WO2009096270A1 - AlNヘテロエピタキシャル結晶体とその製造方法、該結晶体を用いてなるIII族窒化物膜用下地基板、発光素子、表面弾性波デバイス、及びスパッタリング装置 - Google Patents

AlNヘテロエピタキシャル結晶体とその製造方法、該結晶体を用いてなるIII族窒化物膜用下地基板、発光素子、表面弾性波デバイス、及びスパッタリング装置 Download PDF

Info

Publication number
WO2009096270A1
WO2009096270A1 PCT/JP2009/050799 JP2009050799W WO2009096270A1 WO 2009096270 A1 WO2009096270 A1 WO 2009096270A1 JP 2009050799 W JP2009050799 W JP 2009050799W WO 2009096270 A1 WO2009096270 A1 WO 2009096270A1
Authority
WO
WIPO (PCT)
Prior art keywords
aln
crystal
gas
substrate
heteroepitaxial
Prior art date
Application number
PCT/JP2009/050799
Other languages
English (en)
French (fr)
Inventor
Yoshiaki Daigo
Keiji Ishibashi
Original Assignee
Canon Anelva Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corporation filed Critical Canon Anelva Corporation
Publication of WO2009096270A1 publication Critical patent/WO2009096270A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks

Definitions

  • the present invention relates to an AlN heteroepitaxial crystal used for manufacturing a light emitting device such as a surface acoustic wave (SAW) device or a blue LED (Light Emitting Diode), and a method for manufacturing the same. Furthermore, the present invention relates to a group III nitride base substrate, a light emitting element, a surface acoustic wave device, and a sputtering apparatus using the crystal.
  • a light emitting device such as a surface acoustic wave (SAW) device or a blue LED (Light Emitting Diode)
  • SAW surface acoustic wave
  • blue LED Light Emitting Diode
  • AlN having a wurtzite structure has been attracting attention as a material for SAW devices because it has a fast surface wave propagation velocity.
  • large-sized single-crystal AlN cannot be produced by current technology, so AlN heteroepitaxial crystal or AlN oriented in a certain crystal orientation on a different substrate. Used to form a polycrystal.
  • a SAW device using an AlN heteroepitaxial crystal obtained by growing on a sapphire (single crystal ⁇ -Al 2 O 3 ) substrate used as a heteroepitaxial growth substrate is compared with a case where an AlN polycrystal is used. Show very good characteristics.
  • the AlN heteroepitaxial crystal refers to an aggregate of crystals obtained by heteroepitaxially growing AlN.
  • AlN heteroepitaxial crystal is an application as a buffer layer for heteroepitaxially growing GaN, which is a material of a blue LED, on a sapphire substrate. It is known that when GaN, which is a group III nitride, is directly heteroepitaxially grown on a sapphire substrate, only a GaN crystal having low crystallinity can be produced. However, a high-quality GaN heteroepitaxial crystal can be obtained by growing an AlN thin film called a low-temperature buffer layer having a thickness of about 20 to 50 nm as a base substrate for group III nitride and then growing GaN. At this time, the AlN thin film is grown at a temperature (400 to 600 ° C.
  • the structure of the AlN thin film at this time is amorphous or polycrystalline at the time of growth, but causes recrystallization and solid phase epitaxy in the temperature rising process, and the heteroepitaxial crystal having the c-axis aligned in the direction perpendicular to the substrate. Become.
  • Patent Document 1 discloses a SAW device using an AlN heteroepitaxial crystal produced by MOCVD.
  • MOCVD is a technique capable of producing a high-quality AlN heteroepitaxial crystal on a sapphire substrate, but it has problems such as high running costs and easy generation of a large number of particles.
  • sputtering has advantages in that the running cost and the generation probability of particles are very low compared to MOCVD, and further, it is a film forming method with excellent safety because it does not use a toxic gas used in MOCVD. Therefore, if a high-quality AlN heteroepitaxial crystal can be produced by sputtering, it is considered that the yield, cost, and safety are significantly improved in the production of the SAW device and the blue LED as described above. However, a high-quality AlN heteroepitaxial crystal with high crystallinity has not been obtained by the current sputtering method.
  • an object of the present invention is to provide a high-quality AlN heteroepitaxial crystal having high crystallinity by sputtering, a method for producing the same, a base substrate for group III nitride using the crystal, a light emitting device, and a surface.
  • a wave device and a sputtering manufacturing apparatus are provided.
  • the first aspect of the present invention after exposing the surface of the single crystal ⁇ -Al 2 O 3 substrate to plasma using nitrogen gas or a mixed gas of nitrogen gas and rare gas, nitrogen gas or nitrogen gas and An AlN heteroepitaxial crystal manufacturing method characterized in that AlN is heteroepitaxially grown on the surface of the substrate by a reactive sputtering method using a mixed gas of a rare gas.
  • the reactive sputtering method is performed by applying high frequency power to an Al target or a target containing Al, and the density of the high frequency power is 0.00.
  • a preferred embodiment includes 1 to 5.0 W / cm 2 .
  • the second aspect of the present invention after exposing the surface of the single crystal ⁇ -Al 2 O 3 substrate to plasma using nitrogen gas or a mixed gas of nitrogen gas and rare gas, nitrogen gas or nitrogen gas and An AlN heteroepitaxial crystal obtained by heteroepitaxially growing AlN on the surface of the substrate by a reactive sputtering method using a mixed gas of a rare gas.
  • the AlN heteroepitaxial crystal of the present invention includes the following configuration as a preferred embodiment.
  • the plane orientation of the single crystal ⁇ -Al 2 O 3 substrate is the (0001) plane.
  • the crystal structure is a wurtzite structure.
  • the half width of the X-ray rocking curve of the AlN (0002) plane is 10 to 100 arcsec.
  • the full width at half maximum of the X-ray rocking curve of the AlN ⁇ 10-10 ⁇ plane measured by the in-plane arrangement is 1.2 ° to 2.0 °.
  • a third aspect of the present invention is a group III nitride film base substrate characterized by being a single crystal ⁇ -Al 2 O 3 substrate having the AlN heteroepitaxial crystal of the present invention on its surface.
  • a fourth aspect of the present invention is that a semiconductor multilayer film made of a group III nitride single crystal is provided on the base substrate for a group III nitride film of the present invention, and a light emitting layer is provided on the semiconductor multilayer film. It is a light emitting element characterized by these.
  • a fifth aspect of the present invention is a surface acoustic wave device characterized by using a single crystal ⁇ -Al 2 O 3 substrate having the AlN heteroepitaxial crystal of the present invention on its surface.
  • a sixth aspect of the present invention includes a processing container, An exhaust means connected to the processing vessel; A substrate holder provided in the processing container; A target cathode for placing a target containing Al provided in a processing vessel; A gas introducing means for introducing nitrogen gas or a mixed gas of nitrogen gas and noble gas provided in the processing vessel; First power supply means for generating plasma by supplying power to the substrate holder; A second power supply means for supplying power to the target cathode; Control means for controlling the gas introduction means, the first power supply means, and the second power supply means, The control means drives the gas introduction means to introduce nitrogen gas or a mixed gas of nitrogen gas and a rare gas, and drives the first power supply means to drive the single crystal ⁇ -Al 2 O 3 substrate. After the plasma treatment, the Al power film is sputtered by driving the second power supply means to form an AlN film on the single crystal ⁇ -Al 2 O 3 substrate. It is.
  • an AlN heteroepitaxial crystal having high crystallinity equal to or higher than MOCVD that requires a growth temperature exceeding 1000 ° C. or heat treatment after growth can be produced by sputtering. It was. That is, no toxic gas is used, the running cost is low, no particles are generated, and a high-quality AlN heteroepitaxial crystal with high crystallinity is obtained. Therefore, by using such an AlN heteroepitaxial crystal, it is possible to significantly improve yield, cost, and safety in the manufacture of light-emitting elements such as SAW devices and blue LEDs.
  • a feature of the present invention is that in the step of heteroepitaxially growing AlN on a single crystal ⁇ -Al 2 O 3 substrate by reactive sputtering in which nitrogen gas or a mixed gas of nitrogen gas and rare gas is introduced, the substrate surface is converted into plasma. It is to perform the plasma treatment to expose. In the plasma treatment, plasma using nitrogen gas or a mixed gas of nitrogen gas and rare gas is used.
  • FIG. 1 is a schematic configuration diagram of an example of a sputtering apparatus for carrying out reactive sputtering according to the present invention.
  • 1 is a sapphire (single crystal ⁇ -Al 2 O 3 ) substrate
  • 2 is a heater
  • 3 is an Al target
  • 4 is a magnet
  • 5 and 6 are power supplies for supplying power to the Al target (to the substrate holder)
  • 7 is a vacuum chamber (processing vessel)
  • 8 is a gas introduction means (8a is Ar gas introduction means, 8b is N 2 gas) Introducing means) and 9 are substrate holders.
  • the high frequency power source 5 is an example of the first power supply unit of the present invention
  • the high frequency power source 6 is an example of the second power supply unit of the present invention.
  • the target which consists of Al100% may be sufficient as Al target, it is not limited to this, What is necessary is just the target containing at least Al.
  • the power sources 5 and 6 are not limited to high frequency power sources, and may be DC power sources.
  • the apparatus of this example is equipped with a magnet swinging cathode, but even if the magnet 4 rotates like an RMC (rotary magnet cathode), it is fixed like a PMC (planar magnet cathode). Either may be sufficient. Further, the cathode may be arranged in any of stationary facing, oblique arrangement, and offset.
  • control means includes storage means (ROM, RAM) in which procedures for performing plasma processing and reactive sputtering processing described later are stored.
  • the control means drives the substrate transport robot to place the substrate 1 having the (0001) plane in the vacuum chamber 7 having an ultimate pressure of 3 ⁇ 10 ⁇ 5 Pa or less.
  • the control means turns on the heater 2 and raises the temperature to the growth temperature (200 ° C. to 800 ° C.).
  • the control means drives the gas introduction means 8 to introduce N 2 gas or a mixed gas of N 2 gas and rare gas.
  • the control means is configured to drive the high-frequency power source 5 to supply high-frequency power to the substrate holder side, generate N 2 plasma on the substrate 1 surface side, and expose the substrate 1 surface to nitrogen plasma.
  • the time of exposure to plasma may be in the range of 3 seconds to 3600 seconds, and may be in the range of 3 seconds to 29 seconds, for example.
  • Ar gas is preferably used as the rare gas, and mixing is performed so that the N 2 gas is 25 to 100%.
  • This plasma treatment reduces impurities such as hydrocarbons and water adsorbed on the surface of the substrate 1 and the tray (not shown) for transporting the substrate 1, and also nitrides the surface of the substrate 1. Impurities such as hydrocarbons and water inhibit the heteroepitaxial growth of AlN. By removing these impurities, an AlN heteroepitaxial crystal with high crystallinity grows with good reproducibility. In addition, since the AlN layer is formed on the surface of the substrate 1 by nitriding the surface of the substrate 1, the lattice mismatch rate when heteroepitaxially growing AlN is reduced, and a high-quality AlN heteroepitaxial crystal with high crystallinity is formed. Is done.
  • conditions such as high-frequency power density and processing time at the time of nitrogen plasma processing are largely dependent on, for example, the cleanliness at the time of production of the substrate 1 to be used, so that the above-mentioned purpose is achieved by exposure to nitrogen plasma. Until it is done, it must be done after determining the optimum processing conditions.
  • the plasma treatment of the surface of the substrate 1 and the heteroepitaxial growth of AlN prior to the growth of single crystal AlN are not necessarily performed in the same sputtering chamber and chamber, and can be performed in separate chambers.
  • the substrate 1 may be transferred to the sputtering chamber via a transfer chamber of 1 ⁇ 10 ⁇ 3 Pa or less to perform heteroepitaxial growth of AlN. What is important is to maintain a vacuum between the plasma processing step and the AlN heteroepitaxial growth step.
  • the control means introduces N 2 gas or a mixed gas of N 2 gas and rare gas into the vacuum chamber 7, drives the high frequency power source 6, and causes the high frequency to the cathode side
  • N 2 gas or a mixed gas of N 2 gas and rare gas By supplying electric power, plasma is generated on the surface of the target 3.
  • AlN is used for the target 3 and is reactively sputtered by plasma generated on the target surface, so that an AlN heteroepitaxial crystal grows on the surface of the substrate 1.
  • the N 2 gas to be introduced can be arbitrarily selected within a range of 25 to 100% of the total gas flow rate.
  • Ar is preferably used as the rare gas.
  • the process pressure is 0.1 to 1.0 Pa
  • the high frequency power density during reactive sputtering is 0.1 to 5.0 W / cm 2 .
  • the high frequency power density referred to here is the power applied to the target divided by the surface area of the target surface exposed to the plasma.
  • the preferred film thickness of the AlN heteroepitaxial crystal obtained in the present invention is 10 to 300 nm, preferably 30 to 100 nm. If the film thickness is less than 10 nm or exceeds 300 nm, the film quality tends to be low, which is not preferable.
  • AlN heteroepitaxial crystal was grown on a single crystal ⁇ -Al 2 O 3 substrate having a plane orientation of (0001) based on the following process conditions.
  • the cross section in the film thickness direction of the obtained AlN heteroepitaxial crystal was observed with a cross-sectional TEM (transmission electron microscope).
  • each columnar crystal is about 5 to 50 nm.
  • the crystal structure was a wurtzite structure.
  • Such a structure can be represented by an image in which each columnar crystal rotates and gathers in the plane slightly as shown in FIG. Specifically, 12 is positioned without rotating with respect to the columnar crystal of 11 in FIG. 3, but 13 and 14 are in the direction of the arrow about the central axis of the columnar crystal indicated by the broken line in the drawing. It is positioned slightly rotated. In FIG. 3, there is a spatial gap between 11, 12, and 13, but such a gap does not actually occur.
  • the AlN heteroepitaxial crystal obtained in the present invention is analyzed by X-ray diffraction (XRD), the c-axis in which the (0001) plane of the single crystal ⁇ -Al 2 O 3 and the (0001) plane of AlN are parallel to each other. It was confirmed to be an alignment film. Further, it was confirmed that the heteroepitaxial crystal was obtained in which the AlN ⁇ 10-10 ⁇ plane and the ⁇ 11-20 ⁇ plane of the single crystal ⁇ -Al 2 O 3 were parallel.
  • XRD X-ray diffraction
  • the degree of rotation in the plane of the columnar crystal in the AlN heteroepitaxial crystal obtained by the present invention is such that the half width of the X-ray rocking curve of the AlN ⁇ 10-10 ⁇ plane in the in-plane arrangement is 1.2 ° to The result was 2.0 °, which was a good result.
  • Fig. 4 shows X-ray rocking curve data on the ⁇ 10-10 ⁇ plane in the in-plane arrangement.
  • the degree of inclination of the c-axis of the AlN heteroepitaxial crystal obtained in the present invention was a good result with the half width of the X-ray rocking curve of the AlN (0002) plane being 10 to 100 arcsec.
  • an AlN film having excellent crystallinity can be formed on a single crystal ⁇ -Al 2 O 3 substrate at low cost without using an organometallic toxic gas in MOCVD. it can.
  • the single crystal ⁇ -Al 2 O 3 substrate on which this AlN heteroepitaxial crystal is formed is used as a base substrate for a group III nitride film, a semiconductor laminated film composed of an extremely high quality group III nitride single crystal is formed. can do. Therefore, a light emitting element such as a blue light emitting diode and a blue laser with improved light emission efficiency can be formed by providing a light emitting layer on the semiconductor laminated film provided on the base substrate for the group III nitride film. Furthermore, the AlN heteroepitaxial crystal can be put into practical use as a surface acoustic wave device.

Abstract

 スパッタリングにより結晶性の高い高品質のAlNヘテロエピタキシャル結晶体の製造方法を提供する。  サファイア基板の表面を窒素ガスまたは窒素ガスと希ガスの混合ガスを用いたプラズマに晒した後、真空を保持したまま、窒素ガスまたは窒素ガスと希ガスの混合ガスを用いた反応性スパッタリングを行い、サファイア基板表面にAlNをヘテロエピタキシャル成長させる。

Description

AlNヘテロエピタキシャル結晶体とその製造方法、該結晶体を用いてなるIII族窒化物膜用下地基板、発光素子、表面弾性波デバイス、及びスパッタリング装置
 本発明は、表面弾性波(SAW;Surface Acoustic Wave)デバイスや青色LED(Light Emitting Diode)等発光素子の製造に用いられるAlNヘテロエピタキシャル結晶体とその製造方法に関する。さらには、該結晶体を用いてなるIII族窒化物用下地基板、発光素子、表面弾性波デバイス、及びスパッタリング装置に関する。
 ウルツ鉱構造のAlNは速い表面波伝搬速度を有するため、SAWデバイス用の材料として注目されている。この用途に使用するためには単結晶AlNを用いることが望ましいが、大型の単結晶AlNは現在の技術では製造できないため、異種基板上にAlNヘテロエピタキシャル結晶体もしくは一定の結晶方位に配向したAlN多結晶体を形成して用いられている。特に、ヘテロエピタキシャル成長用基板として用いられるサファイア(単結晶α-Al23)基板上に成長させて得たAlNヘテロエピタキシャル結晶体を用いたSAWデバイスは、AlN多結晶体を用いた場合に比べて極めて良好な特性を示す。
 ここで、AlNヘテロエピタキシャル結晶体とは、AlNをヘテロエピタキシャル成長させた結晶の集合体をいう。
 AlNヘテロエピタキシャル結晶体のもう一つの重要な応用は、青色LEDの材料であるGaNを、サファイア基板上にヘテロエピタキシャル成長させるための緩衝層としての応用である。III族窒化物であるGaNをサファイア基板上に直接へテロエピタキシャル成長させると、結晶性の低いGaN結晶体しか作製できないことが知られている。しかしながら、低温緩衝層と呼ばれる膜厚が20乃至50nm程度のAlN薄膜をIII族窒化物用の下地基板として成長させ、次いでGaNを成長させることで良質のGaNヘテロエピタキシャル結晶体が得られる。この時、AlN薄膜はGaNのヘテロエピタキシャル成長温度(1000℃以下)に比べて十分低い温度(400乃至600℃以下)で成長させ、その後ヘテロエピタキシャル成長温度まで昇温してGaNを成長させる。この時のAlN薄膜の構造は、成長時には非晶質または多結晶体であるが、昇温過程で再結晶化と固相エピタキシーを引き起こし、基板垂直方向にc軸が揃ったヘテロエピタキシャル結晶体となる。
 AlNの成膜方法としてはMOCVD(有機金属気相成長法:Metal Organic Chemical Vapor Deposition)やスパッタリングが主に用いられている。スパッタリングは多結晶体の作製に用いられているのに対して、MOCVDではAlNヘテロエピタキシャル結晶体から多結晶体まで幅広く作製されている。例えば、MOCVDで作製したAlNヘテロエピタキシャル結晶体を用いたSAWデバイスについては特許文献1に開示されている。
特開2002-237737号公報
 上記したように、MOCVDはサファイア基板上に高品質なAlNヘテロエピタキシャル結晶体を作製できる技術である反面、ランニングコストが高く、大量のパーティクルが発生しやすいなどの問題がある。
 一方、スパッタリングはMOCVDに比べてランニングコストやパーティクルの発生確率が非常に低いという長所があり、さらに、MOCVDで用いるような有毒ガスを使用しないことから安全性に優れた成膜手法でもある。従って、スパッタリングにより高品質なAlNヘテロエピタキシャル結晶体を作製することができれば、上記のようなSAWデバイスや青色LEDの製造において、歩留まりやコスト、安全性の著しい改善につながるものと考えられる。しかしながら、現状のスパッタリング法では結晶性の高い高品質なAlNヘテロエピタキシャル結晶体は得られていない。
 本発明の課題は、上記問題に鑑み、スパッタリングによる結晶性の高い高品質のAlNヘテロエピタキシャル結晶体とその製造方法、さらには該結晶体を用いたIII族窒化物用下地基板、発光素子、表面波デバイス及びスパッタリング製造装置を提供することにある。
 本発明の第一は、単結晶α-Al23基板の表面を窒素ガスまたは窒素ガスと希ガスの混合ガスを用いたプラズマに晒した後、真空を破ることなく窒素ガスまたは窒素ガスと希ガスの混合ガスを用いた反応性スパッタリング法により、上記基板表面にAlNをヘテロエピタキシャル成長させることを特徴とするAlNヘテロエピタキシャル結晶体の製造方法である。
 本発明のAlNヘテロエピタキシャル結晶体の製造方法においては、前記反応性スパッタリング法が、AlターゲットまたはAlを含有するターゲットに高周波電力を印加して行なうものであり、該高周波電力の密度は、0.1乃至5.0W/cm2であることを好ましい態様として含む。
 本発明の第二は、単結晶α-Al23基板の表面を窒素ガスまたは窒素ガスと希ガスの混合ガスを用いたプラズマに晒した後、真空を破ることなく窒素ガスまたは窒素ガスと希ガスの混合ガスを用いた反応性スパッタリング法により、上記基板表面にAlNをヘテロエピタキシャル成長させてなることを特徴とするAlNヘテロエピタキシャル結晶体である。
 本発明のAlNヘテロエピタキシャル結晶体においては、下記の構成を好ましい態様として含む。
単結晶α-Al23基板の面方位が(0001)面である。
結晶構造がウルツ鉱構造である。
AlN(0002)面のX線ロッキングカーブの半値幅が10乃至100arcsecである。
インプレーン配置で測定したAlN{10-10}面のX線ロッキングカーブの半値幅が1.2°乃至2.0°である。
 本発明の第三は、上記本発明のAlNヘテロエピタキシャル結晶体を表面に有する単結晶α-Al23基板であることを特徴とするIII族窒化物膜用下地基板である。
 本発明の第四は、上記本発明のIII族窒化物膜用下地基板上に、III族窒化物単結晶からなる半導体積層膜を有し、該半導体積層膜に発光層が設けられていることを特徴とする発光素子である。
 本発明の第五は、上記本発明のAlNヘテロエピタキシャル結晶体を表面に有する単結晶α-Al23基板を用いてなることを特徴とする表面弾性波デバイスである。
 本発明の第六は、処理容器と、
処理容器に接続された排気手段と、
処理容器に設けられた基板ホルダと、
処理容器に設けられ、Alを含有するターゲットを載置するためのターゲットカソードと、
処理容器に設けられ、窒素ガスまたは窒素ガスと希ガスの混合ガスを導入するためのガス導入手段と、
基板ホルダに電力を供給することにより、プラズマを発生させる第1電力供給手段と、
ターゲットカソードに電力を供給するための第2電力供給手段と、
ガス導入手段、第1電力供給手段、及び第2電力供給手段を制御するための制御手段と、を備え、
制御手段は、ガス導入手段を駆動させて、窒素ガスまたは窒素ガスと希ガスの混合ガスを導入するとともに、該第1電力供給手段と駆動させることにより、単結晶α-Al23基板をプラズマ処理した後、該第2電力供給手段を駆動させることにより、該Alターゲットをスパッタさせ、該単結晶α-Al23基板にAlN膜を形成するものであることを特徴とするスパッタリング装置である。
 本発明によれば、1000℃を超える成長温度もしくは成長後の加熱処理を必要とするMOCVDと同等もしくはそれ以上の結晶性の高いAlNヘテロエピタキシャル結晶体を、スパッタリング法により作製することが可能となった。即ち、有毒ガスを使用せず、ランニングコストが低く、パーティクルの発生がなく、さらに結晶性の高い高品質なAlNヘテロエピタキシャル結晶体が得られる。よって、係るAlNヘテロエピタキシャル結晶体を用いることで、SAWデバイスや青色LED等発光素子の製造において、歩留まりやコスト、安全性の著しい改善を図ることが可能となる。
本発明に係る反応性スパッタリングを実施するためのスパッタリング装置の一例の概略構成図である。 本発明で得られるAlN膜の断面TEM写真である。 本発明で得られるAlN膜の柱状結晶の回転を示す模式図である。 本発明で得られるAlN膜のインプレーン配置で測定した{10-10}面のロッキングカーブを示す図である。 本発明で得られるAlN膜の柱状結晶のc軸の傾きを示す模式図である。
符号の説明
 1 サファイア(単結晶α-Al23)基板
 2 ヒーター
 3 Alターゲット
 4 マグネット
 5,6 高周波電源
 7 真空チャンバ
 8a、8b ガス導入手段
 9 基板ホルダ
 11~14、21~24 柱状結晶
 本発明の特徴は、単結晶α-Al23基板上に窒素ガスまたは窒素ガスと希ガスの混合ガスを導入した反応性スパッタリング法によりAlNをヘテロエピタキシャル成長させる工程において、上記基板表面をプラズマに晒すプラズマ処理を施すことにある。係るプラズマ処理には、窒素ガスまたは窒素ガスと希ガスの混合ガスを用いたプラズマを用いる。以下、図面を参照して本発明を詳細に説明する。
 図1は、本発明に係る反応性スパッタリングを実施するためのスパッタリング装置の一例の概略構成図である。図中、1はサファイア(単結晶α-Al23)基板、2はヒーター、3はAlターゲット、4はマグネット、5,6は、Alターゲットに電力を供給するための電源(基板ホルダに接続された高周波電源5、Alターゲットを載置したカソードと接続された高周波電源6)、7は真空チャンバ(処理容器)、8はガス導入手段(8aはArガス導入手段、8bはN2ガス導入手段)、及び9は基板ホルダである。尚、高周波電源5は本発明の第1電力供給手段の一例であり、高周波電源6は本発明の第2電力供給手段の一例である。
 尚、Alターゲットは、Al100%からなるターゲットであってもよいが、これに限定されるものではなく、Alを少なくとも含有しているターゲットであればよい。また、電源5,6は、高周波電源に限定する必要はなく、DC電源であってもよい。
 尚、本例の装置は、マグネット揺動カソードを搭載しているが、マグネット4がRMC(ロータリーマグネットカソード)のように回転していても、PMC(プレーナマグネットカソード)のように固定されていてもいずれでもよい。また、カソードの配置については、静止対向、斜め配置、オフセットのいずれでも良い。
 さらに、ヒーター2、高周波電源5,6、ガス導入手段8、基板搬送ロボット(不図示)、マグネットの回転駆動手段(不図示)及び排気手段(不図示)は、それぞれ制御手段(不図示のコントローラ)と電気的に接続されており、制御手段によりオンオフ制御可能に構成されている。制御手段は、後述するプラズマ処理や反応性スパッタリング処理を行なう手順が記憶された記憶手段(ROM,RAM)を含んでいる。
 制御手段は、基板搬送ロボットを駆動することにより、到達圧力が3×10-5Pa以下の真空チャンバ7内に、面方位が(0001)面の基板1を配置する。次に、制御手段は、ヒーター2をオンし、成長温度(200℃乃至800℃)まで昇温させる。昇温後、制御手段は、ガス導入手段8を駆動させることにより、N2ガス、もしくはN2ガスと希ガスとの混合ガスを導入する。制御手段は、高周波電源5を駆動させて、基板ホルダ側に高周波電力を供給して、基板1表面側にN2プラズマを発生させ、基板1表面を窒素プラズマに晒すように構成されている。プラズマに晒す時間は、3秒から3600秒の範囲であればよく、例えば3秒以上29秒以下の範囲であってもよい。当該工程において、N2ガスと希ガスとの混合ガスを用いる場合、希ガスとしては好ましくはArガスが用いられ、N2ガスが25~100%となるように混合する。
 このプラズマ処理は、基板1表面や基板1を搬送するためのトレイ(不図示)表面に吸着した炭化水素や水などの不純物を減少させ、且つ、基板1表面を窒化させる。炭化水素や水などの不純物は、AlNのヘテロエピタキシャル成長を阻害するため、これらを除去することにより、結晶性の高いAlNヘテロエピタキシャル結晶体が再現性良く成長する。また、基板1表面の窒化により、基板1表面にAlN層が形成されるため、AlNをヘテロエピタキシャル成長させる際の格子不整合率が小さくなり、結晶性の高い高品質なAlNヘテロエピタキシャル結晶体が形成される。
 従って、窒素プラズマ処理時の高周波電力密度や処理時間等の条件は、例えば、使用される基板1の製作時の清浄度等に大きく依存されるため、窒素プラズマに晒すことにより上記の目的が達成されるまで、最適な処理条件を決定してから行われなければならない。
 尚、本発明において、単結晶AlNの成長に先立って行なう基板1表面のプラズマ処理と、AlNのヘテロエピタキシャル成長は、必ずしも同じスパッタ室とチャンバで行なう必要はなく、別室での処理も可能である。例えば、前処理室でプラズマ処理を行った後、1×10-3Pa以下のトランスファチャンバを介して基板1をスパッタ室に搬送し、AlNのヘテロエピタキシャル成長を行っても良い。重要なのは、プラズマ処理工程とAlNのヘテロエピタキシャル成長工程の間で真空を保つことである。
 窒素プラズマによる基板1表面のプラズマ処理後、制御手段は、N2ガス、もしくはN2ガスと希ガスとの混合ガスを真空チャンバ7に導入し、高周波電源6を駆動させて、カソード側に高周波電力を供給することで、ターゲット3表面にプラズマを発生させる。ターゲット3には金属Alを使用し、これをターゲット表面に発生したプラズマにより反応性スパッタリングすることで、基板1表面にAlNヘテロエピタキシャル結晶体が成長する。導入するN2ガスは、全ガス流量の25乃至100%の範囲で任意に選択できる。また、希ガスとしてはArが好ましく用いられる。プロセス圧力は0.1乃至1.0Paであり、反応性スパッタリング時における高周波電力密度は0.1乃至5.0W/cm2である。尚、ここでいう高周波電力密度は、ターゲットに印加される電力を、プラズマに晒されるターゲット面の表面積で割ったものである。
 本発明で得られるAlNヘテロエピタキシャル結晶体の好ましい膜厚は10乃至300nmであり、好ましくは30乃至100nmである。膜厚が10nm未満或いは300nmを超えると膜質が低くなりやすく、好ましくない。
 面方位が(0001)の単結晶α-Al23基板上に以下のプロセス条件に基づいてAlNヘテロエピタキシャル結晶体を成長させた。得られたAlNヘテロエピタキシャル結晶体の膜厚方向断面を断面TEM(透過電子顕微鏡)で観察した。
 (1)窒素プラズマ処理
・高周波電力密度 0.24W/cm2
・処理圧力 0.1Pa
・Ar/N2の割合 N2=100%
・処理時間 5min
 (2)スパッタリング処理
・高周波電力密度 1.25W/cm2
・成長圧力 0.5Pa
・基板温度 550℃
・Ar/N2の割合 N2=25%
・膜厚 50nm
 図2のTEM写真が示すように、膜厚方向に筋状構造を有する柱状結晶の集合体となっており、各々の柱状結晶の直径は5乃至50nm程度である。結晶構造はウルツ鉱構造であった。
 このような構造は、図3に示すように、各々の柱状結晶が僅かずつ面内で回転して集合しているイメージで表すことができる。具体的には、図3の11の柱状結晶に対して、12は回転せずに位置しているが、13,14はそれぞれ図中の破線で示す柱状結晶の中心軸を中心に矢印方向に僅かに回転して位置している。尚、図3においては、11と12,13との間に空間的な隙間が存在するが、実際にはこのような隙間は生じていない。
 また、本発明で得られるAlNヘテロエピタキシャル結晶体をX線回折(XRD)で分析すると、単結晶α-Al23の(0001)面とAlNの(0001)面とが平行になるc軸配向膜であることが確認された。また、AlN{10-10}面と単結晶α-Al23の{11-20}面とが平行になるヘテロエピタキシャル結晶体となっていることが確認された。
 次に、本発明で得られるAlNヘテロエピタキシャル結晶体の結晶性を調べるためX線ロッキングカーブ測定を行った。
 本発明で得られるAlNヘテロエピタキシャル結晶体における、柱状結晶の面内での回転の度合いは、インプレーン配置でのAlN{10-10}面のX線ロッキングカーブの半値幅が1.2°乃至2.0°であり、良好な結果であった。
 図4に、インプレーン配置での{10-10}面におけるX線ロッキングカーブのデータを示す。
 また、本発明で得られるAlNヘテロエピタキシャル結晶体のc軸の傾きの度合いは、AlN(0002)面のX線ロッキングカーブの半値幅が10乃至100arcsecであり良好な結果であった。
 図4は、c軸の傾きの度合いを示し、破線の矢印はそれぞれ柱状結晶21乃至24のc軸の方向を示しており、柱状結晶21と22はc軸がそれぞれ基板1のc軸に平行であるが、23,24は若干傾いている様子を示す。
 以上のとおり、本発明によれば、MOCVDにおける有機金属系の有毒なガスを使用することなく、結晶性が優れたAlN膜を安価に単結晶α-Al23基板上に形成することができる。このAlNヘテロエピタキシャル結晶体が形成された単結晶α-Al23基板をIII族窒化物膜用下地基板として使用すれば、極めて高品質なIII族窒化物単結晶からなる半導体積層膜を形成することができる。そのため、該III族窒化物膜用下地基板上に設けた該半導体積層膜に発光層を設けることにより、発光効率を向上した青色発光ダイオード及び青色レーザー等の発光素子を構成することができる。さらに、AlNヘテロエピタキシャル結晶体を表面弾性波デバイスとして実用化することができる。

Claims (11)

  1.  単結晶α-Al23基板の表面を窒素ガスまたは窒素ガスと希ガスの混合ガスを用いたプラズマに晒した後、真空を破ることなく窒素ガスまたは窒素ガスと希ガスの混合ガスを用いた反応性スパッタリング法により、上記基板表面にAlNをヘテロエピタキシャル成長させることを特徴とするAlNヘテロエピタキシャル結晶体の製造方法。
  2.  前記反応性スパッタリング法は、AlターゲットまたはAlを含有するターゲットに高周波電力を印加して行なうものであり、該高周波電力の密度は、0.1乃至5.0W/cm2であることを特徴とする請求項1に記載のAlNヘテロエピタキシャル結晶体の製造方法。
  3.  単結晶α-Al23基板の表面を窒素ガスまたは窒素ガスと希ガスの混合ガスを用いたプラズマに晒した後、真空を破ることなく窒素ガスまたは窒素ガスと希ガスの混合ガスを用いた反応性スパッタリング法により、上記基板表面にAlNをヘテロエピタキシャル成長させてなることを特徴とするAlNヘテロエピタキシャル結晶体。
  4.  前記単結晶α-Al23基板の面方位が(0001)面であることを特徴とする請求項3に記載のAlNヘテロエピタキシャル結晶体。
  5.  結晶構造がウルツ鉱構造であることを特徴とする請求項3又は4に記載のAlNヘテロエピタキシャル結晶体。
  6.  AlN(0002)面のX線ロッキングカーブの半値幅が10乃至100arcsecであることを特徴とする請求項3乃至5のいずれかに記載のAlNヘテロエピタキシャル結晶体。
  7.  インプレーン配置で測定したAlN{10-10}面のX線ロッキングカーブの半値幅が1.2°乃至2.0°であることを特徴とする請求項3乃至6のいずれかに記載のAlNヘテロエピタキシャル結晶体。
  8.  請求項3乃至6のいずれかに記載のAlNヘテロエピタキシャル結晶体を表面に有する単結晶α-Al23基板であることを特徴とするIII族窒化物膜用下地基板。
  9.  請求項7に記載のIII族窒化物膜用下地基板上に、III族窒化物単結晶からなる半導体積層膜を有し、該半導体積層膜に発光層が設けられていることを特徴とする発光素子。
  10.  請求項2乃至6のいずれかに記載のAlNヘテロエピタキシャル結晶体を表面に有する単結晶α-Al23基板を用いてなることを特徴とする表面弾性波デバイス。
  11.  処理容器と、
    前記処理容器に接続された排気手段と、
    前記処理容器に設けられた基板ホルダと、
    前記処理容器に設けられ、AlターゲットまたはAlを含有するターゲットを載置するためのターゲットカソードと、
    前記処理容器に設けられ、窒素ガスまたは窒素ガスと希ガスの混合ガスを導入するためのガス導入手段と、
    前記基板ホルダに電力を供給することにより、プラズマを発生させる第1電力供給手段と、
    前記ターゲットカソードに電力を供給するための第2電力供給手段と、
    前記ガス導入手段、第1電力供給手段、及び第2電力供給手段を制御するための制御手段と、を備え、
    前記制御手段は、前記ガス導入手段を駆動させて、窒素ガスまたは窒素ガスと希ガスの混合ガスを導入するとともに、
    該第1電力供給手段と駆動させることにより、単結晶α-Al23基板をプラズマ処理した後、該第2電力供給手段を駆動させることにより、該Alターゲットをスパッタさせ、該単結晶α-Al23基板にAlN膜を形成するものであることを特徴とするスパッタリング装置。
PCT/JP2009/050799 2008-01-31 2009-01-21 AlNヘテロエピタキシャル結晶体とその製造方法、該結晶体を用いてなるIII族窒化物膜用下地基板、発光素子、表面弾性波デバイス、及びスパッタリング装置 WO2009096270A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008020103 2008-01-31
JP2008-020103 2008-01-31

Publications (1)

Publication Number Publication Date
WO2009096270A1 true WO2009096270A1 (ja) 2009-08-06

Family

ID=40912622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050799 WO2009096270A1 (ja) 2008-01-31 2009-01-21 AlNヘテロエピタキシャル結晶体とその製造方法、該結晶体を用いてなるIII族窒化物膜用下地基板、発光素子、表面弾性波デバイス、及びスパッタリング装置

Country Status (1)

Country Link
WO (1) WO2009096270A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130049064A1 (en) * 2010-04-30 2013-02-28 Canon Anelva Corporation Epitaxial film forming method, vacuum processing apparatus, semiconductor light emitting element manufacturing method, semiconductor light emitting element, and illuminating device
KR20150023788A (ko) 2012-06-26 2015-03-05 캐논 아네르바 가부시키가이샤 에피택셜막 형성 방법, 스퍼터링 장치, 반도체 발광 소자의 제조 방법, 반도체 발광 소자, 및 조명 장치
JP2015529009A (ja) * 2012-07-02 2015-10-01 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 物理的気相成長法による窒化アルミニウムの緩衝及び活性層
US9309606B2 (en) 2011-10-28 2016-04-12 Canon Anelva Corporation Film forming method, vacuum processing apparatus, semiconductor light emitting element manufacturing method, semiconductor light emitting element, and illuminating device
KR20170034905A (ko) 2014-07-28 2017-03-29 캐논 아네르바 가부시키가이샤 성막 방법, 진공 처리 장치, 반도체 발광 소자의 제조 방법, 반도체 발광 소자, 반도체 전자 소자의 제조 방법, 반도체 전자 소자, 조명 장치
RU2658503C1 (ru) * 2017-06-14 2018-06-21 федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет" Способ низкотемпературной плазмоактивированной гетероэпитаксии наноразмерных пленок нитридов металлов третьей группы таблицы Д.И. Менделеева
US10844470B2 (en) 2010-12-27 2020-11-24 Canon Anelva Corporation Epitaxial film forming method, sputtering apparatus, manufacturing method of semiconductor light-emitting element, semiconductor light-emitting element, and illumination device
TWI728681B (zh) * 2019-03-21 2021-05-21 大陸商中微半導體設備(上海)股份有限公司 用於mocvd的基片以及在基片上生長緩衝層的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63176393A (ja) * 1987-01-16 1988-07-20 Matsushita Electric Ind Co Ltd 窒化アルミニウム薄膜の製造方法
JPH06158274A (ja) * 1992-11-19 1994-06-07 Seiko Instr Inc 表面波素子とその製造方法
JPH08239752A (ja) * 1995-03-01 1996-09-17 Sumitomo Electric Ind Ltd ホウ素含有窒化アルミニウム薄膜および製造方法
WO2007129773A1 (ja) * 2006-05-10 2007-11-15 Showa Denko K.K. Iii族窒化物化合物半導体積層構造体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63176393A (ja) * 1987-01-16 1988-07-20 Matsushita Electric Ind Co Ltd 窒化アルミニウム薄膜の製造方法
JPH06158274A (ja) * 1992-11-19 1994-06-07 Seiko Instr Inc 表面波素子とその製造方法
JPH08239752A (ja) * 1995-03-01 1996-09-17 Sumitomo Electric Ind Ltd ホウ素含有窒化アルミニウム薄膜および製造方法
WO2007129773A1 (ja) * 2006-05-10 2007-11-15 Showa Denko K.K. Iii族窒化物化合物半導体積層構造体

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102959140A (zh) * 2010-04-30 2013-03-06 佳能安内华股份有限公司 外延膜形成方法、真空处理设备、半导体发光元件制造方法、半导体发光元件和照明装置
DE112011101519T5 (de) 2010-04-30 2013-05-29 Canon Anelva Corp. Epitaxialfilmbildungsverfahren, Vakuumprozessierungsapparat, Herstellungsverfahren eines halbleitertechnischen Licht emittierenden Elements, halbleitertechnisches Licht emittierendes Element und Beleuchtungsvorrichtung
US20130049064A1 (en) * 2010-04-30 2013-02-28 Canon Anelva Corporation Epitaxial film forming method, vacuum processing apparatus, semiconductor light emitting element manufacturing method, semiconductor light emitting element, and illuminating device
US9252322B2 (en) 2010-04-30 2016-02-02 Canon Anelva Corporation Epitaxial film forming method, vacuum processing apparatus, semiconductor light emitting element manufacturing method, semiconductor light emitting element, and illuminating device
US10844470B2 (en) 2010-12-27 2020-11-24 Canon Anelva Corporation Epitaxial film forming method, sputtering apparatus, manufacturing method of semiconductor light-emitting element, semiconductor light-emitting element, and illumination device
US9309606B2 (en) 2011-10-28 2016-04-12 Canon Anelva Corporation Film forming method, vacuum processing apparatus, semiconductor light emitting element manufacturing method, semiconductor light emitting element, and illuminating device
KR20150023788A (ko) 2012-06-26 2015-03-05 캐논 아네르바 가부시키가이샤 에피택셜막 형성 방법, 스퍼터링 장치, 반도체 발광 소자의 제조 방법, 반도체 발광 소자, 및 조명 장치
US9379279B2 (en) 2012-06-26 2016-06-28 Canon Anelva Corporation Epitaxial film forming method, sputtering apparatus, manufacturing method of semiconductor light-emitting element, semiconductor light-emitting element, and illumination device
DE112013003237B4 (de) 2012-06-26 2023-06-29 Canon Anelva Corporation Sputterverfahren zum Bilden einer epitaktischen Schicht, Sputtervorrichtung, Herstellverfahren eines lichtemittierenden Halbleiterelements, lichtemittierendes Halbleiterelement und Beleuchtungsvorrichtung
US10109481B2 (en) 2012-07-02 2018-10-23 Applied Materials, Inc. Aluminum-nitride buffer and active layers by physical vapor deposition
JP2015529009A (ja) * 2012-07-02 2015-10-01 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 物理的気相成長法による窒化アルミニウムの緩衝及び活性層
KR20170034905A (ko) 2014-07-28 2017-03-29 캐논 아네르바 가부시키가이샤 성막 방법, 진공 처리 장치, 반도체 발광 소자의 제조 방법, 반도체 발광 소자, 반도체 전자 소자의 제조 방법, 반도체 전자 소자, 조명 장치
US11035034B2 (en) 2014-07-28 2021-06-15 Canon Anelva Corporation Film formation method, vacuum processing apparatus, method of manufacturing semiconductor light emitting element, semiconductor light emitting element, method of manufacturing semiconductor electronic element, semiconductor electronic element, and illuminating apparatus
RU2658503C1 (ru) * 2017-06-14 2018-06-21 федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет" Способ низкотемпературной плазмоактивированной гетероэпитаксии наноразмерных пленок нитридов металлов третьей группы таблицы Д.И. Менделеева
TWI728681B (zh) * 2019-03-21 2021-05-21 大陸商中微半導體設備(上海)股份有限公司 用於mocvd的基片以及在基片上生長緩衝層的方法

Similar Documents

Publication Publication Date Title
WO2009096270A1 (ja) AlNヘテロエピタキシャル結晶体とその製造方法、該結晶体を用いてなるIII族窒化物膜用下地基板、発光素子、表面弾性波デバイス、及びスパッタリング装置
JP5431359B2 (ja) 最初のiii族−窒化物種晶からの熱アンモニア成長による改善された結晶性のiii族−窒化物結晶を生成するための方法
JP6418343B2 (ja) アルミナ基板の製造方法
TWI567214B (zh) A method for forming a nitride semiconductor layer, and a method of manufacturing the semiconductor device
WO1998024129A1 (en) Iii-v nitride semiconductor devices and process for the production thereof
JP2004111848A (ja) サファイア基板とそれを用いたエピタキシャル基板およびその製造方法
JP5030909B2 (ja) 酸化亜鉛単結晶層の成長方法
JP2004269338A (ja) 薄膜単結晶の成長方法
WO2021140793A1 (ja) Iii族窒化物基板の製造方法及びiii族窒化物基板
JP3895410B2 (ja) Iii−v族窒化物結晶膜を備えた素子、およびその製造方法
JP2003286098A (ja) Iii族窒化物結晶成長方法およびiii族窒化物結晶成長装置
JP6503819B2 (ja) アルミナ基板
JP2009221041A (ja) 結晶成長方法、結晶成長装置およびこれらによって製造された結晶薄膜を有する半導体デバイス
JP2008285401A (ja) Iii族窒化物単結晶基板の製造方法、および該基板を積層した積層基板
JP2005001928A (ja) 自立基板およびその製造方法
CN107794567A (zh) 用于制造iii族氮化物半导体的方法
JP3779831B2 (ja) 窒化物系iii−v族化合物半導体の結晶成長方法、その方法で得られた半導体の積層構造
JP7157953B2 (ja) 窒化物系薄膜複合構造体及びその製造方法
JP2006240968A (ja) 単結晶成長方法、その方法により得られるIII族窒化物単結晶およびSiC単結晶
WO2023085055A1 (ja) 下地基板及び単結晶ダイヤモンド積層基板並びにそれらの製造方法
WO2023214590A1 (ja) 高品質・低コストGaN自立基板の製造方法
WO2024053384A1 (ja) 下地基板及び単結晶ダイヤモンド積層基板並びにそれらの製造方法
WO2024048357A1 (ja) 下地基板及び単結晶ダイヤモンド積層基板並びにそれらの製造方法
JP2008100860A (ja) 単結晶窒化アルミニウム積層基板の製造方法
JPH09309795A (ja) 立方晶窒化アルミニウム薄膜およびその合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09706352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09706352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP