WO2009099001A1 - 傾斜磁場コイル装置および磁気共鳴イメージング装置 - Google Patents

傾斜磁場コイル装置および磁気共鳴イメージング装置 Download PDF

Info

Publication number
WO2009099001A1
WO2009099001A1 PCT/JP2009/051503 JP2009051503W WO2009099001A1 WO 2009099001 A1 WO2009099001 A1 WO 2009099001A1 JP 2009051503 W JP2009051503 W JP 2009051503W WO 2009099001 A1 WO2009099001 A1 WO 2009099001A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
coil
gradient magnetic
region
axis
Prior art date
Application number
PCT/JP2009/051503
Other languages
English (en)
French (fr)
Inventor
Yukinobu Imamura
Mitsushi Abe
Masanao Terada
Akira Kurome
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to US12/866,327 priority Critical patent/US8587313B2/en
Publication of WO2009099001A1 publication Critical patent/WO2009099001A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/385Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/3806Open magnet assemblies for improved access to the sample, e.g. C-type or U-type magnets

Definitions

  • the present invention relates to a gradient magnetic field coil apparatus that generates a gradient magnetic field, and a magnetic resonance imaging (hereinafter referred to as MRI) apparatus using the gradient magnetic field coil apparatus.
  • MRI magnetic resonance imaging
  • An MRI apparatus is a device that obtains a cross-sectional image representing the physical and chemical properties of a subject by utilizing a nuclear magnetic resonance phenomenon that occurs when a subject placed in a uniform static magnetic field is irradiated with a high-frequency pulse.
  • the MRI apparatus mainly includes a static magnetic field coil device that generates a uniform static magnetic field in an imaging region into which a subject is inserted, and a gradient magnetic field in which the magnetic field strength is spatially inclined to give position information to the imaging region.
  • a gradient coil device for generating a pulse, an RF coil for irradiating a subject with a high frequency pulse, a receiving coil for receiving a magnetic resonance signal from the subject, and processing the received magnetic resonance signal to obtain the cross-sectional image
  • a computer system for displaying.
  • Measures for improving the performance of the MRI apparatus include improving the magnetic field strength of the gradient magnetic field and driving the gradient magnetic field pulse at high speed. These contribute to shortening the imaging time and improving the image quality of cross-sectional images, and are frequently used in high-speed imaging methods that have been actively used in recent years. This is because high-speed switching and energization of a large current can be performed by improving the performance of the drive power supply of the gradient coil device.
  • the gradient magnetic field coil device is supplied with a pulsed large current that changes sharply, so that an eddy current is generated in the gradient magnetic field coil of the gradient magnetic field coil device, and the gradient magnetic field coil generates heat, causing the gradient magnetic field coil to generate heat.
  • the temperature rise in the surrounding area becomes a problem.
  • this eddy current generates an unnecessary magnetic field in the imaging region, it has become a cause of deteriorating the accuracy of the gradient of the gradient magnetic field.
  • a magnet that generates a static magnetic field is required to be as small as possible due to restrictions on the installation position.
  • the gradient magnetic field coil disposed between the magnet that generates a static magnetic field and the imaging region is required to be thin.
  • a thin copper plate is often used for the conductor constituting the gradient magnetic field coil, and the coil wire having a spiral pattern necessary for forming the gradient magnetic field is formed by etching or cutting the copper plate. ing.
  • an object of the present invention is to provide a gradient magnetic field coil device capable of suppressing heat generation due to eddy current and heat generation due to the steeply changing pulsed large current within a usable range, and this gradient magnetic field coil device.
  • An object of the present invention is to provide a magnetic resonance imaging apparatus used.
  • the present invention provides at least one coil of a first forward coil, a second forward coil, a first reverse coil, and a second reverse coil that generate the gradient magnetic field when a gradient magnetic field is generated.
  • a low magnetic field region having different magnetic field strengths of intersecting magnetic fields and a high magnetic field region higher than the low magnetic field region are generated in the gradient magnetic field coil, and the line width of the coil wire in the high magnetic field region is set in the low magnetic field region.
  • the gradient magnetic field coil device is narrower than the line width of the coil wire.
  • the magnetic resonance imaging apparatus includes such a gradient coil apparatus.
  • the gradient magnetic field coil device capable of suppressing the heat generation due to the eddy current and the heat generation due to the steeply changing pulse-like large current within the usable range, and the gradient magnetic field coil device are used.
  • a magnetic resonance imaging apparatus can be provided.
  • 1 is a perspective view of a magnetic resonance imaging apparatus according to a first embodiment of the present invention.
  • 1 is a cross-sectional view of a magnetic resonance imaging apparatus according to a first embodiment of the present invention cut along a yz plane including an axis of symmetry (z axis).
  • It is a perspective view of a y-axis gradient magnetic field main coil layer.
  • It is a perspective view of a y-axis gradient magnetic field shield coil layer.
  • FIG. 1 is a distribution diagram of magnetic flux density in the yz plane including the symmetry axis (z axis), and (b) is a diagram illustrating the first forward coil and the first reverse coil of the gradient magnetic field main coil in the circumferential direction.
  • FIG. It is a perspective view of an x-axis gradient magnetic field main coil layer. It is a perspective view of the magnetic resonance imaging apparatus which concerns on the 2nd Embodiment of this invention.
  • 6 is a cross-sectional view of a magnetic resonance imaging apparatus according to a second embodiment of the present invention cut along a yz plane including an axis of symmetry (z axis).
  • (A) is a distribution diagram of magnetic flux density in a yz plane including an axis of symmetry (z axis), and (b) is a plan view of a first forward coil and a first reverse coil which are gradient magnetic field main coils. It is.
  • FIG. 1 shows a perspective view of an MRI (magnetic resonance imaging) apparatus 1 according to the first embodiment of the present invention.
  • the MRI apparatus 1 includes a static magnetic field coil device 2 that generates a uniform static magnetic field in an imaging region 8 in which a subject 5 lying on a bed 6 is inserted, and spatially in order to give positional information to the imaging region 8.
  • a gradient magnetic field coil device 3 that generates a gradient magnetic field with a gradient of magnetic field intensity in a pulse shape, an RF coil 4 that irradiates a subject 5 inserted in an imaging region 8 with a high-frequency pulse, and a magnetic resonance signal from the subject 5 And a computer system (not shown) for processing the received magnetic resonance signal and displaying a cross-sectional image of the subject 5.
  • the static magnetic field coil device 2, the gradient magnetic field coil device 3, and the RF coil 4 have a cylindrical shape having the symmetry axis 10 as a common axis so as to face the inner surface of the static magnetic field coil device 2.
  • the outer surface of the gradient coil device 3 is disposed, and the outer surface of the RF coil 4 is disposed so as to face the inner surface of the gradient coil device 3.
  • the imaging region 8 is provided on the side of the symmetry axis 10 surrounded by the inner surface of the RF coil 4.
  • the inner diameter of the RF coil 4 is required to be as large as possible so that the subject 5 inserted into the imaging region 8 does not feel closed, and the imaging region 8 is as large as possible.
  • the outer diameter of the static magnetic field coil device 2 is required to be as small as possible so that the installation area of 1 can be made as small as possible. For this reason, the gradient magnetic field coil device 3 is formed to be as thin as possible together with the static magnetic field coil device 2 and the RF coil 4.
  • the z axis is set in parallel with the symmetry axis 10
  • the y axis is set in the vertical direction
  • the x axis is set in a direction perpendicular to the z axis and the y axis.
  • FIG. 2 is a cross-sectional view of the magnetic resonance imaging apparatus 1 according to the first embodiment of the present invention cut along a yz plane including the symmetry axis (z axis) 10.
  • the static magnetic field coil device 2 uses a static magnetic field main coil 2a and a static magnetic field shield coil 2b, which are superconducting coils, in order to generate a uniform and strong static magnetic field 7 in the imaging region 8.
  • the pair of static magnetic field main coils 2 a generates a strong and uniform static magnetic field 7 in the imaging region 8
  • the pair of static magnetic field shield coils 2 b generates the static magnetic field 7, and thus the outer periphery of the static magnetic field coil device 2.
  • the leakage magnetic field that leaks to the side is suppressed.
  • Each of the pair of static magnetic field main coils 2a and the pair of static magnetic field shield coils 2b has an annular shape with the axis of symmetry 10 as an axis.
  • the pair of static magnetic field main coils 2a and the pair of static magnetic field shield coils 2b are housed in a three-layer container as shown in FIG.
  • the pair of static magnetic field main coils 2a and the pair of static magnetic field shield coils 2b are contained in a refrigerant container 2e together with a liquid helium (He) as a refrigerant.
  • the refrigerant container 2e is contained in a heat radiation shield 2d that blocks heat radiation to the inside.
  • the vacuum container 2c keeps the inside in a vacuum while enclosing the refrigerant container 2e and the heat radiation shield 2d.
  • the pair of static magnetic field main coils 2a and the pair of static magnetic field shield coils 2b can be stably set to a cryogenic temperature that is the temperature of the refrigerant, and can function as superconducting electromagnets.
  • the gradient magnetic field coil device 3 generates, in the imaging region 8, a gradient magnetic field 9 in which the magnetic field intensity in the same direction as the static magnetic field 7 is inclined in an arbitrary direction in a pulse shape.
  • the direction of the static magnetic field 7 is the z-axis
  • the x-axis and the y-axis are taken in two directions orthogonal to the z-axis
  • the gradient magnetic field coil device 3 is independent of the three directions of the x-axis direction, the y-axis direction, and the z-axis direction. It has a function to generate a simple gradient magnetic field 9 superimposed on the static magnetic field 7.
  • a gradient magnetic field 9 inclined in the y-axis direction will be described as an example.
  • FIG. 3 is a perspective view of the y-axis gradient magnetic field main coil layer 13.
  • the y-axis gradient magnetic field main coil layer 13 is provided in the gradient magnetic field coil device 3.
  • the y-axis gradient magnetic field main coil layer 13 is arranged so as to sandwich the spiral first forward coil 11a, the central region that becomes the imaging region 8, and the symmetry axis 10, and faces the first forward coil 11a.
  • the first reverse coil 11b, the spiral first reverse coil 11c disposed on the first forward coil 11a side with respect to the imaging region 8 (the axis of symmetry 10), and the imaging region 8 are sandwiched therebetween. It has a spiral second reverse coil 11d facing the coil 11c.
  • the first forward coil 11a, the second forward coil 11b, the first reverse coil 11c, and the second reverse coil 11d are fixed along the circumferential direction of the cylindrical base material 16a with the symmetry axis 10 as an axis. ing. Since the first forward coil 11a, the second forward coil 11b, the first reverse coil 11c, and the second reverse coil 11d are formed thin, a plate of a good conductor such as copper (Cu) or aluminum (Al) is used. Cut into spiral coil wire. As a method of cutting out in a spiral shape, a method such as etching, water jet, or cutting by punching can be used.
  • the first forward coil 11a, the second forward coil 11b, the first reverse coil 11c, and the second reverse coil 11d In each, the line width of the coil wire is different or the interval between the coil wires is different depending on the region in the coil.
  • a current in the same direction as the current flowing in the first forward coil 11a is passed through the second forward coil 11b, and a current in the direction opposite to that of the first forward coil 11a is passed through the first reverse coil 11c and the second reverse coil 11d.
  • a gradient magnetic field 9 having a magnetic field strength gradient in the y-axis direction can be generated in the imaging region 8 as shown in FIG. That is, the first forward coil 11a, the second forward coil 11b, the first reverse coil 11c, and the second reverse coil 11d function as a so-called gradient magnetic field main coil.
  • FIG. 4 is a perspective view of the y-axis gradient magnetic field shield coil layer 14. Similarly to the y-axis gradient magnetic field main coil layer 13 in FIG. 3, the y-axis gradient magnetic field shield coil layer 14 is also provided in the gradient magnetic field coil device 3. The y-axis gradient magnetic field shield coil layer 14 is arranged so as to sandwich the spiral gradient magnetic field shield coil 12a and the central region that becomes the imaging region 8 and the symmetry axis 10, and faces the gradient magnetic field shield coil 12a.
  • the gradient magnetic field shield coils 12a, 12b, 12c, and 12d are fixed along the circumferential direction of a cylindrical base material 16b with the symmetry axis 10 as an axis.
  • the gradient magnetic field shield coils 12a, 12b, 12c, and 12d are manufactured by cutting a plate of a good conductor such as copper or aluminum into a spiral coil wire in order to form a thin film. As a method of cutting out in a spiral shape, a method such as etching, water jet, or cutting by punching can be used.
  • the line width of the coil wire is substantially constant regardless of the region in the coil, and the interval between the coil wires is also substantially constant. It has become.
  • the number of turns of the coil wires of the gradient magnetic field shield coils 12a, 12b, 12c, and 12d is the number of turns of the coil wires of the first forward coil 11a, the second forward coil 11b, the first reverse coil 11c, and the second reverse coil 11d. Less.
  • FIG. 5 shows a perspective view of a part of the gradient coil device 3 in which the y-axis gradient magnetic field main coil layer 13 and the y-axis gradient magnetic field shield coil layer 14 are laminated.
  • the inner peripheral side surface of the base material 16b is disposed on the outer peripheral side surface of the base material 16a, and the base material 16a and the base material 16b are integrated to form a cylindrical base material 16.
  • the outer shape of the gradient magnetic field shield coil 12a is slightly larger than the outer shape of the first forward coil 11a, and the gradient magnetic field shield coil 12a is disposed so as to cover the entire first forward coil 11a.
  • FIG. 5 shows the direction 17 of the current flowing through the gradient magnetic field shield coil 12a and the first forward coil 11a.
  • FIG. 6A shows a distribution diagram of magnetic field lines 19 and magnetic flux density in the yz plane including the symmetry axis (z axis) 10 when the gradient magnetic field 9 is formed in the imaging region 8.
  • the first forward coil 11a, the second forward coil 11b, the first reverse coil 11c, and the second reverse coil 11d have a magnetic field 18 that intersects the coil. I understand that there is.
  • the orthogonal component of the magnetic field 18 intersecting the coils 11a to 11d with respect to the coils 11a to 11d increases or decreases with the steeply changing pulse-like large current applied to the coils 11a to 11d, the coils 11a to 11d are swirled. It becomes a situation where electric current is likely to occur.
  • the strength of the orthogonal component of the intersecting magnetic fields 18 has a distribution of strength in each of the coils 11a to 11d, and the strength increases toward the center 20 from the peripheral portion with respect to the outer shape of the coils 11a to 11d. It is supposed to be.
  • FIG. 6B shows a developed view in which the coils 11a to 11d are developed in the circumferential direction (when expanded, the coil 11b has the same shape as the coil 11a, and the coil 11d has the same shape as the coil 11c).
  • the strength of the orthogonal component of the intersecting magnetic field 18 is higher than that of the surrounding low magnetic field region 22.
  • the high magnetic field region 21 is located at the center of the outer shape of the coils 11a to 11d with respect to the width in the z-axis direction.
  • the ease of eddy current generation is proportional to the rate of time change of the intensity of the orthogonal component of the intersecting magnetic field 18, so that when the intersecting magnetic field 18 is turned on and off by a large pulsed current, Since the rise time is the same in any region in the coil, the magnitude of the time change rate of the intensity of the orthogonal component of the intersecting magnetic field 18 is proportional to the magnitude of the intensity of the orthogonal component of the intersecting magnetic field 18. . Therefore, it is considered that the eddy current is more likely to be generated as the outer shape of the coils 11a to 11d moves toward the center 20 from the peripheral portion. Specifically, as shown in FIG. 6B, it is considered that the high magnetic field region 21 surrounded by the dotted line is more likely to generate eddy current than the surrounding low magnetic field region 22.
  • the line width Dlh of the coil wire 24 in the high magnetic field region 21 is narrower than the line width Dll of the coil wire 24 in the low magnetic field region 22. Further, the interval Dsh between the coil wires 24 in the high magnetic field region 21 is made wider than the interval Dsl between the coil wires 24 in the low magnetic field region 22. Further, the line width Dlh of the coil wire 24 in the high magnetic field region 21 is narrower than the interval Dsh between the coil wires 24 in the high magnetic field region 21. On the other hand, the line width Dll of the coil wire 24 in the low magnetic field region 22 is wider than the interval Dsl between the coil wires 24 in the low magnetic field region 22.
  • the space where eddy currents are formed can be reduced, and eddy currents can be hardly generated.
  • eddy currents are less likely to be generated, so that the eddy currents can be less likely to be generated as a whole coil.
  • the resistance of the coil wire 24 in the low magnetic field region 22 can be reduced, the increase in resistance of the entire coil wire 24 can be suppressed, and the heat generation due to the pulsed large current flowing in the coil wire 24 can be suppressed. Can do.
  • the line width Dlh of the coil wire 24 in the high magnetic field region 21 to be narrowed is determined by the magnetic flux density of the orthogonal gradient magnetic field, the frequency of the alternating current component of the pulsed large current, and the plate thickness of the coil wire 24.
  • the gradient magnetic field is 30 mT or more
  • the frequency is 500 Hz
  • the plate thickness is 5 mm
  • the line width Dlh is suitably 10 mm or less.
  • the high magnetic field region 21 may be in a region where at least one turn or more from the spiral center 20 side of the plurality of spiral turns of the coils 11a to 11d is disposed, and the pulse flowing in the coil wire 24 is sufficient. It is only necessary to determine how many turns from the center 20 side of the spiral are set in the high magnetic field region 21 according to the magnitude of the current.
  • the gradient magnetic field shield coils 12a to 12d do not intersect with each other. This indicates that the magnetic field generated outside the outer peripheral side surfaces of the gradient magnetic field shield coils 12a to 12d is cancelled. Since the magnetic field does not cross the gradient magnetic field shield coils 12a to 12d, no eddy current is generated in the gradient magnetic field shield coils 12a to 12d.
  • the coils 11a to 11d are located with respect to the imaging region 8 so that the z-axis coordinates of the ends in the z-axis direction of the imaging region 8 are arranged in the vicinity of the z-axis coordinates of the spiral center 20 of the coils 11a to 11d. Are arranged.
  • FIG. 7 is a perspective view of the x-axis gradient magnetic field main coil layer 13.
  • the x-axis gradient magnetic field main coil layer 13 in FIG. 7 is rotated by 90 degrees about the axis of symmetry 10 as a rotation axis and expanded or reduced in the radial direction as compared with the y-axis gradient magnetic field main coil layer 13 in FIG.
  • the gradient magnetic field main coil layer 13 has a structure that can be overlaid.
  • the gradient magnetic field coil apparatus 3 has an x-axis gradient magnetic field shield coil layer having a structure in which the y-axis gradient magnetic field shield coil layer 14 of FIG. Also with these x-axis gradient magnetic field main coil layer 13 and x-axis gradient magnetic field shield coil layer, the magnetic force lines 19 in FIG. 6A and the y-axis coordinates in the distribution diagram of the magnetic flux density are rewritten to the x-axis coordinates. 19 and magnetic flux density distribution can be obtained, and the same effects as the y-axis gradient magnetic field main coil layer 13 and the y-axis gradient magnetic field shield coil layer 14 can be obtained with respect to the suppression of eddy current generation.
  • the gradient coil device 3 also has a z-axis gradient magnetic field main coil layer and a z-axis gradient magnetic field shield coil layer that can generate a gradient magnetic field whose magnetic field strength is inclined in the z-axis direction in the imaging region 8. However, details are omitted.
  • FIG. 8 is a perspective view of the MRI apparatus 1 according to the second embodiment of the present invention.
  • the MRI apparatus 1 according to the first embodiment is a horizontal magnetic field type MRI apparatus in which the direction of the static magnetic field 7 is the horizontal direction
  • the MRI apparatus 1 is a vertical magnetic field type MRI apparatus in which the direction of the static magnetic field 7 is the vertical direction.
  • the MRI apparatus 1 is disposed so as to be sandwiched from above and below the imaging region 8 into which the subject 5 lying on the bed 6 is inserted, and generates a uniform static magnetic field 7 in the imaging region 8. 2, a connecting column 23 that supports the pair of upper and lower static magnetic field coil devices 2 apart from each other, and a gradient magnetic field in which the magnetic field strength is inclined in order to give positional information to the imaging region 8 is generated in pulses.
  • the pair of upper and lower static magnetic field coil devices 2, the gradient magnetic field coil device 3, and the RF coil 4 have a disk (cylindrical) shape having the symmetry axis 10 as a common axis.
  • the subject 5 is carried to the imaging region 8 by the movable bed 6, but only the thin connecting column 23 connects the upper and lower pair of static magnetic field coil devices 2, so the subject 5 can look around and reduce the feeling of closedness. can do.
  • the z axis is set in the vertical direction parallel to the symmetry axis 10, and the x axis and the y axis are set so as to be perpendicular to each other in the horizontal direction.
  • FIG. 9 is a cross-sectional view of a magnetic resonance imaging apparatus according to the second embodiment of the present invention cut along a yz plane including the symmetry axis 10 (z axis).
  • a pair of upper and lower static magnetic field main coils 2a and a pair of upper and lower static magnetic field shield coils 2b are used.
  • Each of the pair of upper and lower static magnetic field main coils 2a and the pair of upper and lower static magnetic field shield coils 2b has an annular shape with the axis of symmetry 10 as an axis.
  • the pair of upper and lower static magnetic field main coils 2a and the pair of upper and lower static magnetic field shield coils 2b have a three-layer structure including a refrigerant container 2e, a heat radiation shield 2d, and a vacuum container 2c. It is stored inside.
  • the gradient magnetic field coil device 3 also has a pair of upper and lower gradient magnetic field coil devices 3, and the pair of upper and lower gradient magnetic field coil devices 3 are arranged above and below the imaging region 8.
  • the RF coil 4 also has a pair of upper and lower sides, and the pair of upper and lower RF coils 4 are arranged above and below with the imaging region 8 interposed therebetween.
  • the pair of upper and lower gradient coil devices 3 generate a pulse of a gradient magnetic field 9 in which the magnetic field strength in the same direction as the static magnetic field 7 is inclined in an arbitrary direction.
  • the direction of the static magnetic field 7 is the z-axis
  • the x-axis and the y-axis are taken in two directions orthogonal to the z-axis
  • the gradient coil device 3 is independent of the three directions of the x-axis direction, the y-axis direction, and the z-axis direction. It has a function to generate a simple gradient magnetic field 9 superimposed on the static magnetic field 7.
  • a gradient magnetic field 9 inclined in the y-axis direction will be described as an example.
  • FIG. 10A shows a distribution diagram of magnetic field lines 19 and magnetic flux density in the yz plane including the symmetry axis 10 (z-axis) when the gradient magnetic field 9 inclined in the y-axis direction is generated.
  • the pair of upper and lower gradient coil devices 3 includes the first forward coil 11a, the first reverse coil 11c, and the gradient magnetic field shield coils 12a and 12c in the upper pair, and the first pair in the lower pair.
  • a two-forward coil 11b, the second reverse coil 11d, and gradient magnetic field shield coils 12b and 12d are arranged.
  • the coils 11a to 11d of the second embodiment are different from the coils 11a to 11d of the first embodiment in that they are arranged on a plane, whereas the coils 11a to 11d of the first embodiment are arranged on the curved surface of the cylindrical side surface.
  • FIG. 10B shows a plan view of the first forward coil 11a and the first reverse coil 11c, which are the gradient magnetic field main coils.
  • the outer shapes of the first forward coil 11a and the first reverse coil 11c are half. The difference is that it is circular.
  • the outer shape in which the first forward coil 11a and the first reverse coil 11c are combined is substantially circular.
  • the second forward coil 11b and the second reverse coil 11d are congruent to the first forward coil 11a and the first reverse coil 11c.
  • the gradient magnetic field shield coils 12a to 12d of the second embodiment are different from the gradient magnetic field shield coils 12a to 12d of the first embodiment in that they are arranged on a plane.
  • a current in the same direction as the current flowing in the first forward coil 11a is passed through the second forward coil 11b, and a current in the direction opposite to that of the first forward coil 11a is passed through the first reverse coil 11c and the second reverse coil 11d.
  • a gradient magnetic field 9 having a magnetic field strength gradient in the z-axis direction as shown in FIG. 10A can be generated in the imaging region 8.
  • the line width Dlh of the line 24 is narrower than the line width Dll of the coil wire 24 in the low magnetic field region 22 where the strength of the orthogonal component of the intersecting magnetic field 18 is lower than that of the high magnetic field region 21.
  • the high magnetic field region 21 is located at the center of the outer shape of the coils 11a to 11d with respect to the width in the y-axis direction, and has a shape such as a parenthesis (and a parenthesis (.).
  • the distance Dsh between the coil wires 24 in the low magnetic field region 22 is wider than the distance Dsl between the coil wires 24 in the low magnetic field region 22.
  • the line width Dlh of the coil wire 24 in the high magnetic field region 21 is equal to the coil in the high magnetic field region 21.
  • the line width Dll of the coil wire 24 in the low magnetic field region 22 is made wider than the space Dsl between the coil wires 24 in the low magnetic field region 22. According to the present invention, it is possible to reduce the space where eddy currents are formed in the high magnetic field region 21 where eddy currents are likely to be generated, thereby making it difficult to generate eddy currents.
  • the gradient magnetic field 9 inclined in the y-axis direction has been described.
  • FIG. 10A By arranging the coils 11a to 11d so that the x-axis coordinate and the y-axis coordinate of b) are interchanged, the y-axis coordinate of the magnetic field lines 19 and the magnetic flux density distribution diagram of FIG. 10A is rewritten to the x-axis coordinate.
  • the distribution of the magnetic field lines 19 and the magnetic flux density as described above can be obtained, and the same effect as in the case of the gradient magnetic field 9 inclined in the y-axis direction can be obtained with respect to the suppression of the generation of eddy currents.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

 傾斜磁場9が発生した際に、傾斜磁場9を発生させる第1順コイル11a、第2順コイル11b、第1逆コイル11cと第2逆コイル11dの少なくとも1つのコイルに、交差する磁場の磁場強度が異なる低磁場領域22と低磁場領域22より高い高磁場領域21とが生じ、高磁場領域21におけるコイル線24の線幅Dlhは、低磁場領域22におけるコイル線24の線幅Dllより狭くなっている。渦電流による発熱と、前記急峻に変化するパルス状の大電流による発熱とを、使用可能な範囲内で抑制可能な傾斜磁場コイル装置を提供する。

Description

傾斜磁場コイル装置および磁気共鳴イメージング装置
 本発明は、傾斜磁場を発生させる傾斜磁場コイル装置、及び、傾斜磁場コイル装置を用いた磁気共鳴イメージング(以下、MRIと称す)装置に関する。
 MRI装置は、均一な静磁場中に置かれた被検体に高周波パルスを照射したときに生じる核磁気共鳴現象を利用して、被検体の物理的、化学的性質を表す断面画像を得る装置であり、特に、医療用として用いられている。MRI装置は、主に、被検体が挿入される撮像領域に均一な静磁場を生成する静磁場コイル装置と、撮像領域に位置情報を付与するために空間的に磁場強度が傾斜勾配した傾斜磁場をパルス状に発生させる傾斜磁場コイル装置と、被検体に高周波パルスを照射するRFコイルと、被検体からの磁気共鳴信号を受信する受信コイルと、受信した磁気共鳴信号を処理して前記断面画像を表示するコンピュータシステムとを有している。
 MRI装置の性能向上の手段として、傾斜磁場の磁場強度の向上と傾斜磁場のパルスの高速駆動がある。これらは、撮像時間の短縮と断面画像の画質の向上に寄与し、近年盛んに使用されるようになった高速撮像法で多用されている。これは、傾斜磁場コイル装置の駆動電源の性能向上により、高速なスイッチングと大電流の通電が可能になったことによっている。
 しかし、傾斜磁場コイル装置には急峻に変化するパルス状の大電流が通電されるため、傾斜磁場コイル装置の有する傾斜磁場コイル内に渦電流が発生し、傾斜磁場コイルの発熱により、傾斜磁場コイル及びその周辺の温度上昇が問題になる場合が生じてきた。さらに、この渦電流は撮像領域に不要な磁場を発生させるため、傾斜磁場の傾斜勾配の精度を悪化させる原因となってきた。
 なお、渦電流の発生を抑制する方法としては、傾斜磁場コイルに接続する引き出し線を複数の細線とする方法が提案されている(特許文献1参照)。
特開平10-216102号公報(図6)
 MRI装置の市場における要請として、被検体すなわち患者が閉所感を受けないように、被検体が入る空間はできるだけ広くすることが求められている。また、検査側の要請として、できるだけ大きな撮像領域が得られることが求められてもいる。一方、静磁場を発生させる磁石は設置位置の制約からできるだけ小さくすることが求められている。これらのことから、静磁場を発生する磁石と撮像領域の間に配置される傾斜磁場コイルは、薄くすることが求められる。このため、傾斜磁場コイルを構成する導体には薄い銅板を使用することが多く、この銅板をエッチング加工や切断加工することにより、傾斜磁場の形成に必要な渦巻状のパターンのコイル線が形成されている。
 薄い銅板のコイル線に、前記急峻に変化するパルス状の大電流によって形成された磁場が交差すると、コイル線内に渦電流が生じ、温度上昇の問題が生じると考えられる。コイル線内の渦電流の発生を抑制するため、コイル線の全体を細線化することが考えられるが、コイル線全体の抵抗成分が増大するので、前記急峻に変化するパルス状の大電流が流れることによる発熱量が増大してしまう。
 このように、渦電流による発熱と、前記急峻に変化するパルス状の大電流による発熱とは、一見、トレードオフの関係にあると考えられる。しかし、両者の発熱を使用可能な範囲内で抑制できれば有用である。
 そこで、本発明の目的は、渦電流による発熱と、前記急峻に変化するパルス状の大電流による発熱とを、使用可能な範囲内に抑制可能な傾斜磁場コイル装置および、この傾斜磁場コイル装置を用いた磁気共鳴イメージング装置を提供することにある。
 前記目的を達成するために、本発明は、傾斜磁場が発生した際に、前記傾斜磁場を発生させる第1順コイル、第2順コイル、第1逆コイルと第2逆コイルの少なくとも1つのコイル(前記傾斜磁場コイル)に、交差する磁場の磁場強度が異なる低磁場領域と前記低磁場領域より高い高磁場領域とが生じ、前記高磁場領域におけるコイル線の線幅は、前記低磁場領域におけるコイル線の線幅より狭い傾斜磁場コイル装置であることを特徴とする。また、このような傾斜磁場コイル装置を有する磁気共鳴イメージング装置であることを特徴とする。
 本発明によれば、渦電流による発熱と、前記急峻に変化するパルス状の大電流による発熱とを、使用可能な範囲内に抑制可能な傾斜磁場コイル装置および、この傾斜磁場コイル装置を用いた磁気共鳴イメージング装置を提供することができる。
本発明の第1の実施形態に係る磁気共鳴イメージング装置の斜視図である。 本発明の第1の実施形態に係る磁気共鳴イメージング装置を対称軸(z軸)を含むy-z平面で切断した断面図である。 y軸傾斜磁場メインコイル層の斜視図である。 y軸傾斜磁場シールドコイル層の斜視図である。 y軸傾斜磁場メインコイル層とy軸傾斜磁場シールドコイル層を積層した傾斜磁場コイル装置の斜視図である。 (a)は、対称軸(z軸)を含むy-z平面内の磁束密度の分布図であり、(b)は、傾斜磁場メインコイルの第1順コイルと第1逆コイルを周方向に展開した展開図である。 x軸傾斜磁場メインコイル層の斜視図である。 本発明の第2の実施形態に係る磁気共鳴イメージング装置の斜視図である。 本発明の第2の実施形態に係る磁気共鳴イメージング装置を対称軸(z軸)を含むy-z平面で切断した断面図である。 (a)は、対称軸(z軸)を含むy-z平面内の磁束密度の分布図であり、(b)は、傾斜磁場メインコイルである第1順コイルと第1逆コイルの平面図である。
符号の説明
 1   磁気共鳴イメージング(MRI)装置
 2   静磁場コイル装置
 2a  静磁場メインコイル(超伝導コイル)
 2b  静磁場シールドコイル(超伝導コイル)
 2c  真空容器
 2d  熱輻射シールド
 2e  冷媒容器
 3   傾斜磁場コイル装置
 4   RFコイル
 5   被検体(患者)
 6   ベッド
 7   静磁場の向き
 8   撮像領域(中央領域)
 9   傾斜磁場
 10  対称軸
 11a 第1順コイル(傾斜磁場メインコイル)
 11b 第2順コイル(傾斜磁場メインコイル)
 11c 第1逆コイル(傾斜磁場メインコイル)
 11d 第2逆コイル(傾斜磁場メインコイル)
 12a、12b、12c、12d 傾斜磁場シールドコイル
 13  傾斜磁場メインコイル層
 14  傾斜磁場シールドコイル層
 16、16a、16b 基材
 17  電流方向の例
 18  傾斜磁場メインコイルに交差する磁場
 19  磁力線
 20  傾斜磁場メインコイルの渦巻き(ターン)の中心
 21  高磁場領域
 22  低磁場領域
 23  連結柱
 24  コイル線
 次に、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。なお、各図において、共通する部分には同一の符号を付し重複した説明を省略する。
(第1の実施形態)
 図1に、本発明の第1の実施形態に係るMRI(磁気共鳴イメージング)装置1の斜視図を示す。MRI装置1は、ベッド6に横たわった被検体5が挿入される撮像領域8に、均一な静磁場を生成する静磁場コイル装置2と、撮像領域8に位置情報を付与するために空間的に磁場強度が傾斜勾配した傾斜磁場をパルス状に発生させる傾斜磁場コイル装置3と、撮像領域8に挿入された被検体5に高周波パルスを照射するRFコイル4と、被検体5からの磁気共鳴信号を受信する受信コイル(図示省略)と、受信した磁気共鳴信号を処理して被検体5の断面画像を表示するコンピュータシステム(図示省略)とを有している。静磁場コイル装置2と、傾斜磁場コイル装置3と、RFコイル4とは、対称軸10を共通の軸とする円筒形状をしており、静磁場コイル装置2の内側面に対向するように、傾斜磁場コイル装置3の外側面が配置され、傾斜磁場コイル装置3の内側面に対向するように、RFコイル4の外側面が配置されている。
 RFコイル4の内側面で囲まれた対称軸10の側に撮像領域8が設けられている。この撮像領域8に挿入される被検体5に閉所感を与えないように、また、できるだけ大きな撮像領域8が得られるように、RFコイル4の内径はできるだけ大きいことが求められ、また、MRI装置1の設置面積をできるだけ小さくできるように、静磁場コイル装置2の外径はできるだけ小さいことが求められている。このため、傾斜磁場コイル装置3は、静磁場コイル装置2とRFコイル4とともに、できるだけ薄くなるように形成されている。また、対称軸10と平行にz軸を設定し、鉛直方向にy軸を設定し、z軸とy軸とに直角の方向にx軸を設定している。
 図2に、本発明の第1の実施形態に係る磁気共鳴イメージング装置1を対称軸(z軸)10を含むy-z平面で切断した断面図を示す。前記静磁場コイル装置2には、撮像領域8に均一で強力な静磁場7を生成するために、超伝導コイルである静磁場メインコイル2aと静磁場シールドコイル2bとが用いられている。一対の静磁場メインコイル2aは、撮像領域8に強力で均一な静磁場7を生成し、一対の静磁場シールドコイル2bは、静磁場7を生成したことに起因し静磁場コイル装置2の外周側に漏れる漏れ磁場を抑制している。一対の静磁場メインコイル2aと一対の静磁場シールドコイル2bはそれぞれ、前記対称軸10を軸とする円環形状をしている。
 一対の静磁場メインコイル2aと一対の静磁場シールドコイル2bは、図2に示すように、3層構造の容器内に収納されている。まず、一対の静磁場メインコイル2aと一対の静磁場シールドコイル2bは、冷媒の液体ヘリウム(He)と共に冷媒容器2eに内包されている。冷媒容器2eは内部への熱輻射を遮断する熱輻射シールド2dに内包されている。そして、真空容器2cは、冷媒容器2e及び熱輻射シールド2dを内包しつつ、内部を真空に保持している。真空容器2cは、普通の室温の室内に配置されても、真空容器2c内が真空になっているので、室内の熱が伝導や対流で、冷媒容器2eに伝わることはない。また、熱輻射シールド2dによって、室内の熱が輻射によって真空容器2cから冷媒容器2eに伝わることはない。このため、一対の静磁場メインコイル2aと一対の静磁場シールドコイル2bは、冷媒の温度である極低温に安定して設定することができ、超伝導電磁石として機能させることができる。
 傾斜磁場コイル装置3は、撮像領域8において、任意の方向に静磁場7と同じ方向の磁場強度が傾斜した傾斜磁場9をパルス状に発生させる。通常、静磁場7の方向をz軸としてz軸と直交する2方向にx軸とy軸をとり、傾斜磁場コイル装置3は、x軸方向、y軸方向、z軸方向の3方向に独立な傾斜磁場9を、静磁場7に重ねて発生できるような機能を持っている。第1の実施形態では、図2に示すように、説明の便宜のため、y軸方向に傾斜した傾斜磁場9を例に説明する。
 図3に、y軸傾斜磁場メインコイル層13の斜視図を示す。y軸傾斜磁場メインコイル層13は、傾斜磁場コイル装置3内に設けられている。y軸傾斜磁場メインコイル層13は、渦巻き状の第1順コイル11aと、撮像領域8になる中央領域および対称軸10を挟むように配置され前記第1順コイル11aに対向する渦巻き状の第2順コイル11bと、撮像領域8(対称軸10)に対して前記第1順コイル11a側に配置される渦巻き状の第1逆コイル11cと、前記撮像領域8を挟むように前記第1逆コイル11cに対向する渦巻き状の第2逆コイル11dとを有している。第1順コイル11aと、第2順コイル11bと、第1逆コイル11cと、第2逆コイル11dは、前記対称軸10を軸とする円筒状の基材16aの周方向に沿って固定されている。第1順コイル11aと、第2順コイル11bと、第1逆コイル11cと、第2逆コイル11dとは、薄く形成するために、銅(Cu)やアルミニウム(Al)などの良導体の板を渦巻状のコイル線に切り抜いて製作されている。渦巻状に切り抜く手法としては、エッチング、ウォータージェット、パンチングによる切断などの手法を用いることができる。
 後記にて詳述するが、第1の実施形態では、図3に示すように、第1順コイル11aと、第2順コイル11bと、第1逆コイル11cと、第2逆コイル11dとのそれぞれにおいて、コイル内の領域によって、コイル線の線幅が異なったり、コイル線間の間隔が異なったりしている。
 そして、第2順コイル11bに第1順コイル11aに流す電流と同じ方向の電流を流し、第1逆コイル11cと第2逆コイル11dに第1順コイル11aとは逆方向の電流を流すことにより、図2に示すような、撮像領域8に、y軸方向に磁場強度の傾斜した傾斜磁場9を発生させることができる。すなわち、第1順コイル11aと、第2順コイル11bと、第1逆コイル11cと、第2逆コイル11dは、いわゆる傾斜磁場メインコイルとして機能している。
 図4に、y軸傾斜磁場シールドコイル層14の斜視図を示す。y軸傾斜磁場シールドコイル層14も、図3のy軸傾斜磁場メインコイル層13と同様に、傾斜磁場コイル装置3内に設けられている。y軸傾斜磁場シールドコイル層14は、渦巻き状の傾斜磁場シールドコイル12aと、撮像領域8になる中央領域および対称軸10を挟むように配置され前記傾斜磁場シールドコイル12aに対向する渦巻き状の傾斜磁場シールドコイル12bと、撮像領域8(対称軸10)に対して前記傾斜磁場シールドコイル12a側に配置される渦巻き状の傾斜磁場シールドコイル12cと、前記撮像領域8を挟むように前記傾斜磁場シールドコイル12cに対向する渦巻き状の傾斜磁場シールドコイル12dとを有している。傾斜磁場シールドコイル12a、12b、12c、12dは、前記対称軸10を軸とする円筒状の基材16bの周方向に沿って固定されている。傾斜磁場シールドコイル12a、12b、12c、12dは、薄く形成するために、銅またはアルミニウムなどの良導体の板を渦巻状のコイル線に切り抜いて製作されている。渦巻状に切り抜く手法としては、エッチング、ウォータージェット、パンチングによる切断などの手法を用いることができる。
 図4に示すように、傾斜磁場シールドコイル12a、12b、12c、12dのそれぞれにおいては、コイル内の領域によらず、コイル線の線幅はほぼ一定になり、コイル線間の間隔もほぼ一定になっている。また、傾斜磁場シールドコイル12a、12b、12c、12dのコイル線の巻き数は、第1順コイル11a、第2順コイル11b、第1逆コイル11c、第2逆コイル11dのコイル線の巻き数より少なくなっている。
 図5に、y軸傾斜磁場メインコイル層13とy軸傾斜磁場シールドコイル層14を積層した傾斜磁場コイル装置3の一部分の斜視図を示す。基材16aの外周側面に、基材16bの内周側面が配置され、基材16aと基材16bとが一体となって円筒形状の基材16が構成されている。第1順コイル11aの外形より、傾斜磁場シールドコイル12aの外形はひとまわり大きくなっており、傾斜磁場シールドコイル12aは、第1順コイル11aの全体を覆うように配置されている。
 図5に、傾斜磁場シールドコイル12aと第1順コイル11aに流す電流の方向17を示すが、傾斜磁場シールドコイル12aに第1順コイル11aとは逆向きで同じ大きさの電流を流すと、傾斜磁場シールドコイル12aのコイル線の巻き数が第1順コイル11aのコイル線の巻き数より少なくなっているので、撮像領域8における傾斜磁場9を残したまま、傾斜磁場コイル装置3の外周側面の外側に生じる磁場を打ち消すことができる。傾斜磁場シールドコイル12aが第1順コイル11aを覆うように配置されるのと同様に、傾斜磁場シールドコイル12bは第2順コイル11b(図3参照)を覆うように配置され、傾斜磁場シールドコイル12c(図4参照)は第1逆コイル11c(図3参照)を覆うように配置され、傾斜磁場シールドコイル12d(図4参照)は第2逆コイル11d(図3参照)を覆うように配置されている。
 図6(a)に、傾斜磁場9が撮像領域8に形成されているときの、対称軸(z軸)10を含むy-z平面内の磁力線19及び磁束密度の分布図を示す。傾斜磁場9が撮像領域8に形成されているときには、第1順コイル11aと、第2順コイル11bと、第1逆コイル11cと、第2逆コイル11dとには、コイルに交差する磁場18があることがわかる。コイル11a~11dに交差する磁場18のコイル11a~11dに対する直交成分が、コイル11a~11dに印加される急峻に変化するパルス状の大電流に伴って増減することにより、コイル11a~11dは渦電流が発生しやすい状況になる。
 ここで、前記交差する磁場18の直交成分の強度は、コイル11a~11d毎のコイル内で強弱の分布があり、コイル11a~11dの外形に対して周辺部より中心20に向かうほど強度が高くなるようになっている。具体的には、図6(b)にコイル11a~11dを周方向に展開した展開図を示す(なお、展開すると、コイル11bはコイル11aに同形になり、コイル11dはコイル11cに同形になる)が、点線で囲まれた高磁場領域21は、その周囲の低磁場領域22より、前記交差する磁場18の直交成分の強度が強くなっている。高磁場領域21は、コイル11a~11dの外形のz軸方向の幅に対する中央部に位置している。
 渦電流の発生しやすさは、前記交差する磁場18の直交成分の強度の時間変化率に比例するので、パルス状の大電流によって前記交差する磁場18がオンオフしている場合には、パルスの立ち上がり時間はコイル内のどの領域でも同じであるので、前記交差する磁場18の直交成分の強度の時間変化率の大小は、前記交差する磁場18の直交成分の強度の大小に比例することになる。したがって、コイル11a~11dの外形に対して周辺部より中心20に向かって移動するほど、渦電流が発生しやすくなっていると考えられる。具体的には、図6(b)に示すように、点線で囲まれた高磁場領域21は、その周囲の低磁場領域22より、渦電流が発生しやすくなっていると考えられる。
 そこで、図6(b)に示すように、高磁場領域21におけるコイル線24の線幅Dlhは、低磁場領域22におけるコイル線24の線幅Dllより狭くしている。また、高磁場領域21におけるコイル線24間の間隔Dshは、低磁場領域22におけるコイル線24間の間隔Dslより広くしている。また、高磁場領域21におけるコイル線24の線幅Dlhは、高磁場領域21におけるコイル線24間の間隔Dshより狭くしている。一方で、低磁場領域22におけるコイル線24の線幅Dllは、低磁場領域22におけるコイル線24間の間隔Dslより広くしている。これらのことによれば、渦電流の発生しやすい高磁場領域21において、渦電流の形成されるスペースを小さくでき、渦電流を発生しにくくすることができる。低磁場領域22では、渦電流は発生しにくいので、コイル全体として、渦電流を発生しにくくすることができる。また、一方で、低磁場領域22でのコイル線24が低抵抗化できるので、コイル線24全体での高抵抗化を抑制でき、コイル線24に流れるパルス状の大電流による発熱を抑制することができる。
 狭くする高磁場領域21におけるコイル線24の線幅Dlhは、直交する傾斜磁場の磁束密度と、パルス状の大電流の交流成分の周波数と、コイル線24の板厚で決まり、例えば、直交する傾斜磁場が30mT以上、周波数が500Hzで、板厚が5mmの場合、線幅Dlhは、10mm以下とすることが適当である。
 なお、高磁場領域21は、コイル11a~11dの渦巻き状の複数のターンの内の、渦巻きの中心20側から少なくとも1ターン以上が配置されている領域にあればよく、コイル線24に流れるパルス状の電流の大きさに応じて、渦巻きの中心20側から何ターンまでを高磁場領域21に設定するかを決定すればよい。
 一方、図6(a)に示すように、傾斜磁場シールドコイル12a~12dには、磁場が交差していない。このことは、傾斜磁場シールドコイル12a~12dの外周側面の外側に生じる磁場が打ち消されていることを示している。そして、傾斜磁場シールドコイル12a~12dに磁場が交差していないことにより、傾斜磁場シールドコイル12a~12dに渦電流が発生することはない。
 なお、撮像領域8のz軸方向の端部のz軸座標は、コイル11a~11dの渦巻きの中心20のz軸座標の近傍に配置されるように、コイル11a~11dは撮像領域8に対して配置されている。
 図7に、x軸傾斜磁場メインコイル層13の斜視図を示す。x軸傾斜磁場メインコイル層13によれば、x軸方向に磁場強度が傾斜した傾斜磁場を、撮像領域8において生成することができる。図7のx軸傾斜磁場メインコイル層13は、図3のy軸傾斜磁場メインコイル層13と比較して、対称軸10を回転軸として90度回転させ、半径方向に拡大あるいは縮小させy軸傾斜磁場メインコイル層13に重ねることが可能な構造をしている。また、同様に、図4のy軸傾斜磁場シールドコイル層14を90度回転させ拡縮した構造を有するx軸傾斜磁場シールドコイル層も傾斜磁場コイル装置3は有している。これらx軸傾斜磁場メインコイル層13とx軸傾斜磁場シールドコイル層とによっても、図6(a)の磁力線19及び磁束密度の分布図のy軸座標を、x軸座標に書き換えたような磁力線19及び磁束密度の分布を得ることができ、渦電流の発生抑制等に関し、前記y軸傾斜磁場メインコイル層13とy軸傾斜磁場シールドコイル層14と同様の効果を得ることができる。なお、傾斜磁場コイル装置3には、z軸方向に磁場強度が傾斜した傾斜磁場を、撮像領域8において生成することができるz軸傾斜磁場メインコイル層とz軸傾斜磁場シールドコイル層も有しているが詳細は省略する。
(第2の実施形態)
 図8に、本発明の第2の実施形態に係るMRI装置1の斜視図を示す。図2に示すように、第1の実施形態に係るMRI装置1は静磁場7の向きが水平方向である水平磁場型MRI装置であったのに対し、図8に示す第2の実施形態に係るMRI装置1は静磁場7の向きが垂直方向である垂直磁場型MRI装置になっている。
 MRI装置1は、ベッド6に横たわった被検体5が挿入される撮像領域8に対して上下から挟むように配置され、撮像領域8に均一な静磁場7を生成する上下一対の静磁場コイル装置2と、この上下一対の静磁場コイル装置2を離間して支持する連結柱23と、撮像領域8に位置情報を付与するために空間的に磁場強度が傾斜勾配した傾斜磁場をパルス状に発生させる傾斜磁場コイル装置3と、撮像領域8に挿入された被検体5に高周波パルスを照射するRFコイル4と、被検体5からの磁気共鳴信号を受信する受信コイル(図示省略)と、受信した磁気共鳴信号を処理して被検体5の断面画像を表示するコンピュータシステム(図示省略)とを有している。上下一対の静磁場コイル装置2と、傾斜磁場コイル装置3と、RFコイル4とは、対称軸10を共通の軸とする円板(円柱)形状をしている。被検体5は可動式のベッド6によって撮像領域8まで運ばれるが、上下一対の静磁場コイル装置2をつなぐのは細い連結柱23のみであるので、被検体5は周囲を見渡せ閉所感を軽減することができる。また、対称軸10と平行な鉛直方向にz軸を設定し、水平方向で互いに直角になるようにx軸とy軸とを設定している。
 図9に、本発明の第2の実施形態に係る磁気共鳴イメージング装置を対称軸10(z軸)を含むy-z平面で切断した断面図を示す。上下一対の静磁場コイル装置2には、上下一対の静磁場メインコイル2aと、上下一対の静磁場シールドコイル2bとが用いられている。上下一対の静磁場メインコイル2aと上下一対の静磁場シールドコイル2bはそれぞれ、前記対称軸10を軸とする円環形状をしている。また、上下一対の静磁場メインコイル2aと上下一対の静磁場シールドコイル2bは、第1の実施形態と同様に、冷媒容器2eと熱輻射シールド2dと真空容器2cとからなる3層構造の容器内に収納されている。
 傾斜磁場コイル装置3も上下一対有し、上下一対の傾斜磁場コイル装置3は、撮像領域8を挟んで上下に配置されている。RFコイル4も上下一対有し、上下一対のRFコイル4は、撮像領域8を挟んで上下に配置されている。上下一対の傾斜磁場コイル装置3は、任意の方向に静磁場7と同じ方向の磁場強度が傾斜した傾斜磁場9をパルス状に発生させる。通常、静磁場7の方向をz軸としてz軸と直交する2方向にx軸とy軸をとり、傾斜磁場コイル装置3は、x軸方向、y軸方向、z軸方向の3方向に独立な傾斜磁場9を、静磁場7に重ねて発生できるような機能を持っている。第2の実施形態では、図9に示すように、説明の便宜のため、y軸方向に傾斜した傾斜磁場9を例に説明する。
 図10(a)に、y軸方向に傾斜した傾斜磁場9が発生しているときの、対称軸10(z軸)を含むy-z平面内の磁力線19および磁束密度の分布図を示す。上下一対の傾斜磁場コイル装置3は、上側の対に、前記第1順コイル11aと、前記第1逆コイル11cと、傾斜磁場シールドコイル12a、12cを配置し、下側の対に、前記第2順コイル11bと、前記第2逆コイル11dと、傾斜磁場シールドコイル12b、12dを配置している。第2実施形態のコイル11a~11dは、第1実施形態のコイル11a~11dが円筒側面の曲面上に配置されていたのに対し、平面上に配置されている点が異なっている。また、図10(b)に、傾斜磁場メインコイルである第1順コイル11aと第1逆コイル11cの平面図を示すが、第1順コイル11aと第1逆コイル11cのそれぞれの外形が半円形になっている点が異なっている。そして、第1順コイル11aと第1逆コイル11cとが合わさった外形が略円形になっている。そして、第2順コイル11bと第2逆コイル11dは、第1順コイル11aと第1逆コイル11cに対して合同になっている。第2実施形態の傾斜磁場シールドコイル12a~12dに対しても、第1実施形態の傾斜磁場シールドコイル12a~12dと比べて、平面上に配置されている点が異なっている。
 そして、第2順コイル11bに第1順コイル11aに流す電流と同じ方向の電流を流し、第1逆コイル11cと第2逆コイル11dに第1順コイル11aとは逆方向の電流を流すことにより、図10(a)に示すような、z軸方向に磁場強度の傾斜した傾斜磁場9を、撮像領域8に発生させることができる。
 そこで、図10(b)に示すように、第1の実施形態と同様に、前記交差する磁場18(図10(a)参照)の直交成分の強度が強くなっている高磁場領域21におけるコイル線24の線幅Dlhは、交差する磁場18の直交成分の強度が高磁場領域21より低い低磁場領域22におけるコイル線24の線幅Dllより狭くなっている。高磁場領域21は、コイル11a~11dの外形のy軸方向の幅に対する中央部に位置しており、小括弧(と、小括弧(のような形状をしている。また、高磁場領域21におけるコイル線24間の間隔Dshは、低磁場領域22におけるコイル線24間の間隔Dslより広くしている。また、高磁場領域21におけるコイル線24の線幅Dlhは、高磁場領域21におけるコイル線24間の間隔Dshより狭くしている。一方で、低磁場領域22におけるコイル線24の線幅Dllは、低磁場領域22におけるコイル線24間の間隔Dslより広くしている。これらのことによれば、渦電流の発生しやすい高磁場領域21において、渦電流の形成されるスペースを小さくでき、渦電流を発生しにくくすることができる。低磁場領域22では、渦電流は発生しにくいので、コイル全体として、渦電流を発生しにくくすることができる。また、一方で、低磁場領域22でのコイル線24が低抵抗化できるので、コイル線24全体での高抵抗化を抑制でき、コイル線24に流れるパルス状の大電流による発熱を抑制することができる。
 また、第2の実施形態では、図10(a)に示すように、y軸方向に傾斜した傾斜磁場9について説明したが、x軸方向に傾斜した傾斜磁場9についてであれば、図10(b)のx軸座標とy軸座標を入れ替えたようにコイル11a~11dを配置することによって、図10(a)の磁力線19及び磁束密度の分布図のy軸座標を、x軸座標に書き換えたような磁力線19及び磁束密度の分布を得ることができ、渦電流の発生抑制等に関し、前記y軸方向に傾斜した傾斜磁場9の場合と同様の効果を得ることができる。

Claims (6)

  1.  渦巻き状の第1順コイルと、中央領域を挟むように前記第1順コイルに対向する渦巻き状の第2順コイルと、前記中央領域に対して前記第1順コイル側に配置される渦巻き状の第1逆コイルと、前記中央領域を挟むように前記第1逆コイルに対向する渦巻き状の第2逆コイルとを有し、前記第2順コイルに前記第1順コイルに流す電流と同じ方向の電流を流し、前記第1逆コイルと前記第2逆コイルに前記第1順コイルとは逆方向の電流を流して、前記中央領域に傾斜磁場を発生させる傾斜磁場コイル装置において、
     前記傾斜磁場が発生した際に、前記第1順コイル、前記第2順コイル、前記第1逆コイルと前記第2逆コイルの少なくとも1つのコイルに、交差する磁場の磁場強度が異なる低磁場領域と前記低磁場領域より高い高磁場領域とが生じ、前記高磁場領域におけるコイル線の線幅は、前記低磁場領域におけるコイル線の線幅より狭いことを特徴とする傾斜磁場コイル装置。
  2.  前記高磁場領域における前記コイル線間の間隔は、前記低磁場領域における前記コイル線間の間隔より広いことを特徴とする請求の範囲第1項に記載の傾斜磁場コイル装置。
  3.  前記高磁場領域における前記コイル線の線幅は、前記高磁場領域における前記コイル線間の間隔より狭いことを特徴とする請求の範囲第1項又は請求の範囲第2項に記載の傾斜磁場コイル装置。
  4.  前記低磁場領域における前記コイル線の線幅は、前記低磁場領域における前記コイル線間の間隔より広いことを特徴とする請求の範囲第1項又は請求の範囲第2項に記載の傾斜磁場コイル装置。
  5.  前記高磁場領域は、前記コイルの前記渦巻き状の複数のターンの内の、前記渦巻きの中心側から少なくとも1ターン以上が配置されている領域にあることを特徴とする請求の範囲第1項乃至請求の範囲第4項のいずれか1項に記載の傾斜磁場コイル装置。
  6.  請求の範囲第1項乃至請求の範囲第5項のいずれか1項に記載の傾斜磁場コイル装置と、前記中央領域において、前記傾斜磁場に重ねて、静磁場を形成する静磁場コイル装置とを有することを特徴とする磁気共鳴イメージング装置。
PCT/JP2009/051503 2008-02-05 2009-01-29 傾斜磁場コイル装置および磁気共鳴イメージング装置 WO2009099001A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/866,327 US8587313B2 (en) 2008-02-05 2009-01-29 Gradient magnetic field coil device and magnetic resonance imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008024805A JP5352092B2 (ja) 2008-02-05 2008-02-05 傾斜磁場コイル装置および磁気共鳴イメージング装置
JP2008-024805 2008-02-05

Publications (1)

Publication Number Publication Date
WO2009099001A1 true WO2009099001A1 (ja) 2009-08-13

Family

ID=40952077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051503 WO2009099001A1 (ja) 2008-02-05 2009-01-29 傾斜磁場コイル装置および磁気共鳴イメージング装置

Country Status (3)

Country Link
US (1) US8587313B2 (ja)
JP (1) JP5352092B2 (ja)
WO (1) WO2009099001A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034467A1 (ja) * 2012-08-27 2014-03-06 株式会社 東芝 磁気共鳴イメージング装置、磁気共鳴イメージング装置用の傾斜磁場コイルユニット及び磁気共鳴イメージング装置用の傾斜磁場コイルユニットの製造方法
US20150077118A1 (en) * 2009-11-20 2015-03-19 Viewray Incorporated Self-Shielded Split Gradient Coil
US11209509B2 (en) 2018-05-16 2021-12-28 Viewray Technologies, Inc. Resistive electromagnet systems and methods
US11378629B2 (en) 2016-06-22 2022-07-05 Viewray Technologies, Inc. Magnetic resonance imaging
US12000914B2 (en) 2021-12-22 2024-06-04 Viewray Systems, Inc. Resistive electromagnet systems and methods

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5497785B2 (ja) * 2009-11-27 2014-05-21 株式会社日立メディコ 傾斜磁場コイルおよび核磁気共鳴撮像装置
US9182465B2 (en) * 2011-03-04 2015-11-10 Siemens Aktiengesellschaft MRT gradient system with integrated main magnetic field generation
CN102508183B (zh) * 2011-11-11 2013-09-11 辽宁开普医疗系统有限公司 一种负载自适应控制的数字可变频pwm梯度放大器
US9927507B2 (en) 2012-06-27 2018-03-27 Hitachi, Ltd. Gradient magnetic field coil device and magnetic resonance imaging device
JP2016131751A (ja) * 2015-01-20 2016-07-25 東芝メディカルシステムズ株式会社 傾斜磁場コイル及び磁気共鳴イメージング装置
US10295630B2 (en) * 2015-08-28 2019-05-21 General Electric Company Gradient coil with variable dimension

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638942A (ja) * 1992-03-13 1994-02-15 Toshiba Corp 磁気共鳴映像装置の勾配コイル及びこの製造方法
JPH07303624A (ja) * 1993-06-21 1995-11-21 Picker Internatl Inc 勾配コイル
JPH0950909A (ja) * 1995-08-04 1997-02-18 Mitsubishi Electric Corp 磁場発生装置およびその製造方法
US5804968A (en) * 1997-01-29 1998-09-08 Picker International, Inc. Gradient coils with reduced eddy currents
JP2000082627A (ja) * 1998-07-01 2000-03-21 Toshiba Corp コイル装置、及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5289128A (en) * 1992-03-27 1994-02-22 Picker International, Inc. Superconducting gradient shield coils
US5177442A (en) * 1991-07-01 1993-01-05 General Electric Company Transverse gradient coils for imaging the head
US5488299A (en) 1992-03-13 1996-01-30 Kabushiki Kaisha Toshiba Nuclear magnetic resonance imaging with improved image quality and operation efficiency
JPH07313490A (ja) * 1994-05-26 1995-12-05 Hitachi Medical Corp 磁気共鳴イメージング装置用傾斜磁場発生装置
JPH10216102A (ja) 1997-02-03 1998-08-18 Toshiba Corp 勾配磁場コイル装置
US6311389B1 (en) 1998-07-01 2001-11-06 Kabushiki Kaisha Toshiba Gradient magnetic coil apparatus and method of manufacturing the same
JP4004661B2 (ja) * 1998-09-11 2007-11-07 株式会社日立メディコ 磁気共鳴イメージング装置
JP4202564B2 (ja) * 1999-11-26 2008-12-24 株式会社日立メディコ 磁気共鳴イメージング装置用磁場発生装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638942A (ja) * 1992-03-13 1994-02-15 Toshiba Corp 磁気共鳴映像装置の勾配コイル及びこの製造方法
JPH07303624A (ja) * 1993-06-21 1995-11-21 Picker Internatl Inc 勾配コイル
JPH0950909A (ja) * 1995-08-04 1997-02-18 Mitsubishi Electric Corp 磁場発生装置およびその製造方法
US5804968A (en) * 1997-01-29 1998-09-08 Picker International, Inc. Gradient coils with reduced eddy currents
JP2000082627A (ja) * 1998-07-01 2000-03-21 Toshiba Corp コイル装置、及びその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150077118A1 (en) * 2009-11-20 2015-03-19 Viewray Incorporated Self-Shielded Split Gradient Coil
US10132888B2 (en) * 2009-11-20 2018-11-20 Viewray Technologies, Inc. Self-shielded split gradient coil
WO2014034467A1 (ja) * 2012-08-27 2014-03-06 株式会社 東芝 磁気共鳴イメージング装置、磁気共鳴イメージング装置用の傾斜磁場コイルユニット及び磁気共鳴イメージング装置用の傾斜磁場コイルユニットの製造方法
CN103857334A (zh) * 2012-08-27 2014-06-11 株式会社东芝 磁共振成像装置、磁共振成像装置用的梯度磁场线圈单元以及磁共振成像装置用的梯度磁场线圈单元的制造方法
US11378629B2 (en) 2016-06-22 2022-07-05 Viewray Technologies, Inc. Magnetic resonance imaging
US11768257B2 (en) 2016-06-22 2023-09-26 Viewray Technologies, Inc. Magnetic resonance imaging
US11892523B2 (en) 2016-06-22 2024-02-06 Viewray Technologies, Inc. Magnetic resonance imaging
US11209509B2 (en) 2018-05-16 2021-12-28 Viewray Technologies, Inc. Resistive electromagnet systems and methods
US12000914B2 (en) 2021-12-22 2024-06-04 Viewray Systems, Inc. Resistive electromagnet systems and methods

Also Published As

Publication number Publication date
JP5352092B2 (ja) 2013-11-27
US20100321019A1 (en) 2010-12-23
JP2009183386A (ja) 2009-08-20
US8587313B2 (en) 2013-11-19

Similar Documents

Publication Publication Date Title
JP5352092B2 (ja) 傾斜磁場コイル装置および磁気共鳴イメージング装置
WO2011040157A1 (ja) 傾斜磁場コイル、及び磁気共鳴イメージング装置
EP1978373A1 (en) Gradient shield coil for a magnetic resonance imaging apparatus
EP1811314A1 (en) Electromagnet apparatus
JP4852091B2 (ja) 傾斜磁場コイル装置、核磁気共鳴撮像装置、および、コイルパターンの設計方法
JP5848824B2 (ja) 傾斜磁場コイル装置及び磁気共鳴イメージング装置
JP5202491B2 (ja) 磁気共鳴イメージング装置
JP5204813B2 (ja) 傾斜磁場コイル、及び、磁気共鳴イメージング装置
JP5750121B2 (ja) 傾斜磁場コイル装置および磁気共鳴イメージング装置
WO2012014914A1 (ja) 傾斜磁場コイル装置、及び、磁気共鳴イメージング装置
JP2008125893A (ja) 電磁石装置及び磁気共鳴撮像装置
JP5819215B2 (ja) 傾斜磁場コイル、及び、磁気共鳴イメージング装置
JP5891063B2 (ja) 磁気共鳴イメージング装置
JP2011062360A (ja) 開放型電磁石装置及び磁気共鳴イメージング装置
JP5931612B2 (ja) 磁気共鳴イメージング装置
JP5199426B2 (ja) 傾斜磁場コイル装置、核磁気共鳴撮像装置、および、コイルパターンの設計方法
JP2014039633A (ja) 磁気共鳴イメージング装置
JP5416528B2 (ja) 磁気共鳴イメージング装置
JP4852053B2 (ja) 磁気共鳴イメージング装置
JP5901561B2 (ja) 磁気共鳴イメージング装置
JP2010088644A (ja) 磁気共鳴イメージング装置
JP2011240182A (ja) 電磁石装置及び磁気共鳴撮像装置
JP2008130707A (ja) 超電導磁石装置及び核磁気共鳴イメージング装置
JP2011240164A (ja) 傾斜磁場コイル装置、核磁気共鳴撮像装置、および、コイルパターンの設計方法
JP2014236827A (ja) 磁気共鳴イメージング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09707209

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12866327

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09707209

Country of ref document: EP

Kind code of ref document: A1