WO2009100698A2 - Verfahren zum niedertemperatur-drucksintern - Google Patents

Verfahren zum niedertemperatur-drucksintern Download PDF

Info

Publication number
WO2009100698A2
WO2009100698A2 PCT/DE2009/000050 DE2009000050W WO2009100698A2 WO 2009100698 A2 WO2009100698 A2 WO 2009100698A2 DE 2009000050 W DE2009000050 W DE 2009000050W WO 2009100698 A2 WO2009100698 A2 WO 2009100698A2
Authority
WO
WIPO (PCT)
Prior art keywords
heat sink
sink plate
substrate
pressure sintering
sintering
Prior art date
Application number
PCT/DE2009/000050
Other languages
English (en)
French (fr)
Other versions
WO2009100698A3 (de
Inventor
Ronald Eisele
Mathias Kock
Original Assignee
Danfoss Silicon Power Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Danfoss Silicon Power Gmbh filed Critical Danfoss Silicon Power Gmbh
Priority to EP09709504A priority Critical patent/EP2243159A2/de
Priority to CN2009801051597A priority patent/CN101952960B/zh
Priority to US12/866,121 priority patent/US8118211B2/en
Publication of WO2009100698A2 publication Critical patent/WO2009100698A2/de
Publication of WO2009100698A3 publication Critical patent/WO2009100698A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/49531Additional leads the additional leads being a wiring board
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/165Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19043Component type being a resistor

Definitions

  • the invention relates to a method for pressure sintering.
  • Electronic assemblies of power electronics with one or more semiconductor devices are typically fabricated by means of bonds, soldering or the silver pressure sintering technique of the unprotected semiconductor on a primary circuit substrate.
  • ceramic circuit carriers are preferably used
  • DCB substrates or direct copper bonded substrates
  • the substrates consist of a core of alumina or aluminum nitride with expansion coefficients of 7-8ppm / K and about 4 ppm / K.
  • the substrate may also be a purely ceramic solution in the form of thick-film hybrid supports of aluminum oxide or aluminum nitride with metallized or mounted conductor tracks.
  • a direct mounting of one or more semiconductors on a metal stamped grid can be carried out as a circuit carrier.
  • US 2004-026778 A1 shows the direct mounting of the semiconductor on sections of the stamped grid without an insulating substrate.
  • the semiconductors are electrically connected to one another and to the metallic conductor tracks of the substrate or to the stamped grid.
  • the assembled substrate or the lead frame is usually constructed with a bonding layer (gluing, pressure contact with thermal paste, soldering or pressure sintering) on a heat sink plate (eg utility model of the applicant 200 05 746 Ul).
  • a bonding layer glue, pressure contact with thermal paste, soldering or pressure sintering
  • a heat sink plate eg utility model of the applicant 200 05 746 Ul.
  • multiple substrate assemblies in series and parallel
  • the heat sink plate ensures optimum energy buffering with the heat capacity of the selected material (preferably copper).
  • the heat sink plate reduces the dynamic thermal resistance (Zth).
  • the thermal conductivity of the heat spreader plate is decisive and its dimension enlarged compared to the substrate. This leads to an advantageous thermal resistance (Rth).
  • thermosetting plastic To achieve high electrical insulation between the potential-carrying components (bonding wires, semiconductors and printed conductors) and achieve very high mechanical strength or robustness, there are products in which the assembly are coated with a thermosetting plastic.
  • This production technique consists of filling the module body in a full volume by means of transfer molding with a duroplastic hard glassy polymer material (for example Henkel Loctite Hysol). This is done with individual semiconductor components (for example in TO 220 package forms from ST-Microelectronics IRF-540) and with transistor groups, e.g. US 2005/0067719 Al.
  • Assemblies can be mounted on a common heat sink plate.
  • The- This cost-saving production and test step is not possible during assembly by means of silver pressure sintering, because the quasi-isostatic pressing of the assembly during the sintering process would destroy the bonding wires of the electrically wired assembly.
  • the pretested substrate assemblies be first of all formed into a robust, mechanically loadable assembly (mold module) by compression molding in the manner described.
  • Such a compression molded assembly may be uniaxial or quasi-isostatic
  • Presses are connected by pressure sintering with a heat sink plate by silver-sintering. In this structure, therefore, only well-tested substrate assemblies are processed.
  • This sintering process can be carried out with at least one module module, but can also be carried out simultaneously with several module modules on only one heat sink plate.
  • Disadvantage 2 Deformation of the coated assembly with integrated heat sink plate due to large expansion differences
  • the described process of compression molding has the disadvantage for the entire assembly that a renewed heating to about 170 ° C-200 ° C is made (thermal activation of the polymer cross-linking).
  • the already connected stack consisting of the materials heat sink plate, connecting layer, substrate, connecting layer and semiconductor, deforms according to their individual thermal expansion coefficients.
  • the layer adhesions and shear strengths of the bonding layers ensure a permanent superimposed overall deformation.
  • the preferred heat sink material is copper, and the high coefficient of thermal expansion of the copper (18 ppm / K) results in hollow deformation of the stack of material over a flat heat sink surface onto which the final assembly is assembled at the end user.
  • Heat sink plates fulfill their function among other things by heat spreading and material-dependent, also the increase of the total heat capacity.
  • the heat sink plate must occupy a larger area than the substrate plate connected thereto.
  • a thermoset wrapping must be made
  • the heat sink plate in a robust wall thickness include, so that the heat sink plate appears flush on one side of the enclosure.
  • the costs of the thermosetting molding compound are relatively high, so that the thermally required size of the heat sink plate is generally inadmissibly reduced.
  • the heat spreader plates are mounted by adhesive layer.
  • Heat sink plates are sometimes also externally mounted by means of thermal paste below substrate modules (molded or frame-based).
  • this form-fitting assembly is disadvantageous because of the low thermal conductivity of pastes (1-5 W / mK) and the long-term stability of the pastes and their function (pump out effect).
  • the process chain of production is changed so that the electronic assembly without the heat sink plate (and without sintering connection layer to the heat sink plate) is molded with the thermosetting coating mass.
  • the coefficient of expansion of the mold cladding mass now exclusively adapted to the thermally dominant ceramic substrate (4 to 6 ppm / K) and is now well below the thermal expansion coefficient of the heat sink plate, for example made of copper (18 ppm / K).
  • thermoset A deformation due to mismatch of the thermoset and the assembled substrate is no longer available.
  • the volume of the coated substrate is significantly lower and the material and energy consumption is correspondingly more economical and ecological (compare FIGS. 1a, 1b with FIGS. 2a, 2b).
  • a heat sink plate can be equipped in a sintering with a plurality of electrically sheathed individually wrapped assemblies.
  • 1a shows the integration of the heat sink plate according to the prior art in the formumhüllten body, with the disadvantage that the volume is large compared to the externally mounted heat sink plate and the heat sink plate has no more spreading function
  • FIG. 1b is that of FIG. 1a, but viewed from the side of the heat sink plate, FIG.
  • FIG. 2a shows an external cohesive mounting of the heat sink plate to the finished molded body, with the advantage that the duroplastic volume is small compared to the volume in FIG. 1 and the connecting layer is a thermally highly conductive sintered silver layer
  • FIG. 2b shows an external cohesive mounting of the areal enlarged heat sink plate to the finished molded body, with the advantages that the duroplastic volume is small compared to the volume in FIG. 1, the connecting layer is a thermally highly conductive sintered silver layer, the heat spread is further optimized (compared to FIG ) and a simple mounting option to a heat sink by eg screws (given,
  • FIG. 3 shows an external cohesive mounting of the area-enlarged ones
  • Heat sink plate to the completed formumhüllten body with the additional advantages that the heat spreader is segmented and the small absolute size and the absolute expansion differences can be kept smaller. Greater differences in elongation mean smaller shear stresses and thus also longer service life compared to alternating temperature loads.
  • FIG. 4 shows an external cohesive mounting of the surface-enlarged heat sink plate of a plurality of mold-enveloped bodies
  • FIG. 5 a the heat sink plate of Figure 4 supplemented by surface-expanding structures such as fins or - shown - pins for air cooling, and
  • the heat sink plate is now in another connection process, namely the silver sintered press technology, with dm completed formumhüllten body of the electronic assembly cohesively (and long-term stable) connected ( Figure 2a, 2b).
  • the bonding layer of the sintered silver typically has a thermal conductivity of approx. 250 WVmK and is thus far superior to any thermal compound and to every adhesive and solder, both thermally and mechanically.
  • the heat sink plate can be chosen in sufficient size, ie at least identical to the substrate size (primary function, high heat capacity) or identical to the molded body, or preferably also larger than the molded body (heat spreading and increasing the heat capacity).
  • the pressure sintering technology combines temperature and pressure.
  • the heat sink plate springs in the radius of the lower punch; connects via the bonding layer with the substrate and takes after cooling the final shape.
  • the desired crowned shape can now be targeted influenced by the radius of the lower punch of the pressure sintering press.
  • the arrangement can be optimized with the following improvement measures:
  • the surface extending beyond the body may be provided with holes for mounting screws.
  • the heat sink below a substrate plate may be segmented.
  • a partial heat sink which in each case should be dimensioned at least identically large with the area requirement of the component, should be dimensioned.
  • the individual partial heat sinks have smaller diagonals than the complete heat sink plate unsegmentiert.
  • the smaller heat sink plate diagonal of the sub-plates have smaller shear stresses (due to low absolute thermal expansion di- tion) with respect to the substrate and this leads to a greater thermal shock resistance than can be achieved with a complete plate.
  • the heat sink plate is a tube or a cooling-optimized hollow body, which can be flowed through by a cooling medium and in this way increases the cooling power.
  • the cavity of the body may need to be prevented from deforming by a removable support body (e.g., square bar in square tubing) during the pressure sintering process.
  • the heat sink body can be surrounded on several plan sides, preferably on the opposite surfaces with formumhumten assemblies according to the pressure sintering principle.
  • a square tube on two opposite sides carry power modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

Verfahren zum Niedertemperatur-Drucksintern wenigstens einer thermisch zu kontaktierenden und mechanisch fest verbundenen elektronischen und auf einem Substrat befindlichen Baugruppe mit den Schritten : Formpressen der elektronischen Baugruppe mit einer Formumhüllungsmatrix unter Freilassung einer Anschlussfläche des Substrates für eine Wärmesenken-Verbindung, Bereitstellen einer Wärmesenkenplatte, Aufbringen einer Sinter-Verbindungsschicht auf den freigelassenen Bereich der Anschlussfläche und/oder auf den zur Kontaktierung vorgesehenen Bereich der Wärmesenkenplatte, und stoffschlüssiges Verbinden der Wärmesenkenplatte mittels Silber-Niedertemperatur-Drucksintertechnik an das Substrat der elektronischen Baugruppe im Bereich der Anschlussfläche.

Description

Verfahren zum Niedertemperatur-Drucksintern
Die Erfindung betrifft ein Verfahren zum Drucksintern. Elektronische Baugruppen der Leistungselektronik mit einem oder mehreren Halbleiterbauelementen werden typischerweise mit Hilfe von Klebungen, Lötungen oder der Silber- Drucksintertechnik der ungeschützten Halbleiter auf einem primären Schaltungsträ- ger hergestellt. Hierbei werden vorzugsweise keramische Schaltungsträger eingesetzt
(so genannte DCB-Substrate, bzw. direct copper bonded Substrate).
Die Substrate bestehen aus einem Kern von Aluminiumoxid oder Aluminiumnitrid mit Ausdehnungskoeffizienten von 7-8ppm/K und ca. 4 ppm/K. Das Substrat kann auch eine rein keramische Lösung in Form von Dickschichthybridträgern aus Aluminiumoxid oder Aluminiumnitrid mit metallisierten oder aufgesetzten Leiterbahnen sein. Auch kann eine direkte Montage von einem oder mehreren Halbleitern auf einem metallischen Stanzgitter als Schaltungsträger erfolgen. Die US 2004-026778 Al zeigt die direkte Montage des Halbleiters auf Abschnitten des Stanzgitters ohne iso- lierendes Substrat.
Mit Hilfe von Ultraschall-Drahtbondungen sind die Halbleiter untereinander und mit den metallischen Leiterbahnen des Substrates bzw. mit dem Stanzgitter elektrisch verbunden. Zur Erhöhung der Verlustleistungsabfuhr (dynamischer Fall und stationä- rer Fall) wird das bestückte Substrat oder das Stanzgitter üblicherweise mit einer Verbindungsschicht (Kleben, Druckkontakt mit Wärmeleitpaste, Löten oder Drucksintern) auf eine Wärmesenkenplatte aufgebaut (z.B. Gebrauchsmuster der Anmelderin 200 05 746 Ul). Typischerweise werden für leistungsstarke Module auch mehrere Substrat-Baugruppen (in Serien- und Parallelschaltung) auf einer ge- meinsamen Wärmesenkenplatte durch Löten oder Drucksintern montiert. Ln Falle des Drucksinterns werden erst die Substratplatte und die Halbeiter mit der gemein- samen Wärmesenkenplatte verbunden und erst danach erfolgt das elektrische Kontaktieren durch das Drahtbonden aller beteiligten bestückten Substratplatten.
Die Wärmesenkenplatte sorgt im Falle eines dynamischen Wärmestroms für eine op- timale Energiepufferung mit der Wärmekapazität des gewählten Materials (vorzugsweise Kupfer). Insbesondere bei Impulsbetrieb der Schaltung reduziert die Wärmesenkenplatte den dynamischen Wärmewiderstand (Zth). Im stationären Fall eines Wärmestroms durch Verlustleistung der Halbleiter ist hingegen die Wärmespreizfunktion bedeutsam. Hier ist die Wärmeleitfähigkeit der Wärmespreizplatte entschei- dend und ihre, gegenüber dem Substrat, vergrößerte Dimension. Dies führt zu einem vorteilhaften thermischen Widerstand (Rth).
Zur Erzielung von hoher elektrischer Isolation zwischen den potentialtragenden Komponenten (Bondrähte, Halbleiter und Leiterbahnen) und Erreichung sehr hoher mechanischer Festigkeit bzw. Robustheit gibt es Produkte, bei denen die Baugruppe mit einem duroplastischen Kunststoff umhüllt sind. Diese Fertigungstechnik besteht aus dem volumenmäßig vollständigen Ausfüllen des Modulkörpers durch Formpressen (Transfer Molding) mit einem duroplastischen harten, glasartigen Polymerwerkstoff (z.B. Henkel Loctite Hysol). Dies geschieht mit einzelnen Halbleiterbauelemen- ten (z.B. in TO 220-Gehäuseformen der Fa. ST-Microelectronics IRF-540) und mit Transistorgruppen z.B. US 2005/0067719 Al.
Einige Produkte umhüllen neben der Substratbaugruppe auch eine montierte Wärmesenkenplatte z.B. DIP-IPM von Fa. Mitsubishi (,^4 New Version Intelligent Power Module for High Performance Motor Control"; M. Iwasaki et.al.; Power Semicon- ductor Device Division, Mitsubishi, Japan)
1.1. Nachteil und Verbesserung des Standes der Technik
Nachteil 1: Ausbeuteverluste durch ungetestete Substratbaugruppen beim
Drucksintern
Bei der Serien- oder Parallelschaltung von mehreren Substrat-Baugruppen (Multi- substratmodule) auf nur einer Wärmesenkenplatte ist besonders nachteilig, dass aus Gründen der wirtschaftlichen Ausbeute nur elektrisch gut-getestete Einzel-
Baugruppen auf eine gemeinsame Wärmesenkenplatte montiert werden können. Die- ser kostensparende Fertigungs- und Prüfschritt ist bei der Montage mittels Silber- Drucksinterung nicht möglich, weil das quasi-isostatische Pressen der Baugruppe während des Sintervorganges die Bonddrähte der elektrisch verdrahteten Baugruppe zerstören würde.
Zur Verbesserung des Standes dieser Technik wird vorgeschlagen, die vorgetesteten Substratbaugruppen durch Formpressen in der beschriebenen Weise zunächst in eine robuste, mechanisch belastbare Baugruppe (Mold-Modul) zu formen.
Eine solche formgepresste Baugruppe kann durch uniaxiales oder quasi-isostatisches
Pressen mittels Drucksintern mit einer Wärmesenkenplatte durch Silber-Sintern verbunden werden. In dieser Aufbauweise werden also nur gut-getestete Substratbaugruppen weiterverarbeitet. Dieser Sinterprozess kann mit mindestens einem MoId- modul durchgeführt werden, ist aber auch mit mehreren Modulmodulen auf nur einer Wärmesenkenplatte simultan durchführbar.
Nachteil 2: Verformung der umhüllten Baugruppe mit integrierter Wärmesenkenplatte durch große Dehnungsunterschiede
a.) Der geschilderte Prozess des Formpressens (Transfer Molding) hat für die gesamte Baugruppe den Nachteil, dass eine erneute Erwärmung auf ca. 170°C-200°C vorgenommen wird (thermische Aktivierung der Polymervernetzung). Dabei verformt sich der bereits verbundene Stapel, bestehend aus den Materialien Wärmesenkenplat- te, Verbindungsschicht, Substrat, Verbindungsschicht und Halbleiter, entsprechend ihrer individuellen thermischen Ausdehnungskoeffizienten. Die Schichthaftungen und Scherfestigkeiten der Verbindungsschichten sorgen für eine bleibende überlagerte Gesamtverformung.
Das bevorzugte Wärmesenkenmaterial ist Kupfer und der hohe Ausdehnungskoeffizient des Kupfers (18 ppm/K) führt zu einer Hohlverformung des Materialstapels gegenüber einer ebenen Kühlkörperfläche, auf die die spätere Baugruppe beim Endverbraucher montiert wird.
Das Umhüllen des Bauelementes durch Formpressen während der thermisch verformten Phase (bei 1750C bis 2000C Prozesstemperatur) führt zum stark verhinderten Rückbilden der Hohlverformung. Teilweise ist mechanische Scherspannung zwischen den Materialschichten und dem umhüllenden Duroplast so groß, dass eine zerstörende Delamination zwischen Umhüllung und Schichtenstapel und /oder zwischen den Schichten des thermischen Stapels erfolgt.
Selbst wenn keine Delamination einsetzt, verbleibt eine störende Hohlverformung nach dem Prozess. Diese Hohlverformung einer leistungselektronischen Baugruppe gegenüber dem ebenen Kühlkörper muss unbedingt vermieden werden, denn der erforderliche Wärmefluss zur Entwärmung der Transistoren kann nicht mehr gewähr- leistet werden.
b.) Wärmesenkenplatten erfüllen ihre Funktion unter anderem durch Wärmespreizung und materialabhängig, auch der Erhöhung der Gesamt- Wärmekapazität. Zu diesem Zweck muss die Wärmesenkenplatte eine größere Fläche einnehmen, als die darauf verbundene Substratplatte darstellt. Eine duroplastische Umhüllung muss aus
Gründen der angestrebten Festigkeit die Wärmesenkenplatte in robuster Wandstärke umfassen, so dass die Wärmesenkenplatte flächenbündig an einer Seite der Umhüllung erscheint. Die Kosten der duroplastischen Formmasse sind allerdings relativ hoch, so dass die thermisch erforderliche Größe der Wärmesenkenplatte im Allge- meinen unzulässig reduziert wird. In den bekannten Aufbauten solcher Produkte werden die Wärmespreizplatten durch Kleberschicht montiert.
c.) Wärmesenkenplatten werden gelegentlich auch extern mittels Wärmeleitpaste unterhalb von Substratmodulen (formumhüllt oder auch rahmenbasiert) montiert. Diese formschlüssige Montage ist jedoch von Nachteil wegen der geringen Wärmeleitfähigkeit von Pasten (1-5 W/mK) und der Langzeitstabilität der Pasten und ihrer Funktion (pump out-Effekt).
Die folgenden Prozessschritte sollen erfindungsgemäß die geschilderten Nachteile vermeiden und explizit einerseits zu einer reproduzierbaren balligen Verformung der
Wärmesenkenplatte gegenüber einem ebenen Kühlkörper fuhren und andererseits eine signifikante Einsparung der Formmasse bei gleichzeitig korrekt dimensionierter Wärmesenkenplatte ermöglichen.
Das erfmdungsgemäße Verfahren löst die obigen Probleme mit den Merkmalen des
Hauptanspruchs. Dabei wird die Prozesskette der Herstellung dahingehend geändert, dass die elektronische Baugruppe ohne die Wärmesenkenplatte (und ohne Sinter- Verbindungsschicht zur Wärmesenkenplatte) mit der duroplastischen Umhüllungs- masse formgepresst wird. Der Ausdehnungskoeffizient der Formumhüllungsmasse nun ausschließlich dem thermisch dominanten keramischen Substrat (4 bis 6 ppm/K) angepasst und liegt nun deutlich unter dem thermischen Ausdehnungskoeffizienten der Wärmesenkenplatte, beispielsweise aus Kupfer (18 ppm/K).
Eine Verformung durch Fehlanpassung des Duroplastes und des bestückten Substrates liegt nun nicht mehr vor. Das Volumen des umhüllten Substrates ist deutlich geringer und der Material- und Energieverbrauch ist entsprechend ökonomischer und ökologischer (vergleiche Figur Ia, Ib mit Figur 2a, 2b).
Weiter kann eine Wärmesenkenplatte in einer Sinterung mit mehreren elektrisch parallel geschalteten einzeln umhüllten Baugruppen bestückt werden.
Weitere Vorteile und Merkmale des Verfahrens ergeben sich aus folgender Beschreibung eines bevorzugten Ausführungsbeispiels. Dabei zeigt:
Figur Ia die Integration der Wärmesenkenplatte gemäß Stand der Technik in den formumhüllten Körper, mit dem Nachteil, dass das Volumen groß ist gegenüber der extern angebrachten Wärmesenkenplatte und die Wärmesenkenplatte keine Spreizfunktion mehr be- sitzt,
Figur Ib dasjenige der Fig. Ia, jedoch Ansicht von der Seite der Wärmesenkenplatte,
Figur 2a eine externe stoffschlüssige Montage der Wärmesenkenplatte an den vollendeten formumhüllten Körper, mit dem Vorteil, dass das Duroplastvolumen klein ist gegenüber dem Volumen in Figur 1 und die Verbindungsschicht eine thermisch hoch leitfähige gesinterte Silberschicht ist, Figur 2b eine externe stoffschlüssige Montage der flächenvergrößerten Wärmesenkenplatte an den vollendeten formumhüllten Körper, mit den Vorteilen, dass das Duroplastvolumen klein ist gegenüber dem Volumen in Figur 1, die Verbindungsschicht eine thermisch hoch leitfähige gesinterte Silberschicht ist, die Wärmespreizung weiter optimiert ist (gegenüber Figur 2a) und eine einfache Montagemöglichkeit zu einem Kühlkörper durch z.B. Schrauben (gegeben ist,
Figur 3 eine externe stoffschlüssige Montage der flächenvergrößerten
Wärmesenkenplatte an den vollendeten formumhüllten Körper, mit den zusätzlichen Vorteilen, dass die Wärmespreizplatte segmentiert ist und durch die geringe absolute Größe auch die absoluten Dehnungsdifferenzen kleiner gehalten werden können. Ge- ringere Dehnungsdifferenzen bedeuten kleinere Scherspannungen und damit auch größere Lebensdauer gegenüber Temperatur- Wechselbelastungen,
Figur 4 eine externe stoffschlüssige Montage der flächenvergrößerten Wärmesenkenplatte mehrerer formumhüllten Körper, mit dem
Vorteil, dass nun auch Multisubstratmodule aus einzeln gutgetesteten Modulen mit Hilfe der Drucksintertechnik stoffschlüssig auf eine gemeinsame Wärmesenkenplatte montiert werden können (hier mit multiplen Anschraubmöglichkeiten zur Schaf- fung optimaler Anpresskräfte an einen Kühlkörper),
Figur 5 a die Wärmesenkenplatte der Fig. 4 ergänzt durch Oberflächen erweiternde Strukturen wie Finnen oder - dargestellt - Stifte zur Luftkühlung, und
Figur 5b - zur direkten Wasserkühlung - die Wärmesenkenplatte der Fig. 4 mit einer zusätzlichen Wanne aus Metall oder Kunststoff vorzusehen, in die Wasser geführt wird. Die Wärmesenkenplatte wird nun in einem anderen Verbindungsprozess, nämlich der Silber-Sinterpresstechnik, mit dm vollendeten formumhüllten Körper der elektronischen Baugruppe stoffschlüssig (und langzeitstabil) verbunden (Figur 2a, 2b). Die Verbindungsschicht des gesinterten Silbers besitzt typisch eine Wärmeleitfähig- keit von ca. 250 WVmK und ist damit jeder Wärmeleitpaste und jedem Kleber und Lot thermisch und mechanisch weit überlegen.
a. Nun kann die Wärmesenkenplatte in ausreichender Größe, also mindestens identisch mit der Substratgröße (primäre Funktion; hohe Wärmekapazität) oder identisch mit dem formumhüllten Körper, oder vorzugsweise auch größer als der formumhüllte Körper (Wärmespreizung und Erhöhung der Wärmekapazität) gewählt werden.
b. Die Drucksintertechnik verbindet durch Temperatur und Druck. Der Druck gestattet es, die Wärmesenkenplatte in ein Bett ( = Pressenunterstempel) mit einem kleineren Radius zu pressen, als nach der vollzogenen Verbindung sich nach der Abkühlung einstellt. Die Wärmesenkenplatte federt in den Radius des Unterstempels; verbindet sich über die Verbindungsschicht mit dem Substrat und nimmt nach dem Abkühlen die endgültige Form ein. Die gewünschte ballige Formgebung kann nun zielgerichtet durch den Radius des Unterstempels der Drucksinterpresse beeinflusst werden.
Die Anordnung kann mit folgenden Verbesserungsmaßnahmen optimiert werden:
c. Wenn die Wärmesenke größer als der formumhüllte Körper ist, kann die die über den Körper hinausragende Fläche mit Bohrungen für Montageschrauben versehen sein.
d. Die Wärmesenke unter einer Substratplatte kann segmentiert sein. Vor- zugsweise sollte unterhalb eines jeden Wärme dissipierenden Bauelements (Transistor, Diode) auf dem Substrat eine Teil- Wärmesenke, die jeweils mindestens identisch groß mit dem Flächenbedarf des Bauelementes zu dimensionieren ist. Die einzelnen Teil- Wärmesenken weisen kleinere Diagonalen auf, als die vollständige Wärmesenkenplatte unsegmentiert. Die kleinere Wärmesenkenplatte-Diagonale der Teilplatten weisen kleinere Scherspannungen (durch geringe absolute thermische Differenzdeh- nung) gegenüber dem Substrat auf und dies fuhrt zu einer größeren Temperaturwechselbeständigkeit als mit einer vollständigen Platte erreicht werden kann.
e. Für größere Betriebsströme können auch mehrere formumhüllte Bau- gruppen auf einer Wärmesenkenplatte durch Drucksintern befestigt werden und parallel geschaltet werden. Auch können auf diese Weise gebräuchliche Schaltungen, wie zum Beispiel eine B-6-Brücke, nachgebildet werden und auf einer Wärmesenkenplatte gemeinsam durch Drucksintertechnik befestigt werden.
f. Wie vor, jedoch ist die Wärmesenkenplatte ein Rohr bzw. ein kühlungs- optimierter Hohlkörper, der von einem Kühlmedium durchströmt werden kann und auf diese Weise die Entwärmungsleistung erhöht. Der Hohlraum des Körpers muss gegebenenfalls durch einen entnehmbaren Stützkörper (z.B. Vierkantstange in Vierkant-Rohr) während des Drucksinterprozesses an der Verformung gehindert werden.
g. Wie f, jedoch kann der Wärmesenkenkörper an mehreren Planseiten, vorzugsweise an den sich gegenüberliegenden Flächen mit formumhüllten Baugruppen nach dem Drucksinterprinzip umgeben werden. So kann z.B. ein Vierkantrohr an zwei gegenüberliegenden Seiten Leistungsmodule tragen.
h. Weiter kann eine gemeinsame Wärmesenkenplatte in einer Sinterung mit mehreren Baugruppen - z.B. - elektrisch parallel geschalteten einzeln umhüllten Leistungselektroniken bestückt werden.
Bezugszeichenliste:
Figure imgf000011_0001

Claims

D 5173PATENTANSPRÜCHE
1. Verfahren zum Niedertemperatur-Drucksintera wenigstens einer thermisch zu kontaktierenden und mechanisch fest verbundenen elektronischen und auf einem Substrat befindlichen Baugruppe mit den Schritten :
- Formpressen der elektronischen Baugruppe mit einer Formumhüllungsmatrix unter Freilassung einer Anschlußfläche des Substrates für eine Wärmesenken-Verbindung,
Bereitstellen einer Wärmesenkenplatte,
Aufbringen einer Sinter- Verbindungsschicht auf den freigelassenen Bereich der Anschlussfläche und/oder auf den zur Kontaktierung vorgesehenen Bereich der Wärmesenkenplatte, und
- stoffschlüssiges Verbinden der Wärmesenkenplatte mittels Silber-
Niedertemperatur-Drucksintertechnik an das Substrat der elektronischen Baugruppe im Bereich der Anschlussfläche.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein Pressenunterstempel mit geringerem Radius/ Außenabmessungen als die Wärmesenkenplatte beim Aufbringen des Druckes zur Verwölbung der Wärmesenkenplatte genutzt wird, so daß nach Abkühlen der Sinter- Verbindung eine minimal ballige Wölbung der Wärmesenkenplatte erzeugt ist.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zur Fixierung der Wärmesenkenplatte in den über das Substrat hinausreichenden Bereichen Durchlässe für Montageschrauben zur mechanischen Fixierung der Kanten an wei- teren wärmeabführenden Komponenten vorgesehen sind.
4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß mehrere einzeln umhüllte Baugruppen in einem gemeinsamen Sinterschritt auf ein gemeinsame Wärmesenkenplatte aufgesintert werden.
PCT/DE2009/000050 2008-02-15 2009-01-16 Verfahren zum niedertemperatur-drucksintern WO2009100698A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09709504A EP2243159A2 (de) 2008-02-15 2009-01-16 Verfahren zum niedertemperatur-drucksintern
CN2009801051597A CN101952960B (zh) 2008-02-15 2009-01-16 低温加压烧结的方法
US12/866,121 US8118211B2 (en) 2008-02-15 2009-01-16 Method for the low-temperature pressure sintering of electronic units to heat sinks

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008009510A DE102008009510B3 (de) 2008-02-15 2008-02-15 Verfahren zum Niedertemperatur-Drucksintern
DE102008009510.9 2008-02-15

Publications (2)

Publication Number Publication Date
WO2009100698A2 true WO2009100698A2 (de) 2009-08-20
WO2009100698A3 WO2009100698A3 (de) 2009-12-10

Family

ID=40651328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2009/000050 WO2009100698A2 (de) 2008-02-15 2009-01-16 Verfahren zum niedertemperatur-drucksintern

Country Status (5)

Country Link
US (1) US8118211B2 (de)
EP (1) EP2243159A2 (de)
CN (1) CN101952960B (de)
DE (1) DE102008009510B3 (de)
WO (1) WO2009100698A2 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9057569B2 (en) * 2010-11-22 2015-06-16 Kabushiki Kaisha Toshiba Ceramic heat sink material for pressure contact structure and semiconductor module using the same
DE102011076774A1 (de) * 2011-05-31 2012-12-06 Continental Automotive Gmbh Baugruppe mit einem Träger und einem Kühlkörper
DE102012208767A1 (de) * 2011-06-17 2012-12-20 Robert Bosch Gmbh Elektronische Schaltungsanordnung mit Verlustwärme abgebenden Komponenten
DE102011083911A1 (de) 2011-09-30 2013-04-04 Robert Bosch Gmbh Elektronische Baugruppe mit hochtemperaturstabilem Substratgrundwerkstoff
DE102012216401A1 (de) * 2012-09-14 2014-04-10 Powersem GmbH Halbleiterbauelement
US9295184B2 (en) * 2012-12-14 2016-03-22 GM Global Technology Operations LLC Scalable and modular approach for power electronic building block design in automotive applications
DE102013220591A1 (de) * 2013-10-11 2015-04-16 Robert Bosch Gmbh Leistungsmodul mit Kühlkörper
CN104867918A (zh) * 2014-02-26 2015-08-26 西安永电电气有限责任公司 塑封式ipm模块及其dbc板的固定结构
DE102014114096A1 (de) 2014-09-29 2016-03-31 Danfoss Silicon Power Gmbh Sinterwerkzeug für den Unterstempel einer Sintervorrichtung
DE102014114093B4 (de) 2014-09-29 2017-03-23 Danfoss Silicon Power Gmbh Verfahren zum Niedertemperatur-Drucksintern
DE102014114095B4 (de) 2014-09-29 2017-03-23 Danfoss Silicon Power Gmbh Sintervorrichtung
DE102014114097B4 (de) 2014-09-29 2017-06-01 Danfoss Silicon Power Gmbh Sinterwerkzeug und Verfahren zum Sintern einer elektronischen Baugruppe
DE102016107287A1 (de) * 2016-04-20 2017-11-09 Semikron Elektronik Gmbh & Co. Kg Leistungshalbleitereinrichtung und Verfahren zum Betrieb einer Leistungshalbleitereinrichtung
DE102019204683A1 (de) * 2019-04-02 2020-10-08 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zum stoffschlüssigen Verbinden mindestens eines Halbleitermoduls mit mindestens einem Gehäuseteil eines Kühlmoduls
MX2022014325A (es) 2020-05-15 2022-12-08 Pink Gmbh Thermosysteme Instalacion para unir conjuntos electronicos.
CN114608311A (zh) * 2022-01-24 2022-06-10 快克智能装备股份有限公司 烧结设备及其气氛可控的压力烧结机构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0693776A2 (de) * 1994-07-15 1996-01-24 Mitsubishi Materials Corporation Keramik-Gehäuse mit hoher Wärmeabstrahlung
WO2002049104A2 (de) * 2000-12-13 2002-06-20 Daimlerchrysler Ag Leistungsmodul mit verbessertem transienten wärmewiderstand
DE10200372A1 (de) * 2002-01-08 2003-07-24 Siemens Ag Leistungshalbleitermodul
DE102005061772A1 (de) * 2005-12-23 2007-07-05 Danfoss Silicon Power Gmbh Leistungshalbleitermodul
DE102006009159A1 (de) * 2006-02-21 2007-08-23 Curamik Electronics Gmbh Verfahren zum Herstellen eines Verbundsubstrates sowie Verbundsubstrat

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3780795A (en) * 1972-06-19 1973-12-25 Rca Corp Multilayer heat sink
EP0275433B1 (de) * 1986-12-22 1992-04-01 Siemens Aktiengesellschaft Verfahren zur Befestigung von elektronischen Bauelementen auf einem Substrat, Folie zur Durchführung des Verfahrens und Verfahren zur Herstellung der Folie
EP0460286A3 (en) * 1990-06-06 1992-02-26 Siemens Aktiengesellschaft Method and arrangement for bonding a semiconductor component to a substrate or for finishing a semiconductor/substrate connection by contactless pressing
DE4233073A1 (de) * 1992-10-01 1994-04-07 Siemens Ag Verfahren zum Herstellen eines Halbleiter-Modulaufbaus
US5786635A (en) * 1996-12-16 1998-07-28 International Business Machines Corporation Electronic package with compressible heatsink structure
US6324069B1 (en) * 1997-10-29 2001-11-27 Hestia Technologies, Inc. Chip package with molded underfill
US6784541B2 (en) * 2000-01-27 2004-08-31 Hitachi, Ltd. Semiconductor module and mounting method for same
JP3526788B2 (ja) * 1999-07-01 2004-05-17 沖電気工業株式会社 半導体装置の製造方法
JP3919398B2 (ja) * 1999-10-27 2007-05-23 三菱電機株式会社 半導体モジュール
DE10101086B4 (de) * 2000-01-12 2007-11-08 International Rectifier Corp., El Segundo Leistungs-Moduleinheit
DE20005746U1 (de) * 2000-03-28 2000-08-03 Danfoss Silicon Power Gmbh Leistungshalbleitermodul
DE10016129A1 (de) * 2000-03-31 2001-10-18 Siemens Ag Verfahren zum Herstellen einer wärmeleitenden Verbindung zwischen zwei Werkstücken
JP2005109100A (ja) * 2003-09-30 2005-04-21 Mitsubishi Electric Corp 半導体装置およびその製造方法
DE102004019567B3 (de) * 2004-04-22 2006-01-12 Semikron Elektronik Gmbh & Co. Kg Verfahren zur Befestigung von elektronischen Bauelementen auf einem Substrat
US7205177B2 (en) * 2004-07-01 2007-04-17 Interuniversitair Microelektronica Centrum (Imec) Methods of bonding two semiconductor devices
US7766218B2 (en) * 2005-09-21 2010-08-03 Nihon Handa Co., Ltd. Pasty silver particle composition, process for producing solid silver, solid silver, joining method, and process for producing printed wiring board
DE102005061773B3 (de) * 2005-12-23 2007-05-16 Danfoss Silicon Power Gmbh Verfahren zum Herstellen eines Leistungshalbleitermoduls und Leistungshalbleitermodul
US7821130B2 (en) * 2008-03-31 2010-10-26 Infineon Technologies Ag Module including a rough solder joint

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0693776A2 (de) * 1994-07-15 1996-01-24 Mitsubishi Materials Corporation Keramik-Gehäuse mit hoher Wärmeabstrahlung
WO2002049104A2 (de) * 2000-12-13 2002-06-20 Daimlerchrysler Ag Leistungsmodul mit verbessertem transienten wärmewiderstand
DE10200372A1 (de) * 2002-01-08 2003-07-24 Siemens Ag Leistungshalbleitermodul
DE102005061772A1 (de) * 2005-12-23 2007-07-05 Danfoss Silicon Power Gmbh Leistungshalbleitermodul
DE102006009159A1 (de) * 2006-02-21 2007-08-23 Curamik Electronics Gmbh Verfahren zum Herstellen eines Verbundsubstrates sowie Verbundsubstrat

Also Published As

Publication number Publication date
EP2243159A2 (de) 2010-10-27
CN101952960B (zh) 2012-07-11
US8118211B2 (en) 2012-02-21
US20110017808A1 (en) 2011-01-27
CN101952960A (zh) 2011-01-19
DE102008009510B3 (de) 2009-07-16
WO2009100698A3 (de) 2009-12-10

Similar Documents

Publication Publication Date Title
EP2243159A2 (de) Verfahren zum niedertemperatur-drucksintern
DE102009002191B4 (de) Leistungshalbleitermodul, Leistungshalbleitermodulanordnung und Verfahren zur Herstellung einer Leistungshalbleitermodulanordnung
DE102007057533B4 (de) Kühlkörper, Verfahren zur Herstellung eines Kühlkörpers und Leiterplatte mit Kühlkörper
DE102009055648B4 (de) Leistungshalbleitermodul
DE10022726A1 (de) Thermoelektrisches Modul mit verbessertem Wärmeübertragungsvermögen und Verfahren zum Herstellen desselben
DE102006008807B4 (de) Anordnung mit einem Leistungshalbleitermodul und einem Kühlbauteil
EP2019429A1 (de) Modul mit einem zwischen zwei Substraten, insbesondere DCB-Keramiksubstraten, elektrisch verbundenen elektronischen Bauelement und dessen Herstellungsverfahren
DE102010003533B4 (de) Substratanordnung, Verfahren zur Herstellung einer Substratanordnung, Verfahren zur Herstellung eines Leistungshalbleitermoduls und Verfahren zur Herstellung einer Leistungshalbleitermodulanordnung
CN102984889B (zh) 用于装配印刷电路板的方法、印刷电路板和散热片
DE102015105575B4 (de) Elektronisches Modul und Verfahren zum Herstellen desselben
DE112007001446T5 (de) Chipmodul für vollständigen Leistungsstrang
DE102004018476A1 (de) Leistungshalbleiteranordnung
DE10213648A1 (de) Leistungshalbleitermodul
DE102012208146A1 (de) Verbindungssystem zur herstellung elektrischer verbindungen eines leistungshalbleitermoduls und verfahren zur herstellung solcher verbindungen
DE102010016566A1 (de) Halbleiterbaustein mit mehreren Chips und Substrat in einer Metallkappe
DE102014222993A1 (de) Halbleitervorrichtung und Herstellungsverfahren dafür
CN101841975A (zh) 热压法制作高导热性电路板的方法及高导热性电路板
WO2019015901A1 (de) Elektrische baugruppe und verfahren zur herstellung einer elektrischen baugruppe
DE102016206542A1 (de) Verfahren zum Herstellen einer Halbleitervorrichtung
WO2005106954A2 (de) Leistungshalbleiterschaltung und verfahren zum herstellen einer leistungshalbleiterschaltung
DE102015216779B4 (de) Leistungshalbleitervorrichtung
EP1220314B1 (de) Leistungshalbleitermodul
DE102015115132B4 (de) Halbleitermodul mit integrierter Stift- oder Rippenkühlstruktur und Verfahren zu seiner Herstellung
KR20090120437A (ko) 열전달부재를 구비한 열전모듈
EP3555913B1 (de) Halbleitermodul mit bodenplatte mit hohlwölbung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980105159.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09709504

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2009709504

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12866121

Country of ref document: US