WO2009098908A1 - 新規なヒドロキシルラジカル発生法、及び当該方法により発生したヒドロキシルラジカルを利用する抗ウイルス材 - Google Patents
新規なヒドロキシルラジカル発生法、及び当該方法により発生したヒドロキシルラジカルを利用する抗ウイルス材 Download PDFInfo
- Publication number
- WO2009098908A1 WO2009098908A1 PCT/JP2009/000516 JP2009000516W WO2009098908A1 WO 2009098908 A1 WO2009098908 A1 WO 2009098908A1 JP 2009000516 W JP2009000516 W JP 2009000516W WO 2009098908 A1 WO2009098908 A1 WO 2009098908A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydroxide
- virus
- oxide
- dolomite
- metal oxide
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/16—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/06—Aluminium, calcium or magnesium; Compounds thereof, e.g. clay
- A61K33/08—Oxides; Hydroxides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/14—Alkali metal chlorides; Alkaline earth metal chlorides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the present invention relates to a method for efficiently generating hydroxyl radicals, and an antiviral material that reliably and clearly inactivates viruses using hydroxyl radicals generated by the method.
- the hydroxyl radical is a radical derived from a hydroxyl group, represented by .OH, and is a kind of molecular species called so-called active oxygen. Since hydroxyl radicals are highly reactive and have strong oxidizing power among active oxygens, it has been known that they react with proteins, lipids, carbohydrates, nucleic acids (DNA, RNA) and the like, and in particular oxidize lipids in a chain.
- the hydroxyl radical generation method described above needs to generate hydroxyl radicals under conditions that may cause danger to the human body, such as using hydrogen peroxide, irradiating with ultraviolet rays or ozone, using corona discharge, or plasma discharge. Therefore, it has been desired to develop a method for generating hydroxyl radicals more safely and easily.
- a method for generating hydroxyl radicals a method using a silver-supported photocatalyst is known (for example, Japanese Patent Application Laid-Open No. 2004-337562), and viruses and bacteria are inactivated by hydroxyl radicals generated thereby. It is known that
- the antiviral agent using other conventionally known virus inactivation methods is a means of applying the antiviral agent to the target virus because the inactivation mechanism of the virus is unclear and the probability of inactive expression is low.
- application means in the following. Even in the antiviral agents of the following (a) and (b) by the ion method and gas method whose inactivation mechanism is relatively clear, the effect of virus inactivation is unclear, and the content and type of application means are limited. The same is true for the existence of.
- a two-component antiviral agent having a cationic group such as a quaternary ammonium base having antiviral activity and a hydrocarbon chain (for example, saturated fatty acid) has been proposed (see Japanese Patent No. 3222471) ).
- virus inactivation mechanism attracts hydrophobic virus envelopes by hydrocarbon chains and inactivates viruses with envelopes (paramyxoviruses, coronaviruses, poxviruses, etc.) by cationic groups near the virus. , The probability of inactivity is low.
- the application products having antiviral properties are obtained by covalently fixing an antiviral agent to a cloth, from which protective products, medical worker wear clothes (wound covers, burn covers), and patient treatment products (sutures, Bandage), etc., so there are restrictions on the means of application.
- the virus inactivation mechanism in this case is 1) A hydrophilic material mixed with a chlorite anion source (chlorite, etc.) is included in the hydrophobic particles, and moisture adsorbed on the hydrophobic particles is taken into the hydrophobic particles. 2) Chlorite and the like are hydrolyzed by the incorporated water to release hydronium ions, and the virus is inactivated by chlorine oxide gas released by reaction with the chlorite anion of the hydrophobic particles.
- the probability of inactivating the virus is unknown, and the application range of the application means is narrow.
- the conventional antiviral agent is based on the ion method, gas method and other methods, the contents of the inactive mechanism are unclear, the probability of inactivating the virus is unknown, and the application means There were restrictions.
- applying means used in the following description of the present invention is also used in the same meaning as the means for applying the antiviral agent of the prior art.
- the inventor of the virus and the means for specifically inactivating the virus are detailed by experiments by the present inventor along with a method for generating hydroxyl radicals more safely, simply and efficiently.
- the present invention was obtained by finding some scientific facts regarding virus inactivation.
- the object of the present invention is to provide a method for generating hydroxyl radicals in a safer, simpler and more efficient manner than conventional methods for generating hydroxyl radicals such as the Fenton reaction.
- the present invention provides an antiviral material comprising a metal oxide powder and a hydroxide that enable generation of such hydroxyl radicals based on the knowledge that hydroxyl radicals inactivate viruses efficiently. Providing is also an issue.
- metal oxide powders selected from the group consisting of alkali metals, alkaline earth metals, metals from Group 4 to Group 12 of the periodic table or aluminum, hydroxides of alkali metals, alkalis Method for generating hydroxyl radicals by contacting with one or more hydroxides selected from hydroxides of earth metals, iron hydroxide, copper hydroxide, zinc hydroxide, aluminum hydroxide or ammonium hydroxide , (2) The method according to (1), wherein the metal oxide powder and the hydroxide are both contained in a dolomite digest obtained by firing dolomite and partially hydrating it.
- the digested dolomite is obtained by calcining the raw material dolomite at a temperature of 700 ° C. to 1300 ° C. for 1 to 20 hours and then cooling to room temperature, and then adding 35 to 60 parts by weight of water with respect to 100 parts by weight of dolomite.
- the method according to (2), which is obtained by contact, (4) calcination of the dolomite digest is held at a temperature rising rate of 5 to 10 ° C./min and a temperature of 700 to 1000 ° C.
- the weight ratio of metal oxide powder to hydroxide, that is, (metal oxide powder) / (hydroxide) is included in the range of 0.001 to 100, (1 )
- the hydroxide is one or more hydroxides selected from sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, aluminum hydroxide or ammonium hydroxide, (1) The method described in Is provided.
- the present invention provides: (7) One or more metal oxide powders selected from the group consisting of alkali metals, alkaline earth metals, metals from Group 4 to Group 12 of the periodic table or aluminum, hydroxides of alkali metals, alkalis Method for generating hydroxyl radicals by contacting with one or more hydroxides selected from hydroxides of earth metals, iron hydroxide, copper hydroxide, zinc hydroxide, aluminum hydroxide or ammonium hydroxide An antiviral material provided with is also provided.
- hydroxyl radicals can be generated safely, simply and efficiently without using conditions that may cause danger to the human body such as hydrogen peroxide, ultraviolet rays and corona discharge. it can.
- the antiviral material provided with the hydroxyl radical generating method in the present invention can be used in various applications as an antiviral material for preventing virus infection such as a mask, a curtain, and a protective clothing.
- the present invention provides an oxide powder of one or more metals selected from the group consisting of alkali metals, alkaline earth metals, metals from Groups 4 to 12 of the periodic table or aluminum, hydroxides of alkali metals, Hydroxyl radicals are generated by contacting with one or more hydroxides selected from alkaline earth metal hydroxides, iron hydroxide, copper hydroxide, zinc hydroxide, aluminum hydroxide or ammonium hydroxide, It was made based on the new knowledge.
- an oxide of one or more metals selected from the group consisting of alkali metals, alkaline earth metals, metals in Groups 4 to 12 of the periodic table, or aluminum, and hydroxides of alkali metals Method for generating hydroxyl radical by contacting with one or more hydroxides selected from hydroxides of alkaline earth metals, iron hydroxide, copper hydroxide, zinc hydroxide, aluminum hydroxide or ammonium hydroxide
- the oxide powder of one or more metals selected from the group consisting of alkali metals, alkaline earth metals, metals in Groups 4 to 12 of the periodic table, or aluminum is hydroxylated by reaction with hydroxide. Radical generation is possible, and any of a natural system (typically a metal oxide contained in a mineral) or a synthetic system may be used, or a single type or a plurality of types may be used.
- the metal oxide powder is preferably a powder having a larger specific surface area, particularly a porous powder, from the viewpoint of the efficiency of hydroxyl radical generation.
- the oxide powder of the natural metal includes a case where it is produced by chemical treatment or physical treatment of a mineral (for example, a mineral containing salt or double salt).
- a mineral for example, a mineral containing salt or double salt.
- the metal oxide derived from a mineral must be a metal oxide powder capable of generating hydroxyl radicals by reaction with a hydroxide (see Examples below).
- magnesium oxide, calcium oxide, copper oxide, zinc oxide, iron oxide, silver oxide, aluminum oxide, and the like are preferable from the viewpoint of easy reaction with hydroxide.
- the metal oxide contains a basic metal oxide such as magnesium oxide or calcium oxide, generation of hydroxyl radicals and expression of virus inactivation by the generated hydroxyl radicals are easy.
- metal oxide powders mineral-derived metal oxide powders or metal oxide-containing mineral powders (hereinafter referred to as “metal oxide powders”) are obtained by crushing, chemical treatment, physical treatment, pulverization of minerals, etc. , Sometimes referred to as a metal oxide powder of mineral origin).
- mineral-derived metal oxide powders and the like must be capable of generating hydroxyl radicals by reaction with hydroxides.
- the metal oxide-containing mineral powder does not inhibit the hydroxyl radical generation reaction, other mineral components may coexist.
- minerals for example, dolomite minerals, tourmaline minerals (for example, drabite, squall, elbamite and others), zeolite minerals, kaolin minerals, barley stones and other minerals can be used.
- dolomite minerals for example, drabite, squall, elbamite and others
- zeolite minerals kaolin minerals, barley stones and other minerals
- it is made into a coexistence system of metal oxide powder, metal oxide powder and hydroxide powder or coexistence system of them with third component powder.
- the hydroxide used in the present invention can be used singly or in combination as long as hydroxide ions can be supplied to generate hydroxyl radicals by reaction with metal oxide powder.
- a hydroxide one or more selected from alkali metal hydroxides, alkaline earth metal hydroxides, iron hydroxide, copper hydroxide, zinc hydroxide, aluminum hydroxide or ammonium hydroxide From the viewpoint that hydroxyl radicals can be generated smoothly and easily, sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, and the like are preferable.
- Examples of the use of one kind of hydroxide include use of sodium hydroxide, potassium hydroxide, magnesium hydroxide or calcium hydroxide and aqueous solutions thereof, and examples of the use of plural kinds of hydroxide include water. Examples thereof include use of a mixture of sodium oxide and potassium hydroxide and an aqueous solution thereof, a mixture of magnesium hydroxide and calcium hydroxide and an aqueous solution thereof.
- the hydroxide can be used in the form of a solution (eg, sodium hydroxide aqueous solution), slurry (eg, sodium hydroxide-containing slurry), solid (eg, anhydrous sodium hydroxide), etc. Use is also possible.
- a solution eg, sodium hydroxide aqueous solution
- slurry eg, sodium hydroxide-containing slurry
- solid eg, anhydrous sodium hydroxide
- the hydroxide is an aqueous solution
- alkalinity is given to the reaction at a concentration of 0.001 to 0.8 mol / liter (preferably 0.005 to 0.5 mol / liter)
- hydroxyl radicals are obtained.
- the reaction of development is smooth.
- the alkaline earth metal hydroxide can also generate hydroxyl radicals alone without contacting with the metal oxide.
- Such alkaline earth metal hydroxides can also be used in the form of solutions, slurries, solids, etc., and when used in a solid form, hydroxyl radical generation reaction proceeds due to adsorbed moisture and the like.
- the primary particle diameter of the alkaline earth metal hydroxide is preferably 1 nm to 1000 nm, more preferably 1 nm to 400 nm, and particularly preferably 1 nm to 200 nm.
- magnesium hydroxide and calcium hydroxide are preferred from the viewpoint of the amount and efficiency of hydroxyl radical generation.
- a method for bringing a metal oxide powder into contact with a hydroxide to generate hydroxyl radicals include, for example, a method in which a metal oxide powder is mixed with an aqueous solution or slurry of a hydroxide and reacted. A method in which oxide powder and hydroxide are reacted in a protic or aprotic organic solvent, a method in which a metal oxide powder and a solid hydroxide are brought into contact with each other, and a reaction is performed in a reaction site by adsorbed moisture, etc. Is mentioned.
- the hydroxyl radical generation reaction proceeds if the surface of the metal oxide powder is surrounded by an alkaline atmosphere of hydroxide, and the hydroxyl radical is generated by changing the strength of the alkaline atmosphere by adjusting the alkali concentration. Can control the amount and speed.
- the respective quantitative ratios when the metal oxide powder and the hydroxide are brought into contact with each other are preferably in the range of 0.001 to 100 in terms of the weight ratio of (metal oxide powder) / (hydroxide).
- the range of 0.01 to 10 is more preferable.
- the weight ratio of (metal oxide powder) / (hydroxide) is preferably 0.1 to 9
- the metal oxide is
- the weight ratio of (metal oxide powder) / (hydroxide) is preferably 0.1 to 4.
- the metal oxide is magnesium oxide and the hydroxide is a mixture of magnesium hydroxide and calcium hydroxide
- the weight ratio of (metal oxide powder) / (hydroxide) is 0.1-2. A range of 5 is preferable.
- an additive may be added to promote and control the generation of hydroxyl radicals more efficiently.
- titanium oxide, SrTiO 3 , Ag—NbO 2, AgGaO 2 or the like can be appropriately added as an additive.
- the generation of hydroxyl radicals using the method according to the present invention may cause the metal oxide powder and hydroxide prepared separately as described above to react, or the metal oxide and hydroxide simultaneously. Minerals as contained may be used as they are.
- a dolomite mineral a double salt of calcium carbonate and magnesium carbonate (Ca ⁇ Mg (CO 3 ) 2 )
- a digested powder obtained through a hydration (digestion) step By carrying out the calcination and hydration processes of dolomite minerals under special operating conditions, a mixture of metal oxides and hydroxides that cause the reaction of hydroxyl radical generation can be obtained. it can.
- calcination of the dolomite-based mineral is performed at 700 ° C. or more in the range of the raw material dolomite under atmospheric pressure at a heating rate of 1 ° C./min to 15 ° C./min, preferably 5 ° C./min to 10 ° C./min
- the temperature is raised to 1300 ° C. or lower, preferably 700 ° C. or higher and 1000 ° C. or lower, and the temperature is maintained for 1 hour or longer and 20 hours or shorter, preferably 8 hours or longer and 12 hours or shorter.
- CO 2 gas generated by thermal decomposition of dolomite affects the decomposition behavior. When the CO 2 gas concentration is high, the decomposition reaction occurs on the high temperature side. Conversely, when the CO 2 gas concentration is low, the decomposition reaction occurs at a lower temperature. In order to promote the decomposition reaction, it is necessary to adjust the air stream, and it is preferable that the air stream be used in combination of feeding and stopping.
- the contact time with water is preferably 5 to 20 hours, and the water content in the dolomite digest (digested powder) after the digestion step is preferably in the range of 1 to 5% by weight.
- the digested powder contains magnesium oxide (MgO), calcium hydroxide (Ca (OH) 2 ), and magnesium hydroxide (Mg (OH) 1-2 ) as reaction components. It is desired to be calcium and trace components.
- the reaction of hydroxyl radical generation may be inhibited. Moreover, when the amount of magnesium oxide falls, the amount of hydroxyl radical generation will also fall.
- the content of each component of MgO, Ca (OH) 2 and Mg (OH) 1-2 in the digested powder is such that MgO is 2 to 22% by weight, preferably 5 to 15% by weight, Ca (OH ) 2 is 40 to 60% by weight, preferably 45 to 55% by weight, and Mg (OH) 1-2 is 5 to 25% by weight, preferably 10 to 20% by weight.
- the dolomite digested product preferably has a secondary particle size in the range of 0.1 to 60 ⁇ m, more preferably in the range of 0.1 to 10 ⁇ m, in order to make the generation of hydroxyl radicals more efficient.
- a range of 0.1 ⁇ m to 1 ⁇ m is particularly preferable.
- the secondary particle diameter is 1 ⁇ m or less, the generation of hydroxyl radicals is remarkable, and it has been confirmed by the present inventor that the antiviral effect is greatly improved.
- the metal oxide powder (especially alkaline earth metal element oxide powder) and the metal oxide-containing powder of mineral origin containing the metal oxide and hydroxide at the same time are the units of the metal oxide powder.
- 60% or more of the volume preferably has a specific surface area by the BET method of 20 m 2 / g or more, and more preferably 40 m 2 / g or more.
- the specific surface area (m 2 / g) is difficult to be powdered and the specific surface area is 80 m 2 / g or more, the reaction of generating hydroxyl radicals is more likely to occur and smooth. Although the reaction may be possible even if the specific surface area is less than 20 m 2 / g, it is difficult to generate hydroxyl radicals.
- the “unit area” of the powder means a predetermined unit area sampled from the pulverized powder, and is not an artificially mixed powder having different particle sizes.
- the “quantitative main body of metal oxide powder” of the present invention is a ratio that is the main body of the unit volume of the metal oxide powder and corresponds to, for example, 60% or more of the unit volume.
- the “antiviral material” in the present invention refers to various kinds of fibers and plastics having antiviral action using the hydroxyl radical generated by the hydroxyl radical generating method according to the present invention, and masks and protective clothing made of these. Means various products such as products and other chemicals. When applying anti-virus effects to such various applied products (for example, by attaching, fixing, fixing, carrying, mixing, or other methods), there are few or limited restrictions when providing virus effects. It is desirable not to. In this respect, in the present invention, the use of solid powder as a hydroxyl radical generation source makes it possible to impart an antiviral effect to various application means, and enables widespread use of antiviral materials with almost no restrictions. .
- hydroxyl radical is generated by a measurement method using a reactive oxygen detection reagent for APF and POBN. It is also recognized by the method of selectively capturing hydroxyethyl radicals produced by the reaction of hydroxyl radicals with ethanol and measuring them by ESR.
- the reaction mechanism of the hydroxyl radical generation for example, the present inventors have inferred several factors such as a one-step reaction mechanism, a two-step reaction mechanism, and a reaction mechanism that generates hydrogen peroxide in the middle.
- ⁇ Virus inactivation mechanism The phenomenon of hydroxyl radicals destroying the virus structure, the phenomenon of agglutinating viral proteins, the phenomenon of increasing the molecular weight of viral proteins, and the formation of large lumps or populations due to changes in surface protrusion proteins, thereby inactivating the virus This phenomenon is found in the present invention.
- target viruses include, for example, influenza viruses (eg, highly pathogenic avian influenza virus (H5N1 HPAIV) / Vietnam and Hong Kong strains), coronavirus (eg, Thurs virus), flavivirus (eg, C Hepatitis B virus, dengue virus, Japanese encephalitis virus, West Nile virus, yellow fever virus), picorna virus (eg poliovirus, hepatitis A virus), calicivirus (eg norovirus), filovirus (eg Ebola virus, Marburg virus) ), Rhabdovirus (eg rabies virus), paramyxovirus (eg measles virus, mumps virus), herpes virus, papilloma virus, polyoma virus, adenovirus, valvoil And retroviruses (eg, human immunodeficiency virus), hepadnaviruses (eg, hepatitis B virus), and the like.
- influenza viruses eg, highly pathogenic avian influenza virus (H
- Antiviral properties are imparted to areas where humans or animals can come into contact with the virus by means of applying the antiviral material, thereby inactivating the virus.
- the antiviral material is effective in inactivating various viruses, and when using powder that is easy to handle as an antiviral material, the application means is not particularly limited in use, shape, size, usage method, etc. .
- Applicable means are, for example, diagnostic instruments, extracorporeal circulation instruments, protective products, clinical examination instruments (eg, gloves, various examination instruments, sterile cloth, masks, machine covers, bandages, etc.), hospital instruments (eg, surgical instruments) Gowns, protective cloths, aseptic cloths, masks, machine covers, bandages, etc.), medical consumables (eg, bandages, masks, etc.), home medical equipment (eg, bedding, etc.), hygiene materials, hygiene equipment, hospital buildings, food Used in production factories, containers, food packaging materials, etc. in a state where the function of inactivating viruses can be expressed.
- clinical examination instruments eg, gloves, various examination instruments, sterile cloth, masks, machine covers, bandages, etc.
- hospital instruments eg, surgical instruments
- home medical equipment eg, bedding, etc.
- hygiene materials hygiene equipment
- hospital buildings food Used in production factories, containers, food packaging materials, etc. in a state where the function of inactivating viruses can be expressed.
- the application means may be, for example, a preparation carrier (solid, liquid, paste, etc.), a preparation composition, and other preparation application means.
- the solid carrier include white clay (kaolin), sucrose, crystalline cellulose, talc, and agar.
- the antiviral material is provided in the application means so that hydroxyl radical generation is possible. For example, it is provided by fixing, adhering, applying, fixing, containing, carrying or other methods.
- the hydroxide is in the form of a solution, it may be contained in the application means. Further, a hydroxide is prepared separately, and a hydroxyl radical is generated by reacting a metal oxide provided in the application means with a hydroxide prepared in advance.
- the antiviral material of this invention is comprised from the metal oxide with which an application means is provided, and the hydroxide prepared beforehand.
- the reaction between the hydroxide in the presence environment of the virus and the metal oxide provided in the application means can generate hydroxyl radicals to inactivate the virus.
- the present invention it is in accordance with the object of the present invention, and any modification or partial change and addition is optional as long as the effects of the present invention are not particularly impaired. It is.
- the present invention can be applied to drugs (for example, antibacterial agents) against other organisms that can cause destruction, aggregation, and the like due to the generated hydroxyl radical.
- APF reagent reactive oxygen detection reagent
- Example 2 [Verification of hydroxyl radical] Magnesium oxide (MgO) powder was placed in a 0.1 mol / liter sodium hydroxide (NaOH) aqueous solution, and ethanol and POBN were further added. The hydroxyl radical reacts with ethanol to produce a hydroxylethyl radical, which was captured by POBN and measured by ESR (electron spin resonance). ESR detected a typical peak pattern indicating the generation of hydroxyl radicals.
- MgO Magnesium oxide
- NaOH sodium hydroxide
- ESR electron spin resonance
- the experiment predicts from the generation mechanism of hydroxyl radical (.OH), and the digestion of the baked product is performed by calcium carbonate (CaCO 3 ), calcium hydroxide (Ca (OH) 2 ) and magnesium hydroxide (Mg (OH ) 1-2 ) and operating conditions for producing a digest having magnesium oxide (MgO) (for example, raw dolomite is baked at a temperature rising rate of 5-10 ° C./min for 10 hours at a temperature of 700 ° C. to 1000 ° C. After cooling to 45% by weight, and contacting with 45 to 50% by weight of water based on the weight of dolomite), the powder was adjusted to a powder having a specific surface area of 40 m 2 / g or more by the BET method. In this sample, hydroxyl radicals (.OH) were generated, and the virus could be inactivated.
- CaCO 3 calcium carbonate
- Ca (OH) 2 calcium hydroxide
- Mg (OH ) 1-2 magnesium hydroxide
- MgO magnesium oxide
- the hydroxyl radical uses the sample of Example 3 with calcium carbonate (CaCO 3 ), calcium hydroxide (Ca (OH) 2 ), magnesium hydroxide (Mg (OH) 1-2 ), and magnesium oxide (MgO). did.
- the initial Control had an infectious value of 2 million plaques / milliliter, but was zero after the hydroxyl radical treatment.
- the initial Control was zero after the hydroxyl radical treatment even when the infectious titer was larger than in Example 4.
- Example 6 [Verification of virus inactivation] Two sets of mice, each consisting of 5 mice, were prepared and a highly pathogenic avian influenza virus (H5N1 HPAIV) / Vietnam strain was aspirated from the nose of the 5 mice. Another set of mice was aspirated with the highly pathogenic avian influenza virus (H5N1 HPAIV) / Vietnam strain treated with the hydroxyl radical of Example 3.
- H5N1 HPAIV highly pathogenic avian influenza virus
- Vietnam strain treated with the hydroxyl radical of Example 3.
- the amount of virus in the nasal lavage fluid of mice was 10 3 plaques / ml after 3 days of infection.
- the viral load was zero in the mice treated with hydroxyl radical.
- mice In addition, in the group of hydroxyl radical-untreated mice, the first one died after 10 days, the next two after 11 days, the next one after 12 days, and the last one after 13 days. However, all of the mice treated with hydroxyl radical were still alive after 14 days.
- Example 7 [Verification of virus inactivation] The verification experiment of the inactivation ability of hydroxyl radical against highly pathogenic avian influenza virus (H5N1 HPAIV) / Vietnam strain was performed under the same conditions as in Example 4. The initial Control had an infectious titer of 10 7 plaques / milliliter, but was zero after hydroxyl radical treatment.
- Example 8 [Verification of virus inactivation] The verification experiment of the inactivation ability of the hydroxyl radical against the highly pathogenic avian influenza virus (H5N1 HPAIV) / Hong Kong strain was performed under the same conditions as in Example 4.
- the initial Control had an infectious titer of 5 ⁇ 10 6 plaques / milliliter, but was zero after hydroxyl radical treatment.
- Example 12 [Verification of virus inactivation mechanism]
- the digested powder without magnesium oxide (MgO) was prepared by changing the calcination and digestion conditions of the dolomite ore. That is, after baking at a temperature of 700 ° C. or lower and cooling to room temperature, a dolomite digest was obtained by contacting 45 to 50 parts by weight of water with respect to 100 parts by weight of dolomite.
- This magnesium oxide (MgO) -free dolomite digest sample failed to inactivate the virus.
- Example 13> [Comparison of hydroxyl radical generation amount]
- the present inventor received the antiviral agent disclosed in the gazette from Yose Electric Co., Ltd., the applicant company of the viral agent described in International Publication No. WO2005 / 013695 A1.
- sample No. 2 consisting of phosphate buffer (final concentration 0.1 M), HPF reagent (final concentration 5 ⁇ M), calcium carbonate (CaCO 3 ) (manufactured by Wako Pure Chemical Industries, Ltd., final concentration 50 mM) is prepared. did.
- sample No. 1 consisting of phosphate buffer (final concentration 0.1 M), HPF reagent (final concentration 5 ⁇ M), magnesium hydroxide (Mg (OH) 2 ) (manufactured by Wako Pure Chemical Industries, Ltd., final concentration 50 mM). 3) was prepared.
- sample No. 4 composed of phosphate buffer (final concentration 0.1 M), HPF reagent (final concentration 5 ⁇ M), magnesium oxide (MgO) (manufactured by Wako Pure Chemical Industries, Ltd., final concentration 50 mM) was prepared. .
- a phosphate buffer (final concentration 0.1 M), an HPF reagent (final concentration 5 ⁇ M), and a virus agent (final concentration 0.75) described in International Publication No. WO2005 / 013695 A1 provided by Yose Electric Co., Ltd. %) was prepared (sample No. 5).
- sample No. 6 a sample consisting of a phosphate buffer (final concentration 0.1 M) and an HPF reagent (final concentration 5 ⁇ M) was prepared.
- ARVO MX fluorescent plate reader
- BRP 3 registered trademark
- Sample No. 3 is Sample No. Next to 5, it was found that the amount of radical generation was high.
- Example 14 [Comparison of hydroxyl radical generation amount under light-shielding conditions] Titanium oxide (anatase type, purity 99.9%, manufactured by Wako Pure Chemical Industries, Ltd.) 0.1%, silver (particle size less than 100 nm, purity 99.5%, manufactured by SIGMA) 1%, magnesium hydroxide (purity 95% A solution containing 1% of Wako Pure Chemical Industries, Ltd.) and 1% of dolomite digest used in Example 3 was prepared as follows.
- magnesium hydroxide was added to 9 mL of pure water to prepare a 10% magnesium hydroxide suspension.
- a titanium oxide 1% suspension, a silver 10% suspension and a magnesium hydroxide 10% suspension were mixed as follows.
- HPF reagent (Daiichi Kagaku) 0.1 ⁇ L 0.5 M phosphate buffer (pH 7.0) 20 ⁇ L Pure 69.9 ⁇ L Titanium oxide 1% suspension or silver 10% suspension or magnesium hydroxide 10% suspension or dolomite digest 10% suspension 10 ⁇ L
- a measurement sample containing a suspension of 0.1% titanium oxide or 1% silver, 1% magnesium hydroxide or 1% dolomite digest was obtained.
- hydroxyl radical generating method in the present application unlike titanium oxide and silver, hydroxyl radicals are generated even in the absence of light irradiation, that is, the antiviral effect can be exhibited even under light shielding conditions. Recognize.
- Example 15 [Comparison of hydroxyl radical generation amount by metal oxide and hydroxide] As shown in Table 3 below, a solution containing a total of 1% by weight of metal oxide, hydroxide or a mixture thereof was prepared.
- magnesium oxide (heavy, purity 99%, manufactured by Wako Pure Chemical Industries, Ltd.) was added to 9 mL of pure water to prepare a 10% magnesium oxide suspension.
- sodium hydroxide (purity 97%, manufactured by Wako Pure Chemical Industries, Ltd.) was added to 4.05 mL of pure water to prepare a 10% sodium hydroxide solution.
- potassium hydroxide (purity 85%, manufactured by SIGMA) was added to 4.05 mL of pure water to prepare a 10% potassium hydroxide solution.
- a 10% copper oxide suspension was prepared by adding 0.5 g of copper oxide (particle size less than 5 ⁇ m, purity 98%, manufactured by SIGMA) to 4.5 mL of pure water.
- Example 14 the 10% magnesium hydroxide suspension and the 10% dolomite digest suspension were used in Example 14.
- HPF Reagent (Daiichi Kagaku) 0.1 ⁇ L 0.5 ⁇ M phosphate buffer (pH 7.0) 20 ⁇ L Pure water 69.9 ⁇ L 10 ⁇ L of various suspensions
- Table 3 shows the concentration and amount of the metal oxide and / or hydroxide in each measurement target sample.
- Example 16 [Duration of hydroxyl radical generation]
- a metal oxide and / or hydroxide suspension was used, and various reagents were mixed as follows to prepare a sample to be measured.
- HPF Reagent (Daiichi Kagaku) 0.1 ⁇ L 0.5 M phosphate buffer (pH 7.0) 20 ⁇ L Pure water 69.9 ⁇ L 10 ⁇ L of various suspensions
- Table 5 shows the concentrations and amounts of the metal oxide and / or hydroxide in each measurement target sample.
- Example 17 [Comparison of hydroxyl radical generation amount by a combination of calcium hydroxide, magnesium oxide and magnesium hydroxide] The sample was prepared so that magnesium oxide was used as the metal oxide, magnesium hydroxide and / or calcium hydroxide was used as the hydroxide, and the total of these metal oxide and hydroxide was 1% by weight.
- Example 15 Specifically, in the same manner as in Example 15, using a metal oxide and / or hydroxide suspension, various reagents were mixed as follows to prepare a sample to be measured.
- HPF Reagent (Daiichi Kagaku) 0.1 ⁇ L 0.5 M phosphate buffer (pH 7.0) 20 ⁇ L Pure water 49.9 ⁇ L Various suspensions 30 ⁇ L Table 7 shows the concentrations and amounts of the metal oxide and / or hydroxide in each measurement target sample.
- the obtained sample was allowed to stand for 72 hours in a light-shielded state, the amount of hydroxyl radicals generated was measured, and the amount of hydroxyl radicals generated from calcium hydroxide alone was set as 100% for relative comparison.
- the results are shown in Table 8.
- Example 18 [Generation of hydroxyl radical by magnesium hydroxide]
- Mg (OH) 2 magnesium hydroxide (purity: 99.90%, manufactured by Wako Pure Chemical Industries, Ltd.)
- the particle size of the primary particles is in the range of 1 nm to 200 nm.
- Magnesium (Mg (OH) 2 ) powder and magnesium hydroxide (Mg (OH) 2 ) in which the particle size of primary particles was in the range of 200 nm to 400 nm were prepared.
- sample consisting of phosphate buffer (final concentration 0.1 M), HPF reagent (final concentration 5 ⁇ M), and magnesium hydroxide (Mg (OH) 2 ) in which the primary particle size is in the range of 200 nm to 400 nm. No. 8) was prepared.
- magnesium hydroxide (Mg (OH) 2 ) has primary particles of magnesium hydroxide powder in the range of 1 nm or more and 200 nm or less, the production amount of hydroxyl radicals is remarkably increased. It was revealed that magnesium hydroxide (Mg (OH) 2 ) prepared in the range of 1 nm to 200 nm exhibits an antiviral effect.
- magnesium hydroxide (Mg (OH) 2 ) comes into contact with air or other gas containing carbon dioxide (CO 2 ), a part thereof reacts with carbon dioxide (CO 2 ) to form magnesium carbonate (MgCO 3 ).
- magnesium oxide (MgO) comes into contact with air or other gas containing carbon dioxide (CO 2 ), a part thereof reacts with carbon dioxide (CO 2 ) to become magnesium carbonate (MgCO 3 ).
- anti-viral material according to the present invention before use, in order to generate a sufficient amount of hydroxyl radicals, upon storage, be stored in a non-contact state with CO 2 (state where CO 2 blocked) Is preferred.
- the packaging material after receiving antiviral material according to the present invention, the packaging After the material is vacuum-sealed, for example, after the antiviral material according to the present invention is accommodated in the packaging material, the air in the packaging material is removed from, for example, argon (Ar), neon (Ne), or the like.
- the packaging material After replacement with active gas, nitrogen (N 2 ) gas, oxygen (O 2 ) gas or other CO 2 -free gas or a mixed gas of such CO 2 -free gas, or after sealing, or
- the packaging material contains, for example, an inert gas such as argon (Ar) or neon (Ne), nitrogen (N 2 ) gas, oxygen (O 2 ) Gas and other CO
- an inert gas such as argon (Ar) or neon (Ne)
- nitrogen (N 2 ) gas, oxygen (O 2 ) Gas and other CO
- a method of sealing after filling a gas not containing 2 or a mixed gas of such a gas not containing CO 2 .
- the antiviral material stored in this way containing the antiviral material according to the present invention, and stored in the packaging material according to the present invention, is opened when the packaging material is opened and stored in the packaging material.
- the virus is a component of the antiviral material according to the present invention while being stored in the packaging material. Since the metal oxide powder or magnesium hydroxide powder that enables the generation of hydroxyl radicals that inactivate are not converted to carbonate compounds, in use, sufficient amounts of hydroxyl radicals to inactivate the virus Can be generated.
- hydroxyl radicals can be generated safely, simply and efficiently without adopting dangerous conditions that cause danger to the human body.
- various viruses can be easily and clearly inactivated by placing the virus in a hydroxyl radical atmosphere and contacting with the hydroxyl radical. It becomes possible to bring profits directly and indirectly to industry and society.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Virology (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
1)亜塩素酸アニオン源(亜塩素酸塩等)を混和した親水性材料を疎水性粒子内部に含ませて、疎水性粒子に吸着した水分を疎水性粒子内部に取り込ませる、
2)取り込ませた水分により亜塩素酸塩等が加水分解されてヒドロニウムイオンを放出し、疎水性粒子の亜塩素酸アニオンと反応して放出される酸化塩素ガスによってウイルスを不活性にする、
というものであり、ウイルスを不活性にする確率が不明で、適用手段の適用範囲が狭い。
このように、従来の抗ウイルス剤は、イオン方式、ガス方式及びその他の方式による場合であっても、不活性機構の内容が不明瞭で、ウイルスを不活性にする確率が不明で、適用手段に制約があった。
(1)アルカリ金属、アルカリ土類金属、周期表第4族から第12族までの金属又はアルミニウムからなる群より選ばれる1種以上の金属の酸化物粉末と、アルカリ金属の水酸化物、アルカリ土類金属の水酸化物、水酸化鉄、水酸化銅、水酸化亜鉛、水酸化アルミニウム又は水酸化アンモニウムから選ばれる1種以上の水酸化物と、を接触させることによりヒドロキシルラジカルを発生させる方法、
(2)金属の酸化物粉末と水酸化物が、いずれもドロマイトを焼成し、その一部を水和して得られたドロマイト消化物に含まれるものである、(1)に記載の方法、
(3)ドロマイト消化物が、原料ドロマイトを700℃~1300℃の温度で1~20時間焼成し、その後常温になるまで冷却した後、ドロマイト100重量部に対して35~60重量部の水と接触させて得られるものである、(2)に記載の方法
(4)ドロマイト消化物の焼成が、昇温速度5~10℃/分、温度700℃~1000℃で8~12時間保持し、その際の空気気流が送り・停止の併用である、(3)に記載の方法、
(5)金属の酸化物粉末と、水酸化物の重量比、すなわち(金属の酸化物粉末)/(水酸化物)が0.001~100の範囲に含まれることを特徴とする、(1)または(2)に記載の方法、
(6)金属の酸化物粉末が、酸化マグネシウム、酸化カルシウム、二酸化マンガン、酸化鉄(II)、酸化鉄(III)、酸化銅、酸化亜鉛又は酸化アルミニウムから選ばれる1種以上の酸化物の粉末であり、水酸化物が水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、水酸化アルミニウム又は水酸化アンモニウムから選ばれる1種以上の水酸化物である、(1)に記載の方法、
が提供される。
(7)アルカリ金属、アルカリ土類金属、周期表第4族から第12族までの金属又はアルミニウムからなる群より選ばれる1種以上の金属の酸化物粉末と、アルカリ金属の水酸化物、アルカリ土類金属の水酸化物、水酸化鉄、水酸化銅、水酸化亜鉛、水酸化アルミニウム又は水酸化アンモニウムから選ばれる1種以上の水酸化物と、を接触させることによりヒドロキシルラジカルを発生させる方法を備えた抗ウイルス材、も提供する。
本発明は、アルカリ金属、アルカリ土類金属、周期表第4族から第12族までの金属又はアルミニウムからなる群より選ばれる1種以上の金属の酸化物粉末と、アルカリ金属の水酸化物、アルカリ土類金属の水酸化物、水酸化鉄、水酸化銅、水酸化亜鉛、水酸化アルミニウム又は水酸化アンモニウムから選ばれる1種以上の水酸化物とを接触させることでヒドロキシルラジカルが発生する、という新しい知見に基づいてなされたものである。
(1)ヒドロキシルラジカルは、単独でウイルスを不活性にする効果が大きいという事実。
(2)ヒドロキシルラジカル以外の活性酸素は、単独でウイルスを不活性にする効果が存在しないか、存在しても小さいという事実。
(3)ヒドロキシルラジカルは、そのウイルス不活性化機構が有効に働く各種のウイルスを不活性にすることができるという事実。
(4)ヒドロキシルラジカルは、金属の酸化物粉末と水酸化物との組み合せ及び反応制御によって、ウイルスを不活性にする効果を増大させることが可能になるという事実。
(5)ウイルスを不活性にするヒドロキシルラジカルの発生には、金属の酸化物粉末の表面状態が影響を与えるという事実。
<金属酸化物>
本発明におけるアルカリ金属、アルカリ土類金属、周期表第4族から第12族までの金属又はアルミニウムからなる群より選ばれる1種以上の金属の酸化物粉末は、水酸化物との反応でヒドロキシルラジカル発生が可能であって、天然系(代表的には鉱物に含有されている金属酸化物)若しくは合成系のいずれでもよく、一種のみで用いても、複数種を用いてもよい。金属の酸化物粉末は、ヒドロキシルラジカル発生の効率の観点から、原料となる金属酸化物を、比表面積がより広い粉末、特に多孔性の粉末とすることが好ましい。
鉱物としては、例えば、ドロマイト系鉱物、電気石系鉱物(例えば、ドラバイト、スコール、エルバマイト及びその他)、ゼオライト系鉱物、カオリン系鉱物、麦飯石及びその他の鉱物を用いることができ、これらは鉱物に応じた破砕・化学的処理・物理的処理・粉末化等によって、金属の酸化物粉末、金属の酸化物粉末及び水酸化物粉末との共存系若しくはそれらと第三成分粉末との共存系にされる。
<水酸化物>
本発明において用いられる水酸化物は、金属の酸化物粉末との反応でヒドロキシルラジカル発生に水酸化物イオンを供給可能であれば、一種若しくは複数種の使用が可能である。このような水酸化物としては、アルカリ金属の水酸化物、アルカリ土類金属の水酸化物、水酸化鉄、水酸化銅、水酸化亜鉛、水酸化アルミニウム又は水酸化アンモニウムから選ばれる1種以上の水酸化物が挙げられるが、ヒドロキシルラジカルの発生を円滑・容易に行えるという観点から、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム等が好ましい。
<ヒドロキシルラジカル発生の反応>
金属の酸化物粉末と水酸化物を接触させてヒドロキシルラジカルを発生させる具体的な方法としては、例えば、金属の酸化物粉末を水酸化物の水溶液若しくはスラリーに混入して反応させる方法、金属の酸化物粉及び水酸化物をプロトン性または非プロトン性有機溶媒に入れて反応させる方法、金属の酸化物粉と固体状水酸化物とを接触させて吸着水分による反応の場で反応させる方法等が挙げられる。
上記消化物粉末は、酸化マグネシウム(MgO)、水酸化カルシウム(Ca(OH)2)及び水酸化マグネシウム(Mg(OH)1~2)を反応成分として含み、含有が許容される成分は、炭酸カルシウム及び微量成分であることが望まれる。それ以外の成分が焼成及び水和の工程で生成しているとヒドロキシルラジカル発生の反応が阻害されることがある。また、酸化マグネシウム量が低下すると、ヒドロキシルラジカル発生量も低下する。ここで、MgO、Ca(OH)2及びMg(OH)1~2の各成分の消化物粉末中における含有量は、MgOが2~22重量%、好ましくは5~15重量%、Ca(OH)2が40~60重量%、好ましくは45~55重量%、Mg(OH)1~2が5~25重量%、好ましくは10~20重量%である。
ヒドロキシルラジカルの確認は、定量も含めて次の方法で測定して検証・確認した。
(a)APF(2-[6-(4 -amino)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid)またはHPF(2-[6-(4 -hydroxy)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid)を使用する活性酸素検出試薬にて反応させて、生成する強蛍光性化合物(フルオレセン)の蛍光強度から測定する方法である。
(b)エタノールとヒドロキシルラジカルを反応させて生成したヒドロキシエチルラジカルを、POBN(α-(4-pyridyl-1-oxide)-N-tertbutylnirone)により捕捉して、ESR(Electron Spin Resonance : 電子スピン共鳴)により測定する方法である。
(c)ヒドロキシルラジカルが確認された場合には、ラジカル捕捉剤のDPPH(1, 1-diphenyl-2-picrylhydrazyl)の紫色の消失有無により、ヒドロキシルラジカルの発生・存在を確認する方法である。
本発明における「抗ウイルス材」とは、本発明に係るヒドロキシルラジカル発生方法により発生したヒドロキシルラジカルを利用して、抗ウイルス作用を持たせた繊維やプラスチック及びこれらから成るマスクや防護服等の各種製品、その他薬品等の各種応用品を意味する。係る多様な応用品へ抗ウイルス効果を付与する場合(例えば、付着、固着、固定、担持、混入その他の方法で付与する場合)には、ウイルス効果を付与する際の制約が少ない若しくは制約が存在しないことが望まれる。この点本発明においては、ヒドロキシルラジカルの発生源として固体粉末を使用することで多様な適用手段への抗ウイルス効果の付与を可能にし、ほとんど制約なく抗ウイルス材の広範囲な使用を可能にしている。
<ウイルスの不活性機構>
ヒドロキシルラジカルが、ウイルス構造を破壊する現象、ウイルスタンパク質を凝集させる現象、ウイルスタンパク質を高分子量化させる現象及び表面の突起タンパク質の変化による大きな塊若しくは集団の生成現象と、それによって、ウイルスが不活性になる現象が本発明で見いだされている。(後記実施例を参照)
<対象となるウイルス>
ウイルス構造破壊、ウイルス表面の突起タンパク質の塊化現象及びウイルスタンパク質の凝集現象がヒドロキシルラジカルにより生じるウイルスは、いずれも本発明の抗ウイルス材により不活性にすることができる。
<適用手段>
抗ウイルス材の適用手段によって人若しくは動物がウイルスに接触可能な領域に抗ウイルス性が付与されて、ウイルスを不活性にする。抗ウイルス材は、各種ウイルスの不活性化に有効であって、抗ウイルス材として取り扱いが容易な粉末を使用する場合、適用手段は、用途・形状・大きさ・使用方法その他において特に制約がない。
<適用手段の使用の態様>
抗ウイルス材は、ヒドロキシルラジカル発生が可能に適用手段に備えられる。例えば、固着、付着、塗布、固定、含有、担持その他の方法によって備えられる。水酸化物が溶液状である場合には、適用手段に含有させてもよい。また、水酸化物を別に用意しておいて、適用手段に備える金属酸化物と予め用意した水酸化物とを反応させてヒドロキシルラジカルを発生させる。その場合には、適用手段に備える金属酸化物及び予め用意した水酸化物から本発明の抗ウイルス材が構成されることになる。
<実施例1>〔ヒドロキシルラジカルの検証〕
酸化マグネシウム(MgO)粉末を水酸化ナトリウム(NaOH)水溶液0.1モル/リットルに入れて反応させた。次に、APF試薬(活性酸素検出用試薬)に反応させて、ヒドロキシルラジカル(・OH)の存在の確認及び検量線による定量によって多量のヒドロキシルラジカル(・OH)の発生が認められた。
酸化マグネシウム(MgO)粉末を水酸化ナトリウム(NaOH)水溶液0.1モル/リットルに入れ、さらにエタノールとPOBNを加えた。ヒドロキシルラジカルはエタノールと反応し、ヒドロキシルエチルラジカルを生成するが、これをPOBNで補足しESR(電子スピン共鳴)により測定する実験を行った。ESRではヒドロキシルラジカルの生成を示す典型的なピークのパターンが検出された。
金属酸化物と水酸化物が共存する鉱物粉末からのヒドロキシルラジカル(・OH)発生を検証した。
ヒドロキシルラジカルのサーズウイルス(SARS-CoV)に対する不活性化能の検証実験をプラークリダクション法により行った。
ヒドロキシルラジカルのサーズウイルスに対する不活性化能の検証実験を酸化マグネシウム(MgO)粉末と水酸化ナトリウム(NaOH)水溶液から発生したヒドロキシルラジカルにより行った。
一組が5匹からなる二組のマウスを用意して、その一組の5匹のマウスの鼻から高病原性トリインフルエンザウイルス(H5N1 HPAIV)/ベトナム株を吸引させた。他の一組のマウスには、実施例3のヒドロキシルラジカルで処理して高病原性トリインフルエンザウイルス(H5N1 HPAIV)/ベトナム株を吸引させた。
しかし、ヒドロキシルラジカル処理した組のマウスは、14日後も全数が生存していた。
ヒドロキシルラジカルの高病原性トリインフルエンザウイルス(H5N1 HPAIV)/ベトナム株に対する不活性化能の検証実験を実施例4と同じ条件で行った。
当初のControlは、感染価が107プラーク/ミリリットルであったが、ヒドロキシルラジカル処理後にはゼロになっていた。
ヒドロキシルラジカルの高病原性トリインフルエンザウイルス(H5N1 HPAIV)/香港株に対する不活性化能の検証実験を実施例4と同じ条件で行った。
先ず、サーズウイルス(SARS-CoV)粒子の表面に存在する突起(スパイク)タンパク質に、抗スパイク抗体と金コロイドを結合させた抗IgG抗体を作用させ、ウイルス粒子表面のスパイクタンパク質を電子顕微鏡により観察した。その結果、ウイルス粒子の周りに金コロイドが分布し、ウイルスのスパイスタンパク質の分布と一致していた。次に、サーズウイルス(SARS-CoV)をヒドロキシルラジカルに接触させた後で同様の方法で抗スパイク抗体と金コロイドを結合させた抗IgG抗体を作用させてからウイルスを電子顕微鏡により観察した。その結果、金コロイドは塊状・集団状・高分子状になった場所に分布し、ウイルス粒子表面のスパイクタンパク質の変化を伴うウイルス構造の崩壊とウイルスの不活性化が観察された。
ヒドロキシルラジカル未処理のサーズウイルスとヒドロキシルラジカル処理をしたサーズウイルスに対し抗スパイク抗体を用いてウエスタンブロットを行った。還元剤を加えずに電気泳動すると、ヒドロキシルラジカル処理をしたサンプルにおいてスパイクタンパク質のバンドの消失が認められた。還元剤を加えて電気泳動すると、スパイクタンパク質のバンドの回復が認められた。これはスパイクタンパク質がヒドロキシルラジカルによって酸化され、高分子量化を起こしている事を意味している。
ヒドロキシルラジカルで処理したサーズウイルスとヒドロキシルラジカルの発生源にヒドロキシルラジカル除去剤を加えた状態で処理をしたサーズウイルスに対し抗スパイク抗体を用いてウエスタンブロットを行った。還元剤を加えずに電気泳動すると、ヒドロキシルラジカル処理をしたサンプルにおいてスパイクタンパク質のバンドの消失が認められたが、ヒドロキシルラジカル除去剤(ここではサリチル酸ナトリウム)を加えたサンプルではスパイクタンパク質のバンドの回復が認められた。これはスパイクタンパク質のヒドロキシルラジカルによる高分子量化が、ヒドロキシルラジカル除去剤によって阻害される事を意味している。
実施例3のサンプル調整において、ドロマイト鉱石の焼成及び消化の条件を変えて酸化マグネシウム(MgO)が存在しない消化物の粉末を調整した。すなわち、ここでは700℃以下の温度で焼成を行い、常温になるまで冷却した後、ドロマイト100重量部に対して45~50重量部の水と接触させてドロマイト消化物を得た。この酸化マグネシウム(MgO)未含有のドロマイト消化物サンプルでは、ウイルスを不活性にすることができなかった。
本発明者は、国際公開番号WO2005/013695 A1号公報に記載のウイルス剤
をその出願人会社である、用瀬電機株式会社から、同公報に開示された抗ウイルス剤の提供を受けた。
酸化チタン(アナターゼ型、純度99.9%、和光純薬工業株式会社製)0.1%、銀(粒子径100nm未満、純度99.5%、SIGMA社製)1%、水酸化マグネシウム(純度95%、和光純薬工業株式会社製)1%、及び実施例3で用いたドロマイト消化物1%を含む溶液を以下のように調整した。
0.5M リン酸バッファー(pH7.0) 20μL
純粋 69.9μL
酸化チタン1%懸濁液又は
銀10%懸濁液又は
水酸化マグネシウム10%懸濁液又は
ドロマイト消化物10%懸濁液 10μL
こうして酸化チタン0.1%又は銀1%又は水酸化マグネシウム1%又はドロマイト消化物1%懸濁液を含む測定用試料を得た。
以下の表3に示すような、金属酸化物、水酸化物又はこれらの混合物が合計1重量%含まれる溶液を作成した。
0.5Mリン酸バッファー(pH 7.0) 20μL
純水 69.9μL
各種懸濁液 10μL
各測定対象試料中の金属酸化物及び/又は水酸化物の濃度と量を、表3に示す。
実施例15と同様に、金属酸化物及び/又は水酸化物の懸濁液を用い、各種試薬を以下のように混合して測定対象試料を作成した。
0.5 M リン酸バッファー(pH 7.0) 20μL
純水 69.9μL
各種懸濁液 10μL
各測定対象試料中の金属酸化物及び/又は水酸化物の濃度と量は、表5の通りである。
金属酸化物として酸化マグネシウム、水酸化物として水酸化マグネシウム及び/又は水酸化カルシウムを、これら金属酸化物と水酸化物の合計が1重量%となるべく、試料を調整した。
0.5 M リン酸バッファー(pH 7.0) 20μL
純水 49.9μL
各種懸濁液 30μL
各測定対象試料中の金属酸化物及び/又は水酸化物の濃度と量は、表7の通りである。
次に、水酸化マグネシウム(Mg(OH)2)(純度:99.90%、和光純薬株式会社製)を粉砕することで、一次粒子の粒子径を、1nm以上200nmの範囲にした水酸化マグネシウム(Mg(OH)2)粉末と、一次粒子の粒子径を、200nm以上400nmの範囲にした水酸化マグネシウム(Mg(OH)2)を調製した。
例えば、表1に示す試料No.3に、炭酸カルシウム(CaCO3)を添加すると、ヒドロキシルラジカルの発生量が、2811に低下した。
また、水酸化カルシウム(Ca(OH)2)は、空気その他の二酸化炭素(CO2)を含むガスと接触すると、その一部が、二酸化炭素(CO2)と反応して、炭酸カルシウム(CaCO3)になる。
また、酸化カルシウム(CaO)は、空気その他の二酸化炭素(CO2)を含むガスと接触すると、その一部が、二酸化炭素(CO2)と反応して、炭酸カルシウム(CaCO3)になる。
CaO+CO2→CaCO3
以上の実験からは、本発明に係るウイルスを不活性にするヒドロキシルラジカルの発生を可能にする金属酸化物粉末、水酸化マグネシウム粉末は、保存の際に、CO2と非接触の状態(CO2をブロックした状態)で保存することが、好ましい。
本発明に係る抗ウイルス材をCO2と非接触の状態(CO2をブロックした状態)で保存する方法としては、例えば、包装材料内に、本発明に係る抗ウイルス材を収容した後、包装材料内を真空にして密閉したり、例えば、包装材料内に、本発明に係る抗ウイルス材を収容した後、包装材料内の空気を、例えば、アルゴン(Ar)、ネオン(Ne)等の不活性ガス、窒素(N2)ガス、酸素(O2)ガスその他のCO2を含まないガス又はこのようなCO2を含まないガスを含まないガスの混合ガスにより置換した後密閉したり、又は、例えば、包装材料内に、本発明に係る抗ウイルス材を収容した後、包装材料内に、例えば、アルゴン(Ar)、ネオン(Ne)等の不活性ガス、窒素(N2)ガス、酸素(O2)ガスその他のCO2を含まないガス又はこのようなCO2を含まないガスを含まないガスの混合ガスを充填した後に密閉したりする方法を挙げることができる。
Claims (7)
- アルカリ金属、アルカリ土類金属、周期表第4族から第12族までの金属又はアルミニウムからなる群より選ばれる1種以上の金属の酸化物粉末と、
アルカリ金属の水酸化物、アルカリ土類金属の水酸化物、水酸化鉄、水酸化銅、水酸化亜鉛、水酸化アルミニウム又は水酸化アンモニウムから選ばれる1種以上の水酸化物と、
を接触させることによりヒドロキシルラジカルを発生させる方法 - 前記金属の酸化物粉末と水酸化物が、いずれもドロマイトを焼成し、その一部を水和して得られたドロマイト消化物に含まれるものである、請求項1に記載の方法
- 前記ドロマイト消化物が、原料ドロマイトを700℃~1300℃の温度で1~20時間焼成し、その後常温になるまで冷却した後、ドロマイト100重量部に対して35~60重量部の水と接触させて得られるものである、請求項2に記載の方法
- 前記ドロマイト消化物の焼成が、昇温速度5~10℃/分、温度700℃~1000℃で8~12時間保持し、その際の空気気流が送り・停止の併用である、請求項3に記載の方法
- 金属の酸化物粉末と、水酸化物の量比、すなわち(金属の酸化物粉末)/(水酸化物)が0.001~100の範囲に含まれることを特徴とする、請求項1または2に記載の方法
- 金属の酸化物粉末が、酸化マグネシウム、酸化カルシウム、二酸化マンガン、酸化鉄(II)、酸化鉄(III)、酸化銅、酸化亜鉛又は酸化アルミニウムから選ばれる1種以上の酸化物粉末であり、
水酸化物が水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、水酸化アルミニウム又は水酸化アンモニウムから選ばれる1種以上の水酸化物である、請求項1に記載の方法 - アルカリ金属、アルカリ土類金属、周期表第4族から第12族までの金属又はアルミニウムからなる群より選ばれる1種以上の金属の酸化物粉末と、
アルカリ金属の水酸化物、アルカリ土類金属の水酸化物、水酸化鉄、水酸化銅、水酸化亜鉛、水酸化アルミニウム又は水酸化アンモニウムから選ばれる1種以上の水酸化物と、
を接触させることによりヒドロキシルラジカルを発生させる方法を備えた抗ウイルス材
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009801045365A CN101939015A (zh) | 2008-02-08 | 2009-02-09 | 新型羟基自由基生成法及利用通过该方法生成的羟基自由基的抗病毒材料 |
CA2715140A CA2715140A1 (en) | 2008-02-08 | 2009-02-09 | Novel hydroxy radical generation method, and anti-viral material utilizing hydroxyl radical generated by the method |
JP2009552422A JPWO2009098908A1 (ja) | 2008-02-08 | 2009-02-09 | 新規なヒドロキシルラジカル発生法、及び当該方法により発生したヒドロキシルラジカルを利用する抗ウイルス材 |
US12/866,182 US20100329971A1 (en) | 2008-02-08 | 2009-02-09 | Novel hydroxy radical generation method, and anti-viral material utilizing hydroxyl radical generated by the method |
EP09707915A EP2241321A4 (en) | 2008-02-08 | 2009-02-09 | NOVEL METHOD FOR GENERATING HYDROXIDRADIC AND ANTIVIRAL MATERIALS WITH A HYDROXIDRADIKAL PRODUCED BY THIS PROCESS |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/052601 WO2009098786A1 (ja) | 2008-02-08 | 2008-02-08 | 抗ウイルス材、環境型抗ウイルス材及び包装材料に収容した抗ウイルス材 |
JPPCT/JP2008/052601 | 2008-02-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009098908A1 true WO2009098908A1 (ja) | 2009-08-13 |
Family
ID=40951874
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/052601 WO2009098786A1 (ja) | 2008-02-08 | 2008-02-08 | 抗ウイルス材、環境型抗ウイルス材及び包装材料に収容した抗ウイルス材 |
PCT/JP2009/000516 WO2009098908A1 (ja) | 2008-02-08 | 2009-02-09 | 新規なヒドロキシルラジカル発生法、及び当該方法により発生したヒドロキシルラジカルを利用する抗ウイルス材 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/052601 WO2009098786A1 (ja) | 2008-02-08 | 2008-02-08 | 抗ウイルス材、環境型抗ウイルス材及び包装材料に収容した抗ウイルス材 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20100329971A1 (ja) |
EP (1) | EP2241321A4 (ja) |
JP (1) | JPWO2009098908A1 (ja) |
KR (1) | KR20100125242A (ja) |
CN (1) | CN101939015A (ja) |
CA (1) | CA2715140A1 (ja) |
WO (2) | WO2009098786A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013139951A (ja) * | 2011-12-29 | 2013-07-18 | Daikin Industries Ltd | 給湯システム |
JP2018058826A (ja) * | 2016-10-06 | 2018-04-12 | 大阪ガスケミカル株式会社 | 抗ウイルス剤 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120231143A1 (en) * | 2009-11-10 | 2012-09-13 | Kawakami Co. Ltd | Virus-inactivating agent |
EP2798955A4 (en) * | 2011-12-28 | 2014-11-26 | Ube Mat Ind Ltd | AGENT FOR CONTROLLING PLANT DISEASE AND METHOD FOR CONTROLLING PLANT DISEASE USING THE SAME |
US8956566B2 (en) | 2012-03-12 | 2015-02-17 | Pure Biosolutions, Llc | System and method for virus inactivation |
BE1021193B1 (fr) * | 2012-07-12 | 2015-07-14 | Lhoist Recherche Et Developpement | Charges minerales ignifuges et compositions polymeres ignifugees |
WO2015061573A1 (en) | 2013-10-23 | 2015-04-30 | The United States Of America, As Represented By The Secretary, Department Of Health & Human Services | Compounds that bind to human immunodeficiency virus rev response element |
EP3944887A1 (de) * | 2020-07-31 | 2022-02-02 | Siemens Aktiengesellschaft | Fasermaterialverbund mit reaktiven sauerstoffspezies neutralisierendem bereich |
CN111759851B (zh) * | 2020-08-17 | 2021-01-26 | 广东盛普生命科技有限公司 | 单宁酸在制备抗冠状病毒的药物方面的应用 |
CN113633048A (zh) * | 2021-08-06 | 2021-11-12 | 欧阳峰 | 一种基于弱光光催化抗菌杀毒的口罩及衍生涂层材料 |
KR20230029147A (ko) * | 2021-08-24 | 2023-03-03 | 주식회사 포스코 | 항미생물 코팅 조성물 및 이를 이용한 항미생물 코팅 강판 |
CN113880222A (zh) * | 2021-11-05 | 2022-01-04 | 中国地质大学(北京) | 一种基于天然电气石协同过氧化氢降解有机废水的方法 |
BE1030314B1 (fr) | 2022-03-03 | 2023-10-02 | Philippe Dumont | Composition antivirale à base de solution d'hydroxyde de calcium |
CN115956566B (zh) * | 2022-12-23 | 2024-09-06 | 中国科学院生态环境研究中心 | 一种持久性自由基材料及其制备方法与应用 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000288547A (ja) | 1999-04-05 | 2000-10-17 | Taiyo Kagaku Kogyo Kk | 廃水の浄化処理方法及びその装置 |
JP2001070946A (ja) | 1999-09-01 | 2001-03-21 | Himeka Engineering Kk | コロナ放電を利用した浄化方法および装置 |
JP3222471B2 (ja) | 1995-06-07 | 2001-10-29 | サーモディックス,インコーポレイティド | ウイルス不活化被覆物 |
JP3547140B2 (ja) | 1995-06-05 | 2004-07-28 | サウスウエスト・リサーチ・インスティチュート | 粉末状の殺菌組成物 |
JP2005036091A (ja) * | 2003-07-18 | 2005-02-10 | Mochise Denki Kk | プラスチック用添加剤及びプラスチック |
WO2005013695A1 (ja) | 2003-08-12 | 2005-02-17 | Mochigase Electrical Equipment Co., Ltd. | 抗ウイルス剤、これを用いた繊維及び抗ウイルス部材 |
JP2008037814A (ja) * | 2006-08-08 | 2008-02-21 | Tokyo Medical & Dental Univ | 抗ウイルス材及び環境反応型抗ウイルス材 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3615627A (en) * | 1968-01-22 | 1971-10-26 | Hughes Aircraft Co | Photopolymerizable compositions and process of making same |
US3736161A (en) * | 1971-03-29 | 1973-05-29 | Gen Refractories Co | Production methods for dolomite magnesite refractory material |
SU674372A1 (ru) * | 1977-07-05 | 1983-11-15 | Всесоюзный Научно-Исследовательский Институт Абразивов И Шлифования | Способ получени кубического нитрида бора |
JPS58120596A (ja) * | 1981-12-29 | 1983-07-18 | Seiko Epson Corp | F・z法によるベリル結晶合成法 |
JPS59141491A (ja) * | 1983-01-28 | 1984-08-14 | Seiko Epson Corp | スポジウメン鉱物 |
GB8717360D0 (en) * | 1987-07-22 | 1987-08-26 | Chloride Silent Power Ltd | Preparing superconducting ceramic materials |
US4980080A (en) * | 1988-06-09 | 1990-12-25 | Societe Anonyme Dite: Saft | Process of making a cathode material for a secondary battery including a lithium anode and application of said material |
JPH04136112A (ja) * | 1990-09-25 | 1992-05-11 | Nisshin Steel Co Ltd | 製鋼用脱硫、脱燐剤 |
JP3238954B2 (ja) * | 1992-09-25 | 2001-12-17 | 三洋電機株式会社 | 非水系二次電池 |
JP2000159632A (ja) * | 1998-11-24 | 2000-06-13 | Miyoshi Kasei Kk | 皮膚抗菌性組成物 |
JP4301468B2 (ja) * | 1999-07-07 | 2009-07-22 | 信越化学工業株式会社 | 耐熱熱伝導性シリコーンゴム複合シート及びその製造方法 |
JP2002134110A (ja) * | 2000-10-23 | 2002-05-10 | Sony Corp | 正極活物質の製造方法及び非水電解質電池の製造方法 |
JP4310610B2 (ja) * | 2001-05-30 | 2009-08-12 | ヒメノイノベック株式会社 | 白華抑制塗材及び白華抑制方法 |
JP2005533047A (ja) * | 2001-06-07 | 2005-11-04 | チョウ・コンサルティング・インコーポレイテッド | アフタ潰瘍および単純ヘルペス病変の予防および処置のための組成物および方法 |
JP3812523B2 (ja) * | 2002-09-10 | 2006-08-23 | 昭栄化学工業株式会社 | 金属粉末の製造方法 |
JP2007106876A (ja) * | 2005-10-13 | 2007-04-26 | Tottori Univ | 抗ウィルス性塗料組成物および塗装物 |
-
2008
- 2008-02-08 WO PCT/JP2008/052601 patent/WO2009098786A1/ja active Application Filing
-
2009
- 2009-02-09 CN CN2009801045365A patent/CN101939015A/zh active Pending
- 2009-02-09 EP EP09707915A patent/EP2241321A4/en not_active Withdrawn
- 2009-02-09 US US12/866,182 patent/US20100329971A1/en not_active Abandoned
- 2009-02-09 CA CA2715140A patent/CA2715140A1/en not_active Abandoned
- 2009-02-09 WO PCT/JP2009/000516 patent/WO2009098908A1/ja active Application Filing
- 2009-02-09 KR KR1020107017526A patent/KR20100125242A/ko not_active Application Discontinuation
- 2009-02-09 JP JP2009552422A patent/JPWO2009098908A1/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3547140B2 (ja) | 1995-06-05 | 2004-07-28 | サウスウエスト・リサーチ・インスティチュート | 粉末状の殺菌組成物 |
JP3222471B2 (ja) | 1995-06-07 | 2001-10-29 | サーモディックス,インコーポレイティド | ウイルス不活化被覆物 |
JP2000288547A (ja) | 1999-04-05 | 2000-10-17 | Taiyo Kagaku Kogyo Kk | 廃水の浄化処理方法及びその装置 |
JP2001070946A (ja) | 1999-09-01 | 2001-03-21 | Himeka Engineering Kk | コロナ放電を利用した浄化方法および装置 |
JP2005036091A (ja) * | 2003-07-18 | 2005-02-10 | Mochise Denki Kk | プラスチック用添加剤及びプラスチック |
WO2005013695A1 (ja) | 2003-08-12 | 2005-02-17 | Mochigase Electrical Equipment Co., Ltd. | 抗ウイルス剤、これを用いた繊維及び抗ウイルス部材 |
JP2008037814A (ja) * | 2006-08-08 | 2008-02-21 | Tokyo Medical & Dental Univ | 抗ウイルス材及び環境反応型抗ウイルス材 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2241321A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013139951A (ja) * | 2011-12-29 | 2013-07-18 | Daikin Industries Ltd | 給湯システム |
JP2018058826A (ja) * | 2016-10-06 | 2018-04-12 | 大阪ガスケミカル株式会社 | 抗ウイルス剤 |
Also Published As
Publication number | Publication date |
---|---|
KR20100125242A (ko) | 2010-11-30 |
EP2241321A4 (en) | 2011-01-19 |
US20100329971A1 (en) | 2010-12-30 |
EP2241321A1 (en) | 2010-10-20 |
JPWO2009098908A1 (ja) | 2011-05-26 |
WO2009098786A1 (ja) | 2009-08-13 |
CA2715140A1 (en) | 2009-08-13 |
CN101939015A (zh) | 2011-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009098908A1 (ja) | 新規なヒドロキシルラジカル発生法、及び当該方法により発生したヒドロキシルラジカルを利用する抗ウイルス材 | |
Sethi et al. | ZnO/TiO2 composites for photocatalytic inactivation of Escherichia coli | |
Bhattacharya et al. | Fabrication of magnesium oxide nanoparticles by solvent alteration and their bactericidal applications | |
JP2008037814A5 (ja) | ||
JP2008037814A (ja) | 抗ウイルス材及び環境反応型抗ウイルス材 | |
JP6191842B2 (ja) | ヒドロキシルラジカル発生剤、ヒドロキシルラジカル発生剤を用いた抗ウイルス材及びヒドロキシルラジカル発生方法 | |
Pang et al. | Synthesis, characteristics and sonocatalytic activities of calcined γ-Fe2O3 and TiO2 nanotubes/γ-Fe2O3 magnetic catalysts in the degradation of Orange G | |
JP6172611B2 (ja) | ヒドロキシルラジカルの発生方法、および、ヒドロキシルラジカル発生材 | |
Nene et al. | Synthetic preparations and atomic scale engineering of silver nanoparticles for biomedical applications | |
TW200810831A (en) | Photocatalyst, process for preparing the same, photocatalyst coating agent, photocatalyst dispersion and photocatalyst article using the same | |
WO2011037523A1 (en) | Biocidal colloidal dispersions of silica particles with silver ions adsorbed thereon | |
Kamalakkannan et al. | Advanced construction of heterostructured InCrO 4–TiO 2 and its dual properties of greater UV-photocatalytic and antibacterial activity | |
Dědková et al. | Daylight induced antibacterial activity of gadolinium oxide, samarium oxide and erbium oxide nanoparticles and their aquatic toxicity | |
Song et al. | Highly efficient bacterial removal and disinfection by magnetic barium phosphate nanoflakes with embedded iron oxide nanoparticles | |
Eswar et al. | High photoconductive combustion synthesized TiO 2 derived nanobelts for photocatalytic water purification under solar irradiation | |
WO2009104670A1 (ja) | 抗菌抗ウイルス剤及びその使用方法 | |
JP2021175741A (ja) | 無機抗ウイルス剤 | |
CN110449169A (zh) | 一种半金属材料Te纳米线/石墨烯水凝胶复合材料及其制备方法和应用 | |
WO2015032217A1 (zh) | 多聚金属氧酸盐在制备杀菌和去除甲醛的消毒剂中的应用 | |
Al Attas et al. | Bactericidal efficacy of new types of magnesium hydroxide and calcium carbonate nanoparticles | |
Prakash et al. | Exploring the potential of graphene oxide nanocomposite as a highly efficient photocatalyst for antibiotic degradation and pathogen inactivation | |
Dzinun et al. | Photocatalytic performance of TiO2/Eggshell composite for wastewater treatment | |
CN105435766B (zh) | 一种花状TiO2/石墨烯光催化剂的制备方法及其应用 | |
Faucher et al. | Quantification of titanium from TiO2 particles in biological tissue | |
Pei et al. | Hierarchical bismuth phosphate microspheres with high photocatalytic performance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980104536.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09707915 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 12866182 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20107017526 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2715140 Country of ref document: CA Ref document number: 2009707915 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009552422 Country of ref document: JP |