for example, SEBS (polystyrene-ethylene / butylene-styrene), SEPS (polystyrene-poly (ethylene / propylene) block-polystyrene), and SEEPS (polystyrene-poly (ethylene-ethylene / propylene).
  • SEBS polystyrene-ethylene / butylene-styrene
  • SEPS polystyrene-poly (ethylene / propylene) block-polystyrene
  • SEEPS polystyrene-poly (ethylene-ethylene / propylene).
  • SEBS polystyrene-poly (ethylene / butylene) block-polystyrene
  • SEP polystyrene-poly (ethylene / propylene) block
  • the (C) cyclic olefin resin used in the present invention contains a cyclic olefin component as a copolymerization component, has a glass transition point of 120 ° C. to 170 ° C., and contains a cyclic olefin component in the main chain. If it is, it will not specifically limit.
  • (A1) Cyclic olefin addition polymer or hydrogenated product thereof (A2) an addition copolymer of a cyclic olefin and an ⁇ -olefin or a hydrogenated product thereof, (A3) A ring-opening (co) polymer of a cyclic olefin or a hydrogenated product thereof.
  • (C) cyclic olefin resin containing the cyclic olefin component used in the present invention as a copolymerization component (A4) A resin obtained by grafting and / or copolymerizing an unsaturated compound having a polar group to the resins (a1) to (a3).
  • Examples of the polar group include a carboxyl group, an acid anhydride group, an epoxy group, an amide group, an ester group, and a hydroxyl group.
  • Examples of the unsaturated compound having a polar group include (meth) acrylic acid and maleic acid. Acid, maleic anhydride, itaconic anhydride, glycidyl (meth) acrylate, alkyl (meth) acrylate (carbon number 1-10) ester, alkyl maleate (carbon number 1-10) ester, (meth) acrylamide, (meta And 2-hydroxyethyl acrylate.
  • the cyclic olefin resins (a1) to (a4) containing the above cyclic olefin component as a copolymerization component may be used singly or in combination of two or more.
  • (a2) an addition copolymer of cyclic olefin and ⁇ -olefin or a hydrogenated product thereof can be preferably used.
  • cyclic olefin resin containing the cyclic olefin component used in the present invention as a copolymerization component a commercially available resin can also be used.
  • commercially available cyclic olefin resins include TOPAS (registered trademark) (manufactured by TOPAS Advanced Polymer), Apel (registered trademark) (manufactured by Mitsui Chemicals), Zeonex (registered trademark) (manufactured by Nippon Zeon), Examples include ZEONOR (registered trademark) (manufactured by ZEON Corporation), ARTON (registered trademark) (manufactured by JSR Corporation), and the like.
  • the (a2) cyclic olefin / ⁇ -olefin addition copolymer preferably used in the composition of the present invention is not particularly limited. Particularly preferred examples include a copolymer comprising [1] an ⁇ -olefin component having 2 to 20 carbon atoms and [2] a cyclic olefin component represented by the following general formula (I).
  • R 1 ⁇ R 12 may each be the same or different, a hydrogen atom, a halogen atom, and, those selected from the group consisting of a hydrocarbon group, R 9 and R 10 , R 11 and R 12 may be integrated to form a divalent hydrocarbon group, R 9 or R 10 and R 11 or R 12 may form a ring with each other.
  • N represents 0 or a positive integer; When n is 2 or more, R 5 to R 8 may be the same or different in each repeating unit. )
  • ⁇ -olefin component having 2 to 20 carbon atoms which is a copolymer component of an addition polymer of a cyclic olefin component preferably used in the present invention and another copolymer component such as ethylene, is not particularly limited.
  • ethylene propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4-methyl-1-pentene 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, 3-ethyl-1-hexene, 1-octene 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicocene and the like.
  • ⁇ -olefin components may be used alone or in combination of two or more. Of these, ethylene is most preferably used alone.
  • R 1 to R 12 in the general formula (I) may be the same or different and are selected from the group consisting of a hydrogen atom, a halogen atom, and a hydrocarbon group.
  • R 1 to R 8 include, for example, a hydrogen atom; a halogen atom such as fluorine, chlorine and bromine; a lower alkyl group such as a methyl group, an ethyl group, a propyl group and a butyl group. May be different from each other, may be partially different, or all may be the same.
  • R 9 to R 12 include, for example, hydrogen atom; halogen atom such as fluorine, chlorine, bromine; methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, hexyl group, stearyl.
  • Alkyl group such as cyclohexyl group; cycloalkyl group such as cyclohexyl group; substituted or unsubstituted aromatic hydrocarbon group such as phenyl group, tolyl group, ethylphenyl group, isopropylphenyl group, naphthyl group, anthryl group; benzyl group, phenethyl And an aralkyl group in which an aryl group is substituted with an alkyl group, and the like. These may be different from each other, may be partially different, or all may be the same.
  • R 9 and R 10 or R 11 and R 12 are integrated to form a divalent hydrocarbon group
  • alkylidene groups such as an ethylidene group, a propylidene group, and an isopropylidene group. Can be mentioned.
  • the formed ring may be monocyclic or polycyclic, or may be a polycyclic ring having a bridge.
  • a ring having a double bond, or a ring composed of a combination of these rings may be used.
  • these rings may have a substituent such as a methyl group.
  • cyclic olefin component represented by the general formula (I) include bicyclo [2.2.1] hept-2-ene (common name: norbornene), 5-methyl-bicyclo [2.2.1] hepta. -2-ene, 5,5-dimethyl-bicyclo [2.2.1] hept-2-ene, 5-ethyl-bicyclo [2.2.1] hept-2-ene, 5-butyl-bicyclo [2 2.1] hept-2-ene, 5-ethylidene-bicyclo [2.2.1] hept-2-ene, 5-hexyl-bicyclo [2.2.1] hept-2-ene, 5-octyl -Bicyclo [2.2.1] hept-2-ene, 5-octadecyl-bicyclo [2.2.1] hept-2-ene, 5-methylidene-bicyclo [2.2.1] hept-2-ene 5-vinyl-bicyclo [2.2.1]
  • Tricyclo [4.3.0.1 2,5 ] deca-3,7-diene (common name: dicyclopentadiene), tricyclo [4.3.0.1 2,5 ] dec-3-ene; tricyclo [ 4.4.0.1 2,5 ] undeca-3,7-diene or tricyclo [4.4.0.1 2,5 ] undeca-3,8-diene or a partially hydrogenated product thereof (or cyclopentadiene) Tricyclo [4.4.0.1 2,5 ] undec-3-ene; 5-cyclopentyl-bicyclo [2.2.1] hept-2-ene, 5-cyclohexyl-bicyclo [2.2.1] hept-2-ene, 5-cyclohexenylbicyclo [2.2.1] hept-2-ene, 5-phenyl-bicyclo [2.2.1] hept-2-ene A cyclic olefin of the ring;
  • Tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene also simply referred to as tetracyclododecene
  • 8-methyltetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene 8-ethyltetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene
  • 8-methylidenetetracyclo 4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene
  • cyclic olefin components may be used singly or in combination of two or more.
  • a method for polymerizing an ⁇ -olefin component having 2 to 20 carbon atoms and a [2] cyclic olefin component represented by formula (I) and a method for hydrogenating the obtained polymer are particularly limited. Instead, it can be carried out according to known methods. Random copolymerization or block copolymerization may be used, but random copolymerization is preferred.
  • the polymerization catalyst used is not particularly limited and can be obtained by a known method using a conventionally known catalyst such as a Ziegler-Natta, metathesis, or metallocene catalyst.
  • a conventionally known catalyst such as a Ziegler-Natta, metathesis, or metallocene catalyst.
  • the addition copolymer of cyclic olefin and ⁇ -olefin or the hydrogenated product thereof preferably used in the present invention is preferably produced using a metallocene catalyst.
  • metathesis catalyst examples include molybdenum or tungsten-based metathesis catalysts known as cycloolefin ring-opening polymerization catalysts (for example, described in JP-A Nos. 58-127728 and 58-129003).
  • the polymer obtained by the metathesis catalyst uses an inorganic carrier-supported transition metal catalyst, etc., and 90% or more of the double bonds in the main chain and 98% or more of the carbon-carbon double bonds in the side chain aromatic ring are hydrogenated. It is preferable to add.
  • the (a2) addition copolymer of cyclic olefin and ⁇ -olefin particularly preferably used in the composition of the present invention comprises [1] the ⁇ -olefin component having 2 to 20 carbon atoms and [2] the general formula (I
  • other copolymerizable unsaturated monomer components may be contained as necessary within the range not impairing the object of the present invention.
  • the unsaturated monomer that may be optionally copolymerized is not particularly limited, and examples thereof include hydrocarbon monomers containing two or more carbon-carbon double bonds in one molecule. Can be mentioned. Specific examples of hydrocarbon monomers containing two or more carbon-carbon double bonds in one molecule include 1,4-hexadiene, 1,6-octadiene, 2-methyl-1,5-hexadiene, 4 Chain non-conjugated dienes such as methyl-1,5-hexadiene, 5-methyl-1,5-hexadiene, 6-methyl-1,5-heptadiene, 7-methyl-1,6-octadiene; cyclohexadiene, di Cyclopentadiene, methyltetrahydroindene, 5-vinyl-2-norbornene, 5-ethylidene-2-norbornene, 5-methylene-2-norbornene, 5-isopropylidene-2-norbornene, 6-chloromethyl-5-is
  • 1,4-hexadiene, 1,6-octadiene, and cyclic nonconjugated dienes especially dicyclopentadiene, 5-ethylidene-2-norbornene, 5-vinyl-2-norbornene, 5-methylene-2 -Norbornene, 1,4-hexadiene, 1,6-octadiene are preferred.
  • a cyclic olefin resin may be used individually by 1 type, or may use 2 or more types simultaneously. Of these, ethylene is most preferably used alone.
  • the glass transition point of the cyclic olefin resin which is an essential component of the present invention, is 120 ° C. to 170 ° C. If the temperature is 120 ° C. or higher, the resin material for covering the wire has sufficient heat resistance. Therefore, in the heat deformation test (JIS C 3005), the reduction rate of the thickness of the resin material for covering the wire should be kept to 40% or less. Can do. If it is 170 degrees C or less, it can suppress that the flame retardant mentioned later decomposes
  • the preferred glass transition point range is 125 ° C to 160 ° C. The glass transition point can be adjusted by changing the ratio of the cyclic olefin component in the cyclic olefin resin.
  • a cyclic olefin resin having a glass transition point of less than 120 ° C. can be used by blending with a cyclic olefin resin having a glass transition point of 120 ° C. or higher.
  • the blending amount of the cyclic olefin resin having a glass transition point of less than 120 ° C. at that time is not particularly limited, but may be any ratio so long as the Tg of the blend of the cyclic olefin resin is in the range of 120 ° C. to 170 ° C.
  • the cyclic olefin resin preferably has a melt viscosity of 96 Pa ⁇ s or more at a shear rate of 1216 / sec at 260 ° C.
  • a melt viscosity is 96 Pa ⁇ s or more at a shear rate of 1216 / sec at 260 ° C.
  • the melt viscosity is 96 Pa ⁇ s or more, it is preferable because a decrease in flexibility can be suppressed even if a cyclic olefin resin is blended. .
  • a more preferable melt viscosity is 120 Pa ⁇ s or more.
  • the flame retardant is a metal hydrate.
  • Metal hydrate flame retardants include magnesium hydroxide (Mg (OH) 2 ), aluminum hydroxide (Al (OH) 3 ), hydrotalcite, calcium aluminate hydrate, calcium hydroxide, barium hydroxide, A hard clay etc. can be mentioned.
  • a material obtained by blending these simple substances or two or more kinds is used as the metal hydrate flame retardant.
  • magnesium hydroxide having a high flame retardant effect is most suitable.
  • the metal hydrate flame retardant is preferably subjected to a surface treatment in order to improve the compatibility with the resin during kneading.
  • a conventionally known surface treating agent can be used as the surface treating agent for the metal hydrate. If the particle size of the metal hydrate is too large, the dispersibility is lowered, and the mechanical strength of the resin material for covering electric wires is also lowered.
  • the resin material for electric wire coating of the present invention contains (A) an olefin resin, (B) an elastomer resin, (C) a cyclic olefin resin having a glass transition point of 120 ° C. to 170 ° C., and (D) a flame retardant.
  • the material has a certain level or more of required physical properties as an insulating material or a sheath for covering an electric wire.
  • an elastomer resin it is possible to compensate for a decrease in flexibility due to the cyclic olefin resin.
  • the resin material for covering an electric wire of the present invention can realize good tensile elongation.
  • the resin material for covering electric wires of the present invention has a tensile elongation (conforming to JIS C3005) of 250% or more.
  • the tensile elongation can be imparted by blending an elastomer resin in addition to the above-described melt viscosity of the cyclic olefin resin. More preferable tensile elongation is 300% or more. If there is a tensile elongation of 300% or more, it can be used for electric wires such as vehicle electric wires.
  • the elastomer resin is preferably contained in an amount of 25 to 60 parts by mass with respect to 100 parts by mass of the cyclic olefin resin.
  • the amount of 25 parts by mass or more is preferable because the elastomer resin can compensate for the decrease in flexibility due to the cyclic olefin-based resin and realize a very good tensile elongation. If it is 60 mass parts or less, it becomes possible to suppress heat deformation. More preferred is 30 to 50 parts by mass.
  • the tensile strength (based on JIS C3005) of the resin material for electric wire coating of the present invention is 10 MPa or more.
  • a more preferable tensile strength is 12 MPa or more.
  • the resin material for electric wire coating of the present invention has a mass ratio [(A) / ((B) + (C))] of olefin resin and the total amount of elastomer resin and cyclic olefin resin of 80 / It is preferably 20 to 60/40.
  • the reason why the wire covering resin material is mainly composed of an olefin resin as described above is that mechanical properties such as tensile strength can be imparted to the wire covering resin material of the present invention.
  • the ratio of olefin resin is larger than 60/40, the mass ratio is preferable from the viewpoint of securing toughness, and when the ratio of olefin resin is less than 80/20, improvement in tensile elongation by the elastomer resin or cyclic olefin is achieved. The effect of improving the heat resistance (thermal deformation) due to the resin is also remarkable, so that it is preferable.
  • the resin material for covering an electric wire of the present invention for a sheath of a flame retardant cable that requires flame retardancy.
  • the resin material for electric wire coating of the present invention is naturally digested within 60 seconds after ignition in a combustion test (JIS C3005 compliant).
  • the content of the flame retardant is 60 parts by mass to 150 parts by mass with respect to 100 parts by mass of the total amount of the olefin resin, the elastomer resin, and the cyclic olefin resin. If the content of the flame retardant is 60 parts by mass or more, flame retardancy that satisfies the above-described combustion test is obtained, and if it is 150 parts by mass or less, a decrease in flexibility of the resin material for wire coating can be suppressed. It is preferable because it is possible. A more preferable content of the flame retardant in the present invention is 70 to 130 parts by mass.
  • thermoplastic resins various compounding agents, and the like can be added to the cyclic olefin-based resin of the present invention as necessary within a range not losing the effects of the present invention.
  • examples of other resins include other polyolefin resins, polystyrene resins, and fluororesins. These other resins may be used alone or in combination of two or more.
  • the resin material for electric wire coating of the present invention includes a flame retardant aid, an antioxidant, a lubricant, a surfactant, a softener, a plasticizer, an inorganic filler, a compatibilizer, a stabilizer, a crosslink as necessary.
  • Additives such as an agent, an ultraviolet absorber, a light stabilizer, and a colorant can be added.
  • cover of this invention contacts metals, such as copper which is a conductor, it is preferable to add a heavy metal-resistant stabilizer.
  • the heavy metal stabilizer examples include salicylic acid derivatives (for example, trade name ADKSTAB CDA6), hydrazide derivatives (for example, trade name Irganox MD1024), oxalic acid amide derivatives (for example, trade name Naugard XL-1), sulfur-containing phosphite compounds (for example, the trade name HostanoxOSP-1) is exemplified, but the type of heavy metal stabilizer is not particularly limited as long as it does not impair the characteristics of the coaxial cable.
  • the addition amount of the heavy metal stabilizer is not particularly limited, but usually an addition amount of 0.3% by mass or less with respect to the resin component is preferably used. Although it does not specifically limit about the addition method, It is still more preferable if it adds beforehand to cyclic olefin resin, polyethylene resin, another addition resin, etc.
  • a conventionally known method can be used as the method for producing the resin material for covering an electric wire of the present invention.
  • a general mixer such as a Banbury mixer, a single screw extruder, a twin screw extruder, a kneader, a multi screw extruder, or a roll was used.
  • a melt kneading method a method in which each component is dissolved or dispersed and mixed, and then the solvent is removed by heating is used.
  • a melt mixing method using an extruder is preferred from the viewpoint of productivity and good kneading properties.
  • the resin material for covering an electric wire of the present invention it is preferable to prepare a pellet by blending an elastomer resin and a cyclic olefin resin in advance and use it as a raw material. It is preferable to knead in advance because the adjustment range of the prescription is widened in securing the balance between elongation and heat deformation.
  • the resin material for electric wire coating of the present invention is used, for example, for covering electric wires as will be described later.
  • the resin material for covering electric wires of the present invention covers the outer side of an insulating layer directly covering a conductor, one electric wire or plural electric wire bundles covered with an insulating layer in order to have good mechanical strength, heat resistance, etc.
  • the sheath can be preferably used as a sheath.
  • An electric wire is a wire material in which a conductor such as copper is used as a core wire and the periphery of the core wire is covered with an insulating material to prevent a short circuit. .
  • Specific examples include power cables such as communication cable insulation wires, general fixed wires, ship wires, and vehicle wires, camera cables, and medical cables.
  • a conventionally well-known method can be used for the manufacturing method of the electric wire of the present invention. That is, it can be obtained by extruding the resin material for coating an electric wire of the present invention onto a conductor such as a single wire or a multi-wire copper core wire using a normal extrusion molding line.
  • a flame-retardant cable is a cable in which a conductor is coated with an insulating material and a flame-retardant sheath is coated on its outer periphery. Moreover, what covered the electric wire bundle which bundled the electric wire by which the insulating material was coat
  • the resin material for covering an electric wire of the present invention can be used as an insulating material covering a conductor, a sheath covering an electric wire or the like.
  • the flame-retardant cable manufacturing method of the present invention is not particularly limited and can be manufactured by a conventionally known method. For example, it is possible to obtain a flame retardant cable by bundling a plurality of electric wires coated with an insulating layer as necessary to form a bundle of electric wires, or by extruding a sheath on the outer periphery as a single electric wire. it can.
  • PE Polyethylene
  • EVA Ethylene-vinyl acetate copolymer
  • EAA Everflex EV270 manufactured by Mitsui DuPont Chemical
  • Ethylene-ethyl acrylate copolymer Ethylene ethyl acrylate copolymer DPDJ-6169BK manufactured by Nihon Unicar Company
  • Polypropylene PP
  • [Cyclic olefin resin] TOPAS Five types of cyclic olefin resins manufactured by TOPAS Advanced Polymer were used. Table 1 shows the glass transition point (Tg) and melt viscosity (MV) of these TOPAS.
  • Tg glass transition point
  • MV melt viscosity
  • the melt viscosity of the cyclic olefin resin used in the present invention is a value at 260 ° C. and a shear rate of 1216 / sec.
  • ZEONOR ZEONOR1420R manufactured by Nippon Zeon Co., Ltd. was used. Table 1 shows the glass transition point (Tg) and melt viscosity (MV).
  • Olefin elastomer Engage ENR7380 manufactured by DuPont Dow Elastomer Styrene elastomer: Kraton D1184 manufactured by Kraton
  • the elastomer resin is blended with the cyclic olefin resin at the ratio shown in Tables 2 to 5, and melt-kneaded in a set temperature range of 260 ° C. to 280 ° C. by a biaxial extrusion trough to obtain a cyclic olefin resin / elastomer resin blend.
  • a pellet was prepared in advance.
  • the blended product, base resin, and flame retardant are blended in the proportions shown in Tables 2 to 5, and melt kneaded in a temperature range of 180 ° C. to 200 ° C. with a twin-screw extruder to form a pellet-like resin for covering wires
  • the material was made.
  • the temperature of the molten resin immediately after being discharged from the die was measured.
  • the molten resin temperature was 215 ° C. or lower in all Examples and Comparative Examples.
  • the molten resin temperature of Comparative Example 6 was in the range of 230 ° C to 240 ° C.
  • the above-mentioned pelletized coating material is put into a single screw extruder having a diameter of 20 mm screw having a wire coating die, the coating material is melt-extruded at a set temperature of 180 ° C., and preheated to 80 ° C. in a diameter of 0.9 mm. While introducing a conductor (copper wire) into a wire coating die and pulling it off, a 0.3 mm thick green coating layer was extruded onto the conductor to produce an electric wire. Tables 2 to 4 show the composition and characteristics of the obtained electric wire insulation layer.
  • Heat deformation test The heat deformation test was performed at a temperature of 120 ° C. and a load of 2 kg in accordance with JIS-C3005. An insulating coating layer and a sheath layer having a thermal deformation of 40% or less were regarded as acceptable.
  • Example 13 As can be seen from Table 4, from Comparative Example 8 and Example 13, it was confirmed that when the content of the flame retardant was small, the film was easily deformed by heating and did not pass the heat deformation test. Moreover, it was confirmed from Example 13 that if the content of the elastomer resin is large, the insulating layer has excellent mechanical properties such as tensile elongation. From Example 14, it was confirmed that when the content of the flame retardant is large, mechanical properties such as tensile elongation tend to decrease.
  • Example 15 to Example 18 in Table 5 since it passed all of the heat deformation rate, tensile properties, flame retardancy, and aging resistance, it was confirmed to be an excellent sheath.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Insulated Conductors (AREA)
  • Organic Insulating Materials (AREA)
  • Inorganic Insulating Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

環状オレフィン系樹脂を用いて、要求される全ての物性が一定の水準以上にある電線被覆用樹脂材料、当該電線被覆用樹脂材料を用いた電線、及び難燃ケーブルを提供する。 電線被覆用樹脂材料が(A)オレフィン系樹脂と、(B)エラストマー樹脂と、(C)ガラス転移点が120°Cから170°Cである環状オレフィン系樹脂と、(D)難燃剤とを含有し、(D)成分の含有量が、(A)成分、(B)成分、及び(C)成分の合計量100質量部に対して、60質量部から150質量部であり、引張り伸び(JIS C3005準拠)が250%以上であり、加熱変形(JIS C3005準拠)が40%以下であるものを用いるものを用いる。好ましくは(A)成分と、(B)成分と(C)成分との合計量と、の質量比〔(A)/((B)+(C))〕が、80/20から60/40である。  

Description

電線被覆用樹脂材料、当該電線被覆用樹脂材料を用いた電線、及び難燃ケーブル
 本発明は、環状オレフィン系樹脂を含有する電線被覆用樹脂材料、当該電線被覆用樹脂材料を用いた電線、及び難燃ケーブルに関する。
 絶縁電線の被覆材料には、ポリ塩化ビニル(PVC)にハロゲン系難燃剤を配合した樹脂組成物を使用することがよく知られている。しかし、これらを適切な処理をせずに廃棄した場合、被覆材料に配合されている可塑剤や重金属安定剤が溶出したり、またこれらを燃焼させると被覆材料に含まれるハロゲン化合物から腐食性ガスやダイオキシン類が発生したりすることがあり、近年、この問題が議論されている。
 このため、有害な重金属の溶出やハロゲン系ガス等の発生のおそれがないノンハロゲン難燃材料で電線を被覆する技術が検討されはじめている。ノンハロゲン難燃材料は、ハロゲンを含有しない難燃剤を樹脂に配合することで難燃性を発現させており、この難燃剤としては、例えば、水酸化マグネシウム、水酸化アルミニウム等の金属水和物が、また、前記樹脂としては、ポリエチレン、エチレン・1-ブテン共重合体、エチレン・プロピレン共重合体、エチレン・酢酸ビニル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-プロピレン-ジエン三元共重合体等が用いられている。
 ところで、絶縁電線には、安全性の面から非常に厳しい難燃性規格、例えばUL1581(電線、ケーブル及びフレキシブルコードのための関連規格(Reference Standard for Electrical Wires、Cables, and
 Flexible Cords))等に規定されている垂直燃焼試験(Vertical Flame Test)、VW-1規格、水平難燃規格やJIS C3005に規定される60度傾斜難燃特性等が求められている。さらにこのような電線の被覆用材料には、JIS C3005に規定される引張り伸び試験、引張り強度試験、加熱変形試験等において一定の水準以上にあることが要求される場合がある。
 しかし、上記ポリエチレン等の樹脂材料を用いた場合には、加熱変形試験において要求される水準以上のものを得るのは困難である。加熱変形試験で良好な物性を得やすい樹脂として環状オレフィン系樹脂が挙げられ、環状オレフィン系樹脂を用いた電線被覆用樹脂材料も開示されている(特許文献1)。
特開平11-189743号公報
 上記のような、環状オレフィン系樹脂を用いた電線被覆用樹脂材料は熱変形試験において要求される水準を得ることができるが、特に引張り伸び試験において要求される水準以上のものを得ることが困難であり、要求される全ての物性が一定の水準以上にある電線被覆用樹脂材料が求められている。
 本発明は上記課題を解決するためになされたものであり、その目的は、環状オレフィン系樹脂を用いて、要求される全ての物性が一定の水準以上にある電線被覆用樹脂材料、当該電線被覆用樹脂材料を用いた電線、及び難燃ケーブルを提供することにある。
 本発明者らは上記課題を解決するために鋭意研究を重ねた。その結果、電線被覆用樹脂材料が(A)オレフィン系樹脂と、(B)エラストマー樹脂と、(C)ガラス転移点が120℃から170℃である環状オレフィン系樹脂と、(D)難燃剤とを含有し、(D)成分の含有量が、(A)成分、(B)成分、及び(C)成分の合計量100質量部に対して、60質量部から150質量部であり、引張り伸び(JIS C3005準拠)が250%以上であり、加熱変形(JIS C3005準拠)が40%以下であるものを用いることで、上記課題を解決できることを見出し、本発明を完成するに至った。より具体的には本発明は以下のものを提供する。
 (1) (A)オレフィン系樹脂と、(B)エラストマー樹脂と、(C)ガラス転移点が120℃から170℃である環状オレフィン系樹脂と、(D)難燃剤と、を含有し、前記(D)成分の含有量が、前記(A)成分、前記(B)成分、及び前記(C)成分の合計量100質量部に対して、60質量部から150質量部であり、引張り伸び(JIS C3005準拠)が250%以上であり、加熱変形(JIS C3005準拠)が40%以下である電線被覆用樹脂材料。
 (2) 前記(A)成分が極性基を有するオレフィン系樹脂を含む(1)に記載の電線被覆用樹脂材料。
 (3) 前記(A)成分と、前記(B)成分と前記(C)成分との合計量と、の質量比〔(A)/((B)+(C))〕が、80/20から60/40である(1)又は(2)に記載の電線被覆用樹脂材料。
 (4) 前記(C)成分100質量部に対して、前記(B)成分を25質量部から60質量部含有する(1)から(3)のいずれかに記載の電線被覆用樹脂材料。
 (5) 前記(B)成分がオレフィン系工ラストマー又はスチレン系エラストマーである(1)から(4)のいずれかに記載の電線被覆用樹脂材料。
 (6) 前記(C)成分は、260℃における剪断速度1216/秒のときの溶融粘度が96Pa・s以上である(1)から(5)のいずれかに記載の電線被覆用樹脂材料。
 (7) (1)から(6)のいずれかに記載の電線被覆用樹脂材料が、導体上に被覆された電線。
 (8)(1)から(6)のいずれかに記載の電線被覆用樹脂材料を成形してなり、1本の電線又は複数本の電線を束ねた電線束の外周を被覆するシースを備える難燃ケーブル。
 本発明によれば、電線被覆用樹脂材料は(A)オレフィン系樹脂と、(B)エラストマー樹脂と、(C)ガラス転移点が120℃から170℃である環状オレフィン系樹脂と、(D)難燃剤とを含有し、(D)成分の含有量が、(A)成分、(B)成分、及び(C)成分の合計量100質量部に対して、60質量部から150質量部であり、引張り伸び(JIS C3005準拠)が250%以上であり、加熱変形(JIS C3005準拠)が40%以下であるため、各材料に要求される全ての物性が一定の水準以上にある電線被覆用樹脂材料、当該電線被覆用樹脂材料を用いた電線、及び難燃ケーブルを得ることができる。
発明を実施するための形態
 以下、本発明の一実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。
 <(A)オレフィン系樹脂>
 ポリオレフィン系樹脂は、分子内に重合性二重結合を有するオレフィン系単量体を重合してなるものである。上記オレフィン系単量体としては特に限定されず、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、4-メチル-1-ペンテン等のα-オレフィン、ブタジエン等のジエンが挙げられる。
 オレフィン系樹脂は極性基を有してもよい。極性基を持つ単量体を重合してオレフィン系樹脂とする場合の他、重合したオレフィン系樹脂に対して極性基を導入する場合も含まれる。極性基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子、エステル基や、カルボキシル基、カルボン酸基、カルボン酸無水物基、カルボン酸エステル基、カルボン酸ハライド基、カルボン酸アミド基、カルボン酸イミド基、カルボン酸塩基等のカルボキシル基誘導体、スルホン酸基、スルホン酸エステル基、スルホン酸塩化物基、スルホン酸アミド基、スルホン酸塩基、エポキシ基、アミノ基、オキサゾリン基、エポキシ基等が挙げられる。オレフィン系樹脂が極性基を持つことで難燃性を向上できるので好ましい。
 オレフィン系樹脂は酸変性樹脂であってもよい。酸変性樹脂とはポリエチレン、ポリプロピレン、エチレン酢酸ビニル共重合体等の樹脂をマレイン酸、イタコン酸、フマル酸等の不飽和カルボン酸、あるいはマレイン酸モノエステル、マレイン酸ジエステル、フマル酸ジエステル、無水マレイン酸、無水イタコン酸等の不飽和カルボン酸ジエステルで変性してなるものである。酸変性樹脂は、引張り強度や引張り伸び等の機械的特性を向上することができるので好ましい。また、後述する金属水和物の分散性を改善することができるので好ましい。
 本発明において使用可能なオレフィン系樹脂としては、例えば、ポリエチレン、ポリプロプレン、エチレン酢酸ビニル共重合体(EVA)、エチレンアクリル酸エチル共重合体(EEA)等のエチレンアクリル酸エステル共重合体、エチレンα-オレフィン共重合体、エチレンアクリル酸メチル共重合体、エチレンアクリル酸ブチル共重合体、エチレンメタクリル酸メチル共重合体、エチレンアクリル酸共重合体、部分ケン化EVA、無水マレイン酸変性ポリオレフィン、エチレンアクリル酸エステル無水マレイン酸共重合体等を用いることができる。これらの中でも、ポリエチレン、ポリプロピレン、エチレン酢酸ビニル共重合体、エチレンアクリル酸エチル共重合体、無水マレイン酸変性エチレン酢酸ビニル共重合体が好ましい。これらは単独で用いてもよいし、2種以上を混合して用いてもよい。
 オレフィン系樹脂が極性基を持たない場合、そのオレフィン系樹脂100質量部に対して、酸変性オレフィン成分を5質量部~10質量部配合することで、難燃剤の分散が良好になるので好ましい。
 上記オレフィン系樹脂の重合方法は特に限定されるものではなく、公知の方法に従って行うことができる。ランダム共重合であっても、ブロック共重合であってもよい。
 <(B)エラストマー樹脂>
 本発明の電線被覆用樹脂材料は、エラストマー樹脂を含む。エラストマー樹脂を含むことで、特に電線被覆用樹脂材料の引張り伸びを改善することができる。
 エラストマー樹脂としては、例えばスチレン系エラストマー、オレフィン系エラストマー、塩化ビニル系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、アクリル系エラストマー等を挙げることができ、これらは単独で、又は必要に応じて、2種以上を組み合わせて用いることができる。
 本発明の電線被覆用樹脂材料を導体に直接被覆する絶縁層として用いる場合にはオレフィン系エラストマーが好ましい。電線の電気的特性の低下を防ぐことができるからである。これに対して、本発明の電線被覆用樹脂材料をシースとして用いる場合には、導体に直接被覆する材料ではないため、電気的特性の低下を考慮する必要はなく、いずれのエラストマー樹脂であっても好ましく使用することができ、特に環状オレフィン系樹脂との相溶性が高いことから、スチレン系エラストマーを好適に用いることができる。好ましいスチレン系エラストマーの具体例としては、例えば、SEBS(ポリスチレン-エチレン/ブチレン-スチレン)、SEPS(ポリスチレン-ポリ(エチレン/プロピレン)ブロック-ポリスチレン)、SEEPS(ポリスチレン-ポリ(エチレン-エチレン/プロピレン)ブロック-ポリスチレン)、SEBS(ポリスチレン-ポリ(エチレン/ブチレン)ブロック-ポリスチレン)、SEP(ポリスチレン-ポリ(エチレン/プロピレン)ブロック)等を挙げることができる。
<(C)環状オレフィン系樹脂>
 [(C)環状オレフィン系樹脂]
 以下、本発明の電線被覆用樹脂材料の必須成分となる(C)環状オレフィン系樹脂について説明する。環状オレフィン系樹脂は電線被覆用樹脂材料に好ましい物性を付与するだけでなく、本発明は後述する難燃剤に金属水和物を用いるので、その難燃剤により劣化や分解を生じない樹脂を使用する必要がある。環状オレフィン系樹脂はその点からも好ましい。本発明に用いられる(C)環状オレフィン系樹脂は、環状オレフィン成分を共重合成分として含むものであり、120℃から170℃のガラス転移点を持ち、環状オレフィン成分を主鎖に含むポリオレフィン系樹脂であれば、特に限定されるものではない。例えば、
 (a1)環状オレフィンの付加重合体又はその水素添加物、
 (a2)環状オレフィンとα-オレフィンの付加共重合体又はその水素添加物、
 (a3)環状オレフィンの開環(共)重合体又はその水素添加物、を挙げることができる。
 また、本発明に用いられる環状オレフィン成分を共重合成分として含む(C)環状オレフィン系樹脂としては、
 (a4)上記(a1)~(a3)の樹脂に、さらに極性基を有する不飽和化合物をグラフト及び/又は共重合したもの、を含む。
 極性基としては、例えば、カルボキシル基、酸無水物基、エポキシ基、アミド基、エステル基、ヒドロキシル基等を挙げることができ、極性基を有する不飽和化合物としては、(メタ)アクリル酸、マレイン酸、無水マレイン酸、無水イタコン酸、グリシジル(メタ)アクリレート、(メタ)アクリル酸アルキル(炭素数1~10)エステル、マレイン酸アルキル(炭素数1~10)エステル、(メタ)アクリルアミド、(メタ)アクリル酸-2-ヒドロキシエチル等を挙げることができる。
 本発明においては、上記の環状オレフィン成分を共重合成分として含む環状オレフィン系樹脂(a1)~(a4)は、1種単独であっても、二種以上を混合使用してもよい。本発明においては、(a2)環状オレフィンとα-オレフィンの付加共重合体又はその水素添加物を好ましく用いることができる。
 また、本発明に用いられる環状オレフィン成分を共重合成分として含む環状オレフィン系樹脂としては、市販の樹脂を用いることも可能である。市販されている環状オレフィン系樹脂としては、例えば、TOPAS(登録商標)(TOPAS Advanced Polymer 社製)、アペル(登録商標)(三井化学社製)、ゼオネックス(登録商標)(日本ゼオン社製)、ゼオノア(登録商標)(日本ゼオン社製)、アートン(登録商標)(JSR社製)等を挙げることができる。
 本発明の組成物に好ましく用いられる(a2)環状オレフィンとα-オレフィンの付加共重合体としては、特に限定されるものではない。特に好ましい例としては、〔1〕炭素数2~20のα-オレフィン成分と、〔2〕下記一般式(I)で示される環状オレフィン成分と、を含む共重合体を挙げることができる。
Figure JPOXMLDOC01-appb-C000001
(式中、
 R~R12は、それぞれ同一でも異なっていてもよく、水素原子、ハロゲン原子、及び、炭化水素基からなる群より選ばれるものであり、
 RとR10、R11とR12は、一体化して2価の炭化水素基を形成してもよく、
 R又はR10と、R11又はR12とは、互いに環を形成していてもよい。
 また、nは、0又は正の整数を示し、
 nが2以上の場合には、R~Rは、それぞれの繰り返し単位の中で、それぞれ同一でも異なっていてもよい。)
〔〔1〕炭素数2~20のα-オレフィン成分〕
 本発明に好ましく用いられる環状オレフィン成分とエチレン等の他の共重合成分との付加重合体の共重合成分となる炭素数2~20のα-オレフィンは、特に限定されるものではない。例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-へキセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-へキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-へキセン、3-エチル-1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等を挙げることができる。また、これらのα-オレフィン成分は、1種単独でも2種以上を同時に使用してもよい。これらの中では、エチレンの単独使用が最も好ましい。
〔〔2〕一般式(I)で示される環状オレフィン成分〕
 本発明に好ましく用いられる環状オレフィン成分とエチレン等の他の共重合成分との付加重合体において、共重合成分となる一般式(I)で示される環状オレフィン成分について説明する。
 一般式(I)におけるR~R12は、それぞれ同一でも異なっていてもよく、水素原子、ハロゲン原子、及び、炭化水素基からなる群より選ばれるものである。
 R~Rの具体例としては、例えば、水素原子;フッ素、塩素、臭素等のハロゲン原子;メチル基、エチル基、プロピル基、ブチル基等の低級アルキル基等を挙げることができ、これらはそれぞれ異なっていてもよく、部分的に異なっていてもよく、また、全部が同一であってもよい。
 また、R~R12の具体例としては、例えば、水素原子;フッ素、塩素、臭素等のハロゲン原子;メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ヘキシル基、ステアリル基等のアルキル基;シクロヘキシル基等のシクロアルキル基;フェニル基、トリル基、エチルフェニル基、イソプロピルフェニル基、ナフチル基、アントリル基等の置換又は無置換の芳香族炭化水素基;ベンジル基、フェネチル基、その他アルキル基にアリール基が置換したアラルキル基等を挙げることができ、これらはそれぞれ異なっていてもよく、部分的に異なっていてもよく、また、全部が同一であってもよい。
 RとR10、又はR11とR12とが一体化して2価の炭化水素基を形成する場合の具体例としては、例えば、エチリデン基、プロピリデン基、イソプロピリデン基等のアルキリデン基等を挙げることができる。
 R又はR10と、R11又はR12とが、互いに環を形成する場合には、形成される環は単環でも多環であってもよく、架橋を有する多環であってもよく、二重結合を有する環であってもよく、またこれらの環の組み合わせからなる環であってもよい。また、これらの環はメチル基等の置換基を有していてもよい。
 一般式(I)で示される環状オレフィン成分の具体例としては、ビシクロ[2.2.1]ヘプタ-2-エン(慣用名:ノルボルネン)、5-メチル-ビシクロ[2.2.1]ヘプタ-2-エン、5,5-ジメチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-エチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-ブチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-エチリデン-ビシクロ[2.2.1]ヘプタ-2-エン、5-ヘキシル-ビシクロ[2.2.1]ヘプタ-2-エン、5-オクチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-オクタデシル-ビシクロ[2.2.1]ヘプタ-2-エン、5-メチリデン-ビシクロ[2.2.1]ヘプタ-2-エン、5-ビニル-ビシクロ[2.2.1]ヘプタ-2-エン、5-プロペニル-ビシクロ[2.2.1]ヘプタ-2-エン等の2環の環状オレフィン;
トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)、トリシクロ[4.3.0.12,5]デカ-3-エン;トリシクロ[4.4.0.12,5]ウンデカ-3,7-ジエン若しくはトリシクロ[4.4.0.12,5]ウンデカ-3,8-ジエン又はこれらの部分水素添加物(又はシクロペンタジエンとシクロヘキセンの付加物)であるトリシクロ[4.4.0.12,5]ウンデカ-3-エン;5-シクロペンチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-シクロヘキシル-ビシクロ[2.2.1]ヘプタ-2-エン、5-シクロヘキセニルビシクロ[2.2.1]ヘプタ-2-エン、5-フェニル-ビシクロ[2.2.1]ヘプタ-2-エンといった3環の環状オレフィン;
テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(単にテトラシクロドデセンともいう)、8-メチルテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-エチルテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-メチリデンテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-エチリデンテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-ビニルテトラシクロ[4,4.0.12,5.17,10]ドデカ-3-エン、8-プロペニル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エンといった4環の環状オレフィン;
8-シクロペンチル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-シクロヘキシル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-シクロヘキセニル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-フェニル-シクロペンチル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン;テトラシクロ[7.4.13,6.01,9.02,7]テトラデカ-4,9,11,13-テトラエン(1,4-メタノ-1,4,4a,9a-テトラヒドロフルオレンともいう)、テトラシクロ[8.4.14,7.01,10.03,8]ペンタデカ-5,10,12,14-テトラエン(1,4-メタノ-1,4,4a,5,10,10a-へキサヒドロアントラセンともいう);ペンタシクロ[6.6.1.13,6.02,7.09,14]-4-ヘキサデセン、ペンタシクロ[6.5.1.13,6.02,7.09,13]-4-ペンタデセン、ペンタシクロ[7.4.0.02,7.13,6.110,13]-4-ペンタデセン;ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]-5-エイコセン、ヘプタシクロ[8.7.0.12,9.03,8.14,7.012,17.113,l6]-14-エイコセン;シクロペンタジエンの4量体等の多環の環状オレフィンを挙げることができる。
 これらの環状オレフィン成分は、1種単独でも、また2種以上を組み合わせて使用してもよい。これらの中では、ビシクロ[2.2.1]ヘプタ-2-エン(慣用名:ノルボルネン)を単独使用することが好ましい。
 〔1〕炭素数2~20のα-オレフィン成分と〔2〕一般式(I)で表される環状オレフィン成分との重合方法及び得られた重合体の水素添加方法は、特に限定されるものではなく、公知の方法に従って行うことができる。ランダム共重合であっても、ブロック共重合であってもよいが、ランダム共重合であることが好ましい。
 また、用いられる重合触媒についても特に限定されるものではなく、チーグラー・ナッタ系、メタセシス系、メタロセン系触媒等の従来周知の触媒を用いて周知の方法により得ることができる。本発明に好ましく用いられる環状オレフィンとα-オレフィンの付加共重合体又はその水素添加物は、メタロセン系触媒を用いて製造されることが好ましい。
 メタセシス触媒としては、シクロオレフィンの開環重合用触媒として公知のモリブデン又はタングステン系メタセシス触媒(例えば、特開昭58-127728号公報、同58-129013号公報等に記載)が挙げられる。また、メタセシス触媒で得られる重合体は無機担体担持遷移金属触媒等を用い、主鎖の二重結合を90%以上、側鎖の芳香環中の炭素-炭素二重結合の98%以上を水素添加することが好ましい。
〔その他共重合成分〕
 本発明の組成物に特に好ましく用いられる(a2)環状オレフィンとα-オレフィンの付加共重合体は、上記の〔1〕炭素数2~20のα-オレフィン成分と、〔2〕一般式(I)で示される環状オレフィン成分以外に、本発明の目的を損なわない範囲で、必要に応じて他の共重合可能な不飽和単量体成分を含有していてもよい。
 任意に共重合されていてもよい不飽和単量体としては、特に限定されるものではないが、例えば、炭素-炭素二重結合を1分子内に2個以上含む炭化水素系単量体等を挙げることができる。炭素-炭素二重結合を1分子内に2個以上含む炭化水素系単量体の具体例としては、1,4-ヘキサジエン、1,6-オクタジエン、2-メチル-1,5-ヘキサジエン、4-メチル-1,5-ヘキサジエン、5-メチル-1,5-ヘキサジエン、6-メチル-1,5-ヘプタジエン、7-メチル-1,6-オクタジエン等の鎖状非共役ジエン;シクロヘキサジエン、ジシクロペンタジエン、メチルテトラヒドロインデン、5-ビニル-2-ノルボルネン、5-エチリデン-2-ノルボルネン、5-メチレン-2-ノルボルネン、5-イソプロピリデン-2-ノルボンネン、6-クロロメチル-5-イソプロペニル-2-ノルボルネン、4,9,5,8-ジメタノ-3a,4,4a,5,8,8a,9,9a-オクタヒドロ-1H-ベンゾインデン等の環状非共役ジエン;2,3-ジイソプロピリデン-5-ノルボルネン;2-エチリデン-3-イソプロピリデン-5-ノルボルネン;2-プロペニル-2,2-ノルボルナジエン等を挙げることができる。これらのうちでは、1,4-ヘキサジエン、1,6-オクタジエン、及び環状非共役ジエン、とりわけ、ジシクロペンタジエン、5-エチリデン-2-ノルボルネン、5-ビニル-2-ノルボルネン、5-メチレン-2-ノルボルネン、1,4-ヘキサジエン、1,6-オクタジエンが好ましい。環状オレフィン系樹脂は1種単独でも2種以上を同時に使用してもよい。これらの中では、エチレンの単独使用が最も好ましい。
 本発明の必須成分の環状オレフィン系樹脂のガラス転移点は、120℃~170℃である。120℃以上であれば、電線被覆用樹脂材料は十分な耐熱性を備えるので、加熱変形(JIS C 3005)の試験において、電線被覆用樹脂材料の厚さの減少率を40%以下に抑えることができる。170℃以下であれば、後述する難燃剤がコンパウンド時に分解することを抑制できる。好ましいガラス転移点の範囲は125℃~160℃である。上記ガラス転移点は、環状オレフィン系樹脂中の環状オレフィン成分の割合を変更することで調整することができる。
 ガラス転移点が120℃未満の環状オレフィン系樹脂でも、ガラス転移点が120℃以上の環状オレフィン系樹脂とブレンドすることにより使用することができる。その時のガラス転移点120℃未満の環状オレフィン系樹脂の配合量は特に限定されないが、環状オレフィン系樹脂のブレンド物のTgが120℃~170℃の範囲になる割合であればよい。
 環状オレフィン系樹脂は、260℃における剪断速度1216/秒のときの溶融粘度が96Pa・s以上であることが好ましい。通常、環状オレフィン系樹脂を配合すると可撓性が低下する。可撓性が低下すれば引張り伸びが低下するために好ましくないが、溶融粘度が96Pa・s以上であれば、環状オレフィン系樹脂を配合しても可撓性の低下を抑えることができるので好ましい。より好ましい溶融粘度は120Pa・s以上である。
<(D)難燃剤>
 本発明において難燃剤とは金属水和物である。金属水和物難燃剤としては、水酸化マグネシウム(Mg(OH))、水酸化アルミニウム(Al(OH))、ハイドロタルサイト、カルシウムアルミネート水和物、水酸化カルシウム、水酸化バリウム、ハードクレー等を挙げることができる。本実施の形態では、金属水和物系難燃剤として、これらの単体又は2種以上をブレンドした材料を用いる。金属水和物系難燃剤としては、難燃化効果の高い水酸化マグネシウムが最も好適である。
 上記金属水和物難燃剤は、混練時の樹脂とのなじみ性を良好にするために表面処理が施されることが好ましい。金属水和物の表面処理剤としては従来公知の表面処理剤を用いることができる。金属水和物の粒径はあまり大きすぎると、分散性が低下し、電線被覆用樹脂材料の機械的強度も低下させるため、所定の大きさに抑える必要がある。
<電線被覆用樹脂材料>
 本発明の電線被覆用樹脂材料は、(A)オレフィン系樹脂、(B)エラストマー樹脂、(C)ガラス転移点が120℃から170℃である環状オレフィン系樹脂、(D)難燃剤を含有し、上記成分を含むことで、電線に被覆する絶縁材料やシース等として、要求される一定以上の水準の物性を備える。特にエラストマー樹脂を含むことで、環状オレフィン系樹脂による可撓性の低下を補うことができる。その結果、本発明の電線被覆用樹脂材料は、良好な引張り伸びを実現することができる。
 本発明の電線被覆用樹脂材料は、引張り伸び(JIS C3005準拠)が250%以上である。引張り伸びは、上述の環状オレフィン系樹脂の溶融粘度の他に、エラストマー樹脂を配合すること等により付与することができる。より好ましい引張り伸びは300%以上であり、300%以上の引張り伸びがあれば車両電線のような電線にも使用可能になる。
 本発明においては、環状オレフィン系樹脂100質量部に対して、エラストマー樹脂を25質量部~60質量部含有することが好ましい。25質量部以上であれば、エラストマー樹脂によって、環状オレフィン系樹脂による可撓性の低下を補い、非常に良好な引張り伸びを実現することができるので好ましい。60質量部以下であれば、加熱変形の抑制が可能となり好ましい。より好ましくは30質量部~50質量部である。
 本発明の電線被覆用樹脂材料の引張り強度(JIS C3005準拠)は、10MPa以上である。より好ましい引張り強度は12MPa以上である。
 本発明の電線被覆用樹脂材料は、オレフィン系樹脂と、エラストマー樹脂と環状オレフィン系樹脂との合計量と、の質量比〔(A)/((B)+(C))〕が、80/20~60/40であることが好ましい。上記のように電線被覆用樹脂材料がオレフィン系樹脂を主体とすることが好ましいのは引張り強度等の機械的特性を本発明の電線被覆用樹脂材料に付与することができるからである。上記質量比が60/40よりオレフィン系樹脂の割合が多い場合には靭性確保の点で好ましく、80/20よりオレフィン系樹脂の割合が少ない場合には、エラストマー樹脂による引張り伸びの改善や環状オレフィン系樹脂による耐熱性(熱変形)の改善の効果も併せて顕著に現れるので好ましい。
 加熱変形(JIS C3005準拠)のJIS規格においては50%以下であるが、上述の通り、本発明では、40%以下を実現できる。したがって車両用電線にも使用することができる。
 特に、ポリプロピレンのように結晶性の高いオレフィン樹脂の場合には、120℃・30時間の条件下で加熱処理させた後、自己径巻きにより電線被覆用樹脂材料の表面に亀裂が生じやすいが、環状オレフィン系樹脂を配合することで生じにくくなる。
 本発明の電線被覆用樹脂材料を難燃性が必要な難燃ケーブルのシース等に用いることが好ましい。本発明の電線被覆用樹脂材料は、燃焼試験(JIS C3005準拠)において、着火後60秒以内で自然消化する。
 本発明の電線被覆用樹脂材料において難燃剤の含有量は、オレフィン系樹脂とエラストマー樹脂と環状オレフィン系樹脂との合計量100質量部に対して、60質量部~150質量部である。難燃剤の含有量が60質量部以上であれば上記燃焼試験を満たすような難燃性が得られるので好ましく、150質量部以下であれば電線被覆用樹脂材料の柔軟性の低下を抑えることができるので好ましい。本発明における難燃剤のより好ましい含有量は、70質量部~130質量部である。
 本発明の環状オレフィン系樹脂には、本発明の効果を失わない範囲で、必要に応じて、その他の熱可塑性樹脂、各種配合剤等を添加することができる。他の樹脂としては、例えば、他のポリオレフィン系樹脂、ポリスチレン系樹脂、フッ素樹脂等が例示される。これらの他の樹脂は単独で又は2種以上組み合わせてもよい。また、本発明の電線被覆用樹脂材料には、必要に応じて難燃助剤、酸化防止剤、滑剤、界面活性剤、軟化剤、可塑剤、無機充填剤、相溶化剤、安定剤、架橋剤、紫外線吸収剤、光安定剤、着色剤等の添加物を加えることができる。また、本発明の電線被覆用樹脂材料が導体である銅等の金属と接触する場合、耐重金属安定剤を添加することが好ましい。耐重金属安定剤としては、サリチル酸誘導体(例えば、商品名ADKSTAB CDA6)、ヒドラジド誘導体(例えば、商品名Irganox MD1024)、シュウ酸アミド誘導体(例えば、商品名Naugard XL-1)、イオウ含有ホスファイト化合物(例えば、商品名HostanoxOSP-1)等が例示されるが、同軸ケーブルの特性を損なわないものであれば耐重金属安定剤の種類は特に限定されない。耐重金属安定剤の添加量も特に限定されないが、通常は樹脂成分に対して0.3質量%以下の添加量が好ましく用いられる。添加方法については特に限定されないが、環状オレフィン系樹脂、ポリエチレン樹脂、他の添加樹脂等にあらかじめ添加するとさらに好ましい。
 本発明の電線被覆用樹脂材料の製造方法は、従来公知の方法が利用できる。例えば、各種ミキサーでのドライブレンドを行うことも可能であり、バンバリーミキサー、単軸スクリュー押出機、2軸スクリュー押出機、ニーダ、多軸スクリュー押出機、ロール等の一般的な混和機を用いた溶融混練方法,各成分を溶解又は分散混合後,溶剤を加熱除去する方法等が用いられる。本発明においては押出機による溶融混合法が生産性、良混練性の点から好ましい。得られる電線被覆用樹脂材料の形状に特に制限はないが、チューブ状、ペレット状、シート状、ストランド状、チップ状等を挙げることができる。また、溶融混練後、導体等に対して押出被覆することで直接成形品とすることもできる。
 本発明の電線被覆用樹脂材料の製造においては、あらかじめ、エラストマー樹脂と環状オレフィン系樹脂とをブレンドしてペレットを作製し、原料として用いることが好ましい。あらかじめ混練しておくと伸びと加熱変形のバランスを確保する上で、処方の調整範囲が広がるので好ましい。
 本発明の電線被覆用樹脂材料は、例えば後述するような電線を被覆するために用いられる。本発明の電線被覆用樹脂材料は、良好な機械的強度や耐熱性等を備えるため導体に直接被覆する絶縁層や、絶縁層を被覆した一本の電線又は複数本の電線束の外側を被覆するシースとして好ましく使用することができる。
<電線>
 電線とは、銅等の導体を芯線として芯線の周囲を絶縁材料により被覆して短絡を防止したものであり、芯線に電流を流すことにより、主に電力及び情報を伝達する線状素材である。芯線は一本であってもよいし複数本あってもよい。具体的には、例えば、通信ケーブル絶縁素線や一般固定電線、船用線、車両用電線等の電力ケーブル、カメラ用ケーブル、医療用ケーブル等が挙げられる。
 本発明の電線の製造方法は、従来公知の方法を用いることが出来る。即ち、通常の押出成形ラインを用い、単線又は多線の銅芯線等の導体に本発明の電線被覆用樹脂材料を押出して得ることが出来る。
<難燃ケーブル>
 発電所、製鉄・石油化学等の大型プラントあるいはビル、地下街等においてはケーブル防災の必要が高まっており、特に最近では火災時の安全性の観点から難燃ケーブルが使用されている。
 難燃ケーブルは、導体に絶縁材料が被覆され、さらにその外周に難燃性のシースを被覆したものをいう。また、導体に絶縁材料が被覆された電線を束ねた電線束をシースで被覆したものも含む。さらに、本発明の難燃ケーブルには、導体に他の層(例えば耐火層)を介して絶縁材料が被覆されていてもよく、被覆された絶縁材料の周囲に介在を介してシースが被覆されていてもよい。なお、難燃ケーブルの説明に用いる「電線」には本発明の電線以外の一般的な電線全てを含む。
 本発明の電線被覆用樹脂材料において、導体に被覆する絶縁材料、電線等を被覆するシースとして用いることができる。
 本発明の難燃ケーブル製造方法は、特に限定されず従来公知の方法で製造することができる。例えば、絶縁層を被覆した電線を、必要に応じて複数本を束ねて電線束とするか、又は一本の電線として、その外周にシースを押出被覆することにより、難燃ケーブルを得ることができる。
 以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例により限定されるものではない。
<材料>
[ベース樹脂]
ポリエチレン(PE):日本ユニカー社製NUCポリエチレン-LL NUCG-5225
エチレン-酢酸ビニル共重合体(EVA):三井デュポンケミカル社製エバフレックスEV270
エチレン-エチルアクリレート共重合体(EEA):日本ユニカー社製エチレンエチルアクリレートコポリマー DPDJ-6169BK
ポリプロピレン(PP):プライムポリマー社製プライムポリプロJ-750HP
無水マレイン酸変性EVA(MAH-EVA):三井デュポンケミカル社製HPR VR103
[環状オレフィン系樹脂]
TOPAS:TOPAS Advanced Polymer 社製の5種の環状オレフィン樹脂を用いた。これらのTOPASのガラス転移点(Tg)と溶融粘度(MV)を表1に示す。本発明で使用する環状オレフィン樹脂のガラス転移点(Tg)は、JIS K7121記載の方法によって昇温速度10℃/分の条件で測定した値を採用する。また、本発明で使用する環状オレフィン樹脂の溶融粘度は260℃、剪断速度1216/秒における値を採用する。
ZEONOR:日本ゼオン社製ZEONOR1420Rを用いた。ガラス転移点(Tg)と溶融粘度(MV)を表1に示す。
Figure JPOXMLDOC01-appb-T000002
[エラストマー]
オレフィン系エラストマー:デュポンダウエラストマー社製Engage ENR7380
スチレン系エラストマー:Kraton社製Kraton D1184
[難燃剤;金属水和物]
水酸化マグネシウム:協和化学社製 キスマ5A
水酸化アルミニウム:昭和電工社製 ハイジライトH-42M
<電線被覆用樹脂材料の作製>
 表2から5に示す割合でエラストマー樹脂を環状オレフィン系樹脂に配合して、2軸押出磯により260℃から280℃の設定温度範囲で溶融混練をして、環状オレフィン系樹脂/エラストマー樹脂ブレンド物のペレットをあらかじめ作製した。次いで、そのブレンド物、ベース樹脂、難燃剤を表2から5に示す割合に配合して、2軸押出機により180℃から200℃設定温度範囲で溶融混練を行い、ペレット状の電線被覆用樹脂材料を作製した。この溶融混練の際に、ダイから吐出直後の溶融樹脂温度を測定した結果、比較例6の場合を除き、全ての実施例と比較例で溶融樹脂温度は215℃以下であった。比較例6の溶融樹脂温慶は230℃から240℃の範囲であった。
<電線の作製>
 上述のペレット状被覆材料を、ワイヤーコーティングダイを有する径20mmスクリューの単軸押出機に投入して、180℃の設定温度で被覆材料を溶融押出して、あらかじめ80℃に予熱した0.9mm径の導体(銅線)をワイヤーコーティングダイに導入して引き取りながら、厚さ0.3mmの絶緑被覆層を導体に押出被覆して電線を作製した。得られた電線絶縁層の配合と特性を表2から表4に示す。
<難燃ケーブルの作製>
 上述の電線3本とジュート介在を束ねて、PET押巻テープを巻いてケーブルコアを作製した。このケーブルコア上に単軸押出機を用いて、実施例17から20に対応する被覆材料を、コーティングダイを通して、シース厚さ1mmになる様に180℃で被覆して難燃ケーブルを作製した。得られたシースの配合と特性を表5に示す。
<評価>
[加熱変形試験]
 加熱変形試験はJIS-C3005に準拠して温度120℃、荷重2kgで行った。絶縁被覆層及びシース層の熱変形が40%以下のものを合格とした。
[燃焼試験]
 JIS C3005に準拠して60°傾斜燃焼試験を行った。着火後、60秒以内で自然に消火したものを合格とした。60秒を越えて燃焼するものを不合格とした。
[引張り試験]
 電線の絶録被覆層についてJIS C3005に準拠して引張り試験を行った。電線の導体を抜き取って、絶縁層のチューブを室温で引張り速度200mm/minで行い、引っ張り強度と伸びを測定した。シースについても、電線と介在テープをとり除いて、同様に行った。引張り伸びが250%以上を合格に、引張り強度が10MPa以上を合格とした。
[老化試験]
 電線とシース被覆ケープルを120℃36時間の条件下で加熱処理させた後、自己径巻きにより絶縁被覆層あるいはシースの表面に亀製を生じないものを合格とした。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表2から分かるように、比較例1~4では加熱変形試験に合格するものはなかった。一方、実施例1~5では全て加熱変形試験に合格している。このことから、絶縁層は、環状オレフィン系樹脂を含有することで耐熱性が向上し加熱変形を抑制することが確認された。また、実施例1~5の中でも特に実施例3、5が優れている。このことから、極性基を有するオレフィン系樹脂の中でも特にエチレンアクリル酸エチル共重合体が好ましいこと、絶縁層が酸変性樹脂を含むことが好ましいことが確認された。
 表3から分かるように、比較例5~6と実施例から環状オレフィン系樹脂のガラス転移点が120℃~170℃の範囲にあることで、引張り伸び等の機械的特性と加熱変形しづらい等の耐熱性を両立することが確認された。比較例7と実施例7から環状オレフィン系樹脂の溶融粘度が96Pa・s以上であれば、引張り伸び等の機械的特性が向上することが確認された。実施例8から、本発明に用いる環状オレフィン系樹脂にガラス転移点の低い環状オレフィン系樹脂を少量含有させることで、引張り伸び等の機械的強度の優れた絶縁層になることが確認された。
 表4からわかるように、比較例8と実施例13から、難燃剤の含有量が少ないと加熱変形しやすくなり、加熱変形試験に合格しないことが確認された。また、実施例13からエラストマー樹脂の含有量が多ければ、引張り伸び等の機械的特性に優れた絶縁層になることが確認された。実施例14から難燃剤の含有量が多いと引張り伸び等の機械的特性が低下する傾向にあることが確認された。
 表5の実施例15から実施例18に示すように、加熱変形率、引張り特性、難燃性、耐老化性の全てに合格していることから、優れたシースになることが確認された。

Claims (8)

  1.  (A)オレフィン系樹脂と、
     (B)エラストマー樹脂と、
     (C)ガラス転移点が120℃から170℃である環状オレフィン系樹脂と、
     (D)難燃剤と、を含有し、
     前記(D)成分の含有量が、前記(A)成分、前記(B)成分、及び前記(C)成分の合計量100質量部に対して、60質量部から150質量部であり、
     引張り伸び(JIS C3005準拠)が250%以上であり、
     加熱変形(JIS C3005準拠)が40%以下である電線被覆用樹脂材料。
  2.  前記(A)成分が極性基を有するオレフィン系樹脂を含む請求項1に記載の電線被覆用樹脂材料。
  3.  前記(A)成分と、前記(B)成分と前記(C)成分との合計量と、の質量比〔(A)/((B)+(C))〕が、80/20から60/40である請求項1又は2に記載の電線被覆用樹脂材料。
  4.  前記(C)成分100質量部に対して、前記(B)成分を25質量部から60質量部含有する請求項1から3のいずれかに記載の電線被覆用樹脂材料。
  5.  前記(B)成分がオレフィン系工ラストマー又はスチレン系エラストマーである請求項1から4のいずれかに記載の電線被覆用樹脂材料。
  6.  前記(C)成分は、260℃における剪断速度1216/秒のときの溶融粘度が96Pa・s以上である請求項1から5のいずれかに記載の電線被覆用樹脂材料。
  7.  請求項1から6のいずれかに記載の電線被覆用樹脂材料が、導体上に被覆された電線。
  8.  請求項1から6のいずれかに記載の電線被覆用樹脂材料を成形してなり、
     1本の電線又は複数本の電線を束ねた電線束の外周を被覆するシースを備える難燃ケーブル。
PCT/JP2009/052501 2008-02-22 2009-02-16 電線被覆用樹脂材料、当該電線被覆用樹脂材料を用いた電線、及び難燃ケーブル WO2009104539A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980105584.6A CN101946289B (zh) 2008-02-22 2009-02-16 电线包覆用树脂材料、使用该电线包覆用树脂材料的电线以及阻燃电缆
EP09711978.8A EP2254128B1 (en) 2008-02-22 2009-02-16 Resin material for coating electric wire, electric wire produced by using the resin material for coating electric wire, and flame-retardant cable
US12/918,386 US8822603B2 (en) 2008-02-22 2009-02-16 Resinous material for covering electric wire, electric wire manufactured by using the resinous material for covering electric wire, and flame-retardant cable

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008041542A JP5345793B2 (ja) 2008-02-22 2008-02-22 電線被覆用樹脂材料、当該電線被覆用樹脂材料を用いた電線、及び難燃ケーブル
JP2008-041542 2008-02-22

Publications (1)

Publication Number Publication Date
WO2009104539A1 true WO2009104539A1 (ja) 2009-08-27

Family

ID=40985420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052501 WO2009104539A1 (ja) 2008-02-22 2009-02-16 電線被覆用樹脂材料、当該電線被覆用樹脂材料を用いた電線、及び難燃ケーブル

Country Status (7)

Country Link
US (1) US8822603B2 (ja)
EP (1) EP2254128B1 (ja)
JP (1) JP5345793B2 (ja)
KR (1) KR101175316B1 (ja)
CN (1) CN101946289B (ja)
TW (1) TW200943326A (ja)
WO (1) WO2009104539A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102184757A (zh) * 2010-12-24 2011-09-14 江苏远洋东泽电缆股份有限公司 舰船水下声纳换能器电缆及制造方法
EP2544196A1 (en) * 2010-03-05 2013-01-09 Yazaki Corporation Flame-retardant resin composition for aluminum electric wire, and aluminum electric wire using same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI413133B (zh) * 2010-12-30 2013-10-21 Hong Tai Electric Ind Co Ltd 電動車電源纜線之包覆層及電動車電源纜線
KR101938006B1 (ko) * 2012-02-16 2019-01-11 엘에스전선 주식회사 유연성, 내마모성 및 난연성이 우수한 전선용 수지 조성물
BR112014031090A2 (pt) * 2012-06-22 2017-06-27 Basf Se composição compreendendo pelo menos um poliuretano termoplástico, pelo menos um hidróxido de metal e pelo menos um retardante de chama contendo fósforo e uso da composição.
JP2014070173A (ja) * 2012-09-28 2014-04-21 Sekisui Plastics Co Ltd ポリスチレン系樹脂フィルム、積層発泡シート、及び、発泡樹脂製容器
CN106832876B (zh) * 2016-12-21 2019-10-18 柳州市昌泉贸易有限公司 一种耐油阻燃电缆料的制备方法
JP2018110077A (ja) * 2017-01-04 2018-07-12 株式会社フジクラ インク付きケーブル及びインク付き成形品
JP7059598B2 (ja) * 2017-12-04 2022-04-26 日立金属株式会社 被覆材料、ケーブル、及びケーブルの製造方法
JP2019179684A (ja) * 2018-03-30 2019-10-17 古河電気工業株式会社 絶縁電線、コイル及び電気機器
KR102234147B1 (ko) 2018-12-28 2021-03-31 엘에스전선 주식회사 케이블 시스용 수지 조성물 및 이를 포함하는 전선
KR102624490B1 (ko) * 2019-11-28 2024-01-16 넥쌍 니트릴 고무 및 에틸렌 메틸 아크릴레이트 공중합체를 포함하는 중합체 조성물로부터 획득된 가교된 층을 포함하는 케이블

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127728A (ja) 1982-01-20 1983-07-29 ザ・ビ−・エフ・グツドリツチ・カンパニ− 開環重合によるポリマ−の製造方法
JPS58129013A (ja) 1982-01-25 1983-08-01 帝人メトン株式会社 架橋したジシクロペンタジエンポリマーからなる成形物の製造方法
JPH05112678A (ja) * 1991-10-18 1993-05-07 Idemitsu Kosan Co Ltd 難燃性樹脂組成物及び該組成物を被覆してなる電線
JPH11189743A (ja) 1997-12-26 1999-07-13 Nippon Zeon Co Ltd 環状オレフィン系樹脂電線被覆材料
JP2001135146A (ja) * 1999-10-29 2001-05-18 Kanegafuchi Chem Ind Co Ltd 電線用難燃性被覆組成物及び電線、ケーブル
JP2006176680A (ja) * 2004-12-22 2006-07-06 Fujikura Ltd 耐熱性難燃性樹脂組成物及び絶縁電線
WO2006123530A1 (ja) * 2005-05-20 2006-11-23 Sun Allomer Ltd. 難燃性熱可塑性樹脂組成物、その成形品および電線

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR8303436A (pt) * 1982-07-01 1984-02-07 Du Pont Processo para preparar uma composicao termoplastica,elastomerica pelicula auto-suportada,artefato moldado;perfil extrudado,tubo poliester,poliamida,poliamida ou fibra metalica ou tecido revestido por extrusao com uma composicao
US5763533A (en) * 1996-12-10 1998-06-09 Exxon Chemical Patents Inc. Electrical devices including ethylene, α-olefin, vinyl norbornene elastomers and ethylene α-olefin polymers
US5952427A (en) * 1996-12-10 1999-09-14 Exxon Chemical Patents Inc. Electrical devices including ethylene, α-olefin, vinyl norbornene elastomers and ethylene α-olefin polymers
JPH1121413A (ja) * 1997-07-02 1999-01-26 Kanegafuchi Chem Ind Co Ltd シクロオレフィン系共重合体樹脂組成物及びその製造方法
US6524702B1 (en) 1999-08-12 2003-02-25 Dow Global Technologies Inc. Electrical devices having polymeric members

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127728A (ja) 1982-01-20 1983-07-29 ザ・ビ−・エフ・グツドリツチ・カンパニ− 開環重合によるポリマ−の製造方法
JPS58129013A (ja) 1982-01-25 1983-08-01 帝人メトン株式会社 架橋したジシクロペンタジエンポリマーからなる成形物の製造方法
JPH05112678A (ja) * 1991-10-18 1993-05-07 Idemitsu Kosan Co Ltd 難燃性樹脂組成物及び該組成物を被覆してなる電線
JPH11189743A (ja) 1997-12-26 1999-07-13 Nippon Zeon Co Ltd 環状オレフィン系樹脂電線被覆材料
JP2001135146A (ja) * 1999-10-29 2001-05-18 Kanegafuchi Chem Ind Co Ltd 電線用難燃性被覆組成物及び電線、ケーブル
JP2006176680A (ja) * 2004-12-22 2006-07-06 Fujikura Ltd 耐熱性難燃性樹脂組成物及び絶縁電線
WO2006123530A1 (ja) * 2005-05-20 2006-11-23 Sun Allomer Ltd. 難燃性熱可塑性樹脂組成物、その成形品および電線

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2254128A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2544196A1 (en) * 2010-03-05 2013-01-09 Yazaki Corporation Flame-retardant resin composition for aluminum electric wire, and aluminum electric wire using same
EP2544196A4 (en) * 2010-03-05 2014-08-13 Yazaki Corp FIRE-RESISTANT RESIN COMPOSITION FOR AN ALUMINUM ELECTRO-WIRE AND ALUMINUM ELECTRO-WIRE THEREWITH
US9406413B2 (en) 2010-03-05 2016-08-02 Yazaki Corporation Flame-retardant resin composition for aluminum electric wire and aluminum electric wire using same
CN102184757A (zh) * 2010-12-24 2011-09-14 江苏远洋东泽电缆股份有限公司 舰船水下声纳换能器电缆及制造方法

Also Published As

Publication number Publication date
EP2254128A4 (en) 2011-08-31
KR20100121645A (ko) 2010-11-18
EP2254128B1 (en) 2013-07-03
TW200943326A (en) 2009-10-16
US8822603B2 (en) 2014-09-02
KR101175316B1 (ko) 2012-08-21
JP5345793B2 (ja) 2013-11-20
US20100326698A1 (en) 2010-12-30
CN101946289A (zh) 2011-01-12
JP2009199932A (ja) 2009-09-03
CN101946289B (zh) 2012-07-18
EP2254128A1 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
JP5345793B2 (ja) 電線被覆用樹脂材料、当該電線被覆用樹脂材料を用いた電線、及び難燃ケーブル
EP2720234B1 (en) Process for producing electrical wire molded body
TWI409322B (zh) 無鹵素難燃性樹脂組成物及使用它之電線/電纜
JP2009019190A (ja) ノンハロゲン難燃樹脂組成物及びノンハロゲン難燃電線・ケーブル
EP1695997B1 (en) Power or communications cable with flame retardant polymer layer
KR101817632B1 (ko) 폴리(아릴렌 에테르)-폴리올레핀 조성물 및 와이어 및 케이블 절연 및 피복을 위한 그것의 이용
US10083776B2 (en) Heat-resistant silane crosslinked resin molded body and method of producing the same, heat-resistant silane crosslinkable resin composition and method of producing the same, silane master batch, and heat-resistant product using heat-resistant silane crosslinked resin molded body
US10438718B2 (en) Heat-resistant silane crosslinked resin molded body and method of producing the same, heat-resistant silane crosslinkable resin composition and method of producing the same, silane master batch, and heat-resistant product using heat-resistant silane crosslinked resin molded body
EP2199335B1 (en) Flame retardant composition with improved mechanical properties
JPWO2015002263A1 (ja) 耐熱性シラン架橋樹脂成形体及びその製造方法、並びに、耐熱性シラン架橋樹脂成形体を用いた耐熱性製品
JP2018154679A (ja) 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
JP5588660B2 (ja) 難燃性樹脂組成物
WO2010050250A1 (ja) ハロゲンフリー難燃絶縁電線
JP2008097918A (ja) 端末加工性に優れたノンハロゲン難燃電線
EP1956609B1 (en) Cable with improved flame retardancy
JP5848871B2 (ja) 耐熱ノンハロゲンアルミニウム電線
JPH11312418A (ja) 絶縁電線
JP2004189792A (ja) オレフィン系樹脂組成物およびそれにより被覆された電線
JP2003160709A (ja) ノンハロゲン難燃性樹脂組成物
WO2023089826A1 (ja) 樹脂組成物、樹脂被覆材、絶縁電線、自動車用ワイヤーハーネス及び自動車用ワイヤーハーネスに用いる絶縁電線の製造方法
JPH11345525A (ja) 絶縁電線
JP2006063269A (ja) 難燃性組成物
JP2002030189A (ja) 難燃性樹脂組成物並びに該難燃性樹脂組成物にて被覆された電線及びケーブル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980105584.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09711978

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12918386

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107020071

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009711978

Country of ref document: EP