WO2009096439A1 - 光学ガラス - Google Patents

光学ガラス Download PDF

Info

Publication number
WO2009096439A1
WO2009096439A1 PCT/JP2009/051402 JP2009051402W WO2009096439A1 WO 2009096439 A1 WO2009096439 A1 WO 2009096439A1 JP 2009051402 W JP2009051402 W JP 2009051402W WO 2009096439 A1 WO2009096439 A1 WO 2009096439A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
optical element
optical
content
refractive index
Prior art date
Application number
PCT/JP2009/051402
Other languages
English (en)
French (fr)
Inventor
Xuelu Zou
Yunoshin Kanayama
Tomoaki Negishi
Original Assignee
Hoya Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corporation filed Critical Hoya Corporation
Priority to CN2009801036525A priority Critical patent/CN101932533A/zh
Priority to US12/865,574 priority patent/US8424344B2/en
Priority to KR1020107017010A priority patent/KR101397215B1/ko
Publication of WO2009096439A1 publication Critical patent/WO2009096439A1/ja
Priority to US13/845,229 priority patent/US8741795B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/061Forming glass sheets by lateral drawing or extrusion
    • C03B17/062Forming glass sheets by lateral drawing or extrusion combined with flowing onto a solid or gaseous support from which the sheet is drawn
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B40/00Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it
    • C03B40/02Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it by lubrication; Use of materials as release or lubricating compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B40/00Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it
    • C03B40/04Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it using gas

Definitions

  • the present invention relates to optical glass in a broad sense, and more specifically, optical glass having high refractive index and low dispersion characteristics, a glass gob for press molding made of the optical glass, an optical element, and a manufacturing method thereof, and more particularly, a manufacturing method of an optical element blank About.
  • a lens made of high refractive index and low dispersion glass can be combined with a lens made of high refractive index and high dispersion glass to make the optical system compact while correcting chromatic aberration. For this reason, it occupies a very important position as an optical element constituting a projection optical system such as an imaging optical system or a projector.
  • Japanese Unexamined Patent Application Publication No. 2007-269584 discloses such a high refractive index and low dispersion glass.
  • Japanese Patent Application Laid-Open No. 2007-26 9584 discloses a glass having a refractive index nd of 1.75 to 2.00 and a Ta 2 0 5 content in the range of 0 to 25% by mass. 1. All glasses of 85 and above contain a large amount of Ta 2 0 5 . This is because, in a high refractive index region having a refractive index of ndl.75 or more, a large amount of Ta 2 0 5 must be introduced in order to ensure glass stability. Thus, in the high refractive index and low dispersion glass, Ta 2 0 5 is a major component.
  • tantalum is an element with a high rare value and is originally a very expensive substance.
  • the price of rare metals has risen worldwide and the supply of tantalum is also short.
  • the glass manufacturing field there is a shortage of tantalum raw materials, and if this situation continues, there is a concern that it will not be possible to stably supply low-refractive index low-dispersion glass, which is indispensable for the optical equipment industry.
  • the present invention is capable of stable supply and has excellent glass stability, a low refractive index low dispersion optical glass, a glass gop optical fiber for press molding made of this glass, It is another object of the present invention to provide an optical element blank and an optical element manufacturing method. Means for solving the problem
  • the present inventors have found that the object can be achieved by an optical glass having a specific glass composition, refractive index, and Abbe number, and based on this knowledge.
  • the present invention has been completed.
  • the mass ratio of the content of S i 0 2 to the content of B 2 0 3 S i 0 2 ZB 2 0 3 is 1 or less
  • Refractive index n d is 1. 8 6 to 1. 9 5, Abbe number V d force S (2. 3 6— n d) / 0. 0 1 4 or more,
  • the present invention it is possible to stably supply high-refractive index low-dispersion optical glass having excellent glass stability, a glass gob for press molding and an optical element made of this optical glass, and an optical element blank and Each manufacturing method of an optical element can be provided.
  • FIG. 1 is a photograph of the devitrified glass obtained in Comparative Example 1 and Comparative Example 2.
  • the introduction amount of particularly expensive Ta 2 0 5 among the glass components is reduced and limited.
  • B 2 0 3 and S i 0 2 are introduced as glass network-forming oxides, and L a 2 0 3 , Gd 2 0 3 , Y 2 0 3 , and W0 3 that are high refractive index imparting components are introduced.
  • coexist as an essential component.
  • is an important component that contributes not only to improving meltability and lowering the glass transition temperature, but also to lowering the high refractive index and improving devitrification resistance.
  • beta 2 0 3 amount and S i 0 2 amount to balance to devitrification resistance, melting property, and improve the formability of the molten glass, by promoting the Palance with other components, the invention The purpose of this is achieved.
  • optical glass of the present invention is expressed in mol%
  • Hints, S i O weight ratio of the content of 2 S i 0 2/8 2 0 3 to the content of B 2 0 3 is 1 or less
  • Refractive index n d is 1.86 to 1.95, Abbe number v d force S (2.36 ⁇ n d) /0.014 or more and less than 38.
  • S i 0 2 is a network-forming oxide, an essential component necessary for maintaining glass stability and viscosity suitable for forming molten glass. If the amount is less than 0.1%, Stability is lowered, and the viscosity of the glass at the time of forming molten glass is also lowered to deteriorate the moldability. In addition, chemical durability is reduced. On the other hand, if the amount exceeds 40%, it becomes difficult to achieve a desired refractive index, and the liquidus temperature and glass transition temperature increase. In addition, problems such as difficulty in realizing a desired Abbe number, deterioration of glass meltability, and deterioration of devitrification resistance occur. Accordingly, the content of S I_ ⁇ 2 and from 0.1 to 40%. A preferred range for the content of S i 0 2 is 3 to 35%, a more preferred range is 5 to 30%, a further preferred range is 5 to 25%, a more preferred range is 7 to 22%, and a still more preferred range is 10 ⁇ 20%.
  • B 2 0 3 is a network-forming oxide, glass meltability maintain an effective essential ingredient lowering the liquidus temperature. It is also an effective component for imparting low dispersion characteristics. If the amount is less than 10%, the glass stability is lowered, and if it exceeds 50%, it becomes difficult to satisfy the desired refractive index and the chemical durability is deteriorated. Therefore, the content of B 2 0 3 is 10-50% To do.
  • a preferred range for the content of B 2 0 3 is 12-45%, a more preferred range is 15-43%, a further preferred range is 17-40%, a more preferred range is 17-38%, a more preferred range. Is 18-35%.
  • the mass ratio S i 0 2 / B 2 0 3 is 1 or less.
  • the mass ratio S i 0 2 / B 2 0 3 is a value obtained by dividing the content of S i 0 2 in terms of mass% by the content of B 2 0 3 . If the ratio exceeds 1, the liquidus temperature increases, the devitrification resistance deteriorates, the meltability deteriorates, and it becomes difficult to achieve a desired Abbe number.
  • a preferable range of the mass ratio S i 0 2 / B 2 0 3 is 0.95 or less, and a more preferable range is 0.90 or less.
  • Li 2 0, Na 2 0, and K 2 0 are optional components that improve the meltability and lower the glass transition temperature.
  • the total content of Li 2 0, Na 2 0 and K 2 0 exceeds 10%, it becomes difficult to achieve a desired refractive index, and chemical durability is also lowered. Therefore, the total content of Li 2 0, Na 2 0 and K 2 0 is 0-10%.
  • the preferred range of the total content of Li 2 0, Na 2 0 and K 2 O is 0-8%, more preferred range is 0-6%, more preferred range is 0-4%, and more preferred range is More preferably, it is 0 to 2% and does not contain the alkali metal oxide.
  • Mg 0, C a ⁇ , S r O and B a O serve to improve the meltability of the glass and the light transmittance in the visible range. Defoaming effect can also be obtained by introducing it into glass in the form of carbonate or nitrate. However, if the amount exceeds 10%, the liquidus temperature rises, devitrification resistance deteriorates, the refractive index decreases, and chemical durability deteriorates. Therefore, the total content of MgO, C a 0, Sr 0 and B a 0 is set to 0 to: L 0%.
  • the preferred range of the total content of MgO, CaO, SrO, and BaO is 0-8%, more preferred range is 0-6%, more preferred range is 0-4%, and more preferred range is 0-2%. Even more preferably, it does not contain an alkaline earth metal oxide.
  • ZnO is an essential component useful for realizing high refractive index and low dispersion characteristics, and improves the meltability and devitrification resistance of the glass and lowers the liquidus temperature and glass transition temperature. If the amount is less than 0.5%, the refractive index decreases, the liquidus temperature increases, and the devitrification resistance deteriorates. Meanwhile, that If the amount exceeds 22%, it becomes difficult to achieve a desired refractive index. Therefore, the ZnO content should be 0.5-22%. A more preferable range of the content of Z ⁇ is 0.5 to 20%, a more preferable range is 1 to 18%, a more preferable range is 2 to 17%, an even more preferable range is 3 to 17%, and A more preferred range is 4 to 17%.
  • L a 2 0 3 is essential for realizing a high refractive index and low dispersion characteristic, and also serves to improve chemical durability. If the amount is less than 5%, it is difficult to obtain a desired refractive index, and if it exceeds 50%, the liquidus temperature rises and the devitrification resistance deteriorates. Accordingly, the content of L a 2 ⁇ 3 5 to 50%. L a 2 0 3 a preferred range of the content 5 to 45%, more preferably in the range of 5 to 40%, still more preferably in the range of 5 to 35%, more preferably in the range 7 to 30%, even more preferred range is 10-25%.
  • Gd 2 0 3 lowers the liquidus temperature by coexisting with L a 2 ⁇ 3, serves to significantly improve devitrification resistance. If the amount is less than 0.1%, the refractive index decreases, the liquidus temperature rises, and devitrification resistance and chemical durability deteriorate. On the other hand, if the amount exceeds 25%, the liquidus temperature rises and devitrification resistance deteriorates. Therefore, the content of & (1 2 0 3 is 0.1 to 25%.
  • the preferable range of the content of Gd 2 0 3 is 0.1 to 20%, the more preferable range is 0.1 to 18%, A more preferable range is 0.1 to 15%, a more preferable range is 0.1 to 12%, an even more preferable range is 0.1 to 10%, and an even more preferable range is 1 to 10%. .
  • Y 2 ⁇ 3 also lowers the liquidus temperature by coexisting with L a 2 0 3, it serves to significantly to improve the devitrification resistance. If the amount is less than 0.1%, the refractive index decreases, the liquidus temperature rises, and devitrification resistance and chemical durability deteriorate. On the other hand, if the amount exceeds 20%, the liquidus temperature rises and devitrification resistance deteriorates. Therefore, the content of Y 2 0 3 is set to 0.1 to 20%. Upsilon 2 ⁇ preferred range of the content of 3 0.1 to 18%, more preferably in the range of 0.1 to 15%, further good preferable range is 0.1 to 13%, yet more preferably in the range 0.5 1 10%, even more preferred range is 0.1-7%. Still more preferred range is 5-7%.
  • Yb 2 ⁇ 3 also lowers the liquidus temperature by coexisting with L a 2 ⁇ 3, it serves to significantly improve devitrification resistance. If the amount exceeds 20%, the liquidus temperature rises and the devitrification resistance deteriorates. Therefore, the content of Yb 2 0 3 is set to 0 to 20%.
  • a preferred range for the content of Yb 2 0 3 is 0 to 18%, a more preferred range is 0 to 16%, a further preferred range is 0 to 14%, A preferred range is 0 to 12%, an even more preferred range is 0 to 10%, and an even more preferred range is 0 to 5%.
  • Z r0 2 works to increase the refractive index and improve chemical durability. Excellent effects can be obtained even with a small amount of introduction. However, if the amount exceeds 25%, the glass transition temperature and the liquidus temperature rise and the devitrification resistance decreases. Therefore, the content of Zr 0 2 is 0-25%.
  • the preferred range of the content of Z r 0 2 is 0 to 22%, more preferred range is 2 to 22%, more preferred range is 2 to 20%, more preferred range is 2 to 18%, even more preferred range is 2 to 15%, even more preferred range is 2-13%.
  • T i 0 2 works to increase the refractive index and improve chemical durability and resistance to devitrification. However, if the amount exceeds 25%, it becomes difficult to obtain a desired Abbe number, and the glass transition temperature and the liquidus temperature increase, resulting in deterioration of devitrification resistance. Accordingly, the content of T I_ ⁇ 2 to 0-25%.
  • Nb 2 5 5 functions to increase the refractive index, lower the liquidus temperature, and improve devitrification resistance. If the amount exceeds 20%, the liquidus temperature rises, the devitrification resistance deteriorates, it becomes difficult to achieve the desired Abbe number, and the coloring of the glass also increases. Therefore, the content of Nb 2 0 5 is set to 0 to 20%.
  • a preferred range for the content of Nb 2 0 5 is 0 to 18%, a more preferred range is 0 to 15%, a further preferred range is 0 to 12%, a more preferred range is 0 to 10%, and a still more preferred range is 0 to 8%.
  • Ta 2 0 5 is a powerful component that achieves high refractive index and low dispersion and also enhances glass stability, achieving the stable supply of high refractive index and low dispersion glass that is the object of the present invention. Therefore, the content is limited to 10% or less. If the content exceeds 10%, the liquidus temperature rises and devitrification resistance deteriorates. Therefore, the content of Ta 2 0 5 is set to 0 to 10%.
  • a preferable range of the content of Ta 2 0 is 0 to 7%, a more preferable range is 0 to 5%, a more preferable range is 0 to 4%, a more preferable range is 0 to 3%, and an even more preferable range is 0. ⁇ 2%, and the preferred range for one layer is 0 to 1%. It is particularly preferred not to contain T a 2 0 5 .
  • W_ ⁇ 3 increasing the refractive index, lowers the liquidus temperature, an essential component contributes to the improvement of the devitrification resistance is there. If the amount is 0.1% or less, it becomes difficult to obtain a desired refractive index, the liquidus temperature rises, and devitrification resistance deteriorates. On the other hand, if the amount exceeds 20%, the liquidus temperature rises and devitrification resistance deteriorates. In addition, the coloring of the glass is strengthened. Therefore, the content of W 0 3 is more than 0.1% and not more than 20%.
  • the preferred range of the content of W0 3 is 0.1 to: 18%, the more preferred range is 0.1 to 15%, the more preferred range is 0.5 to 10%, and the more preferred range is 0.5 to 8%. %, And a more preferable range is 0.5 to 7%.
  • G E_ ⁇ 2 is a network-forming oxide, for also serves to increase the refractive index, is a component which can increase the refractive index while maintaining glass stability, a very expensive component, T It is an ingredient that it is desirable to refrain from, along with the a component.
  • T a very expensive component
  • G e 0 2 is a component which can increase the refractive index while maintaining glass stability, a very expensive component, T It is an ingredient that it is desirable to refrain from, along with the a component.
  • B i 2 0 3 functions to increase the refractive index and the glass stability. However, when the amount exceeds 10%, the light transmittance in the visible region decreases. Therefore, the content of B i 2 0 3 is set to 0 to 10%.
  • a preferred range for the content of B i 20 3 is 0 to 5%, a more preferred range is 0 to 2%, a further preferred range is 0 to 1%, and it is particularly preferred that no Bi 2 0 3 is contained.
  • a 1 2 0 3 works to improve glass stability and chemical durability in small amounts, but when the amount exceeds 10%, the liquidus temperature rises and devitrification resistance decreases. Getting worse. Therefore, the content of Al 2 0 3 is set to 0 to 10%.
  • a preferable range of the content of A 1 2 0 3 is 0 to 5%, a more preferable range is 0 to 2%, a further preferable range is 0 to 1%, and it is particularly preferable not to include A 1 2 0 3 preferable.
  • S b 2 O 3 can be added as a fining agent, and if added in a small amount, it also works to suppress a decrease in light transmittance due to contamination with impurities such as Fe, but if added in excess of 1% by mass, glass is added. However, when it is press-molded, it deteriorates the molding surface of the press mold. Therefore, the addition amount of S b 2 0 3 is preferably 0 to 1% by mass, more preferably 0 to 0.5% by mass. Sn 0 2 can also be added as a fining agent, but adding more than 1% by weight in an extra portion will color the glass or promote the deterioration of the molding surface of the press mold during precision press molding due to oxidation. End up. Therefore, the addition amount of 3110 2 is preferably 0 to 1% by mass, more preferably 0 to 0.5% by mass.
  • the optical glass of the present invention realizes optical characteristics of high refractive index and low dispersion while maintaining glass stability, and does not need to contain components such as Lu and H f. Since Lu and H f are also expensive components, it is preferable to suppress the contents of Lu 2 0 3 and H f 0 2 to 0 to 1%, more preferably to 0 to 0.5%, respectively. We do not introduce 2 ⁇ 3, and particularly preferably each not to introduce H f ⁇ 2.
  • the optical glass of the present invention has a refractive index n d of 1.86 to 1.95.
  • the preferred lower limit of refractive index nd is 1.87, the more preferred lower limit is 1.88, the more preferred lower limit is 1.89, the preferred upper limit is 1.94, the more preferred upper limit is 1.93, and the more preferred upper limit is 1. 92.
  • a glass with a small Abbe number V d that is, a glass with high dispersion, tends to increase the refractive index while maintaining stability. Therefore, the present invention defines the lower limit of the Abbe number V d in relation to the refractive index n d.
  • the optical glass of the present invention has an Abbe number V d of (2.36 ⁇ nd) /0.014 or more and less than 38.
  • a preferable lower limit of the Abbe number V d is (2.356 -nd) /0.01.37, and a more preferable lower limit is (2.356-nd) /0.01.87.
  • the optical glass of the present invention is a glass suitable for forming a smooth optical functional surface by grinding or polishing.
  • the suitability of cold working such as grinding and polishing that is, cold workability, is indirectly related to the glass transition temperature.
  • Glass with a low glass transition temperature is more suitable for precision press forming than cold workability, whereas glass with a high glass transition temperature is more suitable for cold work than precision press forming, and it is more suitable for cold workability. Excellent. Accordingly, priority is also given to cold workability in the present invention.
  • the glass transition temperature is preferably not too low, preferably higher than 630 ° C, more preferably 640 ° C or higher, and 6600 ° C or higher. More preferred.
  • the glass transition temperature is preferably 7 20 ° C. or lower, more preferably 7 10 ° C. or lower, and even more preferably less than 70 ° C.
  • a powdery compound raw material or cullet raw material is weighed and prepared according to the target glass composition, supplied into a platinum alloy melting vessel, and then heated and melted. After the above raw materials are completely melted and vitrified, the temperature of the molten glass is raised to clarify. The clarified molten glass is homogenized by stirring with a stirrer, and continuously supplied to the glass outflow pipe, outflowed, rapidly cooled, and solidified to obtain a glass molded body.
  • the glass gob for press molding of the present invention is characterized by comprising the above-described optical glass of the present invention.
  • the shape of the gob should be easy to press according to the shape of the target press-formed product.
  • the mass of the gob is also set according to the press-formed product.
  • glass having excellent stability is used, even if it is reheated, softened and press-molded, the glass is not easily devitrified, and a high-quality molded product can be stably produced. .
  • the production example of the glass gop for press molding is as follows.
  • molten glass flowing out from the pipe is continuously poured into a vertical mold disposed horizontally below the outflow pipe, and formed into a plate having a certain thickness.
  • the formed glass is continuously pulled out in the horizontal direction from the opening provided on the side surface of the mold.
  • the glass sheet compact is pulled out by a belt conveyor.
  • a glass molded body having a predetermined thickness and width can be obtained by pulling out the glass molded body so that the thickness of the glass molded body is constant with the belt conveyor being pulled out at a constant speed.
  • the glass compact is transported into the furnace by a belt conveyor. And slowly cooled.
  • the slowly cooled glass molded body is cut or cleaved in the plate thickness direction and polished or barrel-polished to form a glass gob for press molding.
  • a glass column is formed by inserting molten glass into a cylindrical mold instead of the above mold.
  • the glass molded body formed in the vertical mold is drawn vertically downward at a constant speed from the opening force at the vertical section of the vertical mold.
  • the drawing speed may be adjusted so that the molten glass liquid level in the mold is constant.
  • After the glass molded body is gradually cooled, it is cut or cleaved, and subjected to polishing or barrel polishing to obtain a glass gob for press molding.
  • a molding machine in which a plurality of molds are arranged at equal intervals on the circumference of a circular turntable below the outflow pipe is installed below the outflow pipe, and the turntable is indented.
  • Rotating supplying molten glass with one of the holding positions of the mold as the position where molten glass is supplied to the mold (referred to as the cast position), casting the supplied molten glass into a glass molded body, then casting position
  • the glass molded body is taken out from a stop position (takeout position) of a predetermined mold different from that of the mold.
  • Which stop position is the take-out position may be determined in consideration of the rotation speed of the turntable, the cooling speed of the glass, and the like.
  • the molten glass is supplied to the forming mold at the casting position by dropping molten glass from the glass outlet of the outflow pipe and receiving the glass droplets with the above-mentioned forming mold, and bringing the forming mold retained at the casting position closer to the glass outlet.
  • the bottom of the molten glass flow that flows out is supported, a constriction is created in the middle of the glass flow, and the molten glass below the constriction is separated on the mold by suddenly dropping the mold in the vertical direction at a predetermined timing.
  • a method of receiving the separated molten glass lump with a molding die that is retained at the cast position is provided to the forming mold at the casting position by dropping molten glass from the glass outlet of the outflow pipe and receiving the glass droplets with the above-mentioned forming mold, and bringing the forming mold retained at the casting position closer to the glass outlet.
  • the bottom of the molten glass flow that flows out is supported, a constriction is created in the middle of the glass flow, and the
  • a known method may be used to form the glass on the mold.
  • glass is blown upward from the mold and an upward wind pressure is applied to the glass lump to form the glass while it floats, the surface of the glass molded body will become wrinkled, or the glass will be molded by contact with the mold. It can prevent the body from cracking.
  • the shape of the glass molded body is spherical, rotating ellipsoidal, and has one rotation target axis, depending on the selection of the mold shape and the manner in which the gas is ejected, and the two surfaces facing the axial direction of the rotation target axis Both can be shaped to be convex outward.
  • These shapes are suitable for a glass gob for press molding an optical element such as a lens or an optical element blank. Obtained in this way
  • the glass molded body can be used as it is, or the surface can be polished or barrel polished to form a glass gob for press molding.
  • the optical element of the present invention is characterized by comprising the above-described optical glass of the present invention.
  • the optical element of the present invention has high refractive index and low dispersion characteristics, and the content of expensive components such as Ta 2 0 5 and Ge 0 2 is suppressed to a small amount or zero, so that the cost is low.
  • Optical elements such as various lenses and prisms can be provided with optical value.
  • the lens examples include various lenses such as a concave meniscus lens, a convex meniscus lens, a biconvex lens, a biconcave lens, a planoconvex lens, and a planoconcave lens whose lens surface is spherical or aspherical.
  • Such a lens can correct chromatic aberration when combined with a lens made of high refractive index and high dispersion glass, and is suitable as a lens for correcting chromatic aberration. It is also an effective lens for compact optical systems.
  • the prism has a high refractive index, it is possible to realize a compact and wide angle optical system by bending the optical path in a desired direction by incorporating it into the imaging optical system.
  • a film for controlling light transmittance such as an antireflection film, may be provided on the optical functional surface of the optical element of the present invention.
  • the optical element blank manufacturing method of the present invention has the following two modes.
  • the first optical element blank manufacturing method of the present invention is a method of manufacturing an optical element plank that is finished into an optical element by grinding and polishing, and press-molds the above-described press molding glass gob of the present invention by heating and softening. It is characterized by that.
  • the optical element blank is a glass molded body having a shape approximating the shape of the optical element obtained by adding a processing margin to be removed by grinding and polishing to the shape of the target optical element.
  • a press mold having a molding surface having a shape obtained by inverting the shape of the blank is prepared.
  • the press mold is composed of mold parts including an upper mold, a lower mold and, if necessary, a barrel mold.
  • the upper and lower mold molding surfaces, or the barrel molding surface when using a barrel mold, have the above-mentioned shape.
  • a powder mold release agent such as boron nitride is uniformly applied to the surface of the glass gob for press molding, heated and softened, introduced into the preheated lower mold, and pressed with the upper mold facing the lower mold. Mold into an optical element blank.
  • the optical element blank is released and removed from the press mold, and then annealed.
  • This annealing treatment reduces the internal distortion of the glass so that the optical properties such as the refractive index become a desired value.
  • the second optical element blank manufacturing method of the present invention is the optical element blank manufacturing method in which the optical element blank is finished by grinding and polishing.
  • the glass raw material is melted, and the obtained molten glass is press-molded.
  • An optical element blank made of the optical glass of the present invention is produced.
  • the press mold is composed of mold parts including upper mold, lower mold, and barrel mold as necessary. As described above, the molding surface of the press mold is processed into a shape obtained by inverting the surface shape of the optical element blank. A powder mold release agent such as boron nitride is uniformly applied onto the lower mold surface, and the molten glass melted according to the optical glass manufacturing method described above flows out onto the lower mold surface, and melts on the lower mold. When the amount of glass reaches the desired amount, the molten glass stream is cut with a cutting blade called shear. After obtaining the molten glass lump on the lower mold in this way, the lower mold is moved together with the molten glass lump to the position where the upper mold waits, and the glass is pressed with the upper mold and the lower mold to form an optical element blank. .
  • a powder mold release agent such as boron nitride
  • the optical element blank is released and removed from the press mold, and then annealed.
  • This annealing treatment reduces the internal distortion of the glass so that the optical properties such as the refractive index become a desired value.
  • the optical element manufacturing method of the present invention is characterized by grinding and polishing an optical element blank produced by the above-described method of the present invention. Known methods can be applied to grinding and polishing. Example
  • thermomechanical analyzer Using a thermomechanical analyzer, the temperature was measured at a temperature increase rate of 4 ° C / min.
  • the glass was placed in a furnace heated to a predetermined temperature and held for 2 hours. After cooling, the inside of the glass was observed with a 100 ⁇ optical microscope, and the liquidus temperature was determined from the presence or absence of crystals.
  • Viscosity was measured by a viscosity measuring method using a JIS standard Z 8803, a coaxial double cylindrical rotational viscometer.
  • S102 / B203 is the value obtained by dividing the Si02 content in mol% by the B203 content.
  • the total (mass%) is the value including the added amount of Sb203.
  • JP 2007- 269584 discloses in Table 8, a composition of No. 37, while maintaining the ratio of the content of the component other than Ta 2 0 5, the raw material in such a manner that the content of T a 2 0 5 is zero A melt obtained by blending, heating and melting was poured into a vertical mold and rapidly cooled. As a result, as shown on the left of Fig. 1, the entire glass was devitrified and became cloudy.
  • a glass gob for press molding made of each optical glass of No. 1 to No. 10 in Example 1 was produced as follows. First, glass raw materials were prepared so as to obtain the above glasses, put into a platinum crucible, heated, melted, clarified and stirred to obtain a homogeneous molten glass. Next, the molten glass flowed out from the outflow pipe at a constant flow rate and was poured into a vertical mold disposed horizontally below the outflow pipe to form a glass plate having a certain thickness. The formed glass plate was continuously pulled out from the opening provided on the side surface of the mold in the horizontal direction, transported into the annealing furnace by a belt conveyor, and gradually cooled.
  • the slowly cooled glass plate was cut or cleaved to produce glass pieces, and these glass pieces were barrel-polished to form glass gob for press molding.
  • a cylindrical saddle is placed below the outflow pipe, molten glass is inserted into the saddle and formed into columnar glass, and is drawn vertically downward at a constant speed from the opening of the bottom of the saddle. Thereafter, it is gradually cooled, cut or cleaved to produce glass pieces, and these glass pieces are barrel-polished to obtain a glass gob for press forming.
  • the molten glass flows out from the outflow pipe, and after receiving the lower end of the molten glass flowing out from the mold, the mold is rapidly lowered, the molten glass flow is cut by the surface tension, and the mold is placed on the mold. A desired amount of molten glass ingot was obtained. Then, gas was blown out from the mold, an upward wind pressure was applied to the glass, and the glass was formed into a glass lump while being floated, removed from the mold and annealed. Then, the glass lump was barrel-polished to obtain a glass gob for press molding.
  • each press-molding glass gob obtained in Example 3 After uniformly applying a release agent composed of boron nitride powder to the entire surface of each press-molding glass gob obtained in Example 3, the gob was heated, softened and press-molded to form a concave meniscus lens, a convex meniscus lens, both Various lenses such as convex lenses, biconcave lenses, plano-convex lenses, plano-concave lenses, and prism blanks were prepared.
  • a molten glass was prepared in the same manner as in Example 2, and the molten glass was supplied to the lower mold forming surface uniformly coated with a release agent of boron nitride powder, and the amount of molten glass on the lower mold became a desired amount. By the way, the molten glass flow was cut with a cutting blade.
  • the molten glass block thus obtained on the lower mold is pressed with the upper mold and the lower mold, and various lenses such as a concave meniscus lens, a convex meniscus lens, a biconvex lens, a biconcave lens, a planoconvex lens, and a planoconcave lens, A prism blank was prepared.
  • each blank was ground and polished to produce a concave meniscus lens, a convex meniscus lens, a biconvex lens, a biconcave lens, a planoconvex lens, a planoconcave lens, and other various lenses and prisms.
  • An antireflection film may be coated on the surface of the obtained optical element.
  • a glass plate and a columnar glass were produced in the same manner as in Example 2, and the obtained glass molded body was annealed to reduce internal distortion and to make optical characteristics such as refractive index become desired values.
  • the present invention is an optical glass that can be stably supplied and has high refractive index and low dispersion having excellent glass stability, and is suitable for a glass gob for press molding, an optical element blank, and an optical element.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Compositions (AREA)

Abstract

モル%表示で、SiO2 0.1~40%、B2O3 10~50%、Li2O、Na2OおよびK2Oを合計で0~10%、MgO、CaO、SrOおよびBaOを合計で0~10%、ZnO 0.5~22%、La2O3 5~50%、Gd2O3 0.1~25%、Y2O3 0.1~20%、Yb2O3 0~20%、ZrO2 0~25%、TiO2 0~25%、Nb2O5 0~20%、Ta2O5 0~10%、WO3 0.1%を超え20%以下、GeO2 0~3%未満、Bi2O3 0~10%、Al2O3 0~10%、を含み、B2O3の含有量に対するSiO2の含有量の質量比SiO2/B2O3が1以下であり、屈折率ndが1.86~1.95、アッベ数νdが(2.36―nd)/0.014以上、38未満の光学ガラスである。

Description

明細書
光学ガラス 技術分野
本発明は広義には光学ガラスに関し、詳しくは高屈折率低分散特性を有する光学ガラス、 前記光学ガラスからなるプレス成形用ガラスゴプぉよび光学素子とその製造方法、 ならぴ に光学素子ブランクの製造方法に関する。 背景技術
高屈折率低分散ガラスからなるレンズは、 高屈折率高分散ガラスからなるレンズと組み 合わせることにより、 色収差を捕正しつつ、 光学系のコンパク ト化を可能にする。 そのた め、 撮像光学系やプロジェクタなどの投射光学系を構成する光学素子として非常に重要な 位置を占めている。
特開 2007— 26 9584号公報にはこのような高屈折率低分散ガラスが開示されて いる。 特開 200 7— 26 9584号公報が開示するガラスは、 屈折率 n dが 1. 75〜 2. 00で T a 205の含有量を 0〜25質量%の範囲としている力 屈折率 n dが 1. 8 5以上のガラスは全て多量の T a 205を含んでいる。 これは、 屈折率 n d l . 75以上と いった高屈折率領域においては、ガラス安定性を確保する上で多量の T a 205導入が欠か せないからである。 このように高屈折率低分散ガラスにおいて、 T a 205は主要な成分と なっている。
ところで、 タンタル (T a) は希少価値が高い元素であり、 元々非常に高価な物質であ る。 その上、 最近、 ワールドワイ ドにレアメタルの価格が高騰しており、 タンタルの供給 量も不足している。 ガラス製造分野においてもタンタル原料が不足しており、 こうした状 況が続くと光学機器業界にとつて必要不可欠な髙屈折率低分散ガラスを安定供給できなく なることが危惧される。 発明の概要
発明が解決しようとする課題
本発明はこのような事情のもとで、 安定供給が可能であって、 優れたガラス安定性を有 する髙屈折率低分散光学ガラス、 このガラスからなるプレス成形用ガラスゴプぉよぴ光学 素子、 ならびに光学素子ブランクおよび光学素子のそれぞれの製造方法を提供することを 目的とするものである。 課題を解決するための手段
本発明者らは、 前記目的を達成するために鋭意研究を重ねた結果、 特定のガラス組成と 屈折率とアッベ数を有する光学ガラスにより、 その目的を達成し得ることを見出し、 この 知見に基づいて本発明を完成するに至った。
すなわち、 本発明は、
(1) モル。 /。表示で、
S i 02 0. 1〜40%、
B203 10〜50%、
L i 2 O、 N a 2 Oおよび 2〇を合計で 0〜 10 %、
MgO、 C aO、 S r Oおよび B a〇を合計で 0〜 10 %、
Z n O 0. 5〜22%、
L a 203 5〜50%、
Gd203 0. 1—25%,
Y2O3 0. 1〜 20 %、
Yb 203 0〜20%、
Z r 02 0〜 25 %、
T i o2 0〜 25 %、
Nb2Os 0〜20%、
T a 205 0〜 10%、
WO 3 0. 1%を超え 20%以下、
G e O a 0〜 3 %未満、 B i 203 0〜: 1 0%、
A 1 203 0〜1 0%、
を含み、 B 203の含有量に対する S i 02の含有量の質量比 S i 02ZB 203が 1以下で あり、
屈折率 n dが 1. 8 6〜1. 9 5、 アッベ数 V d力 S (2. 3 6— n d) /0. 0 1 4以上、
3 8未満であることを特徵とする光学ガラス、
(2) T a 205の含有量が 0〜7モル%である上記 (1) 項に記載の光学ガラス、
(3) G eフリーガラスである上記 (1) 項または (2) 項に記載の光学ガラス、
(4) 上記 (1) 項〜 (3) 項のいずれか 1項に記載の光学ガラスからなるプレス成形用 ガラスゴブ、
(5) 上記 (1) 項〜 (4) 項のいずれか 1項に記載の光学ガラスからなる光学素子、
(6) 研削、 研磨により光学素子に仕上げられる光学素子ブランクの製造方法において、 上記 (4) 項に記載のプレス成形用ガラスゴブを加熱、 軟化してプレス成形することを特 徴とする光学素子ブランクの製造方法、
(7) 研削、 研磨により光学素子に仕上げられる光学素子ブランクの製造方法において、 ガラス原料を熔融し、 得られた熔融ガラスをプレス成形し、 上記 (1) 項〜 (3) 項の いずれか 1項に記載の光学ガラスからなる光学素子ブランクを作製することを特徴とする 光学素子ブランクの製造方法、
(8) 上記 (6) 項または (7) 項に記載の光学素子ブランクを研削、 研磨することを特 徴とする光学素子の製造方法、
を提供するものである。 発明の効果
本発明によれば、 安定供給が可能であって、 優れたガラス安定性を有する高屈折率低分 散光学ガラス、この光学ガラスからなるプレス成形用ガラスゴブぉよび光学素子、並びに、 光学素子ブランクおよび光学素子のそれぞれの製造方法を提供することができる。
図面の簡単な説明 図 1は比較例 1および比較例 2で得られた失透したガラスの写真である。 発明を実施するための形態
[光学ガラス]
まず、 本発明の光学ガラスについて説明する。
本発明の光学ガラスにおいては、ガラス成分の中でも特に高価な T a 205の導入量を低 減、 制限する。 こうした制限下、 耐失透性を維持しつつ高屈折率低分散特性を付与するに は、 単に T a 25の量を削減するだけでは、 ガラス化しなかったり、 生産過程でガラスが 失透して使い物にならなくなってしまう。 こうした問題を回避しつつ、 Ta 205の導入量 を削減するには、 髙屈折率付与成分の配分が重要である。
本発明では、 ガラスの網目形成酸化物として B23、 S i 02を導入するとともに、 高 屈折率付与成分である L a 203、 Gd 203、 Y203、 W03、 ΖηΟを必須成分として共 存させる。 本発明において Ζ ηθは熔解性の向上、 ガラス転移温度の低下だけでなく、 高 屈折率低分散化と耐失透性向上に寄与する重要な成分である。
その上で、 Β 203量と S i 02量のバランスを調整して耐失透性、 熔解性、 熔融ガラス の成形性を改善し、 他成分とのパランスを図ることにより、 上記発明の目的を達成したも のである。
本発明の光学ガラスは、 モル%表示で、
S i 02 0. 1〜40%、
B23 10〜50%、
L i 2〇、 Na 2〇および K2〇を合計で 0~10%、
MgO、 C a O、 S r Oおよび B a Oを合計で 0〜10%、
Zn〇 0. 5〜22%、
L a 203 5〜 50 %、
G d 203 0. 1〜25%、
Y23 0. 1〜20%、
Yb 203 0〜20%、
Z r〇2 0〜25%、 T i o2 0〜 25 %
Nb 205 0〜 20 %
T a 205
wo3 0. 1%を超え 20%以下、
G e O 2 0〜 3 %未満、
B i 23 0〜: L 0%、
A 1203 0〜 10%、
を含み、 B 203の含有量に対する S i O 2の含有量の質量比 S i 02/8203が1以下で あり、
屈折率 n dが 1. 86〜1. 95、 アッベ数 v d力 S ( 2. 36 -n d) /0. 014以上、 38未満であることを特徴とする。
(組成範囲の限定理由)
上記組成範囲の限定理由について説明するが、 特記しない限り、 各成分の含有量、 合計 含有量はモル%にて表示する。
S i 02は、 網目形成酸化物であり、 ガラス安定性の維持および熔融ガラスの成形に適 した粘性の維持に必要な必須成分であり、 その量が 0. 1 %未満であるとガラスの安定性 が低下し、 熔融ガラス成形時のガラスの粘性も低下して成形性が悪化してしまう。 また、 化学的耐久性も低下してしまう。 一方、 その量が 40%を超えると所望の屈折率を実現す ることが困難になるとともに、 液相温度やガラス転移温度が上昇してしまう。 また、 所望 のアッベ数を実現することが困難になる、 ガラスの熔融性が悪化する、 耐失透性が悪化す るなどの問題が生じてしまう。 したがって、 S i〇2の含有量は 0. 1〜40%とする。 S i 02の含有量の好ましい範囲は 3~35%、 より好ましい範囲は 5〜30%、 さらに 好ましい範囲は 5〜 25%、 一層好ましい範囲は 7〜22%、 より一層好ましい範囲は 1 0〜20%である。
B 203は、 網目形成酸化物であり、 ガラスの熔融性維持、 液相温度の低下に有効な必須 成分である。 また、 低分散特性を付与する上からも有効な成分である。 その量が 10%未 満になるとガラス安定性が低下し、 50%を超えると所望の屈折率を満たすことが困難に なるとともに、 化学的耐久性が悪化する。 したがって、 B 203の含有量は 10〜50%と する。 B203の含有量の好ましい範囲は 12〜45%、より好ましい範囲は 15〜43%、 さらに好ましい範囲は 17〜40%、 一層好ましい範囲は 1 7〜38%、 より一層好まし い範囲は 18〜35%である。
なお、 液相温度の低下、 耐失透性の改善および熔融性の改善のため、 また、 成形に適し た粘性を維持する上から、 B 203の含有量に対する S i O 2の含有量の質量比 S i 02/ B 203は 1以下とする。 前記質量比 S i 02/B 203は、 質量%表示による S i 02の含 有量を B 23の含有量で割った値である。前記比が 1を超えると液相温度が上昇するとと もに耐失透性が悪化し、 熔融性も悪化し、 所望のアッベ数を実現することも困難になる。 質量比 S i 02/B 203の好ましい範囲は 0. 95以下、 より好ましい範囲は 0. 90 以下である。
L i 2〇、 Na 2〇および K20は、 熔融性を改善し、 ガラス転移温度を低下させる働き をする任意成分である。 L i 20、 Na 20および K20の合計含有量が 10%を超えると 所望の屈折率を実現するのが困難になり、 化学的耐久性も低下する。 したがって、 L i 2 0、 Na 20および K20の合計含有量は 0〜10%とする。 L i 20、 N a 20および K2 Oの合計含有量の好ましい範囲は 0〜 8 %、 より好ましい範囲は 0〜6%、 さらに好まし い範囲は 0〜4%、 一層好ましい範囲は 0〜 2%であり、 上記アルカリ金属酸化物を含ま ないことがより一層好ましい。
Mg 0、 C a◦、 S r Oおよび B a Oは、 ガラスの熔融性や可視域における光線透過率 を改善する働きをする。 また、 炭酸塩や硝酸塩の形でガラスに導入することにより、 脱泡 効果も得られる。 しかし、 その量が 10%を超えると液相温度が上昇し、 耐失透性が悪化 するほか、 屈折率が低下し、 化学的耐久性も悪化してしまう。 したがって、 MgO、 C a 0、 S r〇および B a〇の合計含有量を 0〜: L 0%とする。 MgO、 C a〇、 S r Oおよ び B a Oの合計含有量の好ましい範囲は 0〜8%、 より好ましい範囲は 0〜6%、 さらに 好ましい範囲は 0〜4%、 一層好ましい範囲は 0〜 2%である。 アルカリ土類金属酸化物 を含まないことがより一層好ましい。
Z n Oは、高屈折率低分散特性を実現する上で有用な必須成分であり、ガラスの熔融性、 耐失透性を改善し、液相温度やガラス転移温度を低下させる働きをする。その量が 0. 5% 未満であると屈折率が低下したり、 液相温度が上昇し、 耐失透性が悪化する。 一方、 その 量が 22%を越えると所望の屈折率を実現することが困難になる。 したがって、 Zn〇の 含有量は 0. 5〜22%とする。 Z ηθの含有量のより好ましい範囲は 0. 5〜20%、 さらに好ましい範囲は 1 ~ 1 8 %、 一層好ましい範囲は 2〜 1 7 %、 より一層好ましい範 囲は 3~1 7%、 なお一層好ましい範囲は 4〜17%である。
L a 203は、 高屈折率低分散特性を実現する上で必須であり、 化学的耐久性を改善する 働きもする。 その量が 5%未満であると所望の屈折率が得にくくなり、 50%を超えると 液相温度が上昇し、 耐失透性が悪化する。 したがって、 L a 23の含有量は 5〜50%と する。 L a 203の含有量の好ましい範囲は 5〜45%、 より好ましい範囲は 5〜 40 %、 さらに好ましい範囲は 5〜 35 %、 一層好ましい範囲は 7〜30%、 より一層好ましい範 囲は 10〜25%である。
Gd 203は、 L a 23と共存させることにより液相温度を低下させ、 耐失透性を大幅 に改善する働きをする。その量が 0. 1 %未満であると屈折率が低下し、液相温度が上昇、 耐失透性や化学的耐久性が悪化する。一方、その量が 25 %を超えると液相温度が上昇し、 耐失透性が悪化する。 したがって、 &(1203の含有量は0. 1〜25%とする。 Gd20 3の含有量の好ましい範囲は 0. 1〜20%、 より好ましい範囲は 0. 1〜18%、 さら に好ましい範囲は 0. 1〜1 5%、 一層好ましい範囲は 0. 1〜1 2%、 より一層好まし い範囲は 0. 1〜10%、 なお一層好ましい範囲は 1〜10%である。
Y23も L a 203と共存させることにより液相温度を低下させ、 耐失透性を大幅に改 善する働きをする。 その量が 0. 1%未満であると屈折率が低下し、 液相温度が上昇、 耐 失透性や化学的耐久性が悪化する。 一方、 その量が 20%を超えると液相温度が上昇し、 耐失透性が悪化する。 したがって、 Y203の含有量は 0. 1〜20%とする。 Υ23の 含有量の好ましい範囲は 0. 1〜18%、 より好ましい範囲は 0. 1〜15%、 さらに好 ましい範囲は 0. 1〜13%、 一層好ましい範囲は 0. 1〜10%、 より一層好ましい範 囲は 0. 1〜7%. なお一層好ましい範囲は 5〜 7%である。
Yb 23も L a 23と共存させることにより液相温度を低下させ、 耐失透性を大幅に 改善する働きをする。その量が 20 %を超えると液相温度が上昇し、耐失透性が悪化する。 したがって、 Yb 203の含有量は 0〜20%とする。 Yb 23の含有量の好ましい範囲 は 0〜18%、 より好ましい範囲は 0〜16%、 さらに好ましい範囲は 0〜14%、 一層 好ましい範囲は 0〜12%、 より一層好ましい範囲は 0〜10%、 なお一層好ましい範囲 は 0〜5%である。
Z r〇2は、 屈折率を高め、 化学的耐久性を改善する働きをする。 少量の導入でも優れ た効果が得られる。 しかし、 その量が 25%を超えると、 ガラス転移温度や液相温度が上 昇し、 耐失透性が低下する。 したがって、 Z r〇2の含有量は 0〜25%とする。 Z r 02 の含有量の好ましい範囲は 0〜 22%、 より好ましい範囲は 2〜22%、 さらに好ましい 範囲は 2〜 20 %、一層好ましい範囲は 2〜 18 %、より一層好ましい範囲は 2〜 1 5 %、 なお一層好ましい範囲は 2〜13%である。
T i 02は、 屈折率を高め、 化学的耐久性おょぴ耐失透性を改善する働きをする。 しか し、 その量が 25%を超えると所望のアッベ数を得ることが難しくなるとともに、 ガラス 転移温度や液相温度が上昇し、 耐失透性が悪化する。 したがって、 T i〇2の含有量は 0 〜25%とする。 T i 02の含有量の好ましい範囲は 0〜22%、 より好ましい範囲は 3 〜 20 %、 さらに好ましい範囲は 3〜 1 8 %、 一層好ましい範囲は 3〜 1 7 %、 より一層 好ましい範囲は 3〜16%である。
Nb 205は、 屈折率を高めるとともに、 液相温度を低下させ、 耐失透性を改善する働き をする。 その量が 20%を超えると液相温度が上昇し、 耐失透性が悪化し、 所望のアッベ 数を実現することが困難になるほか、 ガラスの着色も強まる。 したがって、 Nb25の含 有量を 0〜 20%とする。 Nb 205の含有量の好ましい範囲は 0〜18%、 より好ましい 範囲は 0〜 15 %、 さらに好ましい範囲は 0〜 12 %、 一層好ましい範囲は 0〜 10 %、 より一層好ましい範囲は 0~8%である。
Ta 25は、 高屈折率低分散性を実現し、 ガラス安定性も高める働きをする力 髙価な 成分であるため、 本発明の目的である高屈折率低分散ガラスの安定供給を達成するため、 その含有量を 10%以下に抑える。 また、 その含有量が 10%を超えると液相温度が上昇 し、 耐失透性が悪化する。 したがって、 T a 205の含有量は 0〜10%とする。 Ta 20 5の含有量の好ましい範囲は 0~ 7 %、 より好ましい範囲は 0~5%、 さらに好ましい範 囲は 0〜4%、 一層好ましい範囲は 0〜3%、 より一層好ましい範囲は 0〜 2 %、 なお一 層好ましい範囲は 0〜1%である。 T a 205を含まないことが特に好ましい。
W〇3は、 屈折率を高め、 液相温度を低下させ、 耐失透性の改善に寄与する必須成分で ある。 その量が 0. 1%以下であるだと所望の屈折率を得ることが困難になるとともに、 液相温度が上昇し、 耐失透性が悪化してしまう。 一方、 その量が 20%を越えると液相温 度が上昇し、 耐失透性が悪化してしまう。 また、 ガラスの着色も強まる。 したがって、 W 03の含有量は、 0. 1%を超え 20%以下とする。 W03の含有量の好ましい範囲は 0. 1〜: 1 8 %、 より好ましい範囲は 0. 1〜 1 5 %、 さらに好ましい範囲は 0. 5〜 10 %、 一層好ましい範囲は 0. 5〜8%、 より一層好ましい範囲は 0. 5〜7%である。
G e〇2は、 網目形成酸化物であり、 屈折率を高める働きもするため、 ガラス安定性を 維持しつつ屈折率を高めることができる成分であるが、 非常に高価な成分であり、 T a成 分とともに、 その量を控えることが望まれる成分である。 本発明では、 上記のように組成 を決めているので、 G e 02の含有量を 3%未満に抑えても、 所望の光学特性の実現と優 れたガラス安定性の実現を両立することができる。 従って Ge〇2の含有量は 0〜 3 %未. 満とする。 G e 02の含有量の好ましい範囲は 0〜2%、 より好ましい範囲は 0〜 1 %、 さらに好ましい範囲は 0〜0. 5%であり、 Ge〇2を含まないこと、 すなわち Geフリ 一ガラスであることが特に好ましい。
B i 203は、 屈折率を高めるとともにガラス安定性も高める働きをするが、 その量が 1 0%を超えると可視域における光線透過率が低下する。 したがって、 B i 203の含有量は 0〜10%とする。 B i 203の含有量の好ましい範囲は 0〜5%、 より好ましい範囲は 0 〜2%、さらに好ましい範囲は 0~1%であり、 B i 203を含まないことが特に好ましい。
A 1203は、 少量であればガラス安定性おょぴ化学的耐久性を改善する働きをするが、 その量が 1 0%を超えると液相温度が上昇し、 耐失透性が悪化する。 したがって、 A l 2 03の含有量は 0〜10%とする。 A 1203の含有量の好ましい範囲は 0〜5%、 より好 ましい範囲は 0〜2%、 さらに好ましい範囲は 0〜1%であり、 A 1203を含まないこと が特に好ましい。
S b 23は、 清澄剤として添加可能であり、 少量の添加で F eなどの不純物混入による 光線透過率の低下を抑える働きもするが、 外割りで 1質量%を超えて添加するとガラスが 着色したり、 その強力な酸化作用によってプレス成形時、 プレス成形型の成形面劣化を助 長してしまう。 したがって、 S b 203の添加量は、 外割りで 0~1質量%が好ましく、 よ り好ましくは 0〜0. 5質量%とする。 S n〇 2も清澄剤として添加可能であるが、 外割りで 1質量%を超えて添加するとガラ スが着色したり、 酸化作用によって精密プレス成形時、 プレス成形型の成形面劣化を助長 してしまう。 したがって、 31102の添加量を外割りで0〜1質量%が好ましく、 より好 ましくは 0〜0. 5質量%とする。
本発明の光学ガラスは、 ガラス安定性を維持しつつ高屈折率低分散の光学特性を実現し ており、 Lu、 H f といった成分を含有させることを必要としない。 Lu、 H f も高価な 成分なので、 Lu23、 H f 02の含有量をそれぞれ 0〜1%に抑えることが好ましく、 それぞれ 0~0. 5%に抑えることがより好ましく、 L u 23を導入しないこと、 H f ◦ 2を導入しないことがそれぞれ特に好ましい。
また、 環境影響に配慮し、 As、 P b、 U、 Th、 T e、 C dも導入しないことが好ま しい。
さらに、 ガラスの優れた光線透過性を活かす上から、 Cu、 C r、 V、 F e、 N i、 C oなどの着色の要因となる物質を導入しないことが好ましい。
(光学ガラスの特性)
本発明の光学ガラスの屈折率 n dは、 1. 86〜1. 95である。 屈折率 n dの好まし い下限は 1. 87、 より好ましい下限は 1. 88、 さらに好ましい下限は 1. 89であり、 好ましい上限は 1. 94、 より好ましい上限は 1. 93、 さらに好ましい上限は 1. 92 である。
アッベ数 V dが小さいガラス、 すなわち分散が高いガラスのほうが、 安定性を維持しつ つ、 屈折率を高めやすい。 したがって、 本発明は、 アッベ数 V dの下限を屈折率 n dとの 関係で規定する。 本発明の光学ガラスのアッベ数 V dは (2. 36— n d) /0. 014 以上、 38未満である。 アッベ数 V dの好ましい下限は (2. 356 -n d) /0. 01 37、 より好ましい下限は (2. 356— n d) /0. 01 87である。
本発明の光学ガラスは、 研削、 研磨により平滑な光学機能面を形成するのに好適なガラ スである。 研削、 研磨などの冷間加工の適性、 すなわち冷間加工性は間接的ながらガラス 転移温度と関連がある。 ガラス転移温度が低いガラスは冷間加工性よりも精密プレス成形 に好適であるのに対し、 ガラス転移温度が高いガラスは精密プレス成形よりも冷間加工に 好適であって、 冷間加工性に優れる。 したがって、 本発明においても冷間加工性を優先す る場合は、 ガラス転移温度を過剰に低くしないことが好ましく、 6 3 0 °Cよりも高くする ことが好ましく、 6 4 0 °C以上にすることがより好ましく、 6 6 0 °C以上にすることがさ らに好ましい。 し力 し、 ガラス転移温度が髙すぎるとガラスを再加熱、 軟化して成形する 際の加熱温度が高くなり、 成形に使用する金型の劣化が著しくなつたり、 ァニール温度も 高温になり、 ァニール炉の劣化、 消耗も著しくなる。 したがって、 ガラス転移温度は 7 2 0 °C以下とすることが好ましく、 7 1 0 °C以下にすることがより好ましく、 7 0 0 °C未満 にすることがさらに好ましい。
(光学ガラスの製造方法)
次に本発明の光学ガラスの製造方法について説明する。 例えば、 粉体状の化合物原料あ るいはカレッ ト原料を目的のガラス組成に対応して枰量、 調合し、 白金合金製の熔融容器 内に供給した後、 これを加熱、 熔融する。 上記原料を完全に熔融してガラス化した後、 こ の熔融ガラスの温度を上昇させて清澄を行う。 清澄した熔融ガラスを攪拌器による攪拌に よって均質化し、 ガラス流出パイプに連続供給、 流出し、 急冷、 固化してガラス成形体を 得る。
次に本発明のプレス成形用ガラスゴブについて説明する。
[プレス成形用ガラスコブ]
本発明のプレス成形用ガラスゴブは上記した本発明の光学ガラスからなることを特徴と する。 ゴブの形状は、 目的とするプレス成形品の形状に応じてプレス成形しやすい形状に する。 また、 ゴブの質量もプレス成形品に合わせて設定する。 本発明においては、 安定性 の優れたガラスを使用しているので、 再加熱、 軟化してプレス成形してもガラスが失透し にくく、 高品質の成形品を安定して生産することができる。
プレス成形用ガラスゴプの製造例は以下のとおりである。
第 1の製造例においては、 流出パイプの下方に水平に配置した鎢型にパイプから流出す る熔融ガラスを連続的に铸込み、 一定の厚みを有する板状に成形する。 成形されたガラス は鍀型側面に設けた開口部から水平方向へと連続して引き出される。 板状ガラス成形体の 引き出しはベルトコンベアによって行う。 ベルトコンベアの引き出し速度を一定にしてガ ラス成形体の板厚が一定になるように引き出すことにより、 所定の厚み、 板幅のガラス成 形体を得ることができる。 ガラス成形体はベルトコンベアによりァニ一ル炉内へと搬送さ れ、 徐冷される。 徐冷したガラス成形体を板厚方向に切断あるいは割断し、 研磨加工を施 したり、 バレル研磨を施してプレス成形用ガラスゴプにする。
第 2の製造例においては、 上記錄型の代わりに円筒状の铸型内に熔融ガラスを铸込んで 円柱状のガラス成形体を成形する。 鍚型内で成形されたガラス成形体は錡型底部の開口部 力 ら一定の速度で鉛直下方に引き出される。 引き出し速度は铸型内での瑢融ガラス液位が 一定になるように行えばよい。 ガラス成形体を徐冷した後、 切断もしくは割断して、 研磨 加工またはバレル研磨を施してプレス成形用ガラスゴブとする。
第 3の製造例においては、 流出パイプの下方に円形のターンテーブルの円周上に複数個 の成形型を等間隔に配置した成形機を流出パイプの下方に設置し、 ターンテーブルをィン デッタス回転し、 成形型の停留位置の一つを成形型に熔融ガラスを供給する位置 (キャス ト位置という) として熔融ガラスを供給し、 供給した熔融ガラスをガラス成形体に成形し た後、 キャスト位置とは異なる所定の成形型の停留位置 (テイクアウト位置) からガラス 成形体を取り出す。 テイクアウト位置をどの停留位置にするかは、 ターンテーブルの回転 速度、 ガラスの冷却速度などを考慮して定めればよい。 キャスト位置における成形型への 熔融ガラスの供給は、 流出パイプのガラス流出口から熔融ガラスを滴下し、 ガラス滴を上 記成形型で受ける方法、 キャスト位置に停留する成形型をガラス流出口に近づけて流出す る熔融ガラス流の下端部を支持し、 ガラス流の途中にくびれを作り、 所定のタイミングで 成形型を鉛直方向に急降下することによりくびれより下の熔融ガラスを分離して成形型上 に受ける方法、 流出する熔融ガラス流を切断刃で切断し、 分離した熔融ガラス塊をキャス ト位置に停留する成形型で受ける方法などにより行うことができる。
成形型上でのガラスの成形は公知の方法を用いればよい。 中でも成形型から上向きにガ スを噴出してガラス塊に上向きの風圧を加え、 ガラスを浮上させながら成形すると、 ガラ ス成形体の表面にシヮができたり、 成形型との接触によってガラス成形体に力ン割れが発 生するのを防止することができる。
ガラス成形体の形状は、 成形型形状の選択や上記ガスの噴出の仕方により、 球状、 回転 楕円体状、 回転対象軸を 1つ有し、 該回転対象軸の軸方向を向いた 2つの面が共に外側に 凸状である形状等にすることができる。 これらの形状はレンズなどの光学素子あるいは光 学素子ブランクをプレス成形するためのガラスゴブに好適である。 このようにして得られ たガラス成形体はそのまま、 あるいは表面を研磨あるいはバレル研磨してプレス成形用ガ ラスゴブにすることができる。
[光学素子]
次に本発明の光学素子について説明する。
本発明の光学素子は、 上記した本発明の光学ガラスからなることを特徴とする。 本発明 の光学素子は、 高屈折率低分散特性を有し、 T a 2 0 5や G e 0 2などの高価な成分の含有 量が少量またはゼロに抑えられているので、低コストにて光学的な価値の髙 、各種レンズ、 プリズムなどの光学素子を提供することができる。
レンズの例としては、 レンズ面が球面または非球面である、 凹メニスカスレンズ、 凸メ ニスカスレンズ、 両凸レンズ、 両凹レンズ、 平凸レンズ、 平凹レンズなどの各種レンズを 示すことができる。
こうしたレンズは、 高屈折率高分散ガラス製のレンズと組み合わせることにより色収差 を補正することができ、 色収差補正用のレンズとして好適である。 また、 光学系のコンパ ク ト化にも有効なレンズである。
また、 プリズムについては、 屈折率が高いので撮像光学系に組み込むことにより、 光路 を曲げて所望の方向に向けることによりコンパクトで広い画角の光学系を実現することも できる。
なお本発明の光学素子の光学機能面には、 反射防止膜などの光線透過率を制御する膜を 設けることもできる。
[光学素子ブランクの製造方法]
次に本発明の光学素子ブランクの製造方法について説明する。
本発明の光学素子ブランクの製造方法には、 以下に示す 2つの態様がある。
(第 1の光学素子ブランクの製造方法)
本発明の第 1の光学素子ブランクの製造方法は、 研削、 研磨により光学素子に仕上げら れる光学素子プランクの製造方法において、 上記した本発明のプレス成形用ガラスゴブを 加熱、 軟化してプレス成形することを特徴とする。
光学素子ブランクは、 目的とする光学素子の形状に、 研削、 研磨により除去する加工し ろを加えた光学素子の形状に近似する形状を有するガラス成形体である。 光学素子ブランクを作製するにあたり、 該ブランクの形状を反転した形状の成形面を有 するプレス成形型を用意する。 プレス成形型は上型、 下型そして必要に応じて胴型を含む 型部品によって構成され、 上下型の成形面、 あるいは胴型を使用する場合は胴型成形面を 前述の形状にする。
次にプレス成形用ガラスゴプの表面に窒化ホウ素などの粉末状離型剤を均一に塗布し、 加熱、 軟化してから予熱された下型に導入し、 下型と対向する上型とでプレスし、 光学素 子ブランクに成形する。
次に光学素子ブランクを離型してプレス成形型から取り出し、 ァニール処理する。 この ァニール処理によってガラス内部の歪を低減し、 屈折率などの光学特性が所望の値になる ようにする。
ガラスゴブの加熱条件、 プレス成形条件、 プレス成形型に使用する材料などは公知のも のを適用すればよい。 以上の工程は大気中で行うことができる。
(第 2の光学素子ブランクの製造方法)
本発明の第 2の光学素子ブランクの製造方法は、 研削、 研磨により光学素子に仕上げら れる光学素子ブランクの製造方法において、 ガラス原料を熔融し、 得られた熔融ガラスを プレス成形し、 上記した本発明の光学ガラスからなる光学素子ブランクを作製することを 特徴とする。
上型、 下型、 必要に応じて胴型を含む型部品によりプレス成形型を構成する。 前述のよ うに光学素子ブランクの表面形状を反転した形状にプレス成形型の成形面を加工する。 下型成形面上に窒化ホウ素などの粉末状離型剤を均一に塗布し、 前述の光学ガラスの製 造方法にしたがい熔融した熔融ガラスを下型成形面上に流出し、 下型上の熔融ガラス量が 所望の量になったところで熔融ガラス流をシァと呼ばれる切断刃で切断する。 こうして下 型上に熔融ガラス塊を得た後、 上方に上型が待機する位置に熔融ガラス塊ごと下型を移動 し、 上型と下型とでガラスをプレスし、 光学素子ブランクに成形する。
次に光学素子ブランクを離型してプレス成形型から取り出し、 ァニール処理する。 この ァニール処理によってガラス内部の歪を低減し、 屈折率などの光学特性が所望の値になる ようにする。
ガラスゴブの加熱条件、 プレス成形条件、 プレス成形型に使用する材料などは公知のも のを適用すればよい。 以上の工程は大気中で行うことができる。
次に本発明の光学素子の製造方法について説明する。
[光学素子の製造方法]
本発明の光学素子の製造方法は、 上記した本発明の方法で作製した光学素子ブランクを 研削、 研磨することを特徴とする。 研削、 研磨は公知の方法を適用することができる。 実施例
次に、 本発明を実施例によりさらに詳細に説明する力 本発明は、 これらの例によって 何等限定されるものではない。
(実施例 1 )
まず、 表 1に示す組成を有するガラス No. 1〜10が得られるように、 原料として炭 酸塩、硝酸塩、水酸化物、酸化物、 ホウ酸などを用い、各原料粉末を秤量して十分混合し、 調合原料とし、 この調合原料を白金製坩堝に入れて 1400°Cで加熱、 熔融し、 清澄、 撹 拌して均質な熔融ガラスした。 この熔融ガラスを予熱した铸型に流し込んで急冷し、 ガラ ス転移温度近傍の温度で 2時間保持した後、 徐冷してガラス No. 1〜10の各光学ガラ スを得た。 いずれのガラス中にも結晶の析出は認められなかった。
なお、 各ガラスの特性は、 以下に示す方法で測定した。 測定結果を表 2に示す。
(1) 屈折率 n dおよびアッベ数 V d
1時間あたり 30°Cの降温速度で冷却した光学ガラスについて測定した。
(2) ガラス転移温度 Tg
熱機械分析装置を用いて、 昇温速度 4 °C /分の条件下で測定した。
(3) 液相温度 LT
ガラスを所定温度に加熱された炉内に入れて 2時間保持し、 冷却後、 ガラス内部を 10 0倍の光学顕微鏡で観察し、 結晶の有無から液相温度を決定した。
(4) 液相温度における粘度
粘度 J I S規格 Z 8803、共軸二重円筒形回転粘度計による粘度測定方法により粘度 を測定した。
(5) 比重 アルキメデス法により測定した。
Figure imgf000018_0001
(注 1 ) Sb203は外割り添加量
(注 2 ) S102/B203はモル%表示による Si02含有量を B203含有量で割った値 (注 3 ) 合計 (質量%) は Sb203の添加量も加えた値
表 2
Figure imgf000019_0001
(比較例 1 )
特開 2007— 269584号公報の表 8、 No. 37の組成で、 Ta 205以外の成分 含有量の割合を維持しつつ、 T a 205の含有量がゼロとなるように原料を調合し、 加熱、 熔融して得た熔融物を铸型に流し込んで急冷した。 その結果、 図 1の左に示すようにガラ ス全体が失透し、 白濁してしまった。
(比較例 2)
特開 2007— 269584号公報の表 8、 N o . 37の組成で、 T a 2 O 5含有量の全 量を他の高屈折率付与成分である L a 203、 Gd 203、 T i〇2、 Nb 205、 W03およ ぴ Z r 02に均等に置換した組成に基づき原料を調合し、 加熱、 熔融して得た熔融物を铸 型に流し込んで急冷したところ、 図 1の右に示すようにガラス全体が失透し、 白濁してし った。
(実施例 2)
次に実施例 1の No. 1〜10の各光学ガラスからなるプレス成形用ガラスゴブを次の ようにして作製した。 まず、上記各ガラスが得られるようにガラス原料を調合し、白金製坩堝に投入し、加熱、 熔融し、 清澄、 撹拌して均質な熔融ガラスを得た。 次に、 熔融ガラスを流出パイプから一 定流量で流出し、 流出パイプの下方に水平に配置した铸型に錶込み、 一定の厚みを有する ガラス板を成形した。 成形されたガラス板を鎢型側面に設けた開口部から水平方向へと連 続して引き出'し、 ベルトコ'ンベアにてァニール炉内へと搬送し、 徐冷した。
徐冷したガラス板を切断あるいは割断してガラス片を作り、 これらガラス片をバレル研 磨してプレス成形用ガラスゴブにした。
なお、 流出パイプの下方に円筒状の錶型を配置し、 この鐯型内に熔融ガラスを錄込んで 円柱状ガラスに成形し、 铸型底部の開口部から一定の速度で鉛直下方に引き出した後、 徐 冷し、 切断もしくは割断してガラス片を作り、 これらガラス片をバレル研磨してプレス成 形用ガラスゴブを得ることもできる。
(実施例 3 )
実施例 2と同様に熔融ガラスを流出パイプから流出し、 成形型で流出する瑢融ガラス下 端を受けた後、 成形型を急降下し、 表面張力によって熔融ガラス流を切断し、 成形型上に 所望の量の熔融ガラス塊を得た。 そして、 成形型からガスを噴出してガラスに上向きの風 圧を加え、 浮上させながらガラス塊に成形し、 成形型から取り出してァニールした。 それ からガラス塊をバレル研磨してプレス成形用ガラスゴブとした。
(実施例 4 )
実施例 3で得た各プレス成形用ガラスゴブの全表面に窒化ホウ素粉末からなる離型剤を 均一に塗布した後、 上記ゴブを加熱、 軟化してプレス成形し、 凹メニスカスレンズ、 凸メ ニスカスレンズ、 両凸レンズ、 両凹レンズ、 平凸レンズ、 平凹レンズなどの各種レンズ、 プリズムのブランクを作製した。
(実施例 5 )
実施例 2と同様にして熔融ガラスを作り、'熔融ガラスを窒化ホウ素粉末の離型剤を均 一に塗布した下型成形面に供給し、 下型上の熔融ガラス量が所望量になったところで熔融 ガラス流を切断刃で切断した。
こうして下型上に得た熔融ガラス塊を上型と下型でプレスし、 凹メニスカスレンズ、 凸 メニスカスレンズ、両凸レンズ、両凹レンズ、平凸レンズ、平凹レンズなどの各種レンズ、 プリズムのブランクを作製した。
(実施例 6 )
実施例 4、 5で作製した各ブランクをァ-ニールした。 ァニールによってガラス内部の歪 を低減し、 屈折率などの光学特性が所望の値になるようにする。
次に各ブランクを研削、 研磨して凹メニスカスレンズ、 凸メニスカスレンズ、 両凸レン ズ、 両凹レンズ、 平凸レンズ、 平凹レンズなどの各種レンズ、 プリズムを作製した。 得ら れた光学素子の表面には反射防止膜をコートしてもよい。
(実施例 7 )
実施例 2と同様にしてガラス板および円柱状ガラスを作製し、 得られたガラス成形体を ァニールして内部の歪を低減するとともに、 屈折率などの光学特性が所望の値になるよう した。
次にこれらガラス成形体を切断、 研削、 研磨して凹メニスカスレンズ、 凸メニスカスレ ンズ、 両凸レンズ、 両凹レンズ、 平凸レンズ、 平凹レンズなどの各種レンズ、 プリズムの ブランクを作製した。 得られた光学素子の表面に反射防止膜をコートしてもよい。 産業上の利用可能性
本発明は、 安定供給が可能であり、 かつ優れたガラス安定性を有する高屈折率低分散性 を備える光学ガラスであって、 プレス成形用ガラスゴプ、 光学素子ブランクおよび光学素 子に好適である。

Claims

請求の範囲
請求項 1. モル。/。表示で、
S i 02 0. 1〜40%、
B 203 10〜50%、
L i 20、 Na 20およぴ1:20を合計で 0〜10%、
MgO、 C aO、 S r Oおよび B a◦を合計で 0〜: L 0%、
ZnO 0. 5〜22%、
L a 2θ^ 3 5〜 50 %、
G d 203 0. :!〜 25%、
Y 2O^ 3 0. 1〜20%、
Yb 2o3 0〜20%、
Z r O 0〜 25 %、
T i O 0〜 25 %、
Nb 205 0〜 20 %、
T a 205 0〜 10 %、
wo3 0. 1%を超え 20%以下、
G e 02 0 ~ 3 %未満、
B i 203 0〜10%、
A 1203 0〜: 10 %、
を含み、 B 203の含有量に対する S i 02の含有量の質量比 S i〇2ZB 203が 1以下で あり、
屈折率 n dが 1. 86〜1. 95、 アッベ数 V d力 S (2. 36— n d) /0. 014以上、
3 8未満であることを特徴とする光学ガラス。 請求項 2. T a 205の含有量が 0〜7モル%である請求項 1に記載の光学ガラス c 請求項 3. G eフリ一ガラスである請求項 1または 2に記載の光学ガラス。 請求項 4 . 請求項 1 ~ 3のいずれか 1項に記載の光学ガラスからなるプレス成形用ガ ラスゴブ。 請求項 5 . 請求項 1 ~ 4のいずれか 1項に記載の光学ガラスからなる光学素子。 請求項 6 . 研肖 lj、研磨により光学素子に仕上げられる光学素子ブランクの製造方法にお いて、
請求項 4に記載のプレス成形用ガラスゴブを加熱、 軟化してプレス成形することを特徴 とする光学素子ブランクの製造方法。 請求項 7 . 研肖 IJ、研磨により光学素子に仕上げられる光学素子ブランクの製造方法にお いて、
ガラス原料を熔融し、 得られた熔融ガラスをプレス成形し、 請求項 1〜3のいずれか 1 項に記載の光学ガラスからなる光学素子プランクを作製することを特徴とする光学素子ブ ランクの製造方法。 請求項 8 . 請求項 6または 7に記載の光学素子ブランクを研削、研磨することを特徴と する光学素子の製造方法。
PCT/JP2009/051402 2008-01-30 2009-01-22 光学ガラス WO2009096439A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801036525A CN101932533A (zh) 2008-01-30 2009-01-22 光学玻璃
US12/865,574 US8424344B2 (en) 2008-01-30 2009-01-22 Optical glass
KR1020107017010A KR101397215B1 (ko) 2008-01-30 2009-01-22 광학 유리
US13/845,229 US8741795B2 (en) 2008-01-30 2013-03-18 Optical glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-019422 2008-01-30
JP2008019422A JP5138401B2 (ja) 2008-01-30 2008-01-30 光学ガラス、プレス成形用ガラスゴブおよび光学素子とその製造方法ならびに光学素子ブランクの製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/865,574 A-371-Of-International US8424344B2 (en) 2008-01-30 2009-01-22 Optical glass
US13/845,229 Division US8741795B2 (en) 2008-01-30 2013-03-18 Optical glass

Publications (1)

Publication Number Publication Date
WO2009096439A1 true WO2009096439A1 (ja) 2009-08-06

Family

ID=40912790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051402 WO2009096439A1 (ja) 2008-01-30 2009-01-22 光学ガラス

Country Status (5)

Country Link
US (2) US8424344B2 (ja)
JP (1) JP5138401B2 (ja)
KR (1) KR101397215B1 (ja)
CN (3) CN108328921A (ja)
WO (1) WO2009096439A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100222199A1 (en) * 2009-02-27 2010-09-02 Silke Wolff Optical glass, optical elements made therefrom, method of making the optical elements from the glass, and optical components comprising one or more optical elements
US20100304950A1 (en) * 2009-05-28 2010-12-02 Asahi Glass Company Limited Optical glass
EP2305613A1 (en) * 2009-09-30 2011-04-06 Hoya Corporation Optical glass, press-molding glass material, optical element and process for producing the same
US8127570B2 (en) * 2008-09-30 2012-03-06 Hoya Corporation Optical glass
US8187986B2 (en) * 2006-10-24 2012-05-29 Ohara Inc. Optical glass
CN102515516A (zh) * 2011-12-23 2012-06-27 成都光明光电股份有限公司 光学玻璃
CN102745894A (zh) * 2012-06-28 2012-10-24 湖北新华光信息材料有限公司 光学玻璃
US20150203395A1 (en) * 2014-01-22 2015-07-23 Cdgm Glass Co., Ltd. High refractivity and high dispersion optical glass, element and instrument
CN111892296A (zh) * 2020-08-03 2020-11-06 成都光明光电股份有限公司 玻璃组合物
US11319243B2 (en) 2018-01-17 2022-05-03 Corning Incorporated High refractive index optical borate glass

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5138401B2 (ja) 2008-01-30 2013-02-06 Hoya株式会社 光学ガラス、プレス成形用ガラスゴブおよび光学素子とその製造方法ならびに光学素子ブランクの製造方法
JP5865579B2 (ja) * 2010-04-30 2016-02-17 株式会社オハラ 光学ガラス、プリフォーム材及び光学素子
JP6062613B2 (ja) * 2010-10-08 2017-01-18 株式会社オハラ 光学ガラス、プリフォーム材及び光学素子
JP6081914B2 (ja) * 2010-10-18 2017-02-15 オーシーヴィー インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー 高屈折率ガラス組成物
TWI545098B (zh) * 2011-01-18 2016-08-11 Ohara Kk Optical glass, prefabricated and optical components
JP2012229148A (ja) * 2011-04-27 2012-11-22 Ohara Inc 光学ガラス及び光学素子
EP2717299B1 (en) * 2011-05-26 2016-07-27 Shindengen Electric Manufacturing Co., Ltd. Glass composition for semiconductor junction protection, production method for semiconductor device, and semiconductor device
CN102311229A (zh) * 2011-09-07 2012-01-11 成都光明光电股份有限公司 光学玻璃及光学元件
JP6096502B2 (ja) * 2011-12-20 2017-03-15 株式会社オハラ 光学ガラス及び光学素子
JP6096501B2 (ja) * 2011-12-28 2017-03-15 株式会社オハラ 光学ガラス及び光学素子
JP6095356B2 (ja) * 2011-12-28 2017-03-15 株式会社オハラ 光学ガラス及び光学素子
CN107021620B (zh) 2012-03-26 2019-11-08 Hoya株式会社 光学玻璃及其利用
WO2013168236A1 (ja) 2012-05-08 2013-11-14 新電元工業株式会社 樹脂封止型半導体装置及び樹脂封止型半導体装置の製造方法
CN103703548B (zh) * 2012-05-08 2016-11-23 新电元工业株式会社 半导体接合保护用玻璃复合物、半导体装置的制造方法及半导体装置
JP2013010688A (ja) * 2012-08-30 2013-01-17 Hoya Corp 光学ガラス、プレス成形用ガラスゴブおよび光学素子とその製造方法ならびに光学素子ブランクの製造方法
CN103708724B (zh) * 2012-09-29 2017-02-08 成都光明光电股份有限公司 精密模压用光学玻璃、玻璃预制件、光学元件及光学仪器
CN102964062A (zh) * 2012-09-29 2013-03-13 成都光明光电股份有限公司 环保重镧火石光学玻璃
JP5875572B2 (ja) * 2013-04-05 2016-03-02 株式会社オハラ 光学ガラス、プリフォーム材及び光学素子
JP6014573B2 (ja) * 2013-04-05 2016-10-25 株式会社オハラ 光学ガラス、プリフォーム材及び光学素子
JP5323278B2 (ja) * 2013-05-30 2013-10-23 Hoya株式会社 光学ガラス、プレス成形用ガラスゴブおよび光学素子とその製造方法ならびに光学素子ブランクの製造方法
CN103482867B (zh) * 2013-08-30 2015-09-02 中国建筑材料科学研究总院 一种用于光纤面板的环保型高折射率玻璃及光学元件
JP6501054B2 (ja) * 2014-06-30 2019-04-17 日本電気硝子株式会社 光学ガラス
JP6618256B2 (ja) * 2014-12-24 2019-12-11 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP2016121035A (ja) * 2014-12-24 2016-07-07 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP6664826B2 (ja) * 2015-05-18 2020-03-13 株式会社オハラ 光学ガラス及び光学素子
CN104891811A (zh) * 2015-05-29 2015-09-09 成都光明光电股份有限公司 晶质玻璃
CN105271715B (zh) * 2015-10-14 2018-05-25 成都光明光电股份有限公司 光学玻璃
CN117865469A (zh) * 2015-11-06 2024-04-12 株式会社小原 一种光学玻璃、预制件以及光学元件
CN109384385A (zh) * 2017-08-09 2019-02-26 成都尤利特光电科技股份有限公司 负反常色散光学玻璃
CN109384386A (zh) * 2017-08-09 2019-02-26 成都尤利特光电科技股份有限公司 高折射高透过光学玻璃及其制造方法
CN114835393B (zh) * 2017-09-21 2024-05-28 株式会社尼康 光学玻璃、由光学玻璃构成的光学元件、光学系统、更换镜头以及光学装置
JP7170488B2 (ja) * 2018-10-11 2022-11-14 Hoya株式会社 光学ガラス、プレス成形用ガラス素材、光学素子ブランクおよび光学素子
MX2021005461A (es) 2018-11-26 2021-06-18 Owens Corning Intellectual Capital Llc Composicion de fibra de vidrio de alto rendimiento con modulo de elasticidad mejorado.
MX2021005663A (es) 2018-11-26 2021-07-07 Owens Corning Intellectual Capital Llc Composicion de fibra de vidrio de alto rendimiento con modulo especifico mejorado.
CN111217522A (zh) * 2018-11-27 2020-06-02 宜城市泳瑞玻璃科技有限公司 一种适合于二次压型以及非球面精密压型的光学玻璃
CN110028239B (zh) * 2019-05-23 2022-08-09 成都光明光电股份有限公司 光学玻璃、玻璃预制件、光学元件和光学仪器
US20220340475A1 (en) * 2019-07-05 2022-10-27 Nippon Electric Glass Co., Ltd. Optical glass
JP6680424B1 (ja) * 2019-07-23 2020-04-15 Agc株式会社 ガラス
US11976004B2 (en) 2020-09-10 2024-05-07 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and high transmittance to blue light
US11999651B2 (en) 2020-09-10 2024-06-04 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and low density
US11802073B2 (en) 2020-09-10 2023-10-31 Corning Incorporated Silicoborate and borosilicate glasses with high refractive index and low density
CN115304269A (zh) * 2022-08-26 2022-11-08 成都光明光电股份有限公司 光学玻璃
CN115650580A (zh) * 2022-12-28 2023-01-31 沙河市赛孚玻璃制品有限公司 一种耐高温钢化玻璃及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490218A (en) * 1977-12-28 1979-07-17 Minolta Camera Kk Optical glass
JP2005247613A (ja) * 2004-03-02 2005-09-15 Hoya Corp 光学ガラス、精密プレス成形用プリフォームおよびその製造方法、光学素子およびその製造方法
JP2005331521A (ja) * 2005-06-09 2005-12-02 Hoya Corp プレス成形用ガラス素材の品質保証方法、ガラス成形品の製造方法、ガラス成形品の品質保証方法、光学素子の製造方法、およびガラス塊サンプルの内部品質検査装置
JP2007119335A (ja) * 2005-09-27 2007-05-17 Hoya Corp ガラス塊の製造方法、その製造装置および光学素子の製造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3343418A1 (de) * 1983-12-01 1985-06-20 Schott Glaswerke, 6500 Mainz Optisches glas mit brechwerten>= 1.90, abbezahlen>= 25 und mit hoher chemischer bestaendigkeit
JPH05138401A (ja) 1991-11-18 1993-06-01 Matsushita Electric Ind Co Ltd 加工機の5軸駆動装置
FR2690436B1 (fr) * 1992-04-22 1995-02-03 Corning France Verres à très haut indice de réfraction et faible densité.
CN1161682A (zh) * 1994-10-19 1997-10-08 珀廷有限及两合公司 用压制方法制造玻璃坯料的方法以及其装置
MY123138A (en) * 1999-06-29 2006-05-31 Hoya Corp Method of producing press-molded products
JP3912774B2 (ja) * 2002-03-18 2007-05-09 Hoya株式会社 精密プレス成形用光学ガラス、精密プレス成形用プリフォームおよびその製造方法
CN1262496C (zh) * 2002-09-27 2006-07-05 奥林巴斯株式会社 光学玻璃元件的成形方法及成形装置
EP1433757B1 (en) * 2002-12-27 2017-02-01 Hoya Corporation Optical glass, press-molding glass gob and optical element
JP4286652B2 (ja) * 2002-12-27 2009-07-01 Hoya株式会社 光学ガラス、プレス成形用ガラスゴブおよび光学素子
JP4562041B2 (ja) * 2002-12-27 2010-10-13 Hoya株式会社 光学ガラス、プレス成形用ガラスゴブおよび光学素子
JP2005047732A (ja) * 2003-07-31 2005-02-24 Minolta Co Ltd 光学ガラス及び光学素子
JP4218804B2 (ja) * 2004-03-19 2009-02-04 Hoya株式会社 光学ガラス、精密プレス成形用プリフォームとその製造方法および光学素子とその製造方法
JP4322217B2 (ja) * 2005-02-21 2009-08-26 Hoya株式会社 光学ガラス、プレス成形用ガラスゴブ、光学部品、ガラス成形体の製造方法および光学部品の製造方法
JP5078272B2 (ja) 2006-03-31 2012-11-21 株式会社オハラ 光学ガラス
JP5160042B2 (ja) * 2006-03-31 2013-03-13 Hoya株式会社 ガラス光学素子の製造方法
JP5336035B2 (ja) * 2006-06-21 2013-11-06 Hoya株式会社 光学ガラス、ガラス成形体、光学素子およびそれらの製造方法
JP4567713B2 (ja) * 2007-01-24 2010-10-20 Hoya株式会社 光学ガラスおよび光学素子
US8053384B2 (en) * 2007-04-03 2011-11-08 Ohara Inc. Optical glass
US7897532B2 (en) * 2007-04-24 2011-03-01 Panasonic Corproation Optical glass composition, preform and optical element
JP5138401B2 (ja) 2008-01-30 2013-02-06 Hoya株式会社 光学ガラス、プレス成形用ガラスゴブおよび光学素子とその製造方法ならびに光学素子ブランクの製造方法
JP5357429B2 (ja) * 2008-01-31 2013-12-04 Hoya株式会社 光学ガラス、プレス成形用ガラス素材および光学素子とその製造方法ならびに光学素子ブランクの製造方法
JP4948569B2 (ja) * 2008-06-27 2012-06-06 Hoya株式会社 光学ガラス
JP5180758B2 (ja) * 2008-09-30 2013-04-10 Hoya株式会社 光学ガラス、プレス成形用ガラスゴブおよび光学素子とその製造方法ならびに光学素子ブランクの製造方法
JP5723542B2 (ja) * 2010-04-15 2015-05-27 Hoya株式会社 光学ガラス、精密プレス成形用プリフォーム、光学素子とその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490218A (en) * 1977-12-28 1979-07-17 Minolta Camera Kk Optical glass
JP2005247613A (ja) * 2004-03-02 2005-09-15 Hoya Corp 光学ガラス、精密プレス成形用プリフォームおよびその製造方法、光学素子およびその製造方法
JP2005331521A (ja) * 2005-06-09 2005-12-02 Hoya Corp プレス成形用ガラス素材の品質保証方法、ガラス成形品の製造方法、ガラス成形品の品質保証方法、光学素子の製造方法、およびガラス塊サンプルの内部品質検査装置
JP2007119335A (ja) * 2005-09-27 2007-05-17 Hoya Corp ガラス塊の製造方法、その製造装置および光学素子の製造方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8187986B2 (en) * 2006-10-24 2012-05-29 Ohara Inc. Optical glass
US8741796B2 (en) 2008-09-30 2014-06-03 Hoya Corporation Optical glass
US8492299B2 (en) 2008-09-30 2013-07-23 Hoya Corporation Optical glass
US8127570B2 (en) * 2008-09-30 2012-03-06 Hoya Corporation Optical glass
US8404606B2 (en) * 2009-02-27 2013-03-26 Schott Ag Optical glass, optical elements made therefrom, method of making the optical elements from the glass, and optical components comprising one or more optical elements
US20100222199A1 (en) * 2009-02-27 2010-09-02 Silke Wolff Optical glass, optical elements made therefrom, method of making the optical elements from the glass, and optical components comprising one or more optical elements
US20100304950A1 (en) * 2009-05-28 2010-12-02 Asahi Glass Company Limited Optical glass
US8377835B2 (en) * 2009-05-28 2013-02-19 Asahi Glass Company, Limited Optical glass
EP2305613A1 (en) * 2009-09-30 2011-04-06 Hoya Corporation Optical glass, press-molding glass material, optical element and process for producing the same
US8859444B2 (en) 2009-09-30 2014-10-14 Hoya Corporation Optical glass, press-molding glass material, optical element and process for producing the same
CN102515516B (zh) * 2011-12-23 2014-02-12 成都光明光电股份有限公司 光学玻璃
CN102515516A (zh) * 2011-12-23 2012-06-27 成都光明光电股份有限公司 光学玻璃
CN102745894A (zh) * 2012-06-28 2012-10-24 湖北新华光信息材料有限公司 光学玻璃
CN102745894B (zh) * 2012-06-28 2015-01-07 湖北新华光信息材料有限公司 光学玻璃
US20150203395A1 (en) * 2014-01-22 2015-07-23 Cdgm Glass Co., Ltd. High refractivity and high dispersion optical glass, element and instrument
US9487432B2 (en) * 2014-01-22 2016-11-08 Cdgm Glass Co., Ltd High refractivity and high dispersion optical glass, element and instrument
US11319243B2 (en) 2018-01-17 2022-05-03 Corning Incorporated High refractive index optical borate glass
CN111892296A (zh) * 2020-08-03 2020-11-06 成都光明光电股份有限公司 玻璃组合物

Also Published As

Publication number Publication date
JP5138401B2 (ja) 2013-02-06
CN104250063A (zh) 2014-12-31
KR101397215B1 (ko) 2014-05-20
US20110028300A1 (en) 2011-02-03
US8741795B2 (en) 2014-06-03
US20130210604A1 (en) 2013-08-15
CN101932533A (zh) 2010-12-29
CN108328921A (zh) 2018-07-27
JP2009179510A (ja) 2009-08-13
KR20100107030A (ko) 2010-10-04
US8424344B2 (en) 2013-04-23

Similar Documents

Publication Publication Date Title
WO2009096439A1 (ja) 光学ガラス
JP4948569B2 (ja) 光学ガラス
JP6382256B2 (ja) 光学ガラスおよびその利用
JP5836471B2 (ja) 光学ガラス
JP5180758B2 (ja) 光学ガラス、プレス成形用ガラスゴブおよび光学素子とその製造方法ならびに光学素子ブランクの製造方法
JP6088938B2 (ja) 光学ガラスおよびその利用
JP5461420B2 (ja) ガラスの製造方法、光学ガラス、プレス成形用ガラス素材、光学素子とそれら製造方法
JP5624832B2 (ja) 光学ガラス、プレス成形用ガラス素材、光学素子とその製造方法
JP5931173B2 (ja) 光学ガラスおよびその利用
JP5802707B2 (ja) 光学ガラス、プレス成形用ガラスゴブおよび光学素子とその製造方法ならびに光学素子ブランクの製造方法
JP6943995B2 (ja) 光学ガラスおよびその利用
JP5301740B2 (ja) 光学ガラス、プレス成形用ガラスゴブおよび光学素子とその製造方法ならびに光学素子ブランクの製造方法
JP6362717B2 (ja) 光学ガラスおよびその利用
JP5323278B2 (ja) 光学ガラス、プレス成形用ガラスゴブおよび光学素子とその製造方法ならびに光学素子ブランクの製造方法
JP5185463B2 (ja) 光学ガラス、プレス成形用ガラスゴブおよび光学素子とその製造方法ならびに光学素子ブランクの製造方法
JP2016013969A (ja) 光学ガラス、プレス成形用ガラスゴブおよび光学素子とその製造方法ならびに光学素子ブランクの製造方法
JP2018172275A (ja) 光学ガラスおよびその利用
JP2013010688A (ja) 光学ガラス、プレス成形用ガラスゴブおよび光学素子とその製造方法ならびに光学素子ブランクの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980103652.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09705646

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107017010

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12865574

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09705646

Country of ref document: EP

Kind code of ref document: A1