WO2009096267A1 - 太陽電池、集光型太陽光発電モジュール、および太陽電池製造方法 - Google Patents

太陽電池、集光型太陽光発電モジュール、および太陽電池製造方法 Download PDF

Info

Publication number
WO2009096267A1
WO2009096267A1 PCT/JP2009/050762 JP2009050762W WO2009096267A1 WO 2009096267 A1 WO2009096267 A1 WO 2009096267A1 JP 2009050762 W JP2009050762 W JP 2009050762W WO 2009096267 A1 WO2009096267 A1 WO 2009096267A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
sunlight
optical member
power generation
cell element
Prior art date
Application number
PCT/JP2009/050762
Other languages
English (en)
French (fr)
Inventor
Chikao Okamoto
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008023021A external-priority patent/JP4986875B2/ja
Priority claimed from JP2008123938A external-priority patent/JP5179944B2/ja
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to EP09705223A priority Critical patent/EP2246900A1/en
Priority to AU2009208410A priority patent/AU2009208410B2/en
Priority to CN2009801116604A priority patent/CN101981707A/zh
Priority to US12/865,230 priority patent/US20100326494A1/en
Publication of WO2009096267A1 publication Critical patent/WO2009096267A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • F24S23/31Arrangements for concentrating solar-rays for solar heat collectors with lenses having discontinuous faces, e.g. Fresnel lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/79Arrangements for concentrating solar-rays for solar heat collectors with reflectors with spaced and opposed interacting reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/10Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/42Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
    • F24S30/425Horizontal axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a solar cell that includes a solar cell element that photoelectrically converts the concentrated sunlight and a columnar optical member that irradiates the solar cell element with the concentrated sunlight, and a concentrating type that includes such a solar cell.
  • the present invention relates to a solar power generation module and a solar cell manufacturing method for manufacturing such a solar cell.
  • a flat plate structure of a non-condensing fixed type in which a solar power generation module configured by laying solar cell elements without gaps is installed on a roof or the like is common.
  • a technique for reducing the amount of high-priced solar cell elements among members (parts) constituting the solar power generation apparatus has been proposed.
  • FIG. 12 is a cross-sectional view showing a configuration example of a concentrating solar power generation module applied to the tracking concentrating solar power generation device of Conventional Example 1.
  • the concentrating solar power generation module 101 receives and condenses sunlight Ls incident in parallel to the optical axis Lax and perpendicular to the incident surface, and a condensing lens 150.
  • a solar cell 110 that photoelectrically converts the sunlight Ls collected by.
  • the solar cell 110 includes a solar cell element 111 that photoelectrically converts the concentrated sunlight Ls, and a receiver substrate 120 on which the solar cell element 111 is placed.
  • the wavelength region of sunlight Ls includes a medium / short wavelength region from a short wavelength of 400 nm to an intermediate wavelength of 1000 nm (1 ⁇ m), and a long wavelength region exceeding 1 ⁇ m. Therefore, among the sunlight Ls collected by the condenser lens 150, the sunlight Ls in the middle and short wavelength side region is collected toward the focal point FPb side, so that it is near the center of the solar cell element 111. The light is collected and constitutes a medium and short wavelength-side light collecting region FLRb.
  • the long wavelength side is disposed on the medium / short wavelength side concentrated light flux region FLRb and the outer periphery thereof (for example, the outer periphery of the solar cell element 111). Condensed light flux region FLRc is formed.
  • the tracking concentrating solar power generation device of Conventional Example 1 has applied the concentrating solar power generation module 101 having a high condensing magnification by the action of the condensing lens 150.
  • the refraction by the condensing lens 150 is slightly different for each of a wide range of wavelengths included in the sunlight Ls, the refraction state varies greatly depending on the wavelength region. Therefore, as described above, sunlight Ls that is not condensed on the solar cell element 111 (the outer peripheral side region FLRcs of the long wavelength side concentrated light flux region FLRc) may be generated.
  • misaligned sunlight Ls when the misaligned sunlight Ls is irradiated to a region other than the solar cell element 111, a portion of the member irradiated with the thermal energy of the misaligned sunlight Ls (for example, an insulating film on the receiver substrate 120, There is a problem that the wiring, etc.) becomes high temperature and may be burnt (damaged) in some cases.
  • the solar cell element 111 since the solar cell element 111 generates heat due to the concentrated sunlight Ls, there is a problem that the photoelectric conversion efficiency is lowered and the generated power (output) is lowered.
  • FIG. 13 is a cross-sectional view showing a configuration of a concentrating solar power generation module applied to the tracking concentrating solar power generation apparatus of Conventional Example 2.
  • a concentrating solar power generation module 140m includes a condensing lens 142 that receives and collects sunlight Lsv (sunlight Ls) incident in parallel to the optical axis Lax and perpendicular to the incident surface.
  • the solar cell 110 that photoelectrically converts sunlight Ls (sunlight Lsa) collected by the condenser lens 142 is provided. Further, the solar cell 110 includes a solar cell element 111 that photoelectrically converts sunlight Lsa collected by the condenser lens 142 to the focal position FP, and a receiver substrate 120 on which the solar cell element 111 is placed.
  • the tracking and concentrating solar power generation device of Conventional Example 2 applied the concentrating solar power generation module 140m having a high condensing magnification by the action of the condensing lens 142.
  • the condensing lens 142 is generally applied to perform condensing.
  • the wavelength region in the sensitivity wavelength region of the solar cell element 111, particularly in the short wavelength region.
  • sunlight Ls unsunlight Lsb
  • the alignment error between the condenser lens 142 and the solar cell element 111, the positional deviation due to the difference in the temperature characteristics of the members constituting the solar power generation module 140m, and the like occur.
  • sunlight Ls unsunlight Lss
  • the sunlight Ls (sunlight Lsb, Lss) that is not condensed on the solar cell element 111 due to the difference in the refraction state depending on the wavelength region, the positional deviation between the constituent members, and the like is substantially equal to the solar cell element 111. Therefore, there is a problem in that the amount of incident light is reduced and the generated power (output) of the solar cell element 111 is reduced to cause a loss.
  • a member for example, an insulating film on the receiver substrate 120, a wiring, or the like
  • the thermal energy of the misaligned sunlight Lss .
  • This invention is made
  • the holding frame is provided with a contact frame body and a support body that is arranged away from the columnar optical member and supports the contact frame body, and the side surface of the columnar optical member is inclined so as to totally reflect sunlight toward the irradiation surface.
  • the incident light collection area formed by the collected sunlight on the incident surface is located inside the incident surface, so that the fluctuation of the light collection characteristic is prevented and the light collection characteristic is improved.
  • To improve the light collection efficiency and photoelectric conversion efficiency To provide a heat and reliable solar cell to a first object.
  • this invention is a concentrating solar power generation module provided with the solar cell which photoelectrically converts the sunlight condensed with the condensing lens, Comprising: The solar cell which improved the condensing efficiency and heat dissipation is provided. Therefore, a second object is to provide a concentrating solar power generation module having improved heat generation efficiency and power generation and having high heat resistance and high reliability.
  • the present invention also includes a receiver substrate on which a solar cell element is placed, a columnar optical member that irradiates the solar cell element with sunlight collected by a condensing lens without waste, and a side surface of the columnar optical member.
  • the solar cell for manufacturing a solar cell comprising: a frame-shaped contact frame body and a support member disposed apart from the columnar optical member and supporting the contact frame body, and a holding unit erected on the receiver substrate
  • a battery manufacturing method comprising: a support fixing step for fixing a support to a receiver substrate; a translucent resin injecting step for injecting a translucent resin into the inner resin stopper;
  • the present invention includes a columnar optical member that irradiates the solar cell element with sunlight collected by the condenser lens without waste, and an optical holding unit that is placed on the receiver substrate and holds the columnar optical member.
  • a fourth object is to provide a solar cell with improved heat condensing characteristics and heat dissipation, and improved heat generation efficiency and power generation, and having high heat resistance, reliability, and weather resistance.
  • this invention is a concentrating solar power generation module provided with the solar cell which photoelectrically converts the sunlight condensed with the condensing lens, Comprising: The solar cell which improved the condensing characteristic and heat dissipation is provided.
  • a fifth object is to provide a concentrating solar power generation module with improved heat generation efficiency and power generation and having high heat resistance, reliability, and weather resistance.
  • the present invention also includes a columnar optical member that irradiates the solar cell element with sunlight collected by the condenser lens without waste, and an optical holding unit that is placed on the receiver substrate and holds the columnar optical member with a holding wall.
  • a solar cell manufacturing method for manufacturing a solar cell comprising: a resin injection step of injecting a sealing resin that forms a resin sealing portion in a space formed by an optical holding portion (holding wall) and a receiver substrate; and a holding wall
  • a sixth object is to manufacture a solar cell with improved heat resistance, high reliability, and high weather resistance at low cost with high productivity.
  • a first solar cell according to the present invention includes a solar cell element that photoelectrically converts sunlight collected by a condenser lens, a receiver substrate on which the solar cell element is placed, and condensed sunlight.
  • a columnar optical member having an incident surface for incidence and an irradiation surface that is disposed opposite to the solar cell element and irradiates the solar cell element with sunlight, and a holder that is erected on the receiver substrate and holds the columnar optical member
  • a frame-shaped abutting frame body that is in contact with a side surface of the columnar optical member and has a thickness from the incident surface toward the irradiation surface,
  • a support body disposed apart from the columnar optical member and supporting the contact frame, and the side surface is inclined so as to totally reflect incident sunlight in the direction of the irradiation surface,
  • the entrance surface is formed by the concentrated sunlight.
  • the converging light flux area is the incident face converging beam region size to be located inside the formation to the incident surface.
  • the incident surface collected light beam region is reliably positioned within the region of the incident surface to collect light. It is possible to prevent fluctuations in characteristics, and it is possible to disperse the heat applied to the columnar optical member by the concentrated sunlight to the surrounding space by the side surface and the contact frame, so that the light collection efficiency And it can be set as the heat resistant and highly reliable solar cell which improved the photoelectric conversion efficiency.
  • the side surface has an inclination angle of 8 degrees to 20 degrees with respect to a direction perpendicular to the irradiation surface.
  • the irradiation surface has a size located inside the solar cell element.
  • this configuration can prevent the receiver substrate from being irradiated with unnecessary sunlight that does not contribute to photoelectric conversion, the receiver substrate can be prevented from being burned out and a highly reliable solar cell can be obtained.
  • the contact frame is rectangular, and the support is arranged in a columnar shape at four corners of the contact frame. To do.
  • the contact frame body and the columnar optical member can be aligned with high accuracy, and the solar cell element is obtained by the chimney effect in the space provided around the solar cell element and the columnar optical member.
  • the photoelectric conversion efficiency can be improved.
  • the first concentrating solar power generation module condenses sunlight to make it incident on a solar cell, and photoelectrically converts the sunlight collected by the condensing lens.
  • a concentrating solar power generation module including a solar cell, wherein the solar cell is the first solar cell according to the present invention.
  • the minimum light collection region where the light collection region is minimized is configured to be located inside the columnar optical member.
  • the thickness of the abutment frame is such that the outer peripheral side region of the long wavelength side converging light beam region formed by the long wavelength side sunlight is shielded. It is characterized by having a thickness.
  • the minimum light collection region is configured to be positioned between a bottom portion of the contact frame and the irradiation surface. To do.
  • the focal point group formed by the focal point of the condensing lens that is displaced according to the temperature change of the condensing lens includes the bottom portion and the irradiation surface. It is characterized by being located between.
  • the position of the solar cell when the position of the solar cell is an intermittent tracking control mode in which the position of the solar cell is moved in advance to the destination of the sun on the solar orbit every specified time.
  • the entrance surface collecting light flux region is configured to be located inside the entrance surface.
  • the 1st solar cell manufacturing method which concerns on this invention is condensed with the solar cell element which photoelectrically converts the sunlight condensed with the condensing lens, the receiver board
  • a columnar optical member having an incident surface on which the sunlight is incident and an irradiation surface arranged to face the solar cell element and irradiating the solar cell element with sunlight, and abutted on the side surface of the columnar optical member
  • a method for manufacturing a solar cell comprising: a substrate preparation step for preparing the receiver substrate on which the solar cell element is placed; and a light transmitting method in which an adhesive resin is applied to the receiver substrate and the solar cell element is resin-sealed.
  • Inner resin stopper that is injected with functional resin And a resin stopper forming step for forming an outer resin stopper for fixing the support on the outer side of the inner resin stopper, and curing the adhesive resin by bonding the support to the outer resin stopper.
  • a columnar optical member placing step for placing the irradiation surface on the translucent resin in contact with a frame, and a resin sealing portion forming step for curing the translucent resin to form a resin sealing portion It is characterized by providing.
  • a heat-resistant and highly reliable solar cell that prevents the fluctuation and improves the light collection efficiency and photoelectric conversion efficiency by dispersing the heat applied to the columnar optical member by the concentrated sunlight by the contact frame. Can be manufactured easily and with high accuracy.
  • a second solar cell according to the present invention includes a solar cell element that photoelectrically converts sunlight condensed by a condensing lens, a receiver substrate on which the solar cell element is placed, and the solar cell element sealed with resin.
  • a columnar optical member that constitutes a light guide that guides the concentrated sunlight to the solar cell element, and a holding wall that holds the columnar optical member. And an optical holding part placed on the receiver substrate so as to cover the resin sealing part.
  • the columnar optical member has an optical path inclined surface for collecting sunlight on the solar cell element, and the holding wall is aligned with the optical path inclined surface. It is characterized by being a holding inclined surface.
  • the columnar optical member can be aligned with the optical holding portion in a self-aligning manner, and the columnar optical member can be held with high accuracy by the holding wall, so that the light guide path is positioned with high accuracy.
  • the light condensing characteristics can be improved.
  • the optical holding portion is in contact with a metal base base of the receiver substrate.
  • the optical holding portion includes comb-shaped fins on an outer peripheral side surface.
  • This configuration makes it possible to further improve the heat dissipation characteristics, and further improve the power generation efficiency and reliability.
  • the columnar optical member is a quadrangular column
  • the optical holding unit includes a groove-shaped notch that surrounds the axial corner of the quadrangular column. It is characterized by that.
  • the light guide path can be defined (positioned) with high accuracy.
  • the resin sealing portion is thinner than the surrounding region between the columnar optical member and the solar cell element.
  • the surface (irradiation surface) facing the solar cell element of the columnar optical member can be reliably brought close to the solar cell element, so that the sunlight collected by the columnar optical member is effectively collected.
  • the solar cell element can be irradiated.
  • it since it becomes possible to suppress the temperature rise of the receiver board
  • a second concentrating solar power generation module includes a condensing lens that condenses sunlight and a solar cell that photoelectrically converts the sunlight condensed by the condensing lens.
  • An optical solar power generation module, wherein the solar cell is the second solar cell according to the present invention.
  • a concentrated solar photovoltaic module with high heat resistance, reliability, and weather resistance that improves power generation efficiency and power generation by reducing power generation efficiency and temperature rise caused by misalignment of the concentrated sunlight. It becomes possible.
  • the 2nd solar cell manufacturing method which concerns on this invention is a solar cell element which photoelectrically converts the sunlight condensed with the condensing lens, the receiver board
  • a solar cell manufacturing method for manufacturing a solar cell that includes an optical holding portion that covers a resin sealing portion and is placed on the receiver substrate, wherein the optical holding portion prepares the optical holding portion by molding a metal.
  • a preparatory step an optical holding portion arranging step of placing the optical holding portion in contact with the receiver substrate on an outer periphery of the solar cell element, and the resin sealing in a space formed by the optical holding portion and the receiver substrate Sealing resin forming part
  • a resin injection step of injecting characterized in that it comprises an optical member placement step of placing the columnar optical member on the holding wall.
  • the optical holding unit and the columnar optical member can be positioned with high accuracy by a simple process, and a light guide and an optical holding unit for effectively guiding sunlight with high accuracy can be easily formed. Therefore, heat collection characteristics and heat dissipation are improved, heat generation efficiency and power generation efficiency are improved by reducing power generation efficiency and preventing temperature rise caused by misalignment of the concentrated sunlight. Therefore, it becomes possible to manufacture a solar cell having high weather resistance at low cost with good productivity.
  • a solar cell element that photoelectrically converts sunlight collected by the condenser lens, a receiver substrate on which the solar cell element is placed, and the concentrated solar cell
  • a columnar optical member having an incident surface on which light is incident and an irradiation surface arranged to face the solar cell element and irradiating the solar cell element with sunlight, and standing on the receiver substrate and holding the columnar optical member
  • a frame-shaped contact frame that is in contact with a side surface of the columnar optical member and has a thickness from the incident surface toward the irradiation surface.
  • a support member that is disposed apart from the columnar optical member and supports the contact frame, and the side surface is inclined so as to totally reflect incident sunlight in the direction of the irradiation surface.
  • the incident surface is shaped by the concentrated sunlight. Since the collected light flux region is sized so that the incident surface collected light flux region formed on the incident surface is located inside, the collected sunlight (collected light flux region) is positioned with respect to the center of the columnar optical member. In the event of a deviation, it is possible to prevent the fluctuation of the condensing characteristic by surely positioning the incident surface collecting light flux region within the region of the incident surface, and the condensed sunlight is added to the columnar optical member. Since heat can be dispersed to the surrounding space by the side surface and the contact frame body, it is possible to obtain a heat-resistant and highly reliable solar cell with improved light collection efficiency and photoelectric conversion efficiency. Play.
  • the condensing lens that condenses the sunlight and enters the solar cell, and the sunlight condensed by the condensing lens is photoelectrically converted. It is a concentrating solar power generation module comprising a solar cell to be converted, and since the solar cell is the first solar cell according to the present invention, it is formed on the incident surface by the condensed sunlight. Condensed light with high heat resistance and improved condensing efficiency and converted light rate without reducing condensing efficiency even when the incident surface concentrated light flux region is misaligned with the center of the incident surface There is an effect that it is possible to make a solar photovoltaic module.
  • a solar cell element that photoelectrically converts sunlight collected by the condenser lens, a receiver substrate on which the solar cell element is placed, a collector
  • a columnar optical member having an incident surface on which illuminated sunlight is incident and an irradiation surface arranged to face the solar cell element and irradiating the solar cell element with sunlight, and abutting on a side surface of the columnar optical member
  • a solar cell comprising: a frame-shaped contact frame body; and a support unit that is disposed apart from the columnar optical member and supports the contact frame body, and a holding unit that is erected on the receiver substrate.
  • a solar cell manufacturing method for manufacturing a substrate preparation step for preparing the receiver substrate on which the solar cell element is mounted, and applying an adhesive resin to the receiver substrate to seal the solar cell element with resin Inner tree to which translucent resin is injected
  • a columnar optical member placement step for placing the irradiation surface on the translucent resin in contact with the abutment frame, and a resin sealing portion for curing the translucent resin to form a resin sealing portion
  • Condensation characteristics are prevented from changing, and the concentrated sunlight is columnar light.
  • dispersing the heat applied to the member by abutting frame member is advantageously possible to manufacture the light collection efficiency and the photoelectric heat resistance and high solar reliable conversion efficiency improves with ease and high accuracy.
  • a solar cell element that photoelectrically converts sunlight collected by the condenser lens, a receiver substrate on which the solar cell element is placed, and the solar cell element are sealed with resin.
  • a columnar optical member that constitutes a light guide that guides the concentrated sunlight to the solar cell element, and a holding wall that holds the columnar optical member. Since it has an optical holding part that covers and is placed on the receiver board, it has a light collecting characteristic that can collect sunlight with high accuracy in a wide wavelength range by securing a light guide with high positional accuracy and stability.
  • Heat resistance, reliability, and weather resistance that improve the power generation efficiency and power generation by improving the light condensing characteristics and heat dissipation, and reducing the power generation efficiency and temperature rise caused by the misalignment of the concentrated sunlight The effect that can improve Unlikely to.
  • the 2nd concentrating solar power generation module which concerns on this invention, it is provided with the condensing lens which condenses sunlight, and the solar cell which photoelectrically converts the sunlight condensed with the condensing lens.
  • the solar cell is the second solar cell according to the present invention, it has a light condensing characteristic capable of concentrating sunlight with high accuracy in a wide wavelength region by securing a light guide having high positional accuracy and stability. Obtained, improving the light collection characteristics and heat dissipation, reducing the power generation efficiency caused by the positional deviation of the concentrated sunlight and preventing the temperature rise, improving the power generation efficiency and power generation, heat resistance, reliability, There exists an effect that a weather resistance can be improved.
  • a solar cell element that photoelectrically converts sunlight condensed by a condenser lens, a receiver substrate on which the solar cell element is placed, and a solar cell element A resin sealing portion having a resin sealing portion for resin sealing, a columnar optical member that constitutes a light guide for guiding condensed sunlight to the solar cell element, and a holding wall for holding the columnar optical member.
  • a solar cell manufacturing method for manufacturing a solar cell including an optical holding unit that covers and is placed on a receiver substrate, an optical holding unit preparing step for preparing an optical holding unit by molding a metal, and an optical holding unit
  • a columnar optical member on the holding wall An optical member placing step for placing the optical holding portion and the columnar optical member in a simple process with high accuracy, and a light guide for effectively guiding sunlight with high accuracy and Since the optical holding part can be easily formed, the light collection efficiency and generated power are improved by improving the light collection characteristics and heat dissipation, and reducing the power generation efficiency and the temperature rise caused by the misalignment of the collected sunlight.
  • FIG. 6 is a tracking state conceptual diagram conceptually showing a relationship between a tracking state when the concentrating photovoltaic power generation module according to Embodiment 4 of the present invention is subjected to intermittent tracking control and an incident surface collecting light flux region formed on the incident surface.
  • FIG. 8 is an enlarged plan view showing a state in which the solar cell shown in FIG. 7 is enlarged from the condenser lens side.
  • FIG. 9 is an enlarged cross-sectional view showing a cross section in the arrow YY direction of FIG.
  • FIG. 10 is a process diagram for explaining a solar cell manufacturing method according to Embodiment 8 of the present invention, in which the sealing resin is injected into the space formed between the optical holder and the receiver substrate; Shown in cross section in X direction.
  • FIG. 8 It is process drawing explaining the solar cell manufacturing method which concerns on Embodiment 8 of this invention, and shows the state which mounted the columnar optical member in the optical holding part in the cross section in the arrow XX direction of FIG. It is a perspective view which shows roughly the structure of the concentrating solar power generation unit which concerns on Embodiment 9 of this invention.
  • FIG. It is sectional drawing which shows the structure of the concentrating photovoltaic power generation module applied to the tracking concentrating photovoltaic power generation apparatus of the prior art example 2.
  • Concentrating Solar Power Generation Module 205 Tracking Control Unit 210 Solar Cell 211 Solar Cell Element 220 Receiver Substrate 221 Inner Resin Stopper 222 Outer Resin Stopper 225 Resin Sealing Unit 230 Columnar Optical Member 231 Incident Surface 232 Irradiation Surface 233 Side Surface 240 Holding unit 241 Contact frame 241b Bottom 241g Groove 242 Support 250 Condensing lens FLR Focusing light region FLRb Medium / short wavelength side light collection region FLRc Long wavelength side light collection region FLRcs Outer side region FLRd Incident surface collection beam region FLRs Minimum collection Light flux area FLR (T1) Light flux collection area (temperature T1) FLR (T2) Light collecting area (temperature T2) FLR (T3) Light collecting area (temperature T3) FLRd (T1) Incident surface concentrated light flux region (temperature T1) FLRd (T2) Incident surface collecting light flux region (temperature T2) FLRd (T3) Incident surface collecting light flux region (temperature T3) FP focus
  • FIG. 1A is a perspective side view transparently showing a schematic configuration of a surface including an optical axis of the solar cell and the concentrating solar power generation module according to Embodiment 1 of the present invention.
  • FIG. 1B is a perspective view showing the outer appearance of the holding portion and the columnar optical member of the solar cell shown in FIG. 1A as viewed obliquely from above.
  • Solar cell 210 is condensed with solar cell element 211 that photoelectrically converts sunlight Ls collected by condenser lens 250, and receiver substrate 220 on which solar cell element 211 is placed.
  • a columnar optical member 230 having an incident surface 231 on which the solar light Ls is incident and an irradiation surface 232 that is disposed facing the solar cell element 211 and irradiates the solar cell element 211 with the solar light Ls, and is erected on the receiver substrate 220.
  • a holding portion 240 that holds the columnar optical member 230.
  • the holding portion 240 is separated from the columnar optical member 230 and the frame-shaped abutting frame 241 that is in contact with the side surface 233 of the columnar optical member 230 and has a thickness t in the direction from the incident surface 231 to the irradiation surface 232. And a support body 242 that is disposed and supports the contact frame body 241.
  • the side surface 233 of the columnar optical member 230 is inclined so that the incident sunlight Ls is totally reflected in the direction of the irradiation surface 232, and the incident surface 231 of the columnar optical member 230 is caused by the condensed sunlight Ls.
  • the collected light flux region FLR is formed so that the incident surface collected light flux region FLRd formed on the incident surface 231 is positioned inside.
  • the incident sunlight Ls (collected light flux region FLR) is incident when a positional shift (see FIGS. 4 and 5) occurs with respect to the center (optical axis Lax) of the columnar optical member 230. It is possible to reliably position the surface collection light flux region FLRd within the region of the incident surface 231 to prevent fluctuations in the light collection characteristics of the solar cell 210, and the condensed sunlight Ls is applied to the columnar optical member 230. Since the applied heat can be dispersed to the surrounding space by the side surface 233 and the contact frame body 241, the solar cell 210 having high heat resistance and high reliability with improved light collection efficiency and photoelectric conversion efficiency can be obtained. it can.
  • the side surface 233 has an inclination angle ⁇ of 8 degrees to 20 degrees with respect to the vertical direction of the irradiation surface 232 (the optical axis Lax direction, that is, the vertical direction with respect to the light receiving surface of the solar cell element 211). Therefore, the sunlight Ls incident on the columnar optical member 230 can be reliably and accurately totally reflected by the side surface 233 and irradiated onto the solar cell element 211, so that the condensing efficiency and photoelectric conversion efficiency of the solar cell 210 are increased. Can be reliably improved.
  • the irradiation surface 232 has a size located inside the solar cell element 211 (outer periphery). Therefore, the sunlight Ls irradiated to the solar cell element 211 from the irradiation surface 232 is surely irradiated only to the solar cell element 211. That is, since unnecessary sunlight Ls that does not contribute to photoelectric conversion can be prevented from being irradiated to the receiver substrate 220, the receiver substrate 220 on which the wiring for the solar cell element 211 is formed is prevented from being burned out and highly reliable solar The battery 210 can be used.
  • the columnar optical member 230 can be made of, for example, glass, heat-resistant glass, general transparent resin, or the like. It is desirable to apply a material having characteristics that can withstand the high energy density of the concentrated sunlight Ls. That is, heat-resistant glass that can withstand the temperature rise and sudden temperature change caused by sunlight Ls is particularly desirable, but is not limited thereto.
  • the contact frame body 241 has a rectangular shape, and the support bodies 242 are arranged in a columnar shape at the four corners of the contact frame body 241. Therefore, it is possible to align the contact frame body 241 and the columnar optical member 230 with high accuracy, and in the space provided around the solar cell element 211 and the columnar optical member 230 (side surface 233). Since the solar cell element 211 and the columnar optical member 230 can be effectively radiated by the chimney effect, the photoelectric conversion efficiency can be improved.
  • the region where total reflection of the side surface 233 occurs is exposed to the space without contacting the contact frame body 241, the heat energy by the sunlight Ls supplied to the columnar optical member 230 is efficiently reduced. It becomes possible to discharge into the space, and the heat resistance of the solar cell 210 (solar cell element 211) can be improved.
  • a groove portion 241g is formed in a corner portion (corner portion) inside the abutting frame body 241 (a portion in contact with the columnar optical member 230) so as to correspond to the corner of the columnar optical member 230. That is, since the corners of the columnar optical member 230 are disposed in the space formed by the groove portion 241g, there is no direct contact with the contact frame body 241 and there is no possibility of damage during assembly. Further, since the side surface 233 and the inner side surface of the contact frame body 241 are each formed of a flat surface, they can be contacted with high accuracy and can be positioned with high accuracy.
  • the groove portion 241g can be filled with an adhesive resin to improve the adhesive strength between the columnar optical member 230 and the holding portion 240, and the mechanical strength is improved to improve the stability of the columnar optical member 230. Can be made. Further, the minimum light collection region FLRs in which the light collection region FLR is minimum is configured to be positioned on the irradiation surface 232 side with respect to the contact frame 241. Therefore, since the sunlight Ls does not irradiate the side surface 233 on the inner side surface of the contact frame 241, there is no influence on the sunlight Ls. That is, even when the groove portion 241g is filled with the adhesive resin, the light collecting property is not adversely affected.
  • the holding unit 240 can be made of, for example, a metal such as aluminum, iron, or stainless steel, or a synthetic resin such as polyethylene. It is desirable to use a metal in consideration of heat dissipation and thermal expansion characteristics. Moreover, it is desirable to use aluminum from a viewpoint of weight reduction and cost reduction.
  • An inner resin stopper 221 is formed in a ring shape (frame shape) around the solar cell element 211, and a resin sealing part 225 of a translucent resin is formed inside the inner resin stopper 221. . That is, the inner resin stopper portion 221 is used as a resin stopper when the resin sealing portion 225 is formed by resin sealing between the solar cell element 211 and the irradiation surface 232 with a translucent resin.
  • the resin sealing portion 225 can reliably protect the surface of the solar cell element 211 to eliminate the influence from the external environment, and the solar cell 210 having excellent weather resistance can be obtained.
  • the translucent resin constituting the resin sealing portion 225 has high light transmissivity and excellent adhesiveness.
  • an epoxy resin, a silicone resin, or the like can be applied.
  • the resin sealing portion 225 covers the surface of the solar cell element 211 and improves the water resistance and moisture resistance of the solar cell element 211. Further, it is bonded to the columnar optical member 230 (irradiation surface 232) and has an action of fixing the columnar optical member 230.
  • an outer resin stopper 222 is formed outside the inner resin stopper 221.
  • the outer resin stopper 222 is disposed to adhere and fix the support 242. Therefore, it can be formed only at a position corresponding to the support body 242, but it can also be formed in a ring shape (frame shape) like the outer resin stopper 222.
  • frame shape In the case of an annular shape (frame shape), when the resin sealing portion 225 is formed, the translucent resin filled in the inner resin stopper 221 is pushed out from the inner resin stopper 221 by the columnar optical member 230. Since the translucent resin is stopped by the outer resin stopper 222, it is possible to prevent the occurrence of process defects.
  • the inner resin stopper 221 and the outer resin stopper 222 are preferably formed of an adhesive synthetic resin.
  • an adhesive synthetic resin for example, an epoxy resin, a silicone resin, or the like can be applied.
  • the concentrating solar power generation module 201 condenses the sunlight Ls and makes it incident on the solar cell 210, and photoelectrically converts the sunlight Ls collected by the condenser lens 250.
  • the concentrating solar power generation module 201 has no fear that the condensing efficiency is lowered when the incident surface collection light flux region FLRd is displaced from the center of the incident surface 231. It is possible to improve the light collection efficiency and the conversion light rate, and to realize high heat resistance and reliability.
  • the minimum light collection region FLRs where the light collection region FLR is minimum is configured to be located inside the columnar optical member 230. Therefore, the position of the focal group FPg (see FIG. 3A) by the condensing lens 250 can be positioned inside the columnar optical member 230, and the energy density in the incident surface concentrated light flux region FLRd can be suppressed. That is, for example, when dust adheres to the surface of the incident surface 231, the dust is prevented from burning due to high thermal energy caused by the concentrated sunlight Ls, and the columnar optical member 230 is prevented from being burned out.
  • the optical solar power generation module 201 can be obtained.
  • the minimum light collection region FLRs is located between the bottom 241b of the contact frame 241 and the irradiation surface 232. That is, since it is possible to cause total reflection on the side surface 233 of the columnar optical member 230 at a position where the columnar optical member 230 is not in contact with the contact frame body 241, reflection loss due to the contact frame body 241 does not occur. It is possible to stabilize the output characteristics of the solar cell 210 by stabilizing the light collection efficiency.
  • the size of the incident surface collecting light flux region FLRd can be set by optically calculating the condensing characteristic, size, and distance of the condensing lens 250 with respect to the solar cell 210.
  • the size and position of the minimum light collection region FLRs are determined by optically determining the condensing characteristics, size, and distance of the condensing lens 250 with respect to the solar cell 210 and further the size and distance of the columnar optical member 230 with respect to the solar cell element 211. It is possible to calculate and obtain the setting.
  • FIG. 2 is a side view conceptually showing characteristics with respect to the sunlight wavelength of the solar cell and the concentrating solar power generation module according to Embodiment 2 of the present invention.
  • the wavelength region of sunlight Ls includes a medium / short wavelength region from a short wavelength of 400 nm to an intermediate wavelength of 1000 nm (1 ⁇ m), and a long wavelength region exceeding 1 ⁇ m.
  • the sunlight Ls collected by the condenser lens 250 the sunlight Ls in the middle and short wavelength side region is collected near the center of the incident surface 231 and constitutes the middle and short wavelength side concentrated light flux region FLRb.
  • the sunlight Ls in the long wavelength side region has a long wavelength side concentrated light flux region FLRc on the medium / short wavelength side concentrated light flux region FLRb and the outer periphery thereof (the outer periphery of the incident surface 231 and the region corresponding to the contact frame 241). Configure.
  • the medium / short wavelength side concentrated light flux region FLRb which is the concentrated light flux region formed by the medium / short wavelength side region (400 nm to 1000 nm), is configured to be surely irradiated to the solar cell element 211.
  • the medium-short wavelength side light collecting flux region FLRb is incident on the incident surface 231, travels inside the columnar optical member 230, and then totally reflects on the side surface 233.
  • the incident surface 231 is configured such that the medium and short wavelength-side concentrated light flux region FLRb is positioned inside the incident surface 231.
  • the medium-short wavelength-side concentrated light flux region FLRb is configured to be positioned inside the incident surface 231 by the condenser lens 250.
  • the sunlight Ls in the long wavelength region contributes to the photoelectric conversion of the solar cell element 211, and the energy required to contribute to the photoelectric conversion is about two thirds of the incident energy. If it is good. Further, the sunlight Ls in the long wavelength side region has an effect of raising the temperature of the solar cell 210 and lowering the photoelectric conversion efficiency.
  • a part of the outer peripheral side of the long wavelength side concentrated light flux region FLRc (the middle short wavelength side concentrated light flux region FLRb), which is the concentrated light flux region formed by the sunlight Ls in the long wavelength side region (greater than 1 ⁇ m).
  • the outer peripheral side area FLRcs) is shielded by the contact frame 241 (thickness t). That is, the outer peripheral side region FLRcs of the long wavelength side concentrated light flux region FLRc formed by the sunlight Ls in the long wavelength side region is a region corresponding to the top surface of the contact frame 241 and the thickness t on the outer periphery of the incident surface 231.
  • the light is condensed by the condensing lens 250 at a light shielding position.
  • the thickness t of the contact frame 241 is set to be a thickness that shields the outer peripheral side region FLRcs of the long-wavelength side concentrated light flux region FLRc formed by the long-wavelength side region of sunlight Ls.
  • the design current value of the bottom layer is about 1.8 times larger than that of the top layer and the middle layer, so that it is not necessary to absorb the wavelengths in all regions. Therefore, it is possible to eliminate a temperature increase due to sunlight Ls in the long wavelength side region by providing the top surface of the contact frame 241 and the portion of the thickness t with a light shielding characteristic for the long wavelength side region.
  • the incident surface collecting light flux region FLRd corresponding to the middle and short wavelength side region is positioned on the incident surface 231 with high accuracy and is totally reflected by the side surface 233, thereby generating a heat shielding effect. It is possible to prevent the output from being reduced due to the positional deviation of the light flux region FLRd and to ensure the stabilization of the output.
  • FIG. 3A is a side view conceptually showing a focus displacement state with respect to sunlight wavelength due to temperature characteristics of a condensing lens in the solar cell and the concentrating solar power generation module according to Embodiment 3 of the present invention.
  • FIG. 3B is a plan view conceptually showing a displacement state of the incident light collecting light flux region on the incident surface of the solar cell shown in FIG. 3A.
  • the condenser lens 250 is, for example, a Fresnel lens formed of silicone resin.
  • the temperature of the silicone resin changes, for example, from 20 ° C. to 40 ° C., for example, the refractive index for a wavelength of 650 nm changes from 1.409 (20 ° C.) to 1.403 (40 ° C.) corresponding to the change in temperature. . Note that the change in refractive index occurs for all wavelengths.
  • the collected light flux region FLR when the temperature changes varies according to the temperature. For example, when temperature T1> temperature T2> temperature T3, the collected light beam region FLR (T1) at the temperature T1 ⁇ the collected light beam region FLR (T2) at the temperature T2 ⁇ the collected light beam region FLR (at the temperature T3). T3). Further, the relationship between the incident surface collected light beam region FLRd (T1) at the temperature T1, the incident surface collected light beam region FLRd (T2) at the temperature T2, and the incident surface collected light beam region FLRd (T3) at the temperature T3 is as follows. Incident surface collected light beam region FLRd (T1) ⁇ incident surface collected light beam region FLRd (T2) ⁇ incident surface collected light beam region FLRd (T3).
  • the positions of the focal point FP (T1) at the temperature T1, the focal point FP (T2) at the temperature T2, and the focal point FP (T3) at the temperature T3 are the focal point FP (T1) and the focal point in order from the incident surface 231.
  • FP (T2) and focus FP (T3). Therefore, the focal point FP (T1), the focal point FP (T2), and the focal point FP (T3) are a set of focal points FP, and constitute a focal point group FPg.
  • the focal point FP causes a focus shift Sfp, and the condensing characteristic of the condenser lens 250 is changed. Further, the incident surface collection light flux region FLRd on the incident surface 231 changes under the influence of the change in the refractive index.
  • the diameter of the condenser lens 250 is, for example, 30 cm, and the distance between the condenser lens 250 and the solar cell element 211 is, for example, 30 cm.
  • the incident surface collecting light flux region FLRd (T1) is about 6.5 mm in diameter at a temperature T1 (for example, 40 ° C.), and the incident surface collecting light flux region FLRd (T2) is at a temperature T2 (for example, 30 ° C.).
  • T1 for example, 40 ° C.
  • T2 for example, 30 ° C.
  • the incident surface concentrated light flux region FLRd (T3) has a diameter of about 7.5 mm, the length w of the side of the rectangular incident surface 231 is 9.4 mm, for example.
  • the incident light collecting light flux region FLRd is always incident on the inside of the incident surface 231 even if there is a change in the light condensing characteristic due to the temperature change, so that the fluctuation of the light condensing characteristic can be substantially prevented. It becomes possible.
  • the focus shift Sfp from the focus FP (T1) to the focus FP (T3) at this time was about 10 mm. Therefore, the distance from the bottom 241b of the contact frame 241 to the irradiation surface 232 may be at least 10 mm or more.
  • the focal point group FPg formed by the focal point FP of the condensing lens 250 that is displaced in accordance with the temperature change of the condensing lens 250 includes the bottom 241b of the contact frame 241 and the irradiation surface 232. It is as a structure located between. Therefore, when the focal point is displaced due to the temperature change of the condenser lens 250, total reflection on the side surface 233 can be generated at a position where the condenser lens 250 is not in contact with the contact frame body 241, thereby stabilizing the light collection efficiency. Thus, the output characteristics of the solar cell 210 can be stabilized.
  • the focal point FP is located between the bottom portion 241b of the contact frame 241 and the irradiation surface 232, the focal point FP is prevented from moving to a position corresponding to the outer periphery of the holding portion 240, and sunlight Even when Ls irradiates the receiver substrate 220 exceptionally, it is possible to suppress the thermal energy density of the collected light flux region FLR on the surface of the receiver substrate 220, thereby preventing the temperature increase of the receiver substrate 220. And burnout can be avoided.
  • FIG. 4 is a tracking diagram conceptually showing the relationship between the tracking state when the concentrating photovoltaic power generation module according to Embodiment 4 of the present invention is subjected to intermittent tracking control and the incident surface concentrated light flux region formed on the incident surface.
  • It is a state conceptual diagram, (A) is the state where the concentrating solar power generation module is directly facing the sunlight, (B) is moving the concentrating solar power generation module ahead of the sunlight (C) shows a state where the moved concentrating solar power generation module faces again by the movement of sunlight, and (D) shows that the concentrating solar power generation module is delayed by the movement of sunlight.
  • A is the state where the concentrating solar power generation module is directly facing the sunlight
  • B is moving the concentrating solar power generation module ahead of the sunlight
  • C shows a state where the moved concentrating solar power generation module faces again by the movement of sunlight
  • (D) shows that the concentrating solar power generation module is delayed by the movement of sunlight.
  • the concentrating solar power generation module 201 (solar cell 210) according to the present embodiment is configured to face the sunlight Ls by so-called tracking control. That is, since the incident direction of sunlight Ls with respect to the concentrating solar power generation module 201 (incident surface 231) fluctuates along the solar moving direction SSD, the concentrating solar power generation module 201 is controlled by the tracking control unit 205. It is configured to be intermittently driven to rotate with respect to the sun azimuth and to be intermittently driven to tilt with respect to the solar altitude. In FIG. 4, only the state of the turning drive is shown for easy understanding, but the same drive control is executed for the tilting drive as well as the turning drive.
  • the tracking control for the concentrating solar power generation module 201 is executed at specified time intervals. That is, the tracking control by the tracking control unit 205 is a so-called intermittent tracking control mode. Note that the shape of the concentrating solar power generation module 201 (the diameter of the condensing lens 250 and the interval between the condensing lens 250 and the solar cell element 211) is the same as that in the third embodiment.
  • Intermittent tracking control can be executed as follows, for example.
  • the concentrating solar power generation module 201 located at a position delayed with respect to the sunlight Ls (position immediately before the same figure (A)) is driven to turn in the direction of the arrow Rot so as to face the sunlight Ls.
  • the state ((A) in the figure) is passed, and the sunlight Ls is moved to the overtaken position and fixed ((B) in the figure).
  • the turning angle when the concentrating solar power generation module 201 passes the sunlight Ls is, for example, +0.05 degrees at the maximum angle with respect to the directly facing position.
  • the swivel deviation dw of the incident surface collected light beam region FLRd is 1 mm with respect to the time of facing.
  • the sunlight Ls faces the concentrating solar power generation module 201 moved to the position advanced with respect to the sunlight Ls ((B) in the same figure) while being incident again on the incident surface collection light flux region FLRd (same as above). It passes through the figure (C)) and moves to a position (Drawing (D)) overtaking the concentrating solar power generation module 201.
  • the turning angle when the sunlight Ls passes the concentrating solar power generation module 201 is set to, for example, ⁇ 0.05 degrees at the maximum angle with respect to the directly facing position. Therefore, on the opposite side to the time when the concentrating solar power generation module 201 passes the sunlight Ls, the swivel deviation dw of the incident surface collection light flux region FLRd is 1 mm with respect to the time of facing.
  • the concentrating solar power generation module 201 has overtaken the concentrating solar power generation module 201 or when the concentrating solar power generation module 201 has overtaken the concentrating solar power generation module 201, Since the swivel deviation dw with respect to the time when the incident surface concentrated light flux region FLRd is directly facing can be set to a sufficiently small value with respect to the size of the incident surface 231, an intentional positional deviation by tracking control (swivel control) is possible. Even when the operation is executed, the light collection characteristic does not fluctuate and the light collection efficiency is not lowered.
  • the tilt angle in tilt drive can be ⁇ 0.025 degrees at the maximum angle, and the tilt shift can be 0.5 mm. That is, since the tilt deviation of the incident surface collected light beam region FLRd at the maximum tilt angle with respect to the front-facing time can be set to a sufficiently small value with respect to the size of the incident surface 231, the tracking control (tilt control) Even when an intentional positional shift operation by control) is executed, the light collection efficiency is not lowered.
  • the position of the solar cell 210 (concentrating solar power generation module 201) is advanced to the destination of the sun on the solar orbit every specified time.
  • the incident surface collecting light flux region FLRd is configured to be located inside the incident surface 231.
  • FIG. 5 shows an incident surface formed on a setting angle shift and an incident surface when an assembly error occurs between the condensing lens and the solar cell of the concentrating solar power generation module according to Embodiment 5 of the present invention. It is explanatory drawing which illustrates the relationship with a condensing light beam area
  • the positional deviation between the incident light collection light flux region FLRd formed on the incident surface 231 and the center (optical axis Lax) of the incident surface 231 is not limited to the above-described operation but is caused by an assembly error in the manufacturing process. May occur. That is, high-precision parallelism is required between the solar cell 210 (solar cell element 211) and the condenser lens 250. However, the condensing lens 250 may be assembled as the concentrating solar power generation module 201 in a state in which the set angle deviation ⁇ is generated by deviating from the original parallel position with respect to the solar cell 210.
  • the sunlight Ls (collected light flux region FLR) collected by the condensing lens 250 is displaced with respect to the incident surface 231.
  • the incident surface collection light beam region FLRds that is displaced in the lateral direction is formed on the incident surface 231 with respect to the incident surface light collection beam region FLRd having no positional displacement.
  • the set angle deviation ⁇ is a maximum value, for example, 0.1 degree.
  • the misaligned incident surface collective light flux region FLRds is displaced by a maximum of 1 mm from the original incident collective light flux region FLRd. That is, even when the condensing lens 250 is displaced with respect to any direction, the incident surface collecting light flux region FLRds can be positioned inside the incident surface 231. Therefore, it is possible to obtain a highly reliable concentrating solar power generation module 201 with improved condensing efficiency and conversion light rate without reducing condensing efficiency.
  • FIG. 6A is a process diagram showing a substrate preparation step of preparing a receiver substrate on which a solar cell is placed by the solar cell manufacturing method according to Embodiment 6 of the present invention.
  • FIG. 6B is a process diagram showing a resin stopper forming step of forming an inner resin stopper and an outer resin stopper in the solar cell manufacturing method according to Embodiment 6 of the present invention.
  • FIG. 6C is a process diagram showing a support fixing process for fixing the support of the holding unit to the receiver substrate in the solar cell manufacturing method according to Embodiment 6 of the present invention.
  • FIG. 6D is a process diagram showing a translucent resin injecting step of injecting a translucent resin into the inside resin stopper in the solar cell manufacturing method according to Embodiment 6 of the present invention.
  • FIG. 6E is a process chart showing a columnar optical member mounting step in which the columnar optical member is brought into contact with the holding portion and the irradiation surface is mounted on the translucent resin in the solar cell manufacturing method according to Embodiment 6 of the present invention. It is.
  • the solar cell manufacturing method includes a solar cell element 211 that photoelectrically converts sunlight Ls collected by the condensing lens 250, a receiver substrate 220 on which the solar cell element 211 is placed, A columnar optical member 230 having an incident surface 231 on which the incident sunlight Ls is incident and an irradiation surface 232 that is disposed facing the solar cell element 211 and irradiates the solar cell element 211 with the sunlight Ls; A holding unit erected on the receiver substrate 220 having a frame-shaped contact frame body 241 that is in contact with the side surface 233 and a support body 242 that is disposed away from the columnar optical member 230 and supports the contact frame body 241.
  • the solar cell 210 provided with the part 240 is manufactured.
  • the solar cell manufacturing method includes a substrate preparation process, a resin stopper forming process, a support fixing process, a translucent resin injection process, a columnar optical member mounting process, and a resin sealing part forming process. Prepare.
  • substrate 220 which mounted the solar cell element 211 is prepared (board
  • an adhesive resin is applied to the receiver substrate 220, and a support 242 is placed outside the inner resin stopper 221 and the inner resin stopper 221 into which a translucent resin for sealing the solar cell element 211 is injected.
  • the outer resin stopper 222 to be fixed is formed (resin stopper forming step, FIG. 6B).
  • the inner resin stopper 221 is formed in a ring shape (frame shape) around the solar cell element 211 because a translucent resin for sealing the solar cell element 211 is injected in a later step. Further, the outer resin stopper 222 is formed only at a position corresponding to the support 242 because the support 242 is bonded and fixed in a later step.
  • the outer resin stopper 222 is formed in a ring shape (frame shape) around the inner resin stopper 221 and the translucent resin injected into the inner resin stopper 221 expands more than necessary from the inner resin stopper 221. It is also possible to adopt a form that prevents this. Further, when the outer resin stopper 222 is annular, an effect of blocking moisture that enters along the surface of the receiver substrate 220 is produced.
  • the support 242 is fixed to the receiver substrate 220 by bonding the support 242 to the outer resin stopper 222 and curing the adhesive resin (support fixing process, FIG. 6C).
  • the outer resin stopper 222 can be cured.
  • the inner resin stopper 221 is also cured in conjunction with the outer resin stopper 222.
  • a translucent resin is injected inside the inner resin stopper 221 (translucent resin injection step, FIG. 6D).
  • an epoxy resin, a silicone resin, or the like can be applied as the translucent resin.
  • the translucent resin is cured to form the resin sealing portion 225 (resin sealing portion forming step, not shown).
  • the resin sealing portion forming step By heating the translucent resin to an appropriate temperature, it is possible to perform a defoaming treatment simultaneously with curing, and the resin sealing portion 225 having excellent translucency can be formed.
  • the irradiation surface 232 Since the irradiation surface 232 is placed and brought into contact with the light-transmitting resin, the irradiation surface 232 is adhered by the light-transmitting resin of the resin sealing portion 225, and the columnar optical member 230 is surely attached to the solar cell element 211. And it is fixed with high precision. In addition, it is possible to secure further mechanical strength by injecting adhesive resin into the groove portion 241g and bonding and fixing the columnar optical member 230 and the holding portion 240 with the groove portion 241g.
  • the incident surface collected light beam region FLRd is incident. It is located within the area of the surface 231 to prevent fluctuations in the light collection characteristics, and the heat applied to the columnar optical member 230 by the condensed sunlight Ls is dispersed by the contact frame 241 so that the light collection efficiency and A highly heat-resistant and highly reliable solar cell 210 with improved photoelectric conversion efficiency can be manufactured with high productivity (that is, easily and with high accuracy) and at low cost.
  • FIG. 7 is a cross-sectional view showing a solar cell and a concentrating solar power generation module according to Embodiment 7 of the present invention.
  • FIG. 8 is an enlarged plan view showing a state in which the solar cell shown in FIG. 7 is enlarged from the condenser lens side.
  • FIG. 9 is an enlarged cross-sectional view showing a cross section in the direction of arrows YY in FIG. Note that the cross-sectional view of the solar cell in FIG. 7 is a cross section in the direction of arrows XX in FIG.
  • solar cell element 311 that photoelectrically converts sunlight Ls collected by condenser lens 342 (sunlight Lsa, sunlight Lsb), and solar cell element 311 are placed.
  • the solar cell 310 includes a receiver substrate 320 and a resin sealing portion 373 that seals the solar cell element 311 with resin.
  • the sunlight Lsa is sunlight that is normally condensed by the condenser lens 342 and is directly incident on the solar cell element 311. Further, the sunlight Lsb is collected by the condenser lens 342, but cannot be directly incident on the solar cell element 311 due to the influence of the lens end portion, the wavelength region (particularly, the short wavelength region), and the like. Sunlight that travels while being reflected inside the light guide path (columnar optical member 370) and is irradiated to the solar cell element 311 by being condensed on the incident surface 370f (condensing region Af) of the optical member 370. . That is, the sunlight Lsb is sunlight that has been a loss in the conventional technique (see FIG. 13).
  • the solar cell 310 includes a columnar optical member 370 that constitutes a light guide path that guides the concentrated sunlight Ls to the solar cell element 311, and a holding wall 372 w that holds the columnar optical member 370. And an optical holding unit 372 placed on the receiver substrate 320 so as to cover the unit 373.
  • a light collecting path (columnar optical member 370) having high positional accuracy and stability is obtained, and a light collecting characteristic capable of collecting sunlight Ls with high accuracy in a wide wavelength region is obtained.
  • the solar cell 310 having high heat resistance, high reliability, and high weather resistance, which improves power generation efficiency and power generation power by reducing the power generation efficiency and preventing temperature rise caused by the positional deviation of the concentrated sunlight Ls. It becomes possible.
  • the receiver substrate 320 is connected to a desired wiring (an electrode (not shown) of the solar cell element 311) via a suitable insulating layer on a metal base base such as an aluminum plate or a copper plate, and is connected to the outside.
  • a connection pattern (not shown) for connecting the solar cells 310 in series or in parallel is formed.
  • the current generated by the solar cell element 311 is appropriately taken out of the solar cell 310 by the wiring formed on the receiver substrate 320. Since the wiring formed on the receiver substrate 320 needs to ensure highly reliable insulation, for example, a connection pattern formed of copper foil is covered with an insulating film such as an organic material for insulation. is there.
  • the columnar optical member 370 has an optical path inclined surface 370 s for collecting sunlight Ls on the solar cell element 311, and the holding wall 372 w is a holding inclined surface aligned with the optical path inclined surface 370 s.
  • the columnar optical member 370 can be aligned with the optical holding portion 372 in a self-aligning manner, and the columnar optical member 370 can be held with high accuracy by the holding wall 372w.
  • the member 370) can be positioned with high accuracy, and the light collecting characteristics can be improved.
  • the columnar optical member 370 is made of, for example, heat-resistant glass and has a refractive index of about 1.5, for example.
  • the width of the incident surface 370f (condensing region Af) of the columnar optical member 370 on which the sunlight Ls is condensed is the short wavelength light most refracted among the sunlight Lsb refracted at the end of the condenser lens 342.
  • the size is such that about 400 nm of sunlight can be incident.
  • the irradiation surface 370r of the light guide (columnar optical member 370) on which the solar light Ls is irradiated to the solar cell element 311 is an effective light receiving surface of the solar cell element 311 so that the irradiation to the solar cell element 311 can be performed efficiently. It is formed in the same size as the region. Therefore, the columnar optical member 370 includes an optical path inclined surface 370s that tapers from the incident surface 370f to the irradiation surface 370r.
  • the angle of the optical holding portion 372 (holding wall 372w) with respect to the receiver substrate 320 is 45 ° or more, and the incident solar light Lsb is totally reflected to irradiate the solar cell element 311.
  • the height Hp of the columnar optical member 370 from the receiver substrate 320 is the angle of the inclined surface of the optical holding portion 372, the size of the area of the irradiation surface 370r corresponding to the area of the solar cell element 311 (effective light receiving surface region), It can be determined by the size of the incident surface 370f of the columnar optical member 370.
  • the size of the columnar optical member 370 is the area of the incident surface 370f on which the sunlight Ls is incident without loss, the holding wall 372w (holding inclination) of the optical holding unit 372 that totally reflects the sunlight Ls and irradiates the solar cell element 311. Surface) from the receiver substrate 320 and the area of the irradiation surface 370r.
  • a metal film such as Al, Ag, Ni or the like is deposited on the optical path inclined surface 370s of the columnar optical member 370 by vacuum deposition or sputtering. You may provide the reflective surface formed by the above.
  • the columnar optical member 370 causes the sunlight Lsa normally condensed by the condensing lens 342 to directly enter the solar cell element 311 and collect it on the incident surface 370f by the condensing lens 342.
  • the emitted sunlight Lsb can be allowed to travel while being multiple-reflected by the light guide path (columnar optical member 370) and incident on the solar cell element 311, and the power generation efficiency of the solar cell 310 can be increased.
  • the optical holding unit 372 is brought into contact with a metal base base (not shown) included in the receiver substrate 320 and bonded to the receiver substrate 320 by the bonding unit 321. That is, the optical holding portion 372 is directly bonded to the receiver substrate 320 (base base) in a state where an appropriate contact area is ensured.
  • the heat generated in the receiver substrate 320 (solar cell element 311) due to the concentrated sunlight Ls can be efficiently conducted to the optical holder 372 formed of metal, and the optical holder
  • the heat conducted to 372 is effectively dissipated by the fins 372h having an increased heat dissipating area, so that it is possible to efficiently dissipate heat caused by the sunlight Ls collected on the solar cell element 311.
  • the power generation efficiency and reliability of the solar cell 310 can be improved.
  • the optical holding portion 372 is preferably formed of, for example, metal. By forming it with a metal, the optical holding portion 372 having excellent heat dissipation can be easily and inexpensively formed with good mass productivity.
  • the optical holding portion 372 includes comb-shaped fins 372h on the outer peripheral side surface, for example. Therefore, it is possible to further improve the heat dissipation characteristics, and it is possible to further improve the power generation efficiency and reliability.
  • the fin 372h has a shape that is inclined from the base to the tip in a direction away from the receiver substrate 320 (upward), and further improves heat dissipation.
  • the columnar optical member 370 is a quadrangular column, and the optical holding unit 372 includes a groove-shaped notch 372g that surrounds the axial corner 370c of the quadrangular column. Therefore, it is possible to prevent the optical holding portion 372 from being damaged at the axial corner portion 370c of the columnar optical member 370, and to place the columnar optical member 370 on the optical holding portion 372 reliably and with high accuracy.
  • the notched portion 372g can surely degas and fill the sealing resin 373r (see FIG. 10C) filled between the columnar optical member 370 and the optical holding portion 372.
  • the optical path (columnar optical member 370) is defined (positioned) with high accuracy, and a high-quality light guiding path is formed in which bubbles are not mixed between the optical path inclined surface 370s and the holding wall 372w or in the resin sealing portion 373. be able to.
  • the optical holding portion 372 is preferably formed so that the height Hh from the receiver substrate 320 is higher than the center of gravity position Wb of the columnar optical member 370.
  • the center of gravity of the columnar optical member 370 can be reliably and reliably held by the optical holding portion 372. Therefore, it is possible to prevent the columnar optical member 370 from shaking or falling by the optical holding portion 372, and to suppress the shaking of the concentrated sunlight Ls and to perform highly reliable power generation, thereby improving the reliability of the solar cell 310. Can be improved.
  • the columnar optical member 370 can be brought into close contact with the optical holding portion 372, and the columnar optical member 370 can be stably placed on the optical holding portion 372. Since it becomes possible, productivity can be improved.
  • the resin sealing portion 373 is composed of an insulating sealing resin 373r filled between the solar cell element 311 and the optical holding portion 372.
  • a transparent silicone resin a columnar optical member
  • the solar cell element 311 can be irradiated with sunlight Ls that has passed through 370.
  • the resin sealing portion 373 is thinner than the surrounding region between the columnar optical member 370 and the solar cell element 311. That is, the thickness Tr in the surrounding region is formed to be thicker than the thickness Ts between the columnar optical member 370 and the solar cell element 311.
  • the surface (irradiation surface 370r) of the columnar optical member 370 facing the solar cell element 311 can be reliably brought close to the solar cell element 311 (effective light receiving surface region). It is possible to effectively irradiate the solar cell element 311 with the emitted sunlight Ls.
  • the heat resistance can be improved and the solar cell 310 having high reliability and weather resistance can be obtained.
  • the sunlight Ls is configured to be focused on the solar cell element 311 by the tracking mechanism.
  • a positional deviation may occur due to the occurrence of a tracking error or an alignment error of the optical system, and the focused spot may be shifted. That is, the solar cell 310 may be irradiated with the misaligned sunlight Lss.
  • tracking error such as tracking error
  • the optical holding unit 372 has a light collection region Af (columnar optical member 370) set for sunlight Ls (sunlight Lsa, sunlight Lsb) collected toward the solar cell element 311 (effective light receiving surface region). ), The sunlight Lss can be reflected when the sunlight Lss is generated.
  • the wiring formed on the surface of the receiver substrate 320 is composed of an organic member having low heat resistance. Therefore, if sunlight Lss is irradiated, the organic member is damaged, and thus the wiring is damaged. And the reliability of the solar cell 310 may be reduced.
  • the receiver substrate 320 around the solar cell element 311 is covered by the optical holding portion 372 (and the resin sealing portion 373), the sunlight Lss is directly irradiated on the receiver substrate 320 (wiring). Therefore, it is possible to prevent damage to the wiring and the like. Therefore, it is possible to suppress the temperature rise of the surface of the receiver substrate 320 and to burn out the members (wiring, insulating film, etc.) disposed on the surface of the receiver substrate 320. Can be prevented.
  • the solar cell 310 can be made highly efficient and inexpensive with good reliability and weather resistance with improved heat resistance.
  • the optical holding unit 372 can effectively reflect sunlight Lss by using, for example, metal.
  • the solar cell element 311 is made of an inorganic material such as Si, GaAs, CuInGaSe, CdTe, for example.
  • the solar cell element 311 has various structures such as a single junction solar cell element, a monolithic multi-junction solar cell element, and a mechanical stack type in which various solar cell solar cell elements having different wavelength sensitivity regions are connected. It is possible to apply.
  • the external size of the solar cell element 311 is preferably about several mm to about 20 mm from the viewpoints of reduction of the solar cell material to be used, ease of processing, ease of process, simplification, and the like.
  • an appropriate antireflection film or the like may be provided on the surface of the solar cell element 311. Further, a UV reflection film, an infrared reflection film, or the like that reflects sunlight having a wavelength other than the sensitivity wavelength region of the solar cell element 311 may be provided.
  • the concentrating solar power generation module 340m includes a condensing lens 342 that condenses sunlight Ls (sunlight Lsv), and sunlight Ls (sunlight Lsa) collected by the condensing lens 342.
  • the solar cell 310 solar cell element 311) that photoelectrically converts sunlight Lsb).
  • the condensing lens 342 is configured to face the sun by the action of a tracking mechanism (not shown). Therefore, the sunlight Lsv is incident in a direction perpendicular to the incident surface of the condenser lens 342.
  • the condensing lens 342 is configured to refract the sunlight Lsv and condense it on the solar cell element 311 (in this embodiment, the incident surface 370f as the condensing region Af).
  • a three-junction solar cell element composed of InGaP / GaAs / Ge, AlGaAs / It is desirable to use a solar cell element made of Si or a monolithic multi-junction solar cell element.
  • the surface of the solar cell element 311 that photoelectrically converts sunlight Ls is flat, the incident surface of the condensing lens 342, the incident surface 370f of the columnar optical member 370, irradiation It is arranged in parallel with the surface 370r.
  • the condensing lens 342 examples include a biconvex lens, a plano-convex lens, and a Fresnel lens. From the viewpoint of weight, cost, ease of handling in the usage environment, etc., a Fresnel lens having a flat entrance surface for receiving sunlight Ls and an exit surface for irradiating solar cell element 311 with sunlight Ls having a substantially triangular cross section. It is desirable to have a shape. Note that the condensing lens 342 may be formed in an array (see FIG. 11) in which a plurality of the same optical systems are arranged and integrally molded.
  • a material of the condensing lens 342 As a material of the condensing lens 342, a material having a high transmittance in the sensitivity wavelength light of the solar cell element 311 and having weather resistance is preferable. For example, it is possible to apply a thin glass generally used for a normal solar cell module (solar power generation system), weather resistant grade acrylic, polycarbonate, or the like.
  • the material of the condensing lens 342 is not limited to these, You may make these materials into the multilayer structure.
  • an appropriate ultraviolet absorber may be added to these materials for the purpose of preventing ultraviolet degradation of the condenser lens 342 itself and other members.
  • an optical holding portion 372 is prepared by molding a metal (optical holding portion preparation step). Note that the shape of the optical holding portion 372 is as described in Embodiment 7, and thus the description thereof is omitted as appropriate.
  • the holding wall 372w (holding inclined surface) having the same inclination angle as the optical path inclined surface 370s corresponding to the optical path inclined surface 370s of the columnar optical member 370 is formed inside the metal block. Further, a notch 372g is formed corresponding to the axial corner 370c of the columnar optical member 370. In addition, a space that covers the resin sealing portion 373 is formed adjacent to the surface that contacts the receiver substrate 320. Further, the fin 372h is formed on the outer periphery of the optical holding portion 372.
  • FIG. 10A is a process diagram for explaining a solar cell manufacturing method according to Embodiment 8 of the present invention, and shows a state in which a solar cell element is placed on a receiver substrate in a cross section in the direction of arrows XX in FIG. Show.
  • the solar cell element 311 is mounted on the receiver substrate 320 (solar cell device mounting step).
  • FIG. 10B is a process diagram for explaining the solar cell manufacturing method according to Embodiment 8 of the present invention, and shows a state in which the optical holding unit is placed on the receiver substrate in a cross section in the direction of arrows XX in FIG. Show.
  • the bonding portion 321 is formed on the receiver substrate 320 in correspondence with the position where the optical holding portion 372 is arranged on the outer periphery of the solar cell element 311 (bonding portion forming step).
  • a metal frame or a plastic frame can be formed and arranged as the bonding portion 321, but it is desirable to appropriately arrange a resin or an adhesive that can bond the optical holding portion 372.
  • the bonding unit 321 is configured to bond the optical holding unit 372 to the receiver substrate 320 on the side surface of the optical holding unit 372 so that the optical holding unit 372 can be brought into direct contact with a base base (not shown) of the receiver substrate 320. Placed in. Note that, when an adhesive having high thermal conductivity is applied, the adhesive portion 321 may be interposed between the receiver substrate 320 and the optical holding portion 372.
  • the optical holding portion 372 is aligned with the bonding portion 321 and placed in contact with the receiver substrate 320 (optical holding portion arranging step). At this time, the optical holding unit 372 is mounted so that the center position of the optical holding unit 372 (corresponding to the center position of the irradiation surface 370r) formed by the holding wall 372w and the center of the solar cell element 311 (effective light receiving surface region) coincide. Put.
  • FIG. 10C is a process diagram for explaining the solar cell manufacturing method according to Embodiment 8 of the present invention, in which the sealing resin is injected into the space formed between the optical holder and the receiver substrate in FIG. Shown in section in the direction of arrow XX.
  • the injection amount of the sealing resin 373r is such that when the columnar optical member 370 is placed, the sealing resin 373r fills the gap between the columnar optical member 370 and the optical holding portion 372, and the optical holding portion 372 (notch portion). 372g) is sufficient as long as it does not leak, and an appropriate amount obtained in advance is injected.
  • FIG. 10D is a process diagram for explaining the solar cell manufacturing method according to Embodiment 8 of the present invention, and shows a state in which the columnar optical member is placed on the optical holding unit in the direction of the arrows XX in FIG. It shows with.
  • the columnar optical member 370 is placed on the optical holding portion 372 (holding wall 372w) (optical member placing step), and is stored in a vacuum chamber for defoaming (bubbles) Defoaming step). Since the notch portion 372g formed in the optical holding portion 372 serves as a bubble discharge path, reliable defoaming can be performed by a simple process.
  • the columnar optical member 370 Since the pressure of the sealing resin 373r is reduced by performing defoaming in the bubble defoaming step, the columnar optical member 370 is pressed against the holding wall 372w by its own weight, and is self-aligned toward the solar cell element 311 with high accuracy. Inserted. Further, since the sealing resin 373r is filled between the columnar optical member 370 and the optical holding portion 372 and acts as a lubricant, the frictional resistance between the columnar optical member 370 and the optical holding portion 372 is reduced. While protecting the surface of the columnar optical member 370, it is possible to more smoothly place (couple) it on the optical holding portion 372.
  • the sealing resin 373r is cured to form the resin sealing portion 373, and the columnar optical member 370 and the optical holding portion 372 are closely attached and fixed (resin curing step / columnar optical member fixing step). ).
  • the solar cell element 311 that photoelectrically converts the sunlight Ls collected by the condenser lens 342 and the receiver substrate 320 on which the solar cell element 311 is placed.
  • the present invention relates to a solar cell manufacturing method for manufacturing a solar cell 310 that includes a holding wall 372 w to hold and an optical holding portion 372 that covers a resin sealing portion 373 and is placed on a receiver substrate 320.
  • the solar cell manufacturing method includes an optical holding unit preparation step of forming a metal to prepare an optical holding unit 372, and the optical holding unit 372 on the receiver substrate 320 on the outer periphery of the solar cell element 311.
  • the optical holding portion 372 and the columnar optical member 370 can be positioned with high accuracy by a simple process, and the light guide path (columnar optical member 370) and the optical holding for effectively guiding the sunlight Ls with high accuracy. Since the portion 372 can be easily formed, the light collection efficiency and the generated power are improved by improving the light collecting characteristics and heat dissipation, and preventing the reduction of the power generation efficiency and the temperature rise caused by the positional deviation of the collected sunlight Ls. It is possible to manufacture the solar cell 310 with improved heat resistance, reliability, and weather resistance at a low cost with high productivity.
  • the concentrating solar power generation unit according to the present embodiment will be described.
  • the concentrating solar power generation unit according to the present embodiment is configured by arranging a plurality of concentrating solar power generation modules 340m including the solar cell 310 described in the seventh embodiment.
  • the code at 7 is applied as it is.
  • FIG. 11 is a perspective view schematically showing a configuration of a concentrating solar power generation unit according to Embodiment 9 of the present invention.
  • the concentrating solar power generation unit 340 includes a long frame 344 and a plurality of concentrating solar power generation modules 340m arranged along the long frame 344. Note that the concentrating solar power generation module 340m can be made independent by disposing the concentrating solar power generation module 340m in an individual frame different from the long frame 344.
  • the concentrating solar power generation module 340m includes, for example, a concentrating lens 342 of about 30 cm square, and the concentrating solar power generation unit 340 includes, for example, 5 ⁇ 1 (five) concentrating solar power generation modules 340m. It is possible to make it the structure provided with. At this time, the concentrating solar power generation unit 340 constitutes a light receiving surface of about 30 cm ⁇ 150 cm, for example.
  • the concentrating solar power generation module 340m is connected in series or in parallel with an appropriate number in order to generate necessary power.
  • seven concentrating solar power generation units 340 are juxtaposed to form a concentrating solar power generation system (concentrating solar power generation device).
  • a concentrating solar power generation system configured by a plurality of concentrating solar power generation units 340 is supported by a support column 381 and is moved in a horizontal direction by a tracking mechanism unit (not shown).
  • the condensing lens 342 (incident surface), which is automatically driven in the direction of tracking the sun by the rotation Roth and the rotation Rotv in the vertical direction, is arranged on the surface of the concentrating solar power generation module 340m with respect to the sunlight Lsv
  • the configuration is oriented in the vertical direction.
  • the concentrating solar power generation unit 340 according to the present embodiment can be applied to a concentrating solar power generation system having a high concentration ratio. That is, the concentrating solar power generation module 340m according to the present invention can constitute a highly efficient and inexpensive tracking concentrating solar power generation system with good reliability and weather resistance.
  • the solar cell 310 is not burned out, and a highly reliable tracking and concentrating solar power generation system can be obtained.
  • the tracking mechanism unit (tracking drive system) has an azimuth axis for directing the condenser lens 342 (incident surface) to the sun's azimuth and a tilt axis for tilting the condenser lens 342 (incident surface) to the sun's altitude. Therefore, it is possible to track the sun with high accuracy.
  • a motor and a speed reducer are used to rotate a gear at a predetermined rotational speed to drive in a predetermined direction
  • a hydraulic pump and a hydraulic cylinder are used to adjust the cylinder to a predetermined length.
  • There is a method of driving in a predetermined direction and either method may be used.
  • the solar orbit is calculated in advance by a clock mounted inside the tracking drive system that controls the operation of the tracking drive system, and the concentrating solar power generation module 340m (concentrating solar power generation unit 340) is oriented in the direction of the sun.
  • solar tracking methods such as a method of controlling the sun to be directed, a method of attaching a solar sensor such as a photodiode to the tracking drive system and monitoring and controlling the sun direction as needed. good.
  • the concentrating solar power generation unit 340 includes a plurality of concentrating solar power generation modules 340m arranged along the elongated frame 344.
  • a concentrating solar power generation unit 340 with improved heat generation efficiency and power generation and improved heat resistance, reliability, and weather resistance. I will provide a.
  • the elongate frame 344 and the plurality of concentrating solar power generation modules 340m arranged along the long frame 344 are provided. Therefore, it is possible to obtain a light condensing characteristic capable of concentrating sunlight Ls with high accuracy in a wide wavelength region by securing a light guiding path having high positional accuracy and stability, improving the light condensing characteristic and heat dissipation, and collecting light. In addition, it is possible to improve the power generation efficiency and the generated power by reducing the power generation efficiency and the temperature rise caused by the positional deviation of the sunlight Ls, thereby improving the heat resistance, reliability, and weather resistance.
  • the present invention relates to a solar cell that includes a solar cell element that photoelectrically converts the concentrated sunlight and a columnar optical member that irradiates the solar cell element with the concentrated sunlight, and a concentrating type that includes such a solar cell.
  • the present invention can be applied to a solar power generation module and a solar cell manufacturing method for manufacturing such a solar cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 太陽電池210は、太陽光Lsを入射させる入射面231と太陽電池素子211に対向して配置され太陽電池素子211に太陽光Lsを照射する照射面232とを有する柱状光学部材230と、柱状光学部材230を保持する保持部240とを備える。保持部240は、柱状光学部材230の側面233に当接され入射面231から照射面232の方向へ厚さtを持たせた当接枠体241と、柱状光学部材230から離して配置され当接枠体241を支持する支持体242とを備える。柱状光学部材230の側面233は、太陽光Lsを照射面232の方向へ全反射するように傾斜させてあり、柱状光学部材230の入射面231は、太陽光Lsによって形成される入射面集光束領域FLRdを内側に位置させる大きさとしてある。

Description

太陽電池、集光型太陽光発電モジュール、および太陽電池製造方法
 本発明は、集光された太陽光を光電変換する太陽電池素子と集光された太陽光を太陽電池素子に照射する柱状光学部材とを備える太陽電池、そのような太陽電池を備える集光型太陽光発電モジュール、および、そのような太陽電池を製造する太陽電池製造方法に関する。
 太陽光発電装置としては、太陽電池素子を隙間無く敷き詰めて構成した太陽光発電モジュールを屋根の上などに設置した非集光固定型の平板式構造が一般的である。これに対し、太陽光発電装置を構成する部材(部品)の中で価格が高い太陽電池素子の使用量を減らす技術が提案されている。
 つまり、光学レンズや反射鏡などを用いて太陽光を集光し、集光した太陽光を小面積の太陽電池素子に照射することで、太陽電池素子の単位面積あたりの発電電力を大きくし、太陽電池素子のコスト(つまり、太陽光発電装置のコスト)を削減することが提案されている。
 一般に集光倍率を上げるほど太陽電池素子の光電変換効率は向上する。しかし、太陽電池素子の位置を固定したままでは太陽光が斜光となって入射することが多くなり、太陽光を有効に利用することができない。したがって、太陽を追尾して太陽光を常に正面で受光するように構成した高集光倍率の追尾集光型太陽光発電装置が提案されている(例えば、特許文献1ないし特許文献5参照。)。
 図12は、従来例1の追尾集光型太陽光発電装置に適用される集光型太陽光発電モジュールの構成例を示す断面図である。
 従来例1に係る集光型太陽光発電モジュール101は、光軸Laxと平行に入射面に対して垂直に入射する太陽光Lsを受光して集光する集光レンズ150と、集光レンズ150により集光された太陽光Lsを光電変換する太陽電池110とを備える。また、太陽電池110は、集光された太陽光Lsを光電変換する太陽電池素子111と、太陽電池素子111が載置されたレシーバ基板120とを備える。
 太陽光Lsの波長領域は、短波長の400nmから中間波長の1000nm(1μm)までの中短波長側領域と、1μmを越える長波長側領域とを含んでいる。したがって、集光レンズ150で集光された太陽光Lsの内で、中短波長側領域の太陽光Lsは、焦点FPb側に向けて集光されることから、太陽電池素子111の中央付近に集光されて中短波長側集光束領域FLRbを構成する。また、長波長側領域の太陽光Lsは、焦点FPc側に向けて集光されることから、中短波長側集光束領域FLRbおよびその外周(例えば、太陽電池素子111の外周)に長波長側集光束領域FLRcを構成する。
 従来例1の追尾集光型太陽光発電装置は、集光レンズ150の作用により高集光倍率とした集光型太陽光発電モジュール101を適用していた。
 しかし、集光レンズ150による屈折は、太陽光Lsが含む幅広い波長の各波長に対してそれぞれわずかに異なることから、波長領域によって屈折状態が大きく異なる。したがって、上述したとおり、太陽電池素子111に集光されない太陽光Ls(長波長側集光束領域FLRcの外周側領域FLRcs)を生じる場合がある。
 また、集光レンズ150と太陽電池素子111とのアライメント誤差、太陽光発電モジュール101を構成する部材の温度特性の差による位置ズレなどが生じることから、屈折状態が異なる場合と同様に太陽電池素子111の中心(光軸Lax)に対して位置ズレを生じる。つまり、太陽電池素子111に対して照射すべき太陽光Lsの位置ズレが生じ、結果として集光効率が変動して低下する場合がある。
 したがって、波長領域による屈折状態の相違、各構成部材間の位置ズレなどを原因として太陽電池素子111に対する位置合わせがされない太陽光Lsの発生は、太陽電池素子111に対する実質的な入射光量の減少をもたらすこととなり、太陽電池110(太陽電池素子111)の光電変換効率および発電電力(出力)を低下させ、さらには不要な損失を生じるという問題がある。
 また、位置ズレをした太陽光Lsが太陽電池素子111以外の領域に照射されると、位置ズレした太陽光Lsの熱エネルギーにより照射された部分の部材(例えば、レシーバ基板120上の絶縁膜、配線など)が高温になり、場合によっては焼損(破損)することがあるという問題があった。
 また、太陽電池素子111は、集光された太陽光Lsによって発熱することから、光電変換効率が低下し、発電電力(出力)が低下するという問題があった。
 図13は、従来例2の追尾集光型太陽光発電装置に適用される集光型太陽光発電モジュールの構成を示す断面図である。
 従来例2に係る集光型太陽光発電モジュール140mは、光軸Laxと平行に入射面に対して垂直に入射する太陽光Lsv(太陽光Ls)を受光して集光する集光レンズ142と、集光レンズ142により集光された太陽光Ls(太陽光Lsa)を光電変換する太陽電池110とを備える。また、太陽電池110は、集光レンズ142により焦点位置FPへ集光された太陽光Lsaを光電変換する太陽電池素子111と、太陽電池素子111が載置されたレシーバ基板120とを備える。
 従来例2の追尾集光型太陽光発電装置は、集光レンズ142の作用により高集光倍率とした集光型太陽光発電モジュール140mを適用していた。
 高集光倍率の追尾集光型太陽光発電装置では、一般的に集光レンズ142を適用して集光を行なう。しかし、集光レンズ142による屈折は、太陽光Lsが含む幅広い波長の各波長に対してそれぞれわずかに異なることから、波長領域(太陽電池素子111の感度波長領域の内で、特に短波長領域の波長)によっては、屈折状態が通常の場合と大きく異なって太陽電池素子111に集光されない太陽光Ls(太陽光Lsb)を生じる場合がある。
 また、集光レンズ142と太陽電池素子111とのアライメント誤差、太陽光発電モジュール140mを構成する部材の温度特性の差による位置ズレなどが生じることから、屈折状態が異なる場合と同様に太陽電池素子111以外の領域に位置ズレをした集光されない太陽光Ls(太陽光Lss)が生じる場合がある。
 したがって、波長領域による屈折状態の相違、各構成部材間の位置ズレなどを原因として太陽電池素子111への集光がされない太陽光Ls(太陽光Lsb、Lss)は、太陽電池素子111に対する実質的な入射光量を減少することとなり、太陽電池素子111の発電電力(出力)を低下させて損失を生じるという問題がある。
 また、太陽電池素子111以外の領域に位置ズレをした太陽光Lssが照射されると、位置ズレした太陽光Lssの熱エネルギーにより照射部分の部材(例えば、レシーバ基板120上の絶縁膜、配線など)が高温になり、場合によっては焼損(破損)することがあるという問題があった。
 また、太陽電池素子111は、集光された太陽光Lsaによって発熱し、その結果発電電力(出力)が低下するという問題があった。
特開2002-289896号公報 特開2002-289897号公報 特開2002-289898号公報 特開2006-278581号公報 特開2007-201109号公報
 本発明はこのような状況に鑑みてなされたものであり、太陽電池素子と、太陽電池素子が載置されたレシーバ基板と、集光レンズにより集光された太陽光を無駄なく太陽電池素子に照射する柱状光学部材と、柱状光学部材を保持する保持部とを備える太陽電池であって、柱状光学部材の側面に当接され入射面から照射面の方向へ厚さを持たせた枠状の当接枠体と、柱状光学部材から離して配置され当接枠体を支持する支持体とを保持部に設け、太陽光を照射面の方向へ全反射するように柱状光学部材の側面を傾斜させ、集光された太陽光が入射面に形成する入射面集光束領域を入射面の内側に位置させることによって、集光特性の変動を防止して集光特性を向上させ、また、放熱性を向上させて、集光効率および光電変換効率を向上させた耐熱性および信頼性の高い太陽電池を提供することを第1の目的とする。
 また、本発明は、集光レンズにより集光された太陽光を光電変換する太陽電池を備える集光型太陽光発電モジュールであって、集光効率および放熱性を向上させた太陽電池を備えることによって、発電効率および発電電力を向上させた耐熱性および信頼性の高い集光型太陽光発電モジュールを提供することを第2の目的とする。
 また、本発明は、太陽電池素子が載置されたレシーバ基板と、集光レンズにより集光された太陽光を無駄なく太陽電池素子に照射する柱状光学部材と、柱状光学部材の側面に当接された枠状の当接枠体と柱状光学部材から離して配置され当接枠体を支持する支持体とを有してレシーバ基板に立設された保持部とを備える太陽電池を製造する太陽電池製造方法であって、支持体をレシーバ基板に固定する支持体固定工程と、内側樹脂止め部の内側に透光性樹脂を注入する透光性樹脂注入工程と、柱状光学部材を当接枠体に当接させて照射面を透光性樹脂に載置する柱状光学部材載置工程とを備えることによって、集光効率および光電変換効率を向上させた耐熱性および信頼性の高い太陽電池を生産性良く安価に製造することができる太陽電池製造方法を提供することを第3の目的とする。
 また、本発明は、集光レンズにより集光された太陽光を無駄なく太陽電池素子に照射する柱状光学部材と、レシーバ基板に載置され柱状光学部材を保持する光学保持部とを備えることによって、集光特性および放熱性を向上させ、発電効率および発電電力を向上させた耐熱性、信頼性、耐候性の高い太陽電池を提供することを第4の目的とする。
 また、本発明は、集光レンズにより集光された太陽光を光電変換する太陽電池を備える集光型太陽光発電モジュールであって、集光特性および放熱性を向上させた太陽電池を備えることによって、発電効率および発電電力を向上させた耐熱性、信頼性、耐候性の高い集光型太陽光発電モジュールを提供することを第5の目的とする。
 また、本発明は、集光レンズにより集光された太陽光を無駄なく太陽電池素子に照射する柱状光学部材と、レシーバ基板に載置され柱状光学部材を保持壁で保持する光学保持部とを備える太陽電池を製造する太陽電池製造方法であって、光学保持部(保持壁)およびレシーバ基板が構成する空間に樹脂封止部を形成する封止樹脂を注入する樹脂注入工程と、保持壁に柱状光学部材を載置する光学部材載置工程とを備えることによって、光学保持部および柱状光学部材を簡単な工程で高精度に位置決めして集光特性および放熱性を向上させ、発電効率および発電電力を向上させた耐熱性、信頼性、耐候性の高い太陽電池を生産性良く安価に製造することを第6の目的とする。
 本発明に係る第1の太陽電池は、集光レンズにより集光された太陽光を光電変換する太陽電池素子と、該太陽電池素子が載置されたレシーバ基板と、集光された太陽光を入射させる入射面と前記太陽電池素子に対向して配置され前記太陽電池素子に太陽光を照射する照射面とを有する柱状光学部材と、前記レシーバ基板に立設され前記柱状光学部材を保持する保持部とを備える太陽電池であって、前記保持部は、前記柱状光学部材の側面に当接され前記入射面から前記照射面の方向へ厚さを持たせた枠状の当接枠体と、前記柱状光学部材から離して配置され前記当接枠体を支持する支持体とを備え、前記側面は、入射された太陽光を前記照射面の方向へ全反射するように傾斜させてあり、前記入射面は、集光された太陽光によって形成される集光束領域が前記入射面に形成する入射面集光束領域を内側に位置させる大きさとしてあることを特徴とする。
 この構成により、集光された太陽光(集光束領域)が柱状光学部材の中心に対して位置ズレを生じた場合に入射面集光束領域を入射面の領域内に確実に位置させて集光特性の変動を防止することが可能となり、また、集光された太陽光が柱状光学部材に加える熱を側面および当接枠体によって周囲の空間へ分散することが可能となるので、集光効率および光電変換効率を向上させた耐熱性および信頼性の高い太陽電池とすることができる。
 また、本発明に係る前記第1の太陽電池では、前記側面は、前記照射面の垂直方向に対して8度~20度の傾斜角を有していることを特徴とする。
 この構成により、柱状光学部材に入射した太陽光を側面で確実かつ高精度に全反射させて太陽電池素子に照射させることが可能となるので、集光効率および光電変換効率を向上させることができる。
 また、本発明に係る前記第1の太陽電池では、前記照射面は、前記太陽電池素子の内側に位置する大きさとしてあることを特徴とする。
 この構成により、光電変換に寄与しない不要な太陽光がレシーバ基板に照射されることを防止できるので、レシーバ基板の焼損を防止して信頼性の高い太陽電池とすることができる。
 また、本発明に係る前記第1の太陽電池では、前記当接枠体は、矩形状としてあり、前記支持体は、前記当接枠体の4隅に柱状に配置してあることを特徴とする。
 この構成により、当接枠体と柱状光学部材とを高精度に位置合わせすることが可能となり、また、太陽電池素子の周囲および柱状光学部材の周囲に設けた空間での煙突効果によって太陽電池素子および柱状光学部材の放熱を効果的に行なうことが可能となるので、光電変換効率を向上させることができる。
 また、本発明に係る第1の集光型太陽光発電モジュールは、太陽光を集光して太陽電池に入射させる集光レンズと、該集光レンズにより集光された太陽光を光電変換する太陽電池とを備える集光型太陽光発電モジュールであって、前記太陽電池は、本発明に係る前記第1の太陽電池であることを特徴とする。
 この構成により、集光された太陽光によって入射面に形成された入射面集光束領域が入射面の中心に対して位置ズレを生じた場合でも集光効率を低下させることがなく、集光効率と変換光率を向上させた耐熱性および信頼性の高い集光型太陽光発電モジュールとすることが可能となる。
 また、本発明に係る前記第1の集光型太陽光発電モジュールでは、前記集光束領域が最小となる最小集光束領域は、前記柱状光学部材の内部に位置するように構成してあることを特徴とする。
 この構成により、集光レンズによる焦点群の位置を柱状光学部材の内部に位置させて入射面集光束領域でのエネルギー密度を抑制することが可能となることから、高い太陽光エネルギーに起因する入射面での柱状光学部材の焼損を防止して、信頼性の高い集光型太陽光発電モジュールとすることができる。
 また、本発明に係る前記第1の集光型太陽光発電モジュールでは、前記当接枠体の厚さは、長波長側の太陽光が形成する長波長側集光束領域の外周側領域を遮光する厚さとしてあることを特徴とする。
 この構成により、太陽光の長波長領域を当接枠体で遮光し、レシーバ基板を太陽光の長波長側が照射することを防止することが可能となるので、レシーバ基板の温度上昇を防止して光電変換効率を向上させることができる。
 また、本発明に係る前記第1の集光型太陽光発電モジュールでは、前記最小集光束領域は、前記当接枠体の底部と前記照射面との間に位置する構成としてあることを特徴とする。
 この構成により、柱状光学部材の側面での全反射を当接枠体に当接していない位置で生じさせることが可能となることから、当接枠体による反射損を生じることがなく、集光効率を安定化させて太陽電池の出力特性を安定化することができる。
 また、本発明に係る前記第1の集光型太陽光発電モジュールでは、前記集光レンズの温度変化に伴って変位する前記集光レンズの焦点が構成する焦点群は、前記底部と前記照射面との間に位置する構成としてあることを特徴とする。
 この構成により、集光レンズの温度変化によって焦点が変位したときに、側面での全反射を当接枠体と当接していない位置で生じさせることが可能となり、集光効率を安定化させて太陽電池の出力特性を安定化することができる。
 また、本発明に係る前記第1の集光型太陽光発電モジュールでは、前記太陽電池の位置を太陽軌道上の太陽の移動先へ規定時間毎に先行して移動させる間欠追尾制御態様としたとき、前記入射面集光束領域は、前記入射面の内側に位置する構成としてあることを特徴とする。
 この構成により、太陽の移動先へ先行して移動させる間欠追尾制御としたときでも、太陽電池の集光効率の変動を抑制して安定化させることが可能となるので、太陽電池の出力特性を安定化させて信頼性の高い集光型太陽光発電モジュールとすることができる。
 また、本発明に係る第1の太陽電池製造方法は、集光レンズにより集光された太陽光を光電変換する太陽電池素子と、該太陽電池素子が載置されたレシーバ基板と、集光された太陽光を入射させる入射面と前記太陽電池素子に対向して配置され前記太陽電池素子に太陽光を照射する照射面とを有する柱状光学部材と、該柱状光学部材の側面に当接された枠状の当接枠体と前記柱状光学部材から離して配置され前記当接枠体を支持する支持体とを有して前記レシーバ基板に立設された保持部とを備える太陽電池を製造する太陽電池製造方法であって、前記太陽電池素子を載置した前記レシーバ基板を準備する基板準備工程と、前記レシーバ基板に接着性樹脂を塗布して、前記太陽電池素子を樹脂封止する透光性樹脂が注入される内側樹脂止め部および該内側樹脂止め部の外側で前記支持体が固定される外側樹脂止め部を形成する樹脂止め部形成工程と、前記支持体を前記外側樹脂止め部に接着して前記接着性樹脂を硬化することで前記支持体を前記レシーバ基板に固定する支持体固定工程と、前記内側樹脂止め部の内側に前記透光性樹脂を注入する透光性樹脂注入工程と、前記柱状光学部材を前記当接枠体に当接させて前記照射面を前記透光性樹脂に載置する柱状光学部材載置工程と、前記透光性樹脂を硬化して樹脂封止部を形成する樹脂封止部形成工程とを備えることを特徴とする。
 この構成により、集光された太陽光(集光束領域)が柱状光学部材の中心に対して位置ズレを生じた場合に入射面集光束領域を入射面の領域内に位置させて集光特性の変動を防止し、また、集光された太陽光が柱状光学部材に加える熱を当接枠体によって分散することによって集光効率および光電変換効率を向上させた耐熱性および信頼性の高い太陽電池を容易かつ高精度に製造することができる。
 本発明に係る第2の太陽電池は、集光レンズにより集光された太陽光を光電変換する太陽電池素子と、該太陽電池素子が載置されたレシーバ基板と、前記太陽電池素子を樹脂封止する樹脂封止部とを備える太陽電池であって、集光された太陽光を前記太陽電池素子へ導光する導光路を構成する柱状光学部材と、該柱状光学部材を保持する保持壁を有し前記樹脂封止部を覆って前記レシーバ基板に載置された光学保持部とを備えることを特徴とする。
 この構成により、高い位置精度と安定性を有する導光路を確保して広い波長領域で太陽光を高精度に集光できる集光特性が得られることから、集光特性および放熱性を向上させ、集光された太陽光の位置ズレによって生じる発電効率の低減および温度上昇を防止して発電効率および発電電力を向上させた耐熱性、信頼性、耐候性の高い太陽電池とすることが可能となる。
 また、本発明に係る前記第2の太陽電池では、前記柱状光学部材は、太陽光を前記太陽電池素子に集光する光路傾斜面を有し、前記保持壁は、前記光路傾斜面に整合させた保持傾斜面としてあることを特徴とする。
 この構成により、柱状光学部材を光学保持部に対して自己整合的に位置合わせすることが可能となり、柱状光学部材を保持壁によって高精度に保持することができるので、導光路を高精度に位置決めし、集光特性を向上させることができる。
 また、本発明に係る前記第2の太陽電池では、前記光学保持部は、前記レシーバ基板が有する金属のベース基台に当接させてあることを特徴とする。
 この構成により、レシーバ基板と光学保持部との間の熱抵抗を低減して、太陽電池素子からレシーバ基板へ熱伝導された熱を効率的に放熱することが可能となり、発電効率および信頼性を向上させることができる。
 また、本発明に係る前記第2の太陽電池では、前記光学保持部は、外周側面に櫛の歯状のフィンを備えることを特徴とする。
 この構成により、放熱特性をさらに向上させることが可能となり、発電効率および信頼性をさらに向上させることができる。
 また、本発明に係る前記第2の太陽電池では、前記柱状光学部材は、四角柱としてあり、前記光学保持部は、前記四角柱の軸方向角部を包囲する溝状の切り欠き部を備えることを特徴とする。
 この構成により、柱状光学部材の軸方向角部での光学保持部による損傷を防止し、光学保持部に対して柱状光学部材を確実かつ高精度に載置することが可能となり、また、柱状光学部材と光学保持部の間に充填される封止樹脂の脱泡と充填を確実に行なうことが可能となることから、導光路を高精度に画定(位置決め)することができる。
 また、本発明に係る前記第2の太陽電池では、前記樹脂封止部は、前記柱状光学部材と前記太陽電池素子との間で周囲領域より薄くしてあることを特徴とする。
 この構成により、柱状光学部材の太陽電池素子に対向する面(照射面)を太陽電池素子に確実に近接させることが可能となることから、柱状光学部材によって集光された太陽光を効果的に太陽電池素子へ照射することができる。また、周囲領域でのレシーバ基板の温度上昇を抑制することが可能となることから、耐熱性を向上させて信頼性と耐候性の高い太陽電池とすることができる。
 また、本発明に係る第2の集光型太陽光発電モジュールは、太陽光を集光する集光レンズと、該集光レンズにより集光された太陽光を光電変換する太陽電池とを備える集光型太陽光発電モジュールであって、前記太陽電池は、本発明に係る前記第2の太陽電池であることを特徴とする。
 この構成により、高い位置精度と安定性を有する導光路を確保して広い波長領域で太陽光を高精度に集光できる集光特性が得られることから、集光特性および放熱性を向上させ、集光された太陽光の位置ズレによって生じる発電効率の低減および温度上昇を防止して発電効率および発電電力を向上させた耐熱性、信頼性、耐候性の高い集光型太陽光発電モジュールとすることが可能となる。
 また、本発明に係る第2の太陽電池製造方法は、集光レンズにより集光された太陽光を光電変換する太陽電池素子と、該太陽電池素子が載置されたレシーバ基板と、前記太陽電池素子を樹脂封止する樹脂封止部と、集光された太陽光を前記太陽電池素子へ導光する導光路を構成する柱状光学部材と、該柱状光学部材を保持する保持壁を有し前記樹脂封止部を覆って前記レシーバ基板に載置された光学保持部とを備える太陽電池を製造する太陽電池製造方法であって、金属を成形加工して前記光学保持部を準備する光学保持部準備工程と、前記光学保持部を前記太陽電池素子の外周で前記レシーバ基板に当接させて配置する光学保持部配置工程と、前記光学保持部および前記レシーバ基板が構成する空間に前記樹脂封止部を形成する封止樹脂を注入する樹脂注入工程と、前記保持壁に前記柱状光学部材を載置する光学部材載置工程とを備えることを特徴とする。
 この構成により、光学保持部および柱状光学部材を簡単な工程で高精度に位置決めすることが可能となり、太陽光を高精度で効果的に導光する導光路および光学保持部を容易に形成することができるので、集光特性および放熱性を向上させ、集光された太陽光の位置ズレによって生じる発電効率の低減および温度上昇を防止して発電効率および発電電力を向上させた耐熱性、信頼性、耐候性の高い太陽電池を生産性良く安価に製造することが可能となる。
 本発明に係る第1の太陽電池によれば、集光レンズにより集光された太陽光を光電変換する太陽電池素子と、該太陽電池素子が載置されたレシーバ基板と、集光された太陽光を入射させる入射面と前記太陽電池素子に対向して配置され前記太陽電池素子に太陽光を照射する照射面とを有する柱状光学部材と、前記レシーバ基板に立設され前記柱状光学部材を保持する保持部とを備える太陽電池であって、前記保持部は、前記柱状光学部材の側面に当接され前記入射面から前記照射面の方向へ厚さを持たせた枠状の当接枠体と、前記柱状光学部材から離して配置され前記当接枠体を支持する支持体とを備え、前記側面は、入射された太陽光を前記照射面の方向へ全反射するように傾斜させてあり、前記入射面は、集光された太陽光によって形成される集光束領域が前記入射面に形成する入射面集光束領域を内側に位置させる大きさとしてあることから、集光された太陽光(集光束領域)が柱状光学部材の中心に対して位置ズレを生じた場合に入射面集光束領域を入射面の領域内に確実に位置させて集光特性の変動を防止することが可能となり、また、集光された太陽光が柱状光学部材に加える熱を側面および当接枠体によって周囲の空間へ分散することが可能となるので、集光効率および光電変換効率を向上させた耐熱性および信頼性の高い太陽電池とすることができるという効果を奏する。
 また、本発明に係る第1の集光型太陽光発電モジュールによれば、太陽光を集光して太陽電池に入射させる集光レンズと、該集光レンズにより集光された太陽光を光電変換する太陽電池とを備える集光型太陽光発電モジュールであって、前記太陽電池は、本発明に係る第1の太陽電池であることから、集光された太陽光によって入射面に形成された入射面集光束領域が入射面の中心に対して位置ズレを生じた場合でも集光効率を低下させることがなく、集光効率と変換光率を向上させた耐熱性および信頼性の高い集光型太陽光発電モジュールとすることが可能となるという効果を奏する。
 また、本発明に係る第1の太陽電池製造方法によれば、集光レンズにより集光された太陽光を光電変換する太陽電池素子と、該太陽電池素子が載置されたレシーバ基板と、集光された太陽光を入射させる入射面と前記太陽電池素子に対向して配置され前記太陽電池素子に太陽光を照射する照射面とを有する柱状光学部材と、該柱状光学部材の側面に当接された枠状の当接枠体と前記柱状光学部材から離して配置され前記当接枠体を支持する支持体とを有して前記レシーバ基板に立設された保持部とを備える太陽電池を製造する太陽電池製造方法であって、前記太陽電池素子を載置した前記レシーバ基板を準備する基板準備工程と、前記レシーバ基板に接着性樹脂を塗布して、前記太陽電池素子を樹脂封止する透光性樹脂が注入される内側樹脂止め部および該内側樹脂止め部の外側で前記支持体が固定される外側樹脂止め部を形成する樹脂止め部形成工程と、前記支持体を前記外側樹脂止め部に接着して前記接着性樹脂を硬化することで前記支持体を前記レシーバ基板に固定する支持体固定工程と、前記内側樹脂止め部の内側に前記透光性樹脂を注入する透光性樹脂注入工程と、前記柱状光学部材を前記当接枠体に当接させて前記照射面を前記透光性樹脂に載置する柱状光学部材載置工程と、前記透光性樹脂を硬化して樹脂封止部を形成する樹脂封止部形成工程とを備えることから、集光された太陽光(集光束領域)が柱状光学部材の中心に対して位置ズレを生じた場合に入射面集光束領域を入射面の領域内に位置させて集光特性の変動を防止し、また、集光された太陽光が柱状光学部材に加える熱を当接枠体によって分散することによって集光効率および光電変換効率を向上させた耐熱性および信頼性の高い太陽電池を容易かつ高精度に製造することができるという効果を奏する。
 本発明に係る第2の太陽電池によれば、集光レンズにより集光された太陽光を光電変換する太陽電池素子と、太陽電池素子が載置されたレシーバ基板と、太陽電池素子を樹脂封止する樹脂封止部とを備え、集光された太陽光を太陽電池素子へ導光する導光路を構成する柱状光学部材と、柱状光学部材を保持する保持壁を有し樹脂封止部を覆ってレシーバ基板に載置された光学保持部とを備えることから、高い位置精度と安定性を有する導光路を確保して広い波長領域で太陽光を高精度に集光できる集光特性が得られ、集光特性および放熱性を向上させ、集光された太陽光の位置ズレによって生じる発電効率の低減および温度上昇を防止して発電効率および発電電力を向上させた耐熱性、信頼性、耐候性を向上させることができるという効果を奏する。
 また、本発明に係る第2の集光型太陽光発電モジュールによれば、太陽光を集光する集光レンズと、集光レンズにより集光された太陽光を光電変換する太陽電池とを備え、太陽電池は、本発明に係る第2の太陽電池とすることから、高い位置精度と安定性を有する導光路を確保して広い波長領域で太陽光を高精度に集光できる集光特性が得られ、集光特性および放熱性を向上させ、集光された太陽光の位置ズレによって生じる発電効率の低減および温度上昇を防止して発電効率および発電電力を向上させ、耐熱性、信頼性、耐候性を向上させることができるという効果を奏する。
 本発明に係る第2の太陽電池製造方法によれば、集光レンズにより集光された太陽光を光電変換する太陽電池素子と、太陽電池素子が載置されたレシーバ基板と、太陽電池素子を樹脂封止する樹脂封止部と、集光された太陽光を太陽電池素子へ導光する導光路を構成する柱状光学部材と、柱状光学部材を保持する保持壁を有し樹脂封止部を覆ってレシーバ基板に載置された光学保持部とを備える太陽電池を製造する太陽電池製造方法であって、金属を成形加工して光学保持部を準備する光学保持部準備工程と、光学保持部を太陽電池素子の外周でレシーバ基板に当接させて配置する光学保持部配置工程と、光学保持部およびレシーバ基板が構成する空間に樹脂封止部を形成する封止樹脂を注入する樹脂注入工程と、保持壁に柱状光学部材を載置する光学部材載置工程とを備えることから、光学保持部および柱状光学部材を簡単な工程で高精度に位置決めすることが可能となり、太陽光を高精度で効果的に導光する導光路および光学保持部を容易に形成することができるので、集光特性および放熱性を向上させ、集光された太陽光の位置ズレによって生じる発電効率の低減および温度上昇を防止して発電効率および発電電力を向上させた耐熱性、信頼性、耐候性の高い太陽電池を生産性良く安価に製造することが可能となるという効果を奏する。
本発明の実施の形態1に係る太陽電池および集光型太陽光発電モジュールの光軸を含む面での概略構成を透視的に示す透視側面図である。 図1Aに示した太陽電池の保持部および柱状光学部材の外観を斜め上方から見て示す斜視図である。 本発明の実施の形態2に係る太陽電池および集光型太陽光発電モジュールの太陽光波長に対する特性を概念的に示す側面図である。 本発明の実施の形態3に係る太陽電池および集光型太陽光発電モジュールでの集光レンズの温度特性による太陽光波長に対する焦点の変位状態を概念的に示す側面図である。 図3Aに示した太陽電池の入射面での入射面集光束領域の変位状態を概念的に示す平面図である。 本発明の実施の形態4に係る集光型太陽光発電モジュールを間欠追尾制御したときの追尾状態と入射面に形成される入射面集光束領域との関係を概念的に示す追尾状態概念図であり、(A)は太陽光に対して集光型太陽光発電モジュールが正対した状態を、(B)は太陽光に対して集光型太陽光発電モジュールを先行して移動させた状態を、(C)は移動させた集光型太陽光発電モジュールが太陽光の移動によって再度正対した状態を、(D)は太陽光の移動によって集光型太陽光発電モジュールが遅れを生じた状態をそれぞれ示している。 本発明の実施の形態5に係る集光型太陽光発電モジュールの集光レンズと太陽電池との間で組み立て誤差を生じたときの設定角度ズレと入射面に形成される入射面集光束領域との関係を概念的に説明する説明図である。 本発明の実施の形態6に係る太陽電池製造方法で太陽電池を載置したレシーバ基板を準備する基板準備工程を示す工程図である。 本発明の実施の形態6に係る太陽電池製造方法で内側樹脂止め部および外側樹脂止め部を形成する樹脂止め部形成工程を示す工程図である。 本発明の実施の形態6に係る太陽電池製造方法で保持部の支持体をレシーバ基板に固定する支持体固定工程を示す工程図である。 本発明の実施の形態6に係る太陽電池製造方法で内側樹脂止め部の内側に透光性樹脂を注入する透光性樹脂注入工程を示す工程図である。 本発明の実施の形態6に係る太陽電池製造方法で保持部に柱状光学部材を当接させて照射面を透光性樹脂に載置する柱状光学部材載置工程を示す工程図である。 本発明の実施の形態7に係る太陽電池および集光型太陽光発電モジュールを示す断面図である。 図8は、図7に示した太陽電池を集光レンズの側から拡大して見た状態を示す拡大平面図である。 図8の矢符Y-Y方向での断面を示す拡大断面図である。 本発明の実施の形態8に係る太陽電池製造方法を説明する工程図であり、レシーバ基板に太陽電池素子を載置した状態を図8の矢符X-X方向での断面で示す。 本発明の実施の形態8に係る太陽電池製造方法を説明する工程図であり、レシーバ基板に光学保持部を載置した状態を図8の矢符X-X方向での断面で示す。 本発明の実施の形態8に係る太陽電池製造方法を説明する工程図であり、光学保持部がレシーバ基板との間で構成する空間に封止樹脂を注入した状態を図8の矢符X-X方向での断面で示す。 本発明の実施の形態8に係る太陽電池製造方法を説明する工程図であり、光学保持部に柱状光学部材を載置した状態を図8の矢符X-X方向での断面で示す。 本発明の実施の形態9に係る集光型太陽光発電ユニットの構成を概略的に示す斜視図である。 従来例1の追尾集光型太陽光発電装置に適用される集光型太陽光発電モジュールの構成例を示す断面図である。 従来例2の追尾集光型太陽光発電装置に適用される集光型太陽光発電モジュールの構成を示す断面図である。
符号の説明
 201 集光型太陽光発電モジュール
 205 追尾制御部
 210 太陽電池
 211 太陽電池素子
 220 レシーバ基板
 221 内側樹脂止め部
 222 外側樹脂止め部
 225 樹脂封止部
 230 柱状光学部材
 231 入射面
 232 照射面
 233 側面
 240 保持部
 241 当接枠体
 241b 底部
 241g 溝部
 242 支持体
 250 集光レンズ
 FLR 集束光領域
 FLRb 中短波長側集光束領域
 FLRc 長波長側集光束領域
 FLRcs 外周側領域
 FLRd 入射面集光束領域
 FLRs 最小集光束領域
 FLR(T1) 集光束領域(温度T1)
 FLR(T2) 集光束領域(温度T2)
 FLR(T3) 集光束領域(温度T3)
 FLRd(T1) 入射面集光束領域(温度T1)
 FLRd(T2) 入射面集光束領域(温度T2)
 FLRd(T3) 入射面集光束領域(温度T3)
 FP 焦点
 FPg 焦点群
 FP(T1) 焦点(温度T1)
 FP(T2) 焦点(温度T2)
 FP(T3) 焦点(温度T3)
 Lax 光軸
 Ls 太陽光
 Sfp 焦点ズレ
 SSD 太陽移動方向
 t 厚さ
 α 設定角度ズレ
 θ 傾斜角(側面233の傾斜)
 310 太陽電池
 311 太陽電池素子
 320 レシーバ基板
 321 接着部
 340 集光型太陽光発電ユニット
 340m 集光型太陽光発電モジュール
 342 集光レンズ
 344 長尺状フレーム
 370 柱状光学部材(導光路)
 370c 軸方向角部
 370f 入射面
 370r 照射面
 370s 光路傾斜面
 372 光学保持部
 372g 切り欠き部
 372h フィン
 372w 保持壁(保持傾斜面)
 373 樹脂封止部
 373r 封止樹脂
 381 支柱
 Af 集光領域
 Hh、Hp 高さ
 Lax 光軸
 Ls、Lsa、Lsb、Lss 太陽光
 Roth 水平方向回転
 Rotv 垂直方向回転
 Tr、Ts 厚さ
 Wb 重心位置
 以下、本発明の実施の形態を図面に基づいて説明する。
 <実施の形態1>
 図1Aないし図3Bに基づいて、本実施の形態に係る太陽電池および集光型太陽光発電モジュールについて説明する。
 図1Aは、本発明の実施の形態1に係る太陽電池および集光型太陽光発電モジュールの光軸を含む面での概略構成を透視的に示す透視側面図である。
 図1Bは、図1Aに示した太陽電池の保持部および柱状光学部材の外観を斜め上方から見て示す斜視図である。
 本実施の形態に係る太陽電池210は、集光レンズ250により集光された太陽光Lsを光電変換する太陽電池素子211と、太陽電池素子211が載置されたレシーバ基板220と、集光された太陽光Lsを入射させる入射面231と太陽電池素子211に対向して配置され太陽電池素子211に太陽光Lsを照射する照射面232とを有する柱状光学部材230と、レシーバ基板220に立設され柱状光学部材230を保持する保持部240とを備える。
 保持部240は、柱状光学部材230の側面233に当接され入射面231から照射面232の方向へ厚さtを持たせた枠状の当接枠体241と、柱状光学部材230から離して配置され当接枠体241を支持する支持体242とを備える。
 柱状光学部材230の側面233は、入射された太陽光Lsを照射面232の方向へ全反射するように傾斜させてあり、柱状光学部材230の入射面231は、集光された太陽光Lsによって形成される集光束領域FLRが入射面231に形成する入射面集光束領域FLRdを内側に位置させる大きさとしてある。
 したがって、この構成により、集光された太陽光Ls(集光束領域FLR)が柱状光学部材230の中心(光軸Lax)に対して位置ズレ(図4、図5参照)を生じた場合に入射面集光束領域FLRdを入射面231の領域内に確実に位置させて太陽電池210の集光特性の変動を防止することが可能となり、また、集光された太陽光Lsが柱状光学部材230に加える熱を側面233および当接枠体241によって周囲の空間へ分散することが可能となるので、集光効率および光電変換効率を向上させた耐熱性および信頼性の高い太陽電池210とすることができる。
 側面233は、照射面232の垂直方向(光軸Lax方向、つまり、太陽電池素子211の受光面に対する垂直方向)に対して8度~20度の傾斜角θを有している。したがって、柱状光学部材230に入射した太陽光Lsを側面233で確実かつ高精度に全反射させて太陽電池素子211に照射させることが可能となるので、太陽電池210の集光効率および光電変換効率を確実に向上させることができる。
 照射面232は、太陽電池素子211(外周)の内側に位置する大きさとしてある。したがって、照射面232から太陽電池素子211に対して照射される太陽光Lsは、確実に太陽電池素子211へのみ照射されることとなる。つまり、光電変換に寄与しない不要な太陽光Lsがレシーバ基板220に照射されることを防止できるので、太陽電池素子211に対する配線が形成されたレシーバ基板220の焼損を防止して信頼性の高い太陽電池210とすることができる。
 柱状光学部材230は、例えば、ガラス、耐熱ガラス、一般的な透明樹脂などによって構成することが可能である。集光された太陽光Lsが有する高いエネルギー密度に耐える特性を有する材料を適用することが望ましい。つまり、太陽光Lsによる温度上昇、急激な温度変化に耐えられる耐熱ガラスが特に望ましいがこれに限るものではない。
 当接枠体241は、矩形状としてあり、支持体242は、当接枠体241の4隅に柱状に配置してある。したがって、当接枠体241と柱状光学部材230とを高精度に位置合わせすることが可能となり、また、太陽電池素子211の周囲および柱状光学部材230(側面233)の周囲に設けた空間での煙突効果によって太陽電池素子211および柱状光学部材230の放熱を効果的に行なうことが可能となるので、光電変換効率を向上させることができる。
 つまり、側面233の全反射を生じる領域は、当接枠体241に当接せずに空間に露出していることから、柱状光学部材230に供給される太陽光Lsによる熱エネルギーを効率的に空間に放出することが可能となり、太陽電池210(太陽電池素子211)の耐熱性を向上させることができる。
 また、当接枠体241の内側(柱状光学部材230と当接する部分)の角部(隅部)には、柱状光学部材230の角に対応させて溝部241gが形成してある。つまり、柱状光学部材230の角は溝部241gが構成する空間に配置されることから、当接枠体241と直接接触することがなく、組み立て時において破損を生じる恐れがない。また、側面233と当接枠体241の内側面は、それぞれ平面で構成してあることから、高精度に当接させることが可能であり、高精度に位置決めすることができる。
 なお、溝部241gには、接着樹脂を充填して柱状光学部材230と保持部240との接着強度を向上させることが可能であり、機械的強度を向上させて柱状光学部材230の安定性を向上させることができる。また、集光束領域FLRが最小となる最小集光束領域FLRsは、当接枠体241に対して照射面232側に位置するように構成してある。したがって、当接枠体241の内側面では、太陽光Lsが側面233に照射しないことから、太陽光Lsに対する影響を全く生じない。つまり、溝部241gに接着樹脂を充填した場合でも、集光特性に対して悪影響を及ぼすことはない。
 保持部240は、例えば、アルミニウム、鉄、ステンレスなどの金属、あるいはポリエチレンなどの合成樹脂などを適用することが可能である。放熱性、熱膨張特性などを考慮して金属とすることが望ましい。また、軽量化、低コスト化の観点からは、アルミニウムとすることが望ましい。
 太陽電池素子211の周囲には、内側樹脂止め部221が環状(額縁状)に形成してあり、内側樹脂止め部221の内側には透光性樹脂の樹脂封止部225が形成してある。つまり、内側樹脂止め部221は、太陽電池素子211と照射面232との間を透光性樹脂で樹脂封止して樹脂封止部225を形成するときの樹脂止めとして利用される。樹脂封止部225によって、太陽電池素子211の表面を確実に保護して外部環境からの影響を排除することが可能となり、耐候性に優れた太陽電池210とすることができる。
 樹脂封止部225を構成する透光性樹脂は、光透過性が高く、優れた接着性を有することが望ましい。例えば、エポキシ樹脂、シリコーン樹脂などを適用することが可能である。樹脂封止部225は、太陽電池素子211の表面を被覆して、太陽電池素子211の耐水性、耐湿性を向上させる。また、柱状光学部材230(照射面232)に接着され、柱状光学部材230を固定する作用を有する。
 また、内側樹脂止め部221の外側には外側樹脂止め部222が形成してある。外側樹脂止め部222は、支持体242を接着して固定するために配置されている。したがって、支持体242に対応する位置にのみ形成することが可能であるが、外側樹脂止め部222と同様に環状(額縁状)に形成することも可能である。環状(額縁状)とした場合は、樹脂封止部225を形成するとき、内側樹脂止め部221に充填された透光性樹脂が柱状光学部材230によって内側樹脂止め部221から押し出された場合に、透光性樹脂が外側樹脂止め部222によって止められるので、工程不良の発生を防止することができる。
 内側樹脂止め部221、外側樹脂止め部222は、接着性のある合成樹脂で形成されることが望ましい。例えば、エポキシ樹脂、シリコーン樹脂などを適用することが可能である。
 本実施の形態に係る集光型太陽光発電モジュール201は、太陽光Lsを集光して太陽電池210に入射させる集光レンズ250と、集光レンズ250により集光された太陽光Lsを光電変換する太陽電池210とを備える。したがって、集光された太陽光Lsによって入射面231に形成された入射面集光束領域FLRdが入射面231の中心(光軸Lax)に対して位置ズレを生じた場合でも、入射面集光束領域FLRdを入射面231の内側に形成することが可能であることから、集光特性は変動することがない。
 つまり、本実施の形態に係る集光型太陽光発電モジュール201は、入射面集光束領域FLRdが入射面231の中心に対して位置ズレを生じたとき、集光効率が低下する恐れがないので、集光効率と変換光率を向上させ、高い耐熱性および信頼性を実現することが可能となる。
 また、集光束領域FLRが最小となる最小集光束領域FLRsは、柱状光学部材230の内部に位置するように構成してある。したがって、集光レンズ250による焦点群FPg(図3A参照)の位置を柱状光学部材230の内部に位置させて入射面集光束領域FLRdでのエネルギー密度を抑制することが可能となる。つまり、入射面231の表面に例えばゴミが付着した場合に、集光された太陽光Lsによる高い熱エネルギーによってゴミが燃焼して柱状光学部材230を焼損することを防止し、信頼性の高い集光型太陽光発電モジュール201とすることができる。
 最小集光束領域FLRsは、当接枠体241の底部241bと照射面232との間に位置する構成としてあることが望ましい。つまり、柱状光学部材230の側面233での全反射を当接枠体241に当接していない位置で生じさせることが可能となることから、当接枠体241による反射損を生じることがなく、集光効率を安定化させて太陽電池210の出力特性を安定化することができる。
 なお、入射面集光束領域FLRdの大きさは、太陽電池210に対する集光レンズ250の集光特性、大きさ、距離を光学的に算出して設定することが可能である。また、最小集光束領域FLRsの大きさと位置は、太陽電池210に対する集光レンズ250の集光特性、大きさ、距離、さらには太陽電池素子211に対する柱状光学部材230の大きさ、距離を光学的に算出して求める設定することが可能である。
 <実施の形態2>
 図2に基づいて、本実施の形態に係る太陽電池および集光型太陽光発電モジュールについて説明する。本実施の形態に係る太陽電池および集光型太陽光発電モジュールの基本的な構成は実施の形態1の場合と同様であるので、適宜符号を援用し、主に異なる事項について説明する。
 図2は、本発明の実施の形態2に係る太陽電池および集光型太陽光発電モジュールの太陽光波長に対する特性を概念的に示す側面図である。
 太陽光Lsの波長領域は、短波長の400nmから中間波長の1000nm(1μm)までの中短波長側領域と、1μmを越える長波長側領域とを含んでいる。集光レンズ250により集光された太陽光Lsの内で、中短波長側領域の太陽光Lsは、入射面231の中央付近に集光され中短波長側集光束領域FLRbを構成する。また、長波長側領域の太陽光Lsは、中短波長側集光束領域FLRbとその外周(入射面231の外周、さらには当接枠体241に対応する領域)に長波長側集光束領域FLRcを構成する。
 中短波長側領域(400nmないし1000nm)の太陽光Lsは、太陽電池素子211の光電変換にそのまま寄与する。したがって、中短波長側領域(400nmないし1000nm)が構成する集光束領域である中短波長側集光束領域FLRbは、確実に太陽電池素子211に照射される構成としてある。
 本実施の形態では、中短波長側集光束領域FLRbは、入射面231に入射し、柱状光学部材230の内部で進行した後、側面233で全反射する。つまり、入射面231は、中短波長側集光束領域FLRbを入射面231の内側に位置するように構成されている。逆に言えば、中短波長側集光束領域FLRbは、集光レンズ250によって入射面231の内側に位置するように構成されている。
 他方、長波長側領域(1μm超)の太陽光Lsは、全てが太陽電池素子211の光電変換に寄与するわけではなく、光電変換に寄与するに必要なエネルギーは入射エネルギーの3分の2程度であれば良い。また、長波長側領域の太陽光Lsは、太陽電池210の温度を上昇させて光電変換効率を低下させる作用がある。
 したがって、本実施の形態では、長波長側領域(1μm超)の太陽光Lsが構成する集光束領域である長波長側集光束領域FLRcの外周側の一部(中短波長側集光束領域FLRbの外側の外周側領域FLRcs)を当接枠体241(厚さt)によって遮光する構成としてある。すなわち、長波長側領域の太陽光Lsが構成する長波長側集光束領域FLRcの外周側領域FLRcsは、入射面231の外周で当接枠体241の頂面および厚さtに対応する領域で遮光される位置に集光レンズ250によって集光されるように構成されている。
 つまり、当接枠体241の厚さtは、太陽光Lsの長波長側領域が形成する長波長側集光束領域FLRcの外周側領域FLRcsを遮光する厚さとしてある。この構成により、太陽光Lsの長波長側領域を当接枠体241で遮光し、レシーバ基板220を太陽光Lsが照射することを防止することが可能となるので、レシーバ基板220の温度上昇を防止して光電変換効率を向上させることができる。
 太陽電池素子211が多接合太陽電池とされた場合、ボトム層の設計電流値は、トップ層、ミドル層より1.8倍程度多いためすべての領域の波長を吸収する必要はない。したがって、長波長側領域に対する遮光特性を当接枠体241の頂面および厚さtの部分に持たせることによって、長波長側領域の太陽光Lsによる温度上昇を排除することが可能となる。また、逆に中短波長側領域に対応する入射面集光束領域FLRdを高精度に入射面231に位置決めし、また、側面233で全反射させることによって、遮熱効果を発生させ、入射面集光束領域FLRdの位置ズレによる出力低減を防止して出力の安定化を確保することができる。
 <実施の形態3>
 図3Aおよび図3Bに基づいて、本実施の形態に係る太陽電池および集光型太陽光発電モジュールについて説明する。本実施の形態に係る太陽電池および集光型太陽光発電モジュールの基本的な構成は実施の形態1、実施の形態2の場合と同様であるので、適宜符号を援用し、主に異なる事項について説明する。
 図3Aは、本発明の実施の形態3に係る太陽電池および集光型太陽光発電モジュールでの集光レンズの温度特性による太陽光波長に対する焦点の変位状態を概念的に示す側面図である。
 図3Bは、図3Aに示した太陽電池の入射面での入射面集光束領域の変位状態を概念的に示す平面図である。
 本実施の形態に係る集光レンズ250は、例えば、シリコーン樹脂で形成したフレネルレンズとしてある。シリコーン樹脂の温度が、例えば20℃ないし40℃と変化した場合、例えば波長650nmに対する屈折率は、温度の変化に対応して1.409(20℃)ないし1.403(40℃)と変化する。なお、屈折率の変化は、全波長に対して生じる。
 したがって、温度が変化するときの集光束領域FLRは温度に従って変動する。例えば、温度T1>温度T2>温度T3とした場合、温度T1のときの集光束領域FLR(T1)<温度T2のときの集光束領域FLR(T2)<温度T3のときの集光束領域FLR(T3)となる。また、温度T1のときの入射面集光束領域FLRd(T1)、温度T2のときの入射面集光束領域FLRd(T2)、温度T3のときの入射面集光束領域FLRd(T3)の関係は、入射面集光束領域FLRd(T1)<入射面集光束領域FLRd(T2)<入射面集光束領域FLRd(T3)となる。
 つまり、温度T1のときの焦点FP(T1)、温度T2のときの焦点FP(T2)、温度T3のときの焦点FP(T3)の位置は、入射面231から順に焦点FP(T1)、焦点FP(T2)、焦点FP(T3)となる。したがって、焦点FP(T1)、焦点FP(T2)、焦点FP(T3)は、焦点FPの集合であり、焦点群FPgを構成する。
 すなわち、集光レンズ250の温度が、温度T1ないし温度T3の間で変化したとき、焦点FPは焦点ズレSfpを生じ、集光レンズ250の集光特性を変動させる。また、入射面231での入射面集光束領域FLRdは、屈折率の変化の影響を受けて変化することとなる。
 集光レンズ250の径は、例えば30cm、集光レンズ250と太陽電池素子211との間隔は、例えば30cmとしてある。この形状としたとき、温度T1(例えば40℃)のとき入射面集光束領域FLRd(T1)は直径約6.5mm、温度T2(例えば30℃)のとき入射面集光束領域FLRd(T2)は直径約7mm、温度T3(例えば20℃)のとき入射面集光束領域FLRd(T3)は直径約7.5mmである場合、矩形状とした入射面231の辺の長さwを例えば9.4mmとしておけば、入射面集光束領域FLRdは、温度変化に伴う集光特性の変化があっても、必ず入射面231の内側に入射することとなり、集光特性の変動を実質上防止することが可能となる。
 また、このときの、焦点FP(T1)から焦点FP(T3)に渡る焦点ズレSfpは、約10mmであった。したがって、当接枠体241の底部241bから照射面232までの距離は、少なくとも10mm以上としておけば良いこととなる。
 上述したとおり、本実施の形態では、集光レンズ250の温度変化に伴って変位する集光レンズ250の焦点FPが構成する焦点群FPgは、当接枠体241の底部241bと照射面232との間に位置する構成としてある。したがって、集光レンズ250の温度変化によって焦点が変位したときに、側面233での全反射を当接枠体241と当接していない位置で生じさせることが可能となり、集光効率を安定化させて太陽電池210の出力特性を安定化することができる。
 また、焦点FPを当接枠体241の底部241bと照射面232との間に位置することから、焦点FPの位置が保持部240の外周に対応する位置に移動することを防止し、太陽光Lsがレシーバ基板220を例外的に照射するような場合でも、レシーバ基板220の表面での集光束領域FLRの熱エネルギー密度を抑制することが可能となることから、レシーバ基板220の温度上昇を防止し、焼損を回避することができる。
 <実施の形態4>
 図4に基づいて、本実施の形態に係る太陽電池および集光型太陽光発電モジュールについて説明する。本実施の形態に係る太陽電池および集光型太陽光発電モジュールの基本的な構成は実施の形態1ないし実施の形態3の場合と同様であるので、適宜符号を援用し、主に異なる事項について説明する。
 図4は、本発明の実施の形態4に係る集光型太陽光発電モジュールを間欠追尾制御したときの追尾状態と入射面に形成される入射面集光束領域との関係を概念的に示す追尾状態概念図であり、(A)は太陽光に対して集光型太陽光発電モジュールが正対した状態を、(B)は太陽光に対して集光型太陽光発電モジュールを先行して移動させた状態を、(C)は移動させた集光型太陽光発電モジュールが太陽光の移動によって再度正対した状態を、(D)は太陽光の移動によって集光型太陽光発電モジュールが遅れを生じた状態をそれぞれ示している。
 本実施の形態に係る集光型太陽光発電モジュール201(太陽電池210)は、いわゆる追尾制御によって太陽光Lsに対して正対する構成としてある。つまり、太陽移動方向SSDに沿って集光型太陽光発電モジュール201(入射面231)に対する太陽光Lsの入射方向が変動することから、集光型太陽光発電モジュール201は、追尾制御部205によって太陽方位角に対して間欠的に旋回駆動され、また、太陽高度に対して間欠的に傾倒駆動される構成としてある。なお、図4では、理解を容易にするために旋回駆動された状態のみを示しているが、旋回駆動と共に傾倒駆動に対しても同様の駆動制御が実行されている。
 追尾制御を効率的に実行するために、集光型太陽光発電モジュール201に対する追尾制御は、規定時間毎に実行される。つまり、追尾制御部205による追尾制御は、いわゆる間欠追尾制御態様とされている。なお、集光型太陽光発電モジュール201の形状(集光レンズ250の径、集光レンズ250と太陽電池素子211の間隔)は、実施の形態3の場合と同様としてある。
 間欠追尾制御は、例えば以下のようにして実行することが可能である。
 太陽光Lsに対して遅れた位置(同図(A)の直前の位置)にあった集光型太陽光発電モジュール201を矢符Rot方向へ旋回駆動して、太陽光Lsに対して正対する状態(同図(A))を通過させ、太陽光Lsを追い越した位置に移動させ固定する(同図(B))。
 集光型太陽光発電モジュール201が太陽光Lsを追い越したときの旋回角度は、正対位置に対して、最大角度で例えば+0.05度とされている。入射面231の辺の長さwを9.4mm、入射面集光束領域FLRdの直径を7mmとしたとき、入射面集光束領域FLRdの旋回ズレdwは正対時に対して1mmとなる。
 太陽光Lsは、太陽光Lsに対して進んだ位置(同図(B))に移動された集光型太陽光発電モジュール201に入射面集光束領域FLRdを入射しつつ再度正対する状態(同図(C))を通過し、集光型太陽光発電モジュール201を追い越した位置(同図(D))に移動する。
 太陽光Lsが集光型太陽光発電モジュール201を追い越したときの旋回角度は、正対位置に対して、最大角度で例えば-0.05度とされている。したがって、集光型太陽光発電モジュール201が太陽光Lsを追い越したときに対して反対側で、入射面集光束領域FLRdの旋回ズレdwは正対時に対して1mmとなる。
 したがって、集光型太陽光発電モジュール201が太陽光Lsを追い越した場合、あるいは太陽光Lsが集光型太陽光発電モジュール201を追い越した場合のいずれであっても、旋回角度の最大値での入射面集光束領域FLRdの正対時に対する旋回ズレdwは、入射面231の大きさに対して十分小さい値とすることが可能であることから、追尾制御(旋回制御)による意図的な位置ズレ操作が実行された場合でも集光特性が変動することが無く、集光効率を低下させることはない。
 また、傾倒駆動での傾倒角度は、最大角度で±0.025度、傾倒ズレは、0.5mmとすることが可能である。つまり、傾倒角度の最大値での入射面集光束領域FLRdの正対時に対する傾倒ズレは、入射面231の大きさに対して十分小さい値とすることが可能であることから、追尾制御(傾倒制御)による意図的な位置ズレ操作が実行された場合でも集光効率を低下させることはない。
 上述したとおり、本実施の形態に係る集光型太陽光発電モジュール201では、太陽電池210(集光型太陽光発電モジュール201)の位置を太陽軌道上の太陽の移動先へ規定時間毎に先行して移動させる間欠追尾制御態様としたとき、入射面集光束領域FLRdは、入射面231の内側に位置する構成としてある。
 したがって、太陽の移動先へ先行して移動させる間欠追尾制御としたときでも、太陽電池210の集光特性の変動を抑制して集光効率を安定化させることが可能となるので、太陽電池210の出力特性を安定化させて信頼性の高い集光型太陽光発電モジュール201とすることができる。
 <実施の形態5>
 図5に基づいて、本実施の形態に係る集光型太陽光発電モジュールについて説明する。本実施の形態に係る集光型太陽光発電モジュールの基本的な構成は実施の形態1ないし実施の形態4の場合と同様であるので、適宜符号を援用し、主に異なる事項について説明する。
 図5は、本発明の実施の形態5に係る集光型太陽光発電モジュールの集光レンズと太陽電池との間で組み立て誤差を生じたときの設定角度ズレと入射面に形成される入射面集光束領域との関係を概念的に説明する説明図である。
 入射面231に形成される入射面集光束領域FLRdと入射面231の中心(光軸Lax)との位置ズレは、上述した稼動中の場合に限らず、製造工程での組み立て誤差に起因して生じることがある。すなわち、太陽電池210(太陽電池素子211)と集光レンズ250との間には高精度の平行性が要求される。しかし、集光レンズ250は、太陽電池210に対して本来の平行位置からずれて設定角度ズレαを生じた状態で集光型太陽光発電モジュール201として組み立てられることがある。
 このような太陽電池210に対する集光レンズ250の組み立て誤差を伴う場合、集光レンズ250によって集光された太陽光Ls(集光束領域FLR)は、入射面231に対して位置ズレを生じる。つまり、位置ズレの無い入射面集光束領域FLRdに対して、入射面231には横方向へ位置ズレした入射面集光束領域FLRdsが形成される。
 実施の形態4で示したとおり、入射面231の辺の長さwを9.4mm、入射面集光束領域FLRdの直径を7mmとした場合、設定角度ズレαが最大値で例えば0.1度としたとき、位置ズレした入射面集光束領域FLRdsは、本来の入射面集光束領域FLRdに対して最大1mmのズレを生じる。つまり、集光レンズ250がいずれの方向に対して位置ズレした場合であっても、入射面集光束領域FLRdsは、入射面231の内側に位置することが可能となる。したがって、集光効率を低下させることがなく、集光効率と変換光率を向上させた信頼性の高い集光型太陽光発電モジュール201とすることが可能となる。
 <実施の形態6>
 図6Aないし図6Eに基づいて、本実施の形態に係る太陽電池製造方法について説明する。本実施の形態に係る太陽電池の基本的な構成は実施の形態1ないし実施の形態5の場合と同様であるので、適宜符号を援用し、主に異なる事項について説明する。
 図6Aは、本発明の実施の形態6に係る太陽電池製造方法で太陽電池を載置したレシーバ基板を準備する基板準備工程を示す工程図である。
 図6Bは、本発明の実施の形態6に係る太陽電池製造方法で内側樹脂止め部および外側樹脂止め部を形成する樹脂止め部形成工程を示す工程図である。
 図6Cは、本発明の実施の形態6に係る太陽電池製造方法で保持部の支持体をレシーバ基板に固定する支持体固定工程を示す工程図である。
 図6Dは、本発明の実施の形態6に係る太陽電池製造方法で内側樹脂止め部の内側に透光性樹脂を注入する透光性樹脂注入工程を示す工程図である。
 図6Eは、本発明の実施の形態6に係る太陽電池製造方法で保持部に柱状光学部材を当接させて照射面を透光性樹脂に載置する柱状光学部材載置工程を示す工程図である。
 本実施の形態に係る太陽電池製造方法は、集光レンズ250により集光された太陽光Lsを光電変換する太陽電池素子211と、太陽電池素子211が載置されたレシーバ基板220と、集光された太陽光Lsを入射させる入射面231と太陽電池素子211に対向して配置され太陽電池素子211に太陽光Lsを照射する照射面232とを有する柱状光学部材230と、柱状光学部材230の側面233に当接された枠状の当接枠体241と柱状光学部材230から離して配置され当接枠体241を支持する支持体242とを有してレシーバ基板220に立設された保持部240とを備える太陽電池210を製造する。
 また、本実施の形態に係る太陽電池製造方法は、基板準備工程、樹脂止め部形成工程、支持体固定工程、透光性樹脂注入工程、柱状光学部材載置工程、樹脂封止部形成工程を備える。
 まず、太陽電池素子211を載置したレシーバ基板220を準備する(基板準備工程。図6A)。
 次に、レシーバ基板220に接着性樹脂を塗布して、太陽電池素子211を樹脂封止する透光性樹脂が注入される内側樹脂止め部221および内側樹脂止め部221の外側で支持体242が固定される外側樹脂止め部222を形成する(樹脂止め部形成工程。図6B)。
 内側樹脂止め部221は、後の工程で太陽電池素子211を樹脂封止する透光性樹脂が注入されることから、太陽電池素子211の周囲に環状(額縁状)に形成される。また、外側樹脂止め部222は、後の工程で支持体242を接着して固定することから、支持体242に対応する位置にのみ形成する。
 なお、外側樹脂止め部222は、内側樹脂止め部221の周囲に環状(額縁状)に形成して内側樹脂止め部221に注入された透光性樹脂が内側樹脂止め部221から必要以上に拡大することを防止する形態とすることも可能である。また、外側樹脂止め部222を環状とした場合は、レシーバ基板220の表面に沿って浸入する水分を遮断する作用を生じる。
 支持体242を外側樹脂止め部222に接着して接着性樹脂を硬化することで支持体242をレシーバ基板220に固定する(支持体固定工程。図6C)。外側樹脂止め部222を形成する接着性樹脂が硬化する温度で熱処理を施すことによって、外側樹脂止め部222を硬化させることが可能である。なお、外側樹脂止め部222に対する硬化に併せて内側樹脂止め部221に対する硬化も施される。
 内側樹脂止め部221の内側に透光性樹脂を注入する(透光性樹脂注入工程。図6D)。透光性樹脂としては、上述したとおり、エポキシ樹脂、シリコーン樹脂などを適用することが可能である。
 内側樹脂止め部221の内側に透光性樹脂を注入した後、柱状光学部材230を当接枠体241に当接させて照射面232を透光性樹脂に載置する(柱状光学部材載置工程。図6E)。
 透光性樹脂を硬化して樹脂封止部225を形成する(樹脂封止部形成工程。不図示)。透光性樹脂を適宜の温度に加熱することによって硬化と同時に脱泡処理を施すことが可能であり、優れた透光性を有する樹脂封止部225を形成することができる。
 照射面232を透光性樹脂に載置して接触させることから、照射面232は、樹脂封止部225の透光性樹脂によって接着され、柱状光学部材230は太陽電池素子211に対して確実かつ高精度に固定される。なお、溝部241gに接着性樹脂を注入し、溝部241gで柱状光学部材230と保持部240を接着、固定することによってさらに機械的強度を確保することが可能となる。
 本実施の形態に係る太陽電池製造方法によって、集光された太陽光Ls(集光束領域FLR)が柱状光学部材230の中心に対して位置ズレを生じた場合に入射面集光束領域FLRdを入射面231の領域内に位置させて集光特性の変動を防止し、また、集光された太陽光Lsが柱状光学部材230に加える熱を当接枠体241によって分散することで集光効率および光電変換効率を向上させた耐熱性および信頼性の高い太陽電池210を生産性良く(つまり、容易かつ高精度に)、安価に製造することができる。
 <実施の形態7>
 図7ないし図9に基づいて、本実施の形態に係る太陽電池および集光型太陽光発電モジュールについて説明する。
 図7は、本発明の実施の形態7に係る太陽電池および集光型太陽光発電モジュールを示す断面図である。図8は、図7に示した太陽電池を集光レンズの側から拡大して見た状態を示す拡大平面図である。図9は、図8の矢符Y-Y方向での断面を示す拡大断面図である。なお、図7での太陽電池の断面図は、図8の矢符X-X方向での断面である。
 本実施の形態に係る太陽電池310は、集光レンズ342により集光された太陽光Ls(太陽光Lsa、太陽光Lsb)を光電変換する太陽電池素子311と、太陽電池素子311が載置されたレシーバ基板320と、太陽電池素子311を樹脂封止する樹脂封止部373とを備える太陽電池310である。
 なお、太陽光Lsaは、集光レンズ342によって正常に集光され、直接に太陽電池素子311へ入射する太陽光である。また、太陽光Lsbは、集光レンズ342によって集光されたが、レンズ端部、波長領域(特に短波長領域)などの影響を受けて太陽電池素子311へ直接入射することはできず、柱状光学部材370の入射面370f(集光領域Af)へ集光されたことによって、導光路(柱状光学部材370)の内部で反射しながら進行して太陽電池素子311へ照射される太陽光である。つまり、太陽光Lsbは、従来の技術(図13参照)では損失となっていた太陽光である。
 また、太陽電池310は、集光された太陽光Lsを太陽電池素子311へ導光する導光路を構成する柱状光学部材370と、柱状光学部材370を保持する保持壁372wを有し樹脂封止部373を覆ってレシーバ基板320に載置された光学保持部372とを備える。
 したがって、高い位置精度と安定性を有する導光路(柱状光学部材370)を確保して広い波長領域で太陽光Lsを高精度に集光できる集光特性が得られることから、集光特性および放熱性を向上させ、集光された太陽光Lsの位置ズレによって生じる発電効率の低減および温度上昇を防止して発電効率および発電電力を向上させた耐熱性、信頼性、耐候性の高い太陽電池310とすることが可能となる。
 レシーバ基板320は、例えばアルミニウム板、銅板などの金属のベース基台に適宜の絶縁層を介して所望の配線(太陽電池素子311の電極(不図示)に接続され、外部への取り出しを行なう接続パターン。また、太陽電池310相互間を直列、あるいは並列に接続するための接続パターン。不図示)が形成してある。
 つまり、太陽電池素子311が発生した電流はレシーバ基板320に形成された配線により太陽電池310の外部へ適宜取り出す構成としてある。レシーバ基板320に形成された配線は、信頼性の高い絶縁性を確保する必要があることから、例えば、銅箔で形成された接続パターンを有機材料などの絶縁膜で被覆して絶縁する構成としてある。
 また、柱状光学部材370は、太陽光Lsを太陽電池素子311に集光する光路傾斜面370sを有し、保持壁372wは、光路傾斜面370sに整合させた保持傾斜面としてある。
 したがって、柱状光学部材370を光学保持部372に対して自己整合的に位置合わせすることが可能となり、柱状光学部材370を保持壁372wによって高精度に保持することができるので、導光路(柱状光学部材370)を高精度に位置決めし、集光特性を向上させることができる。
 柱状光学部材370は、例えば耐熱性のあるガラスで形成してあり、例えば1.5程度の屈折率を有している。太陽光Lsが集光される柱状光学部材370の入射面370f(集光領域Af)の広さは、集光レンズ342の端部で屈折された太陽光Lsbの中で最も屈折する短波長光である約400nmの太陽光を入射することができる大きさに構成してある。
 また、太陽光Lsが太陽電池素子311へ照射される導光路(柱状光学部材370)の照射面370rは、太陽電池素子311への照射を効率よく実行できるように太陽電池素子311の有効受光面領域と同程度の大きさに形成してある。したがって、柱状光学部材370は、入射面370fから照射面370rにかけて先細りとなる光路傾斜面370sを備える。
 光学保持部372(保持壁372w)のレシーバ基板320に対する角度は45°以上としてあり、入射した太陽光Lsbを全反射させて太陽電池素子311への照射が可能となる。また、柱状光学部材370のレシーバ基板320からの高さHpは、光学保持部372の斜面の角度、太陽電池素子311の面積(有効受光面領域)に対応する照射面370rの面積の大きさ、柱状光学部材370の入射面370fの大きさによって決定することが可能である。
 したがって、柱状光学部材370のサイズは、太陽光Lsを損失なく入射する入射面370fの面積、太陽光Lsを全反射させて太陽電池素子311へ照射させる光学保持部372の保持壁372w(保持傾斜面)のレシーバ基板320からの角度、照射面370rの面積によって適宜に決定することができる。
 また、光学保持部372に対する関係で柱状光学部材370での全反射が利用できない場合は、柱状光学部材370の光路傾斜面370sに、Al、Ag、Niなどの金属膜を真空蒸着法、スパッタ法などによって形成した反射面を設けてもよい。
 上述したとおり、本実施の形態に係る柱状光学部材370は、集光レンズ342によって正常に集光された太陽光Lsaを太陽電池素子311に直接入射させ、集光レンズ342によって入射面370fに集光された太陽光Lsbを導光路(柱状光学部材370)を多重反射させながら進行させて太陽電池素子311に入射させることが可能となり、太陽電池310の発電効率を高効率化することができる。
 また、光学保持部372は、レシーバ基板320が有する金属のベース基台(不図示)に当接させ、接着部321によってレシーバ基板320に接着してある。つまり、光学保持部372は、レシーバ基板320(ベース基台)に対して適宜の接触面積を確保した状態で直接接着してある。
 したがって、集光された太陽光Lsに起因してレシーバ基板320(太陽電池素子311)で発生した熱を金属で形成した光学保持部372へ効率よく熱伝導することができ、また、光学保持部372に伝導した熱は、放熱面積を増加させたフィン372hによって効果的に放熱されるので、太陽電池素子311へ集光された太陽光Lsに起因する熱を効率よく放熱することが可能となり、太陽電池310の発電効率および信頼性を向上させることができる。
 なお、光学保持部372は、例えば金属で形成してあることが望ましい。金属で形成することによって、優れた放熱性を有する光学保持部372を容易かつ安価に量産性良く形成することができる。
 光学保持部372は、例えば外周側面に櫛の歯状のフィン372hを備える。したがって、放熱特性をさらに向上させることが可能となり、発電効率および信頼性をさらに向上させることができる。なお、フィン372hは、根元から先端へかけてレシーバ基板320から離れる方向(上向き)へ傾斜を有する形状としてあり、放熱性をさらに向上させてある。
 柱状光学部材370は、四角柱としてあり、光学保持部372は、四角柱の軸方向角部370cを包囲する溝状の切り欠き部372gを備える。したがって、柱状光学部材370の軸方向角部370cでの光学保持部372による損傷を防止し、光学保持部372に対して柱状光学部材370を確実かつ高精度に載置することが可能となる。
 また、切り欠き部372gによって、柱状光学部材370と光学保持部372の間に充填される封止樹脂373r(図10C参照)の脱泡と充填を確実に行なうことが可能となることから、導光路(柱状光学部材370)を高精度に画定(位置決め)し、光路傾斜面370sと保持壁372wとの間、あるいは樹脂封止部373での気泡の混入が生じない高品質の導光路とすることができる。
 なお、光学保持部372は、レシーバ基板320からの高さHhが柱状光学部材370の重心位置Wbより高くなるように形成してあることが望ましい。この構成によって、柱状光学部材370の重心を光学保持部372によって安定性良く確実に保持することが可能となる。したがって、光学保持部372によって柱状光学部材370の揺れあるいは転倒を防止し、集光した太陽光Lsの揺れを抑制して信頼性の高い発電を行なうことが可能となり、太陽電池310の信頼性を向上させることができる。
 また、封止樹脂373rを介在させることによって、光学保持部372に対して柱状光学部材370を密着させることが可能となり、光学保持部372に対する柱状光学部材370の載置を安定して行なうことが可能となることから、生産性を向上させることができる。
 樹脂封止部373は、太陽電池素子311と光学保持部372との間に充填された絶縁性の封止樹脂373rで構成してあり、例えば透明なシリコーン樹脂を適用することによって、柱状光学部材370を透過した太陽光Lsが太陽電池素子311に照射できる構成としてある。
 樹脂封止部373は、柱状光学部材370と太陽電池素子311との間で周囲領域より薄くしてある。つまり、柱状光学部材370と太陽電池素子311との間の厚さTsに対して、周囲領域での厚さTrを厚くなるように形成してある。
 したがって、柱状光学部材370の太陽電池素子311に対向する面(照射面370r)を太陽電池素子311(有効受光面領域)に確実に近接させることが可能となることから、柱状光学部材370によって集光された太陽光Lsを効果的に太陽電池素子311へ照射することができる。
 また、太陽電池素子311の周囲領域でのレシーバ基板320の温度上昇を抑制することが可能となることから、耐熱性を向上させて信頼性と耐候性の高い太陽電池310とすることができる。
 太陽光Lsは、追尾機構により太陽電池素子311に集光される構成としてあるが、例えば、追尾誤差の発生あるいは光学系のアライメント誤差により位置ズレを生じ集光スポットがずれることがある。つまり、位置ズレした太陽光Lssを太陽電池310へ照射することがある。なお、以下では、追尾誤差、アライメント誤差、光強度のバラツキなどによる集光スポットのズレを単に追尾誤差(追尾誤差など)によるものとして記載することがある。
 光学保持部372は、太陽電池素子311(有効受光面領域)に向けて集光された太陽光Ls(太陽光Lsa、太陽光Lsb)に対して設定された集光領域Af(柱状光学部材370)の外側に配置してあることから、仮に太陽光Lssが生じた場合には、太陽光Lssを反射することが可能となる。
 したがって、集光された太陽光Lsが例えば追尾誤差などにより位置ずれを生じ、太陽電池素子311の位置(有効受光面領域)からずれた位置を太陽光Lssが照射することとなった場合でも、レシーバ基板320への太陽光Lssの照射を防止することが可能となる。
 上述したとおり、レシーバ基板320の表面に形成してある配線は、耐熱性の低い有機部材などで構成してあることから、仮に太陽光Lssが照射されると有機部材の損傷、ひいては配線の損傷を生じ、また、太陽電池310の信頼性を低下させる恐れがある。しかし、光学保持部372(および樹脂封止部373)によって太陽電池素子311の周囲のレシーバ基板320を被覆していることから、太陽光Lssがレシーバ基板320(配線)に直接照射されることを防止し、配線の損傷などを回避することが可能となることから、レシーバ基板320の表面の温度上昇を抑制してレシーバ基板320の表面に配置された部材(配線、絶縁膜など)の焼損を防止することができる。
 つまり、太陽電池素子311の外周領域で光学保持部372をレシーバ基板320に配置することにより、例えば600SUN(1SUN=100mW/cm2)以上の高集光倍率の場合でも、レシーバ基板320の配線(有機部材)などの焦げを防ぐことが可能となり、耐熱性を向上させた信頼性、耐候性の良い高効率で安価な太陽電池310とすることができる。
 また、光学保持部372は、上述したとおり、例えば金属とすることにより、太陽光Lssを効果的に反射することが可能となる。
 太陽電池素子311は、例えばSi、GaAs、CuInGaSe、CdTeなどの無機材料で構成してある。また、太陽電池素子311の構造は、単一接合型太陽電池素子、モノリシック多接合型太陽電池素子、波長感度領域の異なる種々の太陽電池太陽電池素子を接続したメカニカルスタック型など種々の形態の構造を適用することが可能である。
 なお、太陽電池素子311の外形サイズは、使用する太陽電池材料の削減、加工の安さ、工程の容易性、簡略化などの観点から、数mm程度から20mm程度までとすることが望ましい。
 また、太陽電池素子311の感度波長領域での光反射率を低減するために、太陽電池素子311の表面に適当な反射防止膜などを設けても良い。さらに、太陽電池素子311の感度波長領域以外の波長を有する太陽光を反射するUV反射膜、赤外線反射膜などを設けても良い。
 本実施の形態に係る集光型太陽光発電モジュール340mは、太陽光Ls(太陽光Lsv)を集光する集光レンズ342と、集光レンズ342により集光された太陽光Ls(太陽光Lsa、太陽光Lsb)を光電変換する太陽電池310(太陽電池素子311)とを備える。
 集光レンズ342は、追尾機構(不図示)の作用により太陽に正対する構成としてある。したがって、太陽光Lsvは、集光レンズ342の入射面に対して垂直方向に入射する。また、集光レンズ342は、太陽光Lsvを屈折させて太陽電池素子311(本実施の形態では、集光領域Afとしての入射面370f)に集光する構成としてある。
 太陽電池310では、高い位置精度と安定性を有する導光路(柱状光学部材370)を確保して短波長領域の波長を含む広い波長領域での太陽光Lsを高精度に集光できる集光特性が得られることから、集光特性を向上させ、集光された太陽光Lsの位置ズレによって生じる発電効率の低減および温度上昇を防止して耐熱性を向上させることが可能となるので、発電効率および発電電力を向上させた信頼性、耐候性の高い集光型太陽光発電モジュール340mとすることができる。
 なお、集光型太陽光発電モジュール340mに適用する太陽電池素子311としては、高効率性、実用性が特に求められることから、InGaP/GaAs/Geで構成した3接合型太陽電池素子、AlGaAs/Siで構成した太陽電池素子、モノリシック多接合型太陽電池素子を使用することが望ましい。
 集光レンズ342による集光を効果的に行なうために、太陽光Lsを光電変換する太陽電池素子311の表面は平坦で、集光レンズ342の入射面、柱状光学部材370の入射面370f、照射面370rと平行に配置してある。
 集光レンズ342としては、両凸レンズ、平凸レンズ、フレネルレンズなどが挙げられる。重量・コスト・使用環境での扱い易さなどの観点から、太陽光Lsを受光する入射面が平坦で、太陽光Lsを太陽電池素子311に照射する出射面が略三角断面を有するフレネルレンズの形状としてあることが望ましい。なお、集光レンズ342は、同じ光学系を複数並べて一体に成形したアレイ状(図11参照)とすることも可能である。
 集光レンズ342の材質としては、太陽電池素子311の感度波長光での透過率が高く、耐候性を有するものが良い。例えば、通常の太陽電池モジュール(太陽光発電システム)などに一般的に使用される薄板ガラス、耐候性グレードのアクリル、ポリカーボネートなどを適用することが可能である。なお、集光レンズ342の材料は、これらに限定されるものではなく、これら材料を複層構成としたものでも良い。また、これら材料に、集光レンズ342自体やその他の部材の紫外線劣化を防ぐ目的で、適当な紫外線吸収剤を添加することも可能である。
 <実施の形態8>
 図10Aないし図10Dに基づいて、本実施の形態に係る太陽電池製造方法について説明する。なお、本実施の形態に係る太陽電池製造方法で製造する太陽電池は実施の形態7に係る太陽電池310であるので、実施の形態7での符号をそのまま適用する。
 図10Aの工程(太陽電池素子実装工程)とは別に、まず、金属を成形加工して光学保持部372を準備する(光学保持部準備工程)。なお、光学保持部372の形状は実施の形態7で説明したとおりであるので適宜説明を省略する。
 つまり、柱状光学部材370の光路傾斜面370sに対応させての光路傾斜面370sと同一の傾斜角を有する保持壁372w(保持傾斜面)を金属ブロックの内側に形成する。また、柱状光学部材370が有する軸方向角部370cに対応させて切り欠き部372gを形成する。併せて、樹脂封止部373を覆う空間をレシーバ基板320に当接する面に隣接させて形成する。また、フィン372hを光学保持部372の外周に形成する。
 なお、光学保持部372の製造方法としては、高精度な加工ができるダイキャスティング方法、または、金属ブロックを切削して製作する方法がある。
 図10Aは、本発明の実施の形態8に係る太陽電池製造方法を説明する工程図であり、レシーバ基板に太陽電池素子を載置した状態を図8の矢符X-X方向での断面で示す。
 光学保持部準備工程とは別に、レシーバ基板320に太陽電池素子311を実装する(太陽電池素子実装工程)。
 図10Bは、本発明の実施の形態8に係る太陽電池製造方法を説明する工程図であり、レシーバ基板に光学保持部を載置した状態を図8の矢符X-X方向での断面で示す。
 レシーバ基板320に太陽電池素子311を実装した後、太陽電池素子311の外周で光学保持部372を配置する位置に対応させて接着部321をレシーバ基板320に形成する(接着部形成工程)。接着部321は、例えば金属枠やプラスチック枠を形成し配置することも可能であるが光学保持部372を接着できる樹脂や接着剤を適宜配置することが望ましい。
 接着部321は、レシーバ基板320が有するベース基台に(不図示)に直接光学保持部372を当接できるように、光学保持部372の側面で光学保持部372をレシーバ基板320に接着するように配置される。なお、熱伝導性の高い接着剤を適用した場合などには、レシーバ基板320と光学保持部372との間に接着部321を介挿する形態とすることも可能である。
 接着部321を形成した後、接着部321に位置合わせして光学保持部372をレシーバ基板320に当接して配置する(光学保持部配置工程)。このとき、保持壁372wが構成する光学保持部372の中心位置(照射面370rの中心位置に対応)と太陽電池素子311(有効受光面領域)の中心を一致させるように光学保持部372を載置する。
 図10Cは、本発明の実施の形態8に係る太陽電池製造方法を説明する工程図であり、光学保持部がレシーバ基板との間で構成する空間に封止樹脂を注入した状態を図8の矢符X-X方向での断面で示す。
 保持壁372wが構成する空間を介して、光学保持部372およびレシーバ基板320が構成する空間(樹脂封止部373を構成する空間および柱状光学部材370が配置される空間の一部)へ太陽電池素子311を保護する封止樹脂373rを注入する(樹脂注入工程)。
 封止樹脂373rの注入量は、柱状光学部材370を載置した場合に封止樹脂373rが柱状光学部材370と光学保持部372との間の隙間を充填し、光学保持部372(切り欠き部372g)から漏れない程度であれば良く、予め求めた適宜の量を注入する。
 図10Dは、本発明の実施の形態8に係る太陽電池製造方法を説明する工程図であり、光学保持部に柱状光学部材を載置した状態を図8の矢符X-X方向での断面で示す。
 注入した封止樹脂373rが硬化する前に、光学保持部372(保持壁372w)に柱状光学部材370を載置し(光学部材載置工程)、真空チャンバーに収納して脱泡を行なう(気泡脱泡工程)。光学保持部372に形成してある切り欠き部372gが気泡の排出路となることから、簡単な工程で信頼性の良い脱泡を行なうことができる。
 気泡脱泡工程で脱泡を行なうことによって封止樹脂373rの圧力が低下することから、柱状光学部材370は、自重で保持壁372wに押圧され、高精度に太陽電池素子311の側へ自己整合的に移動挿入される。また、封止樹脂373rは、柱状光学部材370と光学保持部372との間に充填され潤滑材として作用することから、柱状光学部材370と光学保持部372との間の摩擦抵抗を低減して柱状光学部材370の表面を保護すると共に、より円滑に光学保持部372に載置(結合)することが可能となる。
 気泡脱泡工程の後、封止樹脂373rを硬化して樹脂封止部373を形成し、柱状光学部材370と光学保持部372とを密着させて固定する(樹脂硬化工程/柱状光学部材固定工程)。
 上述したとおり、本実施の形態に係る太陽電池製造方法は、集光レンズ342により集光された太陽光Lsを光電変換する太陽電池素子311と、太陽電池素子311が載置されたレシーバ基板320と、太陽電池素子311を樹脂封止する樹脂封止部373と、集光された太陽光Lsを太陽電池素子311へ導光する導光路を構成する柱状光学部材370と、柱状光学部材370を保持する保持壁372wを有し樹脂封止部373を覆ってレシーバ基板320に載置された光学保持部372とを備える太陽電池310を製造する太陽電池製造方法に関する。
 また、本実施の形態に係る太陽電池製造方法は、金属を成形加工して光学保持部372を準備する光学保持部準備工程と、光学保持部372を太陽電池素子311の外周でレシーバ基板320に当接させて配置する光学保持部配置工程と、光学保持部372およびレシーバ基板320が構成する空間に樹脂封止部373を形成する封止樹脂373rを注入する樹脂注入工程と、保持壁372wに柱状光学部材370を載置する光学部材載置工程とを備える。
 したがって、光学保持部372および柱状光学部材370を簡単な工程で高精度に位置決めすることが可能となり、太陽光Lsを高精度で効果的に導光する導光路(柱状光学部材370)および光学保持部372を容易に形成することができるので、集光特性および放熱性を向上させ、集光された太陽光Lsの位置ズレによって生じる発電効率の低減および温度上昇を防止して発電効率および発電電力を向上させた耐熱性、信頼性、耐候性の高い太陽電池310を生産性良く安価に製造することが可能となる。
 <実施の形態9>
 図11に基づいて、本実施の形態に係る集光型太陽光発電ユニットについて説明する。なお、本実施の形態に係る集光型太陽光発電ユニットは実施の形態7で説明した太陽電池310を備える集光型太陽光発電モジュール340mを複数配置して構成してあるので、実施の形態7での符号をそのまま適用する。
 図11は、本発明の実施の形態9に係る集光型太陽光発電ユニットの構成を概略的に示す斜視図である。
 本実施の形態に係る集光型太陽光発電ユニット340は、長尺状フレーム344と、長尺状フレーム344に沿って配置された複数の集光型太陽光発電モジュール340mとを備える。なお、集光型太陽光発電モジュール340mは、長尺状フレーム344とは異なる個別のフレームに配置することによりそれぞれ独立した形態とすることも可能である。
 したがって、高い位置精度と安定性を有する導光路(柱状光学部材370)を確保して短波長領域の波長を含む広い波長領域での太陽光Lsを高精度に集光できる集光特性が得られることから、集光特性および放熱性を向上させ、集光された太陽光Lsの位置ズレによって生じる発電効率の低減および温度上昇を防止して発電効率および発電電力を向上させた耐熱性、信頼性、耐候性の高い集光型太陽光発電ユニット340とすることが可能となる。
 集光型太陽光発電モジュール340mは、例えば30cm角程度の集光レンズ342を備え、集光型太陽光発電ユニット340は、例えば5×1個(5個)の集光型太陽光発電モジュール340mを備える構成とすることが可能である。このとき、集光型太陽光発電ユニット340は、例えば30cm×150cm程度の受光面を構成することとなる。
 また、集光型太陽光発電モジュール340mは、必要な電力を発電するために、適宜の数で直列または並列に接続してある。本実施の形態では、例えば、集光型太陽光発電ユニット340を7個並置して集光型太陽光発電システム(集光型太陽光発電装置)を構成した形態としてある。
 複数の集光型太陽光発電ユニット340で構成された集光型太陽光発電システム(集光型太陽光発電装置)は、支柱381に支持されて、追尾機構部(不図示)により水平方向の回転Roth、垂直方向の回転Rotvにより太陽を追尾する方向へ自動的に駆動され、集光型太陽光発電モジュール340mの表面に配置された集光レンズ342(入射面)を太陽光Lsvに対して垂直方向へ向ける構成としてある。
 したがって、本実施の形態に係る集光型太陽光発電ユニット340は、高集光倍率の集光型太陽光発電システムに適用できる。つまり、本発明に係る集光型太陽光発電モジュール340mは信頼性・耐候性のよい高効率で安価な追尾集光型太陽光発電システムを構成することが可能となる。
 また、追尾誤差などによる追尾不良が発生した場合でも、太陽電池310を焼損する恐れがなく、信頼性の高い、追尾集光型太陽光発電システムとすることが可能である。
 なお、追尾機構部(追尾駆動システム)は、太陽の方位に集光レンズ342(入射面)を向けるための方位軸と、太陽の高度に集光レンズ342(入射面)を傾けるための傾倒軸との2軸別々の追尾駆動装置によって構成されていることから、太陽を高精度に追尾することが可能となる。
 追尾駆動システムの動力系としては、モーターと減速機を用いてギヤを所定の回転数回転させて所定の方向に駆動させる方法、油圧ポンプと油圧シリンダーを用いて所定の長さにシリンダーを調節することにより所定の方向に駆動させるといった方法があり、どちらの方法を用いても良い。
 追尾駆動システムの動作を制御する追尾駆動システムの内部に搭載された時計によって、予め太陽の軌道を計算し、太陽の向きに集光型太陽光発電モジュール340m(集光型太陽光発電ユニット340)を向かせるように制御する方法、追尾駆動システムにホトダイオードなどからなる太陽センサーを取り付けて太陽方向を随時モニターし制御する方法などが太陽光追尾方法として知られており、いずれの方法を用いても良い。
 上述したとおり、本実施の形態に係る集光型太陽光発電ユニット340は、長尺状フレーム344に沿って配置された複数の集光型太陽光発電モジュール340mを備える。集光特性および放熱性を向上させた集光型太陽光発電モジュール340mを備えることによって、発電効率および発電電力を向上させた耐熱性、信頼性、耐候性の高い集光型太陽光発電ユニット340を提供する。
 つまり、高い位置精度と安定性を有する導光路を確保して広い波長領域で太陽光Lsを高精度に集光できる集光特性が得られることから、集光特性および放熱性を向上させ、集光された太陽光Lsの位置ズレによって生じる発電効率の低減および温度上昇を防止して発電効率および発電電力を向上させた耐熱性、信頼性、耐候性の高い集光型太陽光発電ユニット340とすることが可能となる。
 また、本発明に係る集光型太陽光発電ユニット340によれば、長尺状フレーム344と、長尺状フレーム344に沿って配置された複数の集光型太陽光発電モジュール340mとを備えることから、高い位置精度と安定性を有する導光路を確保して広い波長領域で太陽光Lsを高精度に集光できる集光特性が得られ、集光特性および放熱性を向上させ、集光された太陽光Lsの位置ズレによって生じる発電効率の低減および温度上昇を防止して発電効率および発電電力を向上させ、耐熱性、信頼性、耐候性を向上させることができるという効果を奏する。
 また、本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施の形態はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。
 また、この出願は、2008年2月1日に日本で出願された特願2008-023021、及び2008年5月9日に日本で出願された特願2008-123938に基づく優先権を請求する。これに言及することにより、その全ての内容は本出願に組み込まれるものである。
 本発明は、集光された太陽光を光電変換する太陽電池素子と集光された太陽光を太陽電池素子に照射する柱状光学部材とを備える太陽電池、そのような太陽電池を備える集光型太陽光発電モジュール、およびそのような太陽電池を製造する太陽電池製造方法に適用できる。

Claims (19)

  1.  集光レンズにより集光された太陽光を光電変換する太陽電池素子と、該太陽電池素子が載置されたレシーバ基板と、集光された太陽光を入射させる入射面と前記太陽電池素子に対向して配置され前記太陽電池素子に太陽光を照射する照射面とを有する柱状光学部材と、前記レシーバ基板に立設され前記柱状光学部材を保持する保持部とを備える太陽電池であって、
     前記保持部は、前記柱状光学部材の側面に当接され前記入射面から前記照射面の方向へ厚さを持たせた枠状の当接枠体と、前記柱状光学部材から離して配置され前記当接枠体を支持する支持体とを備え、
     前記側面は、入射された太陽光を前記照射面の方向へ全反射するように傾斜させてあり、
     前記入射面は、集光された太陽光によって形成される集光束領域が前記入射面に形成する入射面集光束領域を内側に位置させる大きさとしてあること
     を特徴とする太陽電池。
  2.  請求項1に記載の太陽電池であって、
     前記側面は、前記照射面の垂直方向に対して8度~20度の傾斜角を有していること
     を特徴とする太陽電池。
  3.  請求項1または請求項2に記載の太陽電池であって、
     前記照射面は、前記太陽電池素子の内側に位置する大きさとしてあること
     を特徴とする太陽電池。
  4.  請求項1~請求項3のいずれか一つに記載の太陽電池であって、
     前記当接枠体は、矩形状としてあり、前記支持体は、前記当接枠体の4隅に柱状に配置してあること
     を特徴とする太陽電池。
  5.  太陽光を集光して太陽電池に入射させる集光レンズと、該集光レンズにより集光された太陽光を光電変換する太陽電池とを備える集光型太陽光発電モジュールであって、
     前記太陽電池は、請求項1~請求項4のいずれか一つに記載の太陽電池であること
     を特徴とする集光型太陽光発電モジュール。
  6.  請求項5に記載の集光型太陽光発電モジュールであって、
     前記集光束領域が最小となる最小集光束領域は、前記柱状光学部材の内部に位置するように構成してあること
     を特徴とする集光型太陽光発電モジュール。
  7.  請求項5または請求項6に記載の集光型太陽光発電モジュールであって、
     前記当接枠体の厚さは、長波長側の太陽光が形成する長波長側集光束領域の外周側領域を遮光する厚さとしてあること
     を特徴とする集光型太陽光発電モジュール。
  8.  請求項7に記載の集光型太陽光発電モジュールであって、
     前記最小集光束領域は、前記当接枠体の底部と前記照射面との間に位置する構成としてあること
     を特徴とする集光型太陽光発電モジュール。
  9.  請求項8に記載の集光型太陽光発電モジュールであって、
     前記集光レンズの温度変化に伴って変位する前記集光レンズの焦点が構成する焦点群は、前記底部と前記照射面との間に位置する構成としてあること
     を特徴とする集光型太陽光発電モジュール。
  10.  請求項5~請求項9のいずれか一つに記載の集光型太陽光発電モジュールであって、
     前記太陽電池の位置を太陽軌道上の太陽の移動先へ規定時間毎に先行して移動させる間欠追尾制御態様としたとき、
     前記入射面集光束領域は、前記入射面の内側に位置する構成としてあること
     を特徴とする集光型太陽光発電モジュール。
  11.  集光レンズにより集光された太陽光を光電変換する太陽電池素子と、該太陽電池素子が載置されたレシーバ基板と、集光された太陽光を入射させる入射面と前記太陽電池素子に対向して配置され前記太陽電池素子に太陽光を照射する照射面とを有する柱状光学部材と、該柱状光学部材の側面に当接された枠状の当接枠体と前記柱状光学部材から離して配置され前記当接枠体を支持する支持体とを有して前記レシーバ基板に立設された保持部とを備える太陽電池を製造する太陽電池製造方法であって、
     前記太陽電池素子を載置した前記レシーバ基板を準備する基板準備工程と、
     前記レシーバ基板に接着性樹脂を塗布して、前記太陽電池素子を樹脂封止する透光性樹脂が注入される内側樹脂止め部および該内側樹脂止め部の外側で前記支持体が固定される外側樹脂止め部を形成する樹脂止め部形成工程と、
     前記支持体を前記外側樹脂止め部に接着して前記接着性樹脂を硬化することで前記支持体を前記レシーバ基板に固定する支持体固定工程と、
     前記内側樹脂止め部の内側に前記透光性樹脂を注入する透光性樹脂注入工程と、
     前記柱状光学部材を前記当接枠体に当接させて前記照射面を前記透光性樹脂に載置する柱状光学部材載置工程と、
     前記透光性樹脂を硬化して樹脂封止部を形成する樹脂封止部形成工程とを備えること
     を特徴とする太陽電池製造方法。
  12.  集光レンズにより集光された太陽光を光電変換する太陽電池素子と、該太陽電池素子が載置されたレシーバ基板と、前記太陽電池素子を樹脂封止する樹脂封止部とを備える太陽電池であって、
     集光された太陽光を前記太陽電池素子へ導光する導光路を構成する柱状光学部材と、
     該柱状光学部材を保持する保持壁を有し前記樹脂封止部を覆って前記レシーバ基板に載置された光学保持部とを備えること
     を特徴とする太陽電池。
  13.  請求項12に記載の太陽電池であって、
     前記柱状光学部材は、太陽光を前記太陽電池素子に集光する光路傾斜面を有し、前記保持壁は、前記光路傾斜面に整合させた保持傾斜面としてあること
     を特徴とする太陽電池。
  14.  請求項12または請求項13に記載の太陽電池であって、
     前記光学保持部は、前記レシーバ基板が有する金属のベース基台に当接させてあること
     を特徴とする太陽電池。
  15.  請求項12ないし請求項14のいずれか一つに記載の太陽電池であって、
     前記光学保持部は、外周側面に櫛の歯状のフィンを備えること
     を特徴とする太陽電池。
  16.  請求項12ないし請求項15のいずれか一つに記載の太陽電池であって、
     前記柱状光学部材は、四角柱としてあり、前記光学保持部は、前記四角柱の軸方向角部を包囲する溝状の切り欠き部を備えること
     を特徴とする太陽電池。
  17.  請求項12ないし請求項16のいずれか一つに記載の太陽電池であって、
     前記樹脂封止部は、前記柱状光学部材と前記太陽電池素子との間で周囲領域より薄くしてあること
     を特徴とする太陽電池。
  18.  太陽光を集光する集光レンズと、該集光レンズにより集光された太陽光を光電変換する太陽電池とを備える集光型太陽光発電モジュールであって、
     前記太陽電池は、請求項12ないし請求項17のいずれか一つに記載の太陽電池であることを特徴とする集光型太陽光発電モジュール。
  19.  集光レンズにより集光された太陽光を光電変換する太陽電池素子と、該太陽電池素子が載置されたレシーバ基板と、前記太陽電池素子を樹脂封止する樹脂封止部と、集光された太陽光を前記太陽電池素子へ導光する導光路を構成する柱状光学部材と、該柱状光学部材を保持する保持壁を有し前記樹脂封止部を覆って前記レシーバ基板に載置された光学保持部とを備える太陽電池を製造する太陽電池製造方法であって、
     金属を成形加工して前記光学保持部を準備する光学保持部準備工程と、
     前記光学保持部を前記太陽電池素子の外周で前記レシーバ基板に当接させて配置する光学保持部配置工程と、
     前記光学保持部および前記レシーバ基板が構成する空間に前記樹脂封止部を形成する封止樹脂を注入する樹脂注入工程と、
     前記保持壁に前記柱状光学部材を載置する光学部材載置工程とを備えること
     を特徴とする太陽電池製造方法。
PCT/JP2009/050762 2008-02-01 2009-01-20 太陽電池、集光型太陽光発電モジュール、および太陽電池製造方法 WO2009096267A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09705223A EP2246900A1 (en) 2008-02-01 2009-01-20 Solar battery, light collection type solar power generating module and solar battery manufacturing method
AU2009208410A AU2009208410B2 (en) 2008-02-01 2009-01-20 Solar cell, concentrating solar power generation module, and solar cell manufacturing method
CN2009801116604A CN101981707A (zh) 2008-02-01 2009-01-20 太阳能电池、聚光型太阳光发电组件和太阳能电池制造方法
US12/865,230 US20100326494A1 (en) 2008-02-01 2009-01-20 Solar cell, concentrating solar power generation module, and solar cell manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-023021 2008-02-01
JP2008023021A JP4986875B2 (ja) 2008-02-01 2008-02-01 太陽電池、および集光型太陽光発電モジュール
JP2008123938A JP5179944B2 (ja) 2008-05-09 2008-05-09 太陽電池製造方法
JP2008-123938 2008-05-09

Publications (1)

Publication Number Publication Date
WO2009096267A1 true WO2009096267A1 (ja) 2009-08-06

Family

ID=40912620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050762 WO2009096267A1 (ja) 2008-02-01 2009-01-20 太陽電池、集光型太陽光発電モジュール、および太陽電池製造方法

Country Status (5)

Country Link
US (1) US20100326494A1 (ja)
EP (1) EP2246900A1 (ja)
CN (1) CN101981707A (ja)
AU (1) AU2009208410B2 (ja)
WO (1) WO2009096267A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010027083A1 (ja) * 2008-09-08 2010-03-11 シャープ株式会社 太陽電池、集光型太陽光発電モジュール、および、太陽電池製造方法
WO2010137687A1 (ja) * 2009-05-28 2010-12-02 京セラ株式会社 光電変換装置用部品、光電変換装置および光電変換モジュール
JP2011044620A (ja) * 2009-08-22 2011-03-03 Kyocera Corp 光電変換装置、並びに光電変換モジュール
WO2011024747A1 (ja) * 2009-08-22 2011-03-03 京セラ株式会社 光電変換装置、光電変換素子収納用パッケージ及び光電変換モジュール
JP2011049470A (ja) * 2009-08-28 2011-03-10 Kyocera Corp 光電変換装置、光電変換素子収納用パッケージ、並びに光電変換モジュール
JP2011060992A (ja) * 2009-09-10 2011-03-24 Kyocera Corp 光電変換装置、並びに光電変換モジュール
JP2011071400A (ja) * 2009-09-28 2011-04-07 Kyocera Corp 光電変換装置、光電変換素子収納用パッケージ、及び光電変換モジュール
JP2011091154A (ja) * 2009-10-21 2011-05-06 Kyocera Corp 光電変換装置、並びに光電変換モジュール
JP2011096911A (ja) * 2009-10-30 2011-05-12 Kyocera Corp 光電変換装置及び光電変換モジュール
JP2011114281A (ja) * 2009-11-30 2011-06-09 Kyocera Corp 光電変換装置及び光電変換モジュール
CN104143953A (zh) * 2013-05-07 2014-11-12 青岛创铭新能源有限公司 一种太阳能高聚光能量放大光伏发电装置
CN106936381A (zh) * 2015-12-30 2017-07-07 中国科学院西安光学精密机械研究所 一种聚光太阳能模组安装方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8759138B2 (en) * 2008-02-11 2014-06-24 Suncore Photovoltaics, Inc. Concentrated photovoltaic system modules using III-V semiconductor solar cells
IT1403128B1 (it) * 2010-12-02 2013-10-04 Solergy Inc Sistema ottico con lenti asferiche di grandi dimensioni per la generazione di energia elettrica per via fotovoltaica.
DE112012002179T5 (de) * 2011-05-20 2014-02-13 Sharp Kabushiki Kaisha Konzentrierte Solarzelle und Herstellungsverfahren dafür
KR101251577B1 (ko) 2011-07-18 2013-04-08 (주)애니캐스팅 집광형 태양광 발전 장치 및 리시버 하우징 제조방법
CN102621693A (zh) * 2012-03-19 2012-08-01 泰山集团泰安市普瑞特机械制造有限公司 聚光太阳能的匀光器件
WO2013179287A1 (en) 2012-05-29 2013-12-05 Essence Solar Solutions Ltd. Photovoltaic module assembly
TW201405852A (zh) * 2012-07-18 2014-02-01 Iner Aec Executive Yuan 聚光型太陽能接收器之均光器之貼合治具
US20140048135A1 (en) * 2012-08-17 2014-02-20 Brightleaf Technologies, Inc. Method and apparatus for forming an image having a uniform flux density on a solar cell
CN103123416A (zh) * 2012-08-24 2013-05-29 王圣 太阳能聚光器
CN105191118A (zh) * 2012-12-21 2015-12-23 渥太华大学 聚光光伏组件
WO2014199575A1 (ja) * 2013-06-13 2014-12-18 パナソニックIpマネジメント株式会社 集光型光電変換装置及びシステム
JP6319318B2 (ja) * 2013-10-31 2018-05-09 住友電気工業株式会社 集光型太陽光発電ユニット、集光型太陽光発電モジュール、集光型太陽光発電パネル及び集光型太陽光発電装置
JP6557857B2 (ja) * 2015-06-26 2019-08-14 パナソニックIpマネジメント株式会社 太陽電池モジュール
CN106653921A (zh) * 2015-07-17 2017-05-10 中国华能集团清洁能源技术研究院有限公司 太阳能发电装置
JP6561661B2 (ja) * 2015-08-03 2019-08-21 住友電気工業株式会社 集光型太陽光発電ユニット、集光型太陽光発電モジュール、集光型太陽光発電パネル及び集光型太陽光発電装置
JP6507915B2 (ja) 2015-08-03 2019-05-08 住友電気工業株式会社 集光型太陽光発電ユニット、集光型太陽光発電モジュール、集光型太陽光発電パネル及び集光型太陽光発電装置
BR112018074584A2 (pt) * 2016-06-02 2019-03-12 Bolymedia Holdings Co. Ltd. sistema solar de rastreamento do sol
US10578269B2 (en) * 2018-06-28 2020-03-03 Valeo North America, Inc. Partial metallization of light guides for a binary aesthetic
CN114167903B (zh) * 2021-12-15 2024-07-02 北京玻锐特科技有限公司 一种太阳能光伏系统及追日机构

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280595A (ja) * 2001-03-22 2002-09-27 Canon Inc 太陽光集光装置
JP2002289898A (ja) 2001-03-23 2002-10-04 Canon Inc 集光型太陽電池モジュール及び集光型太陽光発電システム
JP2002289896A (ja) 2001-03-23 2002-10-04 Canon Inc 集光型太陽電池モジュール及び集光型太陽光発電システム
JP2002289897A (ja) 2001-03-23 2002-10-04 Canon Inc 集光型太陽電池モジュール及び集光型太陽光発電システム
JP2003258291A (ja) * 2001-12-27 2003-09-12 Daido Steel Co Ltd 集光式太陽光発電装置
JP2005217171A (ja) * 2004-01-29 2005-08-11 Daido Steel Co Ltd 集光型太陽光発電装置の反射鏡角度調整方法
JP2006278581A (ja) 2005-03-28 2006-10-12 Daido Steel Co Ltd 集光型太陽光発電装置、および、それに使用する光学部材
JP2006313810A (ja) * 2005-05-09 2006-11-16 Daido Steel Co Ltd 集光型太陽光発電装置
JP2007201109A (ja) 2006-01-25 2007-08-09 Daido Steel Co Ltd 集光型太陽光発電ユニットおよびその柱状光学ガラス部材

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7081584B2 (en) * 2003-09-05 2006-07-25 Mook William J Solar based electrical energy generation with spectral cooling
US20080087323A1 (en) * 2005-05-09 2008-04-17 Kenji Araki Concentrator Solar Photovoltaic Power Generating Apparatus
DE102005047132A1 (de) * 2005-09-30 2007-04-12 Solartec Ag Konzentrator-Photovoltaik-Vorrichtung; Photovoltaik-Einrichtung zur Verwendung darin sowie Herstellverfahren hierfür
US7807920B2 (en) * 2007-10-30 2010-10-05 Opel, Inc. Concentrated solar photovoltaic module
US8088994B2 (en) * 2007-12-21 2012-01-03 Solergy, Inc. Light concentrating modules, systems and methods

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280595A (ja) * 2001-03-22 2002-09-27 Canon Inc 太陽光集光装置
JP2002289898A (ja) 2001-03-23 2002-10-04 Canon Inc 集光型太陽電池モジュール及び集光型太陽光発電システム
JP2002289896A (ja) 2001-03-23 2002-10-04 Canon Inc 集光型太陽電池モジュール及び集光型太陽光発電システム
JP2002289897A (ja) 2001-03-23 2002-10-04 Canon Inc 集光型太陽電池モジュール及び集光型太陽光発電システム
JP2003258291A (ja) * 2001-12-27 2003-09-12 Daido Steel Co Ltd 集光式太陽光発電装置
JP2005217171A (ja) * 2004-01-29 2005-08-11 Daido Steel Co Ltd 集光型太陽光発電装置の反射鏡角度調整方法
JP2006278581A (ja) 2005-03-28 2006-10-12 Daido Steel Co Ltd 集光型太陽光発電装置、および、それに使用する光学部材
JP2006313810A (ja) * 2005-05-09 2006-11-16 Daido Steel Co Ltd 集光型太陽光発電装置
JP2007201109A (ja) 2006-01-25 2007-08-09 Daido Steel Co Ltd 集光型太陽光発電ユニットおよびその柱状光学ガラス部材

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010027083A1 (ja) * 2008-09-08 2010-03-11 シャープ株式会社 太陽電池、集光型太陽光発電モジュール、および、太陽電池製造方法
WO2010137687A1 (ja) * 2009-05-28 2010-12-02 京セラ株式会社 光電変換装置用部品、光電変換装置および光電変換モジュール
JP2011044620A (ja) * 2009-08-22 2011-03-03 Kyocera Corp 光電変換装置、並びに光電変換モジュール
WO2011024747A1 (ja) * 2009-08-22 2011-03-03 京セラ株式会社 光電変換装置、光電変換素子収納用パッケージ及び光電変換モジュール
JP2011049470A (ja) * 2009-08-28 2011-03-10 Kyocera Corp 光電変換装置、光電変換素子収納用パッケージ、並びに光電変換モジュール
JP2011060992A (ja) * 2009-09-10 2011-03-24 Kyocera Corp 光電変換装置、並びに光電変換モジュール
JP2011071400A (ja) * 2009-09-28 2011-04-07 Kyocera Corp 光電変換装置、光電変換素子収納用パッケージ、及び光電変換モジュール
JP2011091154A (ja) * 2009-10-21 2011-05-06 Kyocera Corp 光電変換装置、並びに光電変換モジュール
JP2011096911A (ja) * 2009-10-30 2011-05-12 Kyocera Corp 光電変換装置及び光電変換モジュール
JP2011114281A (ja) * 2009-11-30 2011-06-09 Kyocera Corp 光電変換装置及び光電変換モジュール
CN104143953A (zh) * 2013-05-07 2014-11-12 青岛创铭新能源有限公司 一种太阳能高聚光能量放大光伏发电装置
CN106936381A (zh) * 2015-12-30 2017-07-07 中国科学院西安光学精密机械研究所 一种聚光太阳能模组安装方法

Also Published As

Publication number Publication date
AU2009208410B2 (en) 2012-05-31
AU2009208410A1 (en) 2009-08-06
EP2246900A1 (en) 2010-11-03
US20100326494A1 (en) 2010-12-30
CN101981707A (zh) 2011-02-23

Similar Documents

Publication Publication Date Title
WO2009096267A1 (ja) 太陽電池、集光型太陽光発電モジュール、および太陽電池製造方法
AU2008305083B2 (en) Solar cell, concentrating photovoltaic power generation module, concentrating photovoltaic power generation unit and solar cell manufacturing method
JP4986875B2 (ja) 太陽電池、および集光型太陽光発電モジュール
AU2007303511B2 (en) Solar cell, concentrating solar power generation module, concentrating solar power generation unit, method of manufacturing solar cell, and solar cell manufacturing apparatus
JP5179944B2 (ja) 太陽電池製造方法
JP6416333B2 (ja) 太陽電池モジュール
WO2006132265A1 (ja) 集光型太陽光発電ユニットおよび集光型太陽光発電装置、ならびに集光レンズ、集光レンズ構造体、および集光レンズ構造体の製造方法
JPWO2009066720A1 (ja) 太陽電池モジュールおよび太陽光発電ユニット
JP2006343435A (ja) 集光レンズ、集光レンズ構造体、集光型太陽光発電装置、および集光レンズ構造体の製造方法
JP2006332113A (ja) 集光型太陽光発電モジュール及び集光型太陽光発電装置
WO2012160994A1 (ja) 集光型太陽電池及びその製造方法
WO2010027083A1 (ja) 太陽電池、集光型太陽光発電モジュール、および、太陽電池製造方法
JP2013084985A (ja) 太陽電池および集光型太陽光発電モジュール
JP4749401B2 (ja) 太陽電池、集光型太陽光発電モジュール、集光型太陽光発電ユニット、および太陽電池製造方法
JP4454666B2 (ja) 太陽電池、集光型太陽光発電モジュール、集光型太陽光発電ユニット、および太陽電池製造方法
JP2014010251A (ja) 二次レンズ、太陽電池実装体、集光型太陽光発電装置、および集光型太陽光発電モジュール
JP4693793B2 (ja) 太陽電池、集光型太陽光発電モジュール、集光型太陽光発電ユニット、および太陽電池製造方法
KR101898593B1 (ko) 태양전지 모듈
EP2487728A2 (en) Light-collecting device and light-collecting method thereof
US20150030283A1 (en) Concentrating Thin Film Absorber Device and Method of Manufacture
KR101351251B1 (ko) 렌즈 일체형의 태양전지 셀 패키지 및 그 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980111660.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09705223

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009208410

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 12865230

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009208410

Country of ref document: AU

Date of ref document: 20090120

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009705223

Country of ref document: EP