WO2010050250A1 - ハロゲンフリー難燃絶縁電線 - Google Patents

ハロゲンフリー難燃絶縁電線 Download PDF

Info

Publication number
WO2010050250A1
WO2010050250A1 PCT/JP2009/054477 JP2009054477W WO2010050250A1 WO 2010050250 A1 WO2010050250 A1 WO 2010050250A1 JP 2009054477 W JP2009054477 W JP 2009054477W WO 2010050250 A1 WO2010050250 A1 WO 2010050250A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
insulating layer
resin
mass
halogen
Prior art date
Application number
PCT/JP2009/054477
Other languages
English (en)
French (fr)
Inventor
裕平 真山
森内 清晃
早味 宏
裕之 大川
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN2009800004118A priority Critical patent/CN101836267B/zh
Publication of WO2010050250A1 publication Critical patent/WO2010050250A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/04Flexible cables, conductors, or cords, e.g. trailing cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame

Definitions

  • the present invention relates to a halogen-free flame-retardant insulated wire used for wiring in electronic equipment such as a liquid crystal television, a copying machine, and a computer.
  • a light source (backlight) is usually installed behind the liquid crystal panel, and transmitted light from the light source is used for display.
  • a cold cathode tube or the like is used as a light source of the backlight, and a high frequency, high voltage current generated by a lighting circuit (boost circuit) is supplied to the cold cathode tube. Since the frequency and voltage of the power supplied to the cold cathode tubes are increasing, it is necessary to reduce the leakage current in the insulated wires used to supply the above high frequency and high voltage currents to the cold cathode tubes. Therefore, reduction of the dielectric constant of the insulating layer is required.
  • Patent Document 1 discloses an insulating layer comprising a flame retardant resin composition containing ultra-low density polyethylene polymerized with a single-site type metallocene catalyst, a halogen-based flame retardant, and zinc white.
  • the dielectric constant of the flame retardant resin composition used for the insulating layer is as low as less than 3.3, and the leakage current of high frequency / high voltage current can be reduced even if the thickness of the insulating layer is reduced.
  • a halogen-free insulated wire that does not contain a halogen element is required. This is because if the insulated wire contains a halogen element, a toxic gas such as hydrogen chloride may be generated when the insulated wire after use is incinerated.
  • Patent Document 2 discloses an insulated wire that uses, as an insulating layer, a flame retardant resin composition in which magnesium hydroxide is blended with ethylene-vinyl acetate copolymer (EVA) as a flame retardant.
  • EVA ethylene-vinyl acetate copolymer
  • the present invention provides a halogen-free flame-retardant insulated electric wire that can reduce leakage current at high frequency and high voltage, satisfy the required characteristics of flame retardancy and flexibility, and help reduce environmental load. This is the issue.
  • the present invention relates to a halogen-free flame-retardant insulated electric wire having a conductor, a first insulating layer covering the conductor, and a second insulating layer covering the first insulating layer, the first insulating layer comprising a polyester resin 100 parts by mass of a resin component containing 20-50 parts by mass, 20-50 parts by mass of a polyphenylene ether resin, and 30-60 parts by mass of a styrene elastomer: polyolefin resin ratio of 0: 100-100: 0 5 to 70 parts by mass of a nitrogen-based flame retardant and a dielectric constant of 3.2 or less, and the second insulating layer is made of metal with respect to 100 parts by mass of the resin component.
  • a halogen-free flame-retardant insulated electric wire comprising the second resin composition containing 150 to 250 parts by mass of hydroxide (claim 1).
  • the first resin composition having a dielectric constant of 3.2 or less is used for the first insulating layer in contact with the conductor.
  • the first resin composition has a certain degree of flame retardancy due to the synergistic effect of polyphenylene ether, nitrogen-based flame retardant, and polyester resin.
  • the second resin composition containing a certain proportion of a metal hydroxide having a high flame retardant effect is used with emphasis on flame retardancy.
  • the dielectric constant of the second resin composition is increased, the leakage current can be reduced by reducing the dielectric constant of the inner layer.
  • the first resin composition used as the first insulating layer covering the conductor is a mixture of three components: polyester resin, polyphenylene ether resin, and styrene elastomer / polyolefin resin component.
  • a resin composition containing a polyphenylene ether resin and a styrene elastomer / polyolefin resin component has an elastic modulus and a hard polyphenylene ether resin at normal temperature as an island, and a styrene elastomer / polyolefin resin component as a sea that has a large elongation and is soft. Presumed to be a polymer alloy with a sea-island structure.
  • a polyester resin is further added thereto, a three-component polymer alloy is obtained.
  • the polyester resin is a crystalline resin, and can maintain an appropriate elastic modulus and maintain flexibility and extensibility even at a temperature higher than the glass transition temperature. Moreover, if the compatibility with a styrene-type elastomer is comparatively high and it can disperse
  • the mixing ratio of styrene elastomer and polyolefin resin can be set arbitrarily.
  • Styrenic elastomers may be used alone, or polyolefin resins may be used alone.
  • the crosslinking efficiency of the resin composition can be increased, and the heat resistance can be improved.
  • a styrene elastomer having a functional group is contained as a part of the styrene elastomer (Claim 2).
  • Styrenic elastomers with functional groups act as compatibilizers.
  • the polyester resin and the styrene elastomer or polyolefin resin are mixed well, and the tensile elongation property is improved.
  • the first resin composition further contains 0.1 to 10 parts by mass of trimethylolpropane trimethacrylate with respect to 100 parts by mass of the resin component.
  • Trimethylolpropane trimethacrylate is a crosslinking aid.
  • a crosslinking aid By further containing a crosslinking aid, a plasticizing effect of the resin is obtained, and the extrusion processability is improved.
  • the crosslinking efficiency at the time of irradiation of ionizing radiation increases.
  • trimethylolpropane trimethacrylate has good compatibility with the resin and can be easily mixed.
  • the load deflection temperature of the polyphenylene ether resin is preferably 95 ° C. or higher (Claim 4).
  • a polyphenylene ether resin having a deflection temperature under load of 95 ° C. or higher an insulating layer having high mechanical strength can be obtained.
  • the nitrogen-based flame retardant is preferably melamine cyanurate (Claim 5).
  • melamine cyanurate By using melamine cyanurate as a nitrogen-based flame retardant, thermal stability during mixing is improved, and flame retardancy is also improved.
  • the outer diameter of the conductor is 0.1 mm to 1 mm, and the total thickness of the first insulating layer and the second insulating layer is 0.1 mm to 1 mm. Preferred (claim 6).
  • Such a small-diameter halogen-free flame-retardant insulated wire can be wired in a narrow space.
  • the first insulating layer and the second insulating layer are preferably cross-linked by irradiation with ionizing radiation (Claim 7). Since the insulating layer is cross-linked, heat resistance and mechanical strength are improved.
  • a halogen-free flame-retardant insulated wire that can reduce leakage current at high frequency and high voltage, satisfy the required characteristics of flame retardancy and flexibility, and help reduce environmental load.
  • Polyphenylene ether is an engineering plastic obtained by oxidative polymerization of 2,6-xylenol synthesized from methanol and phenol.
  • various materials are commercially available as modified polyphenylene ether resins in which polystyrene is blended with polyphenylene ether.
  • the polyphenylene ether resin used in the present invention any of the above-mentioned polyphenylene ether resin alone and a polyphenylene ether resin obtained by melt blending polystyrene can be used.
  • transduced carboxylic acid, such as maleic anhydride, can also be blended suitably and used.
  • the deflection temperature under load changes depending on the blend ratio of polystyrene.
  • a resin with a deflection temperature under load of 95 ° C. or higher is used, the tensile properties of the electric wire coating are improved and the thermal deformation properties are also improved. Is preferable because it is excellent.
  • the deflection temperature under load is a value measured at a load of 1.80 MPa by the method of ISO75-1,2.
  • Polyphenylene ether resin not blended with polystyrene can also be used as the polyphenylene ether resin.
  • the resin pressure during extrusion can be reduced while maintaining the mechanical strength.
  • the intrinsic viscosity of the polyphenylene ether resin is preferably from 0.1 to 0.6 dl / g, and more preferably from 0.3 to 0.5 dl / g.
  • Styrene elastomers used in the present invention include styrene / ethylene butene / styrene copolymer, styrene / ethylene propylene / styrene copolymer, styrene / ethylene / ethylene propylene / styrene copolymer, styrene / butylene / styrene copolymer.
  • Examples thereof include hydrogenated polymers and partially hydrogenated polymers.
  • transduced carboxylic acid, such as maleic anhydride can also be blended suitably and used.
  • block copolymer elastomer of styrene and a rubber component is preferable from the viewpoints of improving extrudability, improving tensile elongation at break, and improving impact resistance.
  • block copolymers triblock copolymers such as hydrogenated styrene / butylene / styrene block copolymers and styrene / isobutylene / styrene copolymers, styrene / ethylene copolymers, and styrene / ethylene propylene copolymers are used.
  • a diblock copolymer such as a polymer can be used, and when the triblock component in the styrene elastomer is contained in an amount of 50% by weight or more, it is preferable because the strength and hardness of the electric wire coating is improved.
  • those having a styrene content of 20% by weight or more contained in the styrene elastomer can be suitably used from the viewpoint of mechanical properties and flame retardancy.
  • the styrene content is less than 20% by weight, the hardness and extrusion processability are lowered.
  • the styrene content exceeds 50% by weight, the tensile elongation at break decreases, which is not preferable.
  • the melt flow rate (abbreviated as “MFR”; measured at 230 ° C. ⁇ 2.16 kgf according to JIS K 7210) serving as an index of molecular weight is preferably in the range of 0.8 to 15 g / 10 min. This is because if the melt flow rate is smaller than 0.8 g / 10 min, the extrudability is lowered, and if it exceeds 15 g / 10 min, the mechanical strength is lowered.
  • polystyrene resin examples include polyethylene, ultra-low density polyethylene, polypropylene, ethylene vinyl acetate copolymer, ethylene binary or ternary copolymer, and the above-mentioned polymer graft resin, olefin A thermoplastic elastomer etc. can be illustrated.
  • ultra-low density polyethylene and ethylene vinyl acetate copolymer are preferable because of their excellent flexibility.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PBT resin has a melting point close to the glass transition temperature of polyphenylene ether and has good extrudability. It also has excellent flame retardancy.
  • the polyester resin, polyphenylene ether resin, and styrene elastomer / polyolefin resin component can be melt-mixed at an arbitrary ratio.
  • the polyester resin is the total resin component. 20 to 50 parts by mass, 30 to 60 parts by mass of the styrene elastomer / polyolefin resin component, and 20 to 50 parts by mass of the polyphenylene ether resin.
  • the content of the polyphenylene ether-based resin exceeds 50 parts by mass, the extrusion processability is deteriorated, and when it is less than 20 parts by mass, the mechanical strength and flame retardancy are deteriorated.
  • the content of the polyester resin exceeds 50 parts by mass, the extrudability is lowered, and when it is less than 20 parts by mass, the mechanical strength and flame retardancy are lowered.
  • a more preferable content of the polyester resin is 25 to 40 parts by mass.
  • a styrene elastomer having a functional group when contained as a part of the styrene elastomer, the adhesion between the polyester resin and the styrene elastomer can be improved and the high temperature characteristics can be improved.
  • the functional group include an epoxy group, an oxazoline group, an acid anhydride group, and a carboxyl group, which can be appropriately selected according to the type of resin.
  • the content of the styrenic elastomer having a functional group is preferably 1 to 20 parts by mass with respect to 100 parts by mass of the resin component, and more preferably 1 to 10 parts by mass.
  • various resins can be mixed within a range not impairing the gist of the present invention.
  • nitrogen-based flame retardant used in the present invention examples include melamine resin and melamine cyanurate.
  • Nitrogen-based flame retardants do not generate toxic gases such as hydrogen halide even when incinerated after use, and can reduce the environmental burden.
  • melamine cyanurate is used as a nitrogen-based flame retardant, it is preferable in terms of heat stability at the time of mixing and an effect of improving flame retardancy.
  • Melamine cyanurate can also be used after surface treatment with a silane coupling agent or a titanate coupling agent.
  • the content of the nitrogen-based flame retardant is 5 to 70 parts by mass with respect to 100 parts by mass of the resin composition. This is because if the amount is less than 5 parts by mass, the flame resistance of the insulated wire is insufficient, and if it exceeds 70 parts by mass, the elongation and extrusion processability are deteriorated.
  • the content of nitrogen-based flame retardant is more preferably 10 to 40 parts by mass.
  • a crosslinking aid can be added to the first resin composition.
  • a polyfunctional monomer having a plurality of carbon-carbon double bonds in the molecule such as trimethylolpropane trimethacrylate (TMPTMA), triallyl cyanurate, triallyl isocyanurate and the like can be preferably used.
  • TMPTMA trimethylolpropane trimethacrylate
  • a crosslinking adjuvant is a liquid at normal temperature. This is because it is easy to mix with a polyphenylene ether-based resin, a styrene-based elastomer, or a polyolefin resin when it is liquid.
  • a phosphorus-based flame retardant may be added.
  • the phosphorus-based flame retardant include phosphate esters.
  • polyolefin resins such as polyethylene and polypropylene, ethylene vinyl acetate copolymer, ethylene methyl acrylate copolymer
  • Arbitrary resin such as ethylene alpha olefin copolymer, such as a polymer, an ethylene ethyl acrylate copolymer, an ethylene methyl methacrylate copolymer
  • an ethylene vinyl acetate copolymer can be preferably used from the viewpoints of extrudability and flexibility when a resin composition is used.
  • metal hydroxides used as flame retardants include aluminum hydroxide, magnesium hydroxide, calcium hydroxide and the like.
  • magnesium hydroxide having a particle size in the range of 0.1 to 3 ⁇ m is preferable from the viewpoint of extrusion processability.
  • the content of the metal hydroxide is 150 to 250 parts by mass with respect to 100 parts by mass of the resin component. This is because if the amount is less than 150 parts by mass, the flame retardancy of the insulated wire is insufficient, and if the amount exceeds 250 parts by mass, the elongation and extrusion processability are deteriorated. A more preferred range is 150 to 200 parts by mass.
  • the first resin composition and the second resin composition include an antioxidant, an anti-aging agent, a lubricant, a processing stabilizer, a colorant, a heavy metal deactivator, a foaming agent, and a polyfunctional monomer as necessary.
  • Etc. can be mixed as appropriate. These materials are mixed using a known melt mixer such as a short-shaft extrusion mixer, a pressure kneader, or a Banbury mixer to produce a resin composition.
  • the conductor is coated with the first insulating layer made of the first resin composition, and the second insulating layer made of the second resin composition is applied to the first insulating layer. It is coated.
  • a known extruder can be used to form the first insulating layer and the second insulating layer. In order to simplify the manufacturing process, it is preferable that the first insulating layer and the second insulating layer are simultaneously coated by extrusion.
  • the conductor copper wire, aluminum wire, etc. having excellent conductivity can be used.
  • the diameter of the conductor can be appropriately selected according to the intended use, but is preferably 1 mm or less in order to enable wiring in a narrow space. In consideration of ease of handling, the thickness is preferably 0.1 mm or more.
  • the thickness of the first insulating layer and the second insulating layer can be appropriately selected according to the conductor diameter, but the total thickness of the entire insulating coating layer including the first insulating layer and the second insulating layer is 0.1 mm. It is preferable to be ⁇ 1 mm. The thinner the insulating coating layer, the better the flexibility. However, if the insulating coating layer is too thin, flame retardancy cannot be ensured.
  • the insulated wire of the present invention is excellent in that it can ensure flame retardancy that passes the VW-1 flame retardancy test even if the thickness of the entire insulating layer is reduced.
  • the first insulating layer and the second insulating layer are cross-linked by irradiation with ionizing radiation from the viewpoint of improving the mechanical strength.
  • ionizing radiation sources include accelerating electron beams, gamma rays, X-rays, ⁇ rays, ultraviolet rays, and the like. Lines are most preferably available.
  • the extrusion conditions were a conductor preheating of 60 ° C., the cylinder and die temperatures were set to 190 to 200 ° C., and the line linear velocity was 25 m / min.
  • Each insulated wire was irradiated with an accelerating electron beam so that the irradiation amount was 120 kGray.
  • the insulated wire was evaluated for each of the unirradiated and irradiated ones.
  • the dielectric constant ( ⁇ ) of the insulation coating of the insulated wire sample was measured by the following method. First, as shown in FIG. 1, in the state where the insulated wire 1 is immersed in the water 3 together with the metal plate 2, the impedance analyzer 4 (4276A LCZ meter made by Yokogawa Hured Packard) is used and the frequency is 1 kHz. Capacitance and tanD were measured. The measured capacitance value was divided by the immersion length L (m) of the insulation coating in water to obtain the capacitance C (pF / m) per 1 m of the insulation coating length. And according to the following formula, the dielectric constant ( ⁇ ) of the insulating coating was calculated.
  • d1 is a conductor outer diameter
  • d2 is an insulation outer diameter.
  • C ⁇ log (d2 / d1) /24.12
  • Oxazoline group-containing polymer EPOCROS registered trademark
  • RPS1005 (* 12) MC6000 manufactured by Nissan Chemical Industries, Ltd.
  • Irganox1010 manufactured by Ciba Specialty Chemicals Co., Ltd.
  • Sripax O manufactured by Nippon Kasei Co., Ltd.
  • ADK STAB CDA-1 manufactured by Asahi Denka Kogyo Co., Ltd.
  • the resin composition 1 used as the inner layer in Examples 1 to 14 had a low dielectric constant of 3.0 or less regardless of the formulation, and exhibited good electrical characteristics. All samples also passed the VW-1 combustion test for flame retardancy. Furthermore, since the tensile elongation is large and the elongation residual ratio after heat aging is large, the flexibility is also good. Moreover, the inner layer and the outer layer can be simultaneously extruded, and the productivity is excellent.
  • Examples of utilization of the present invention include wire harnesses for internal wiring of electronic devices such as liquid crystal televisions, mobile phones, digital cameras, and personal computers.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Insulated Conductors (AREA)
  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 高周波、高電圧での漏れ電流を低減できると共に難燃性、柔軟性の要求特性を満たし、かつ環境負荷の低減に役立つハロゲンフリー難燃絶縁電線を提供する。  上記電線は、導体、該導体を被覆する第1絶縁層、及び該第1絶縁層を被覆する第2絶縁層を有するハロゲンフリー難燃絶縁電線であって、前記第1絶縁層は、ポリエステル樹脂20~50質量部、ポリフェニレンエーテル系樹脂20~50質量部、及びスチレン系エラストマー:ポリオレフィン樹脂の比率が0:100~100:0である成分30~60質量部を含有する樹脂成分100質量部に対して窒素系難燃剤を5~70質量部含有し、誘電率が3.2以下である第1の樹脂組成物からなり、前記第2絶縁層は、樹脂成分100質量部に対して金属水酸化物を150~250質量部含有する第2の樹脂組成物からなることを特徴とする。

Description

ハロゲンフリー難燃絶縁電線
 本発明は、液晶テレビ、複写機、コンピュータ等の電子機器内配線に使用されるハロゲンフリー難燃絶縁電線に関する。
 液晶テレビ、携帯電話、デジタルカメラ、パーソナルコンピュータ等の液晶パネルでは、通常、液晶パネルの後方に光源(バックライト)を設置して、その光源からの透過光を表示に利用している。バックライトの光源には冷陰極管等が使用されており、点灯回路(昇圧回路)で発生させた高周波数、高電圧の電流を冷陰極管に供給している。冷陰極管への供給電力の高周波数化、高電圧化が進んでいるため、冷陰極管に上記の高周波数、高電圧電流を供給するために用いる絶縁電線では漏れ電流の低減が必要であり、絶縁層の誘電率の低減が求められている。
 一方、液晶パネルの薄型化に伴って配線スペースが狭くなり、上記の絶縁電線には細径化と柔軟性が求められている。他方、電子機器の機内配線に使用する絶縁電線や絶縁ケーブルなどの電線には、一般に、UL(Underwriters Laboratories inc.)規格に適合する諸特性を有することが求められている。UL規格には、製品が満たすべき難燃性、加熱変形性、低温特性、被覆材料の初期と熱老化後の引張特性などの諸特性について詳細に規定されている。これらの中でも、難燃性については、VW-1試験と称される垂直燃焼試験に合格する必要があり、UL規格の中で最も厳しい要求項目の1つとなっている。
 このような用途に用いる絶縁電線として、特許文献1には、シングルサイト型メタロセン触媒で重合された超低密度ポリエチレン、ハロゲン系難燃剤、及び亜鉛華を含有する難燃性樹脂組成物を絶縁層として用いた絶縁電線が開示されている。絶縁層に用いる難燃性樹脂組成物の誘電率は3.3未満と低く、絶縁層の厚みを薄くしても高周波・高電圧電流の漏れ電流を低減できる。
 一方、環境負荷の低減に対する要求に応えるために、ハロゲン元素を含まないハロゲンフリーの絶縁電線が求められている。絶縁電線にハロゲン元素が含まれると、使用後の絶縁電線を焼却処理する際に塩化水素等の有毒ガスが発生する可能性があるからである。
 一般に、ハロゲンフリー電線の被覆材料としては、ポリプロピレン等のポリオレフィン系樹脂に水酸化マグネシウムや水酸化アルミニウムなどの金属水酸化物を配合して難燃化した樹脂組成物が使用されている。例えば、特許文献2には、エチレン-酢酸ビニル共重合体(EVA)に、難燃剤として水酸化マグネシウムを配合した難燃性樹脂組成物を絶縁層として使用する絶縁電線が開示されている。しかし、垂直燃焼試験VW-1に合格させるためには、ポリオレフィン系樹脂中に多量の金属水酸化物を配合する必要がある。その結果、絶縁層の誘電率が高くなり、高周波、高電圧用途では漏れ電流が多くなる。また柔軟性が低下するという問題もある。
特許第3279206号公報 特開2000-219814号公報
 上記のように、ノンハロゲン難燃剤として金属水酸化物を用いた難燃性樹脂組成物では、難燃性を満たすために金属水酸化物の配合量を増やすと誘電率が高くなり漏れ電流が多くなる。一方、誘電率を下げるために金属水酸化物の配合量を減らすと、難燃性を満たすことができない。
 これらの事情に鑑み、本発明は、高周波、高電圧での漏れ電流を低減できると共に難燃性、柔軟性の要求特性を満たし、かつ環境負荷の低減に役立つハロゲンフリー難燃絶縁電線を提供することを課題とする。
 本発明は、導体、該導体を被覆する第1絶縁層、及び該第1絶縁層を被覆する第2絶縁層を有するハロゲンフリー難燃絶縁電線であって、前記第1絶縁層は、ポリエステル樹脂20~50質量部、ポリフェニレンエーテル系樹脂20~50質量部、及びスチレン系エラストマー:ポリオレフィン樹脂の比率が0:100~100:0である成分30~60質量部、を含有する樹脂成分100質量部に対して窒素系難燃剤を5~70質量部含有し、誘電率が3.2以下である第1の樹脂組成物からなり、前記第2絶縁層は、樹脂成分100質量部に対して金属水酸化物を150~250質量部含有する第2の樹脂組成物からなることを特徴とする、ハロゲンフリー難燃絶縁電線である(請求項1)。
 漏れ電流の低減のためには絶縁層の誘電率を低くすることが必要であるが、導体に接する内層部分に低誘電率材料を用いることが漏れ電流の低減に効果的であることを見いだした。そのため、導体と接する第1絶縁層には誘電率が3.2以下である第1の樹脂組成物を用いる。また第1の樹脂組成物は、ポリフェニレンエーテルと窒素系難燃剤、ポリエステル樹脂の相乗効果によってある程度の難燃性がある。
 一方、外側の第2絶縁層には、難燃性を重視して、難燃効果の高い金属水酸化物を一定の割合で含有する第2の樹脂組成物を用いる。第2の樹脂組成物の誘電率は高くなるが、内層の誘電率を低くしていることで漏れ電流を低減できる。このような構成とすることで、高周波、高電圧での漏れ電流の低減と難燃性を両立できる。
 導体を被覆する第1絶縁層として用いる第1の樹脂組成物は、ポリエステル樹脂、ポリフェニレンエーテル系樹脂、スチレン系エラストマー/ポリオレフィン樹脂成分、の3成分を混合している。ポリフェニレンエーテル系樹脂とスチレン系エラストマー/ポリオレフィン樹脂成分を含有する樹脂組成物は、常温において弾性率が高く硬いポリフェニレンエーテル系樹脂を島に、伸びが大きく柔らかいスチレン系エラストマー/ポリオレフィン樹脂成分を海とする海島構造を持つポリマーアロイであると推定される。ここにポリエステル樹脂を更に添加すると3成分のポリマーアロイとなる。ポリエステル樹脂は結晶性樹脂であり、ガラス転移温度以上の温度であっても適度な弾性率を保ち、柔軟性、伸張性を保持することができる。また、スチレン系エラストマーとの相溶性が比較的高く、スチレン系エラストマー中に均一に分散させることができれば全体として引張強さや引張強度が発現する。このような樹脂成分に窒素系難燃剤を含有させることで、柔軟性を発現できると共に誘電率が低く、かつある程度の難燃性を持たせることができる。
 なおスチレン系エラストマーとポリオレフィン樹脂の混合比率は任意に設定できる。スチレン系エラストマーを単独で使用しても良いし、ポリオレフィン樹脂を単独で使用しても良い。ポリオレフィン樹脂を混合することで、樹脂組成物の架橋効率を高めることができ、耐熱性を向上することができる。
 前記スチレン系エラストマーの一部として、官能基を持つスチレン系エラストマーを含有すると好ましい(請求項2)。官能基を持つスチレン系エラストマーは相溶化剤として働く。相溶化剤を加えることにより、ポリエステル樹脂とスチレン系エラストマー、又はポリオレフィン樹脂とが良好に混合し、引張伸び特性が向上する。
 第1の樹脂組成物が、さらにトリメチロールプロパントリメタクリレートを、樹脂成分100質量部に対して0.1~10質量部含有すると好ましい(請求項3)。トリメチロールプロパントリメタクリレートは架橋助剤である。架橋助剤を更に含有することで樹脂の可塑化効果が得られ、押出加工性が向上する。また電離放射線の照射時の架橋効率が高まる。さらにトリメチロールプロパントリメタクリレートは樹脂との相溶性が良好であり、容易に混合できる。
 前記ポリフェニレンエーテル系樹脂の荷重たわみ温度は95℃以上であることが好ましい(請求項4)。荷重たわみ温度が95℃以上のポリフェニレンエーテル系樹脂を用いることで、機械強度の大きい絶縁層が得られる。
 前記窒素系難燃剤がメラミンシアヌレートであると好ましい(請求項5)。窒素系難燃剤としてメラミンシアヌレートを使用することにより混合時の熱安定性が向上し、また難燃性も向上する。
 また本発明のハロゲンフリー難燃絶縁電線は、前記導体の外径が0.1mm~1mmであり、前記第1絶縁層と前記第2絶縁層の厚みの合計が0.1mm~1mmであると好ましい(請求項6)。このような細径のハロゲンフリー難燃絶縁電線は、狭いスペースへの配線が可能である。
 また前記第1絶縁層及び前記第2絶縁層は、電離放射線の照射により架橋されていると好ましい(請求項7)。絶縁層が架橋されていることで、耐熱性や機械的強度が向上する。
 本発明によれば、高周波、高電圧での漏れ電流を低減できると共に難燃性、柔軟性の要求特性を満たし、かつ環境負荷の低減に役立つハロゲンフリー難燃絶縁電線を提供することができる。
絶縁電線の比誘電率を測定する方法を説明する図である。
符号の説明
 1  絶縁電線
 2  金属板
 3  水
 4  インピーダンスアナライザ
 L  絶縁被覆の水中への浸漬長
 ポリフェニレンエーテルは、メタノールとフェノールを原料として合成される2,6-キシレノールを酸化重合させて得られるエンジニアリングプラスチックである。またポリフェニレンエーテルの成形加工性を向上させるため、ポリフェニレンエーテルにポリスチレンを溶融ブレンドした材料が変性ポリフェニレンエーテル樹脂として各種市販されている。本発明に用いるポリフェニレンエーテル系樹脂としては、上記のポリフェニレンエーテル樹脂単体、及びポリスチレンを溶融ブレンドしたポリフェニレンエーテル樹脂のいずれも使用することができる。また無水マレイン酸等のカルボン酸を導入したものを適宜ブレンドして使用することもできる。
 このようなポリフェニレンエーテル系樹脂においては、ポリスチレンのブレンド比率に応じて加重たわみ温度が変化するが、荷重たわみ温度が95℃以上のものを使用すると電線被膜の引張特性が向上し、また熱変形特性が優れるため好ましい。なお荷重たわみ温度はISO75-1、2の方法により、荷重1.80MPaで測定した値とする。
 ポリフェニレンエーテル系樹脂としてポリスチレンをブレンドしていないポリフェニレンエーテル樹脂も使用できる。この場合、低粘度のポリフェニレンエーテル樹脂を使用すると、機械的強度を保持しつつ押出加工時の樹脂圧を低減することができる。ポリフェニレンエーテル系樹脂の固有粘度としては0.1~0.6dl/gが好ましく、更に好ましい範囲は0.3~0.5dl/gである。
 本発明に使用するスチレン系エラストマーとしては、スチレン・エチレンブテン・スチレン共重合体、スチレン・エチレンプロピレン・スチレン共重合体、スチレン・エチレン・エチレンプロピレン・スチレン共重合体、スチレン・ブチレン・スチレン共重合体等が挙げられ、これらの水素添加ポリマーや部分水素添加ポリマーを例示できる。また無水マレイン酸等のカルボン酸を導入したものを適宜ブレンドして使用することもできる。
 この中でも、スチレンとゴム成分のブロック共重合エラストマーを使用すると、押出加工性が向上することに加え、引張破断伸びが向上し、また耐衝撃性が向上するなどの点で好ましい。またブロック共重合体として、水素化スチレン・ブチレン・スチレンブロック共重合体やスチレン・イソブチレン・スチレン系共重合体等のトリブロック型共重合体、及びスチレン・エチレン共重合体、スチレン・エチレンプロピレン共重合体等のジブロック型共重合体を使用することができ、スチレン系エラストマー中トリブロック成分が50重量%以上含まれていると、電線被膜の強度及び硬度が向上するため好ましい。
 またスチレン系エラストマー中に含まれるスチレン含有量が20重量%以上のものが機械特性、難燃性の点から好適に使用できる。スチレン含有量が20重量%より少ないと硬度や押出加工性が低下する。またスチレン含有量が50重量%を超えると引張破断伸びが低下するため好ましくない。
 更に、分子量の指標となるメルトフローレート(「MFR」と略記;JIS K 7210に従って、230℃×2.16kgfで測定)が0.8~15g/10minの範囲であることが好ましい。メルトフローレートが0.8g/10minより小さいと押出加工性が低下し、また15g/10minを超えると機械強度が低下するからである。
 本発明に使用するポリオレフィン樹脂としては、ポリエチレン、超低密度ポリエチレン、ポリプロピレン、エチレン酢酸ビニル共重合体、エチレンの2元系又は3元系共重合体、並びに上記のポリマーのグラフト系樹脂、オレフィン系熱可塑性エラストマー等が例示できる。これらの中でも、超低密度ポリチレンやエチレン酢酸ビニル共重合体は、柔軟性に優れていることから好ましい。
 ポリエステル樹脂としては、PET(ポリエチレンテレフタレート)樹脂やPBT(ポリブチレンテレフタレート)樹脂等が使用できる。特にPBT樹脂は融点がポリフェニレンエーテルのガラス転移温度に近く、押出加工性が良い。また難燃性にも優れている。
 ポリエステル樹脂、ポリフェニレンエーテル系樹脂、及びスチレン系エラストマー/ポリオレフィン樹脂成分は任意の比率で溶融混合することが可能であるが、押出加工性や電線の柔軟性の点から、ポリエステル樹脂は樹脂成分全体の20~50質量部、スチレン系エラストマー/ポリオレフィン樹脂成分は30~60質量部、ポリフェニレンエーテル系樹脂は20~50質量部とする。ポリフェニレンエーテル系樹脂の含有量が50質量部を超えると押出加工性が低下し、また20質量部より少ないと機械的強度や難燃性が低下する。同様に、ポリエステル樹脂の含有量が50質量部を超えると押出加工性が低下し、20質量部より少ないと機械的強度や難燃性が低下する。ポリエステル樹脂のさらに好ましい含有量は、25質量部~40質量部である。
 さらに、スチレン系エラストマーの一部として、官能基を持つスチレン系エラストマーを含有するとポリエステル樹脂とスチレン系エラストマーの密着力が向上して高温特性を向上することができる。官能基としてはエポキシ基、オキサゾリン基、酸無水物基、カルボキシル基等が例示され、樹脂の種類に合わせて適宜選択できる。官能基を持つスチレン系エラストマーの含有量は樹脂成分100質量部に対して1~20質量部が好ましく、さらに好ましい範囲は1~10質量部である。
 さらに樹脂成分としては、本発明の趣旨を損なわない範囲で各種樹脂を混合することが可能である。
 本発明に使用する窒素系難燃剤としては、メラミン樹脂、メラミンシアヌレート等を例示できる。窒素系難燃剤は使用後に焼却処理してもハロゲン化水素等の有毒ガスが発生せず、環境負荷の低減を図ることができる。窒素系難燃剤としてメラミンシアヌレートを使用すると混合時の熱安定性や難燃性向上効果の面で好ましい。メラミンシアヌレートは、シランカップリング剤やチタネート系カップリング剤で表面処理して使用することも可能である。
 前記窒素系難燃剤の含有量は、樹脂組成物100質量部に対して5~70質量部とする。5質量部を下回ると絶縁電線の難燃性が不充分であり、また70質量部を超えると伸びや押出加工性が低下するからである。窒素系難燃剤の含有量は10~40質量部がさらに好ましい。
 さらに、第1の樹脂組成物には架橋助剤を添加することができる。架橋助剤としてはトリメチロールプロパントリメタクリレート(TMPTMA)やトリアリルシアヌレート、トリアリルイソシアヌレート等の分子内に複数の炭素-炭素二重結合を持つ多官能性モノマーが好ましく使用できる。また架橋助剤は常温で液体であることが好ましい。液体であるとポリフェニレンエーテル系樹脂やスチレン系エラストマー、ポリオレフィン樹脂との混合がしやすいからである。特に架橋助剤としてトリメチロールプロパントリメタクリレートを使用すると、樹脂への相溶性が向上し、好ましい。また難燃性を向上するために、リン系難燃剤を添加しても良い。リン系難燃剤としてはリン酸エステルが例示される。
 第2の樹脂組成物に使用する樹脂成分としては、上記の第1の樹脂組成物に用いる樹脂の他、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、及び、エチレン酢酸ビニル共重合体、エチレンメチルアクリレート共重合体、エチレンエチルアクリレート共重合体、エチレンメチルメタクリレート共重合体等のエチレンαオレフィン共重合体等、任意の樹脂を使用することができる。特にエチレン酢酸ビニル共重合体は、樹脂組成物とした場合の押出性と柔軟性の観点から好ましく使用できる。
 難燃剤として使用する金属水酸化物としては、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム等を例示できる。この中でも押出加工性の観点から、粒子径が0.1~3μmの範囲にある水酸化マグネシウムが好ましい。
 金属水酸化物の含有量は、樹脂成分100質量部に対して150~250質量部とする。150質量部を下回ると絶縁電線の難燃性が不充分であり、また250質量部を超えると伸びや押出加工性が低下するからである。さらに好ましい範囲は150質量部~200質量部である。
 第1の樹脂組成物及び第2の樹脂組成物には、必要に応じて酸化防止剤、老化防止剤、滑剤、加工安定剤、着色剤、重金属不活性化剤、発泡剤、多官能性モノマー等を適宜混合することができる。これらの材料を短軸押出型混合機、加圧ニーダー、バンバリーミキサー等の既知の溶融混合機を用いて混合して樹脂組成物を作製する。
 本発明のハロゲンフリー難燃絶縁電線は、上記第1の樹脂組成物からなる第1絶縁層を導体に被覆し、上記第2の樹脂組成物からなる第2絶縁層を該第1絶縁層に被覆したものである。第1絶縁層及び第2絶縁層を形成するには、既知の押出成形機を用いることができる。製造工程を簡略化するためには、第1絶縁層と第2絶縁層を同時に押出被覆することが好ましい。
 導体としては、導電性に優れる銅線、アルミ線などが使用できる。導体の径は使用用途に応じて適宜選択できるが、狭いスペースへの配線を可能とするためには1mm以下とすることが好ましい。また取り扱いの容易さを考慮すると0.1mm以上とすることが好ましい。
 第1絶縁層及び第2絶縁層の厚みは、導体径に応じて適宜選択することができるが、第1絶縁層と第2絶縁層を合わせた絶縁被覆層全体の厚みの合計を0.1mm~1mmとすることが好ましい。絶縁被覆層の厚みは薄い方が柔軟性に優れるが、薄くしすぎると難燃性を確保できない。本発明の絶縁電線は、絶縁層全体の厚みを薄くしてもVW-1難燃性試験に合格する難燃性を確保できる点で優れている。
 更に第1絶縁層及び第2絶縁層が電離放射線の照射により架橋されていると、機械的強度が向上する点で好ましい。電離放射線源としては、加速電子線やガンマ線、X線、α線、紫外線等が例示できるが、線源利用の簡便さや電離放射線の透過厚み、架橋処理の速度など工業的利用の観点から加速電子線が最も好ましく利用できる。
 次に発明を実施するための最良の形態を実施例により説明する。実施例は本発明の範囲を限定するものではない。
 [実施例1~14]
 (樹脂組成物1の作製)
 表1に示す配合処方で各成分を溶融混合した。二軸混合機(26mmφ、L/D=48)を使用し、シリンダー温度230℃、スクリュー回転数200~400rpmで溶融混合し、ストランド状に溶融押出し、次いで、溶融ストランドを冷却切断してペレットを作製した。
 (樹脂組成物2の作製)
 表2に示す配合処方で各成分を混合した。直径12インチのオープンロール機を使用し、130~160℃で混合した後、帯出しした試料をペレタイザを用いてペレット化した。
 (絶縁電線の作製)
 30mmφ押出機と25mmφ押出機を使用し、30mmφ押出機で内層材料、25mmφ押出機で外層材料を同時に押出被覆し、絶縁電線を製造した。導体には19本縒りの錫めっき銅線(外径0.64mm)を用いた。樹脂組成物1からなる第1の絶縁層(内層)の厚みは0.38mm、樹脂組成物2からなる第2の絶縁層(外層)の厚みは0.10mmとした。押出条件は、導体予熱60℃とし、シリンダーおよびダイスの温度は190~200℃に設定し、ライン線速25m/minとした。また各絶縁電線には、照射量が120kGrayになるように加速電子線を照射した。絶縁電線の評価は、未照射のもの、照射したものそれぞれで行った。
 (被覆層の評価:引張特性)
 作製した電線から導体を抜き取り、被覆層の引張試験を行った。試験条件は引張速度=500mm/分、標線間距離=25mm、温度=23℃とし、引張強さと引張破断伸びを各3点の試料で測定し、それらの平均値を求めた。引張強さが10.3MPa以上かつ引張破断伸び150%以上のものを「合格」と判定した。
 (被覆層の評価:セカンドモジュラス)
 上記引張試験と同様のサンプルを用いて、引張速度=50mm/分、標線間距離=25mm、温度=23℃で引張試験を行った後、応力-伸び曲線から伸びが2%となる点の弾性率を計算した。なお、セカンドモジュラスの評価は、非照射の絶縁電線のみで行った。
 (被覆層の評価:誘電率、tanD)
 絶縁電線試料の、絶縁被覆の誘電率(ε)は下記の方法で測定した。まず、図1に示すように絶縁電線1を金属板2と共に水3に浸漬した状態で、インピーダンスアナライザ4(横河ヒューレッドパッカード製の4276A LCZメータ)を用いて、周波数1kHzの条件で、その静電容量及びtanDを測定した。静電容量の実測値を絶縁被覆の水中への浸漬長L(m)で除して、絶縁被覆の長さ1mあたりの静電容量C(pF/m)を求めた。そして下記式にしたがって、絶縁被覆の誘電率(ε)を算出した。ここで、d1は導体外径、d2は絶縁外径である。
 ε=C×log(d2/d1)/24.12
 (被覆層の評価:伸び残率、引張強さ残率)
 電子線を照射した絶縁電線を表1に示す条件で熱処理した後、導体を抜き取り、被覆層の引張試験を行った。測定条件は上記の引張試験と同じである。オリジナルの数値を100として、伸び残率、引張強さ残率を求めた。
 (絶縁電線の評価:難燃性試験)
 UL Standard1581、1080項に記載のVW-1垂直難燃試験に5点の試料を提供し、そのうちいくつ合格するかを判定した。その判定基準は、各試料に15秒着火を5回繰り返した場合に、60秒以内に消火し、下部に敷いた脱脂綿が燃焼落下物によって類焼せず、試料の上部に取り付けたクラフト紙が燃えたり、焦げたりしないものを合格とした。なお、難燃性試験は、照射した絶縁電線のみで行った。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
(脚注)
(*1) ウインテックポリマー(株)製 ジュラネックス800FP 融点224℃
(*2) ウインテックポリマー(株)製 ジュラネックス600LP 融点170℃
(*3) 三菱エンジニアリングプラスチック(株)製 ガラス転移温度215℃のポリフェニレンエーテル
(*4) 軟化点210℃、荷重たわみ温度125℃のポリスチレン変性ポリフェニレンエーテル
(*5) 軟化点210℃、荷重たわみ温度95℃のポリスチレン変性ポリフェニレンエーテル
(*6) スチレン・エチレン・ブチレン・スチレン共重合体,スチレン含量30wt%、メルトフローレート3.5g/10min(200℃×5kg)
(*7) 酢酸ビニル量25%のエチレン酢酸ビニル共重合体
(*8) 密度0.87、メルトフローレート0.5g/10min(190℃×2.16kg)の超低密度ポリエチレン
(*9) マレイン酸変性スチレン・エチレン・ブチレン・スチレン共重合体、スチレン含量30wt%、メルトフローレート4.0g/10min(200℃×5kg)
(*10) ダイセル化学工業(株)製 エポフレンド(登録商標)AT501
(*11) 株式会社日本触媒製 オキサゾリン基含有ポリマー エポクロス(登録商標)RPS1005
(*12) 日産化学工業(株)製 MC6000
(*13) チバスペシャリティケミカルズ(株)製Irganox1010
(*14) 日本化成(株)製 スリパックスO
(*15) 旭電化工業(株)製 アデカスタブCDA-1
(*16) 酢酸ビニル量70%のエチレン酢酸ビニル共重合体
(*17) 酢酸ビニル量32%のエチレン酢酸ビニル共重合体
(*18) 平均粒径0.7μm、ステアリン酸表面処理
(*19) 日本軽金属(株)社製、FlamtardH
(*20) 白石カルシウム(株)社製、バーゲス#30
(*21) 白石カルシウム(株)社製、白艶華CCR(ステアリン酸処理)
(*22) 日本化成(株)製、スリパックスE
 実施例1~14で内層として使用した樹脂組成物1は、どの配合でも誘電率が3.0以下と低く、良好な電気特性を示した。また難燃性も全てのサンプルでVW-1燃焼試験に合格となった。さらに引張伸びが大きく、また熱老化後の伸び残率も大きいことから、柔軟性も良好である。また内層、外層の同時押出が可能であり、生産性にも優れている。
 本発明の活用例としては、液晶テレビ、携帯電話、デジタルカメラ、パーソナルコンピュータ等の電子機器の内部配線のワイヤーハーネスが挙げられる。

Claims (7)

  1.  導体、該導体を被覆する第1絶縁層、及び該第1絶縁層を被覆する第2絶縁層を有するハロゲンフリー難燃絶縁電線であって、
    前記第1絶縁層は、
    ポリエステル樹脂20~50質量部、ポリフェニレンエーテル系樹脂20~50質量部、及び、スチレン系エラストマー:ポリオレフィン樹脂の比率が0:100~100:0である成分30~60質量部を含有する樹脂成分100質量部に対して窒素系難燃剤を5~70質量部含有し、
    誘電率が3.2以下である第1の樹脂組成物からなり、
    前記第2絶縁層は、
    樹脂成分100質量部に対して金属水酸化物を150~250質量部含有する第2の樹脂組成物からなることを特徴とする、
    ハロゲンフリー難燃絶縁電線。
  2.  前記スチレン系エラストマーの一部として、官能基を持つスチレン系エラストマーを含有することを特徴とする請求項1に記載のハロゲンフリー難燃絶縁電線。
  3.  前記第1の樹脂組成物が、さらにトリメチロールプロパントリメタクリレートを、樹脂成分100質量部に対して0.1~10質量部含有する、請求項1又は2に記載のハロゲンフリー難燃絶縁電線。
  4.  前記ポリフェニレンエーテル系樹脂の荷重たわみ温度が95℃以上であることを特徴とする請求項1~3のいずれか1項に記載のハロゲンフリー難燃絶縁電線。
  5.  前記窒素系難燃剤がメラミンシアヌレートであることを特徴とする請求項1~4のいずれか1項に記載のハロゲンフリー難燃絶縁電線。
  6.  前記導体の外径が0.1mm~1mmであり、
    前記第1絶縁層と前記第2絶縁層の厚みの合計が0.1mm~1mmである、
    請求項1~5のいずれか1項に記載のハロゲンフリー難燃絶縁電線。
  7.  前記第1絶縁層及び前記第2絶縁層が電離放射線の照射により架橋されていることを特徴とする、請求項1~6のいずれか1項に記載のハロゲンフリー難燃絶縁電線。
PCT/JP2009/054477 2008-10-28 2009-03-10 ハロゲンフリー難燃絶縁電線 WO2010050250A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009800004118A CN101836267B (zh) 2008-10-28 2009-03-10 无卤素阻燃绝缘电线

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008276728A JP5182580B2 (ja) 2008-10-28 2008-10-28 ハロゲンフリー難燃絶縁電線
JP2008-276728 2008-10-28

Publications (1)

Publication Number Publication Date
WO2010050250A1 true WO2010050250A1 (ja) 2010-05-06

Family

ID=42128620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054477 WO2010050250A1 (ja) 2008-10-28 2009-03-10 ハロゲンフリー難燃絶縁電線

Country Status (6)

Country Link
JP (1) JP5182580B2 (ja)
KR (2) KR101118391B1 (ja)
CN (1) CN101836267B (ja)
MY (1) MY154593A (ja)
TW (1) TWI432512B (ja)
WO (1) WO2010050250A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113773631A (zh) * 2021-08-11 2021-12-10 江苏泰祥电线电缆有限公司 一种耐极寒电线电缆用辐照交联聚烯烃绝缘组合物及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5387944B2 (ja) * 2008-11-12 2014-01-15 住友電気工業株式会社 ハロゲンフリー難燃絶縁電線
JP2013149425A (ja) * 2012-01-18 2013-08-01 Sumitomo Electric Ind Ltd ハロゲンフリー難燃絶縁電線
JP2013245334A (ja) * 2012-05-29 2013-12-09 Hitachi Cable Ltd 難燃性架橋樹脂組成物及びこれを用いた電線・ケーブル
JP5742821B2 (ja) * 2012-11-20 2015-07-01 日立金属株式会社 ノンハロゲン多層絶縁電線
CN104091625A (zh) * 2014-06-17 2014-10-08 宁国新博能电子有限公司 一种电子元器件引线
CN104277448A (zh) * 2014-10-31 2015-01-14 上海梓辰实业有限公司 一种用于空调压缩机外罩的聚苯醚树脂合金材料
CN112927854B (zh) * 2017-10-25 2022-11-25 住友电气工业株式会社 信号传输缆线

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329013A (ja) * 2006-06-08 2007-12-20 Fujikura Ltd 難燃性絶縁電線及びワイヤーハーネス
JP2008027592A (ja) * 2006-07-18 2008-02-07 Auto Network Gijutsu Kenkyusho:Kk 絶縁電線およびワイヤーハーネス
JP2008169234A (ja) * 2007-01-09 2008-07-24 Sumitomo Electric Ind Ltd ノンハロゲン難燃性樹脂組成物およびそれを用いた電線・ケーブル
JP2009054388A (ja) * 2007-08-25 2009-03-12 Furukawa Electric Co Ltd:The 耐候性に優れた絶縁電線

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143540A (ja) * 1999-11-11 2001-05-25 Fujikura Ltd 難燃性電線・ケーブル
JP2003226798A (ja) * 2002-02-06 2003-08-12 Sumitomo Wiring Syst Ltd 耐摩耗性耐熱難燃樹脂組成物およびそれにより被覆された電線
JP3912531B2 (ja) * 2003-02-20 2007-05-09 住友電気工業株式会社 被覆光ファイバ心線
JP2007197619A (ja) * 2006-01-30 2007-08-09 Sumitomo Electric Ind Ltd ノンハロゲン難燃性樹脂組成物およびそれを用いた電線・ケーブル

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329013A (ja) * 2006-06-08 2007-12-20 Fujikura Ltd 難燃性絶縁電線及びワイヤーハーネス
JP2008027592A (ja) * 2006-07-18 2008-02-07 Auto Network Gijutsu Kenkyusho:Kk 絶縁電線およびワイヤーハーネス
JP2008169234A (ja) * 2007-01-09 2008-07-24 Sumitomo Electric Ind Ltd ノンハロゲン難燃性樹脂組成物およびそれを用いた電線・ケーブル
JP2009054388A (ja) * 2007-08-25 2009-03-12 Furukawa Electric Co Ltd:The 耐候性に優れた絶縁電線

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113773631A (zh) * 2021-08-11 2021-12-10 江苏泰祥电线电缆有限公司 一种耐极寒电线电缆用辐照交联聚烯烃绝缘组合物及其制备方法

Also Published As

Publication number Publication date
MY154593A (en) 2015-06-30
KR20120005054A (ko) 2012-01-13
KR101118391B1 (ko) 2012-03-09
TWI432512B (zh) 2014-04-01
CN101836267B (zh) 2012-02-29
TW201016783A (en) 2010-05-01
JP5182580B2 (ja) 2013-04-17
CN101836267A (zh) 2010-09-15
JP2010108627A (ja) 2010-05-13
KR20100058417A (ko) 2010-06-03

Similar Documents

Publication Publication Date Title
JP5387944B2 (ja) ハロゲンフリー難燃絶縁電線
JP5481770B2 (ja) ノンハロゲン難燃性樹脂組成物およびそれを用いた電線・ケーブル
JP5182580B2 (ja) ハロゲンフリー難燃絶縁電線
CN102762650B (zh) 电线包覆构件用组合物、绝缘电线和线束
JP5870477B2 (ja) 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
JP4940568B2 (ja) ノンハロゲン難燃性電線・ケーブル
KR101601286B1 (ko) 고난연 전자 기기 전선용 고분자 조성물과 이를 이용한 전선
JP4255368B2 (ja) 架橋型難燃性樹脂組成物ならびにこれを用いた絶縁電線およびワイヤーハーネス
WO2012124589A1 (ja) ノンハロゲン難燃性樹脂組成物並びにこれを用いた絶縁電線及びチューブ
WO2006057120A1 (ja) ノンハロゲン電線、電線束及び自動車用ワイヤーハーネス
JP2010095638A (ja) ノンハロゲン難燃性樹脂組成物及びノンハロゲン難燃電線
JP2007197619A (ja) ノンハロゲン難燃性樹脂組成物およびそれを用いた電線・ケーブル
JP2000219814A (ja) 難燃性樹脂組成物とそれの絶縁電線、チュ―ブ、熱収縮チュ―ブ、フラットケ―ブル及び直流用高圧電線
WO2013140692A1 (ja) ノンハロゲン難燃性樹脂組成物およびそれを用いた電線・ケーブル
JP2013149425A (ja) ハロゲンフリー難燃絶縁電線
JP5079412B2 (ja) 難燃性樹脂組成物、それが含まれた電線被膜材及びそれによって被覆された電線
JP5079411B2 (ja) 難燃性樹脂組成物、それが含まれた電線被膜材及びそれによって被覆された電線
JP2006244894A (ja) ノンハロゲン難燃電線・ケーブル
JP2011057860A (ja) 難燃性樹脂組成物およびこれを用いた電線・ケーブル
JP3796123B2 (ja) 難燃性樹脂組成物およびこれを使用した難燃性成形体
JP2011111567A (ja) 難燃性樹脂組成物、成形体、および絶縁電線
JP4776208B2 (ja) 樹脂組成物及びそれを被覆した絶縁電線
JP2007070482A (ja) 電線・ケーブル被覆用難燃性組成物および難燃電線・ケーブル
JP2006182875A (ja) 難燃性熱可塑性樹脂組成物
JP2003160709A (ja) ノンハロゲン難燃性樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980000411.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020097017972

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: PI 20095124

Country of ref document: MY

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09823363

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020117030907

Country of ref document: KR