WO2009096066A1 - 回転電機制御装置 - Google Patents

回転電機制御装置 Download PDF

Info

Publication number
WO2009096066A1
WO2009096066A1 PCT/JP2008/068202 JP2008068202W WO2009096066A1 WO 2009096066 A1 WO2009096066 A1 WO 2009096066A1 JP 2008068202 W JP2008068202 W JP 2008068202W WO 2009096066 A1 WO2009096066 A1 WO 2009096066A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
phase modulation
rotating electrical
electrical machine
voltage
Prior art date
Application number
PCT/JP2008/068202
Other languages
English (en)
French (fr)
Inventor
Keisuke Nishimura
Masuho Sakakibara
Yoshinari Nakagawa
Yoshinori Oono
Original Assignee
Aisin Aw Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Aw Co., Ltd. filed Critical Aisin Aw Co., Ltd.
Priority to CN2008801070875A priority Critical patent/CN101803171B/zh
Priority to DE112008002482.0T priority patent/DE112008002482B4/de
Publication of WO2009096066A1 publication Critical patent/WO2009096066A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/025Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using field orientation; Vector control; Direct Torque Control [DTC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0085Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed
    • H02P21/0089Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed using field weakening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/142Emission reduction of noise acoustic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a rotating electrical machine control device that controls electric power supplied from an inverter to an electric motor and regenerative power in the opposite direction, and more particularly to control of an inverter control mode, that is, a modulation mode, of a rotating electrical machine control device including a resolver.
  • the rotating electrical machine control device of the present invention is, for example, an electric vehicle (EV) that drives wheels with an electric motor, and a fuel engine and a generator that is rotationally driven by the engine in addition to the electric motor (referred to as an electric motor or a generator motor). Can also be used in a hybrid electric vehicle (HEV).
  • EV electric vehicle
  • HEV hybrid electric vehicle
  • the three-phase modulation mode in which three-phase AC is generated by three-phase PWM switching of the three-phase inverter and applied to each phase coil of the three-phase AC rotating electrical machine, PWM switching is performed on the three phases, so switching power loss is reduced.
  • switching from the three-phase modulation mode to the two-phase modulation mode is performed (for example, Patent Document 1).
  • the two-phase modulation mode is a mode in which PWM switching for forming a sine wave is stopped for one phase and is continuously set to a high level or a low level during a half-wave interval, and this is executed by sequentially switching the phases. is there.
  • Patent Document 2 describes sensorless motor control that estimates and calculates a magnetic pole position based on a motor current, extracts a high-frequency component of the motor current, calculates a magnetic pole position correction amount based on the high-frequency component, and corrects the magnetic pole position. is doing.
  • a magnetic encoder position is detected by connecting a rotary encoder or resolver to the electric motor.
  • a rotor having a winding excited by a high-frequency current is driven to rotate by an electric motor, and a voltage induced in the stator winding is increased or decreased by the rotation of the rotor. Therefore, a sine wave (or cosine wave) representing the rotation of the rotor is output as a rotation detection signal representing the rotation angle and the rotation speed of the motor through the wide-area cut filter (demodulated).
  • the phase of the rotation detection signal corresponds to the rotation angle (electrical angle ⁇ ) of the motor, and the frequency is proportional to the rotation speed ⁇ of the motor. From the rotation detection signal, the rotation angle ⁇ and the rotation speed ⁇ of the electric motor can be calculated by calculating the angle and the speed.
  • Patent Document 3 includes a booster circuit that omits field-weakening control and raises the operating voltage applied to the inverter in order to eliminate power loss and system efficiency degradation due to field-weakening control.
  • Patent Document 4 includes a circuit for boosting a battery voltage, calculates a required boosted voltage corresponding to the target operation and speed electromotive force of the motor, and controls the booster circuit so as to obtain the boosted voltage. Is described.
  • Japanese Patent No. 3844060 JP 2007-151344 A Japanese Patent Laid-Open No. 10-66383 Japanese Patent No. 3746334
  • the resolver since the resolver is disposed in or near the electric motor, it is susceptible to electrical noise generated by the electric motor, that is, high-frequency noise.
  • high-frequency noise generated by the electric motor acts on the stator winding or signal processing circuit of the resolver or the output lead, the resolver rotation detection signal may be disturbed.
  • the switching noise is strong, and there is a high possibility that the rotation detection signal of the resolver is disturbed.
  • the rotation angle detection value ⁇ of the motor becomes an error, and the motor cannot be controlled accurately by vector control.
  • high-torque (high-current) output increases the harmonic component of the current, which increases electromagnetic noise and disturbs the resolver rotation detection signal. Is likely to be.
  • the secondary side voltage (output voltage) of the converter boost circuit
  • boost circuit boost circuit
  • An object of the present invention is to prevent a drive control error of a rotating electrical machine. Specifically, an object is to reduce disturbance of the rotation detection signal of the resolver due to electrical noise, in other words, to reduce disturbance of drive control of the rotating electrical machine due to disturbance of the rotation detection signal.
  • the inverter is controlled and input to the inverter so that the output torque of the rotating electrical machine becomes the target torque using the target torque, rotational speed, and rotational angle of the rotating electrical machine.
  • the modulation ratio which is the ratio of the voltage applied to the rotating electrical machine to the voltage
  • three-phase / two-phase modulation is performed to switch the inverter control from three-phase modulation to two-phase modulation.
  • switching to two-phase modulation is performed in a specific region (An) where the electrical noise given to the resolver by the rotating electrical machine is large.
  • Inverter (19m) that converts power between the primary DC power supply (18, 22) and the rotating electrical machine (10m);
  • a resolver (17m) that generates a rotation detection signal (SG ⁇ m) corresponding to a rotation angle ( ⁇ ) and a rotation speed ( ⁇ ) of the rotating electrical machine;
  • Means (32) for calculating a rotation angle and a rotation speed based on the rotation detection signal;
  • the inverter is controlled so that the output torque of the rotating electrical machine becomes the target torque, and the rotating electrical machine with respect to the voltage input to the inverter
  • a three-phase / two-phase modulation switching means (30m) for switching the control of the inverter from the three-phase modulation to the two-phase modulation when a modulation ratio, which is a ratio of applied voltages, becomes larger than a three-phase / two-phase modulation switching boundary;
  • Motor control means (30m) for switching to two-phase modulation in a specific region (An) where the electrical noise
  • the target torque and the rotational speed of the rotating electrical machine are high torque and high rotational speed with which the electrical noise becomes strong in the three-phase modulation.
  • the speed region (An) is entered, the mode is automatically switched to two-phase modulation.
  • the number of PWM switching operations of the inverter is reduced, the occurrence of noise in the rotating electrical machine is reduced, the possibility that the rotation detection signal of the resolver is disturbed, and the reliability of the rotating electrical machine drive control is improved.
  • the motor control means (30m) determines the rotation speed of the rotating electrical machine corresponding to the three-phase / two-phase modulation switching boundary even in a region where the modulation ratio is smaller than the three-phase / two-phase modulation switching boundary. Switching to two-phase modulation is performed in a specific region (An) that exceeds a low rotational speed value and exceeds a predetermined torque threshold and the electrical noise given to the resolver by the rotating electrical machine is large; the rotating electrical machine control device according to (1) above .
  • the specific area is larger during powering than during regeneration of the rotating electrical machine; the rotating electrical machine control device according to (1) or (2) above.
  • the required current (modulation rate) is larger during power running than during regeneration.
  • the motor current is converted to torque in the process of motor current ⁇ inverter (loss) ⁇ motor (loss) ⁇ torque, whereas during regeneration, torque ⁇ motor (loss) ⁇ inverter (loss) ⁇ motor current.
  • torque is converted into motor current.
  • a motor current that is higher by the addition of inverter loss and motor loss is required during power running, whereas reverse power is generated by regenerative torque.
  • the motor current is as low as motor loss and inverter loss.
  • the motor current is larger during power running than during regeneration.
  • the magnitude of resolver noise tends to increase in proportion to the motor current (modulation rate). That is, the specific area is expanded.
  • the specific region is made larger during power running than during regeneration of the rotating electrical machine, so that noise generation of the rotating electrical machine during power running can be sufficiently reduced.
  • the specific area is set only during powering of the rotating electrical machine and not set during regeneration; the rotating electrical machine control device according to any one of (1) to (3) above.
  • the motor control means (30m) controls the inverter using the target torque, rotation speed, rotation angle, and secondary side target voltage so that the output torque of the rotating electrical machine becomes the target torque,
  • the rotation according to any one of (1) to (5) above, wherein as the secondary voltage increases, the threshold torque for switching from three-phase modulation to two-phase modulation is decreased to increase the specific region (An); Electric control device.
  • the boosted voltage that is, the secondary side voltage (Vuc)
  • the spike current generated with PWM switching of the inverter is increased and the noise of the rotating electrical machine is likely to increase.
  • switching from three-phase modulation to two-phase modulation is performed. Since the threshold torque is lowered and the specific region is widened, when the secondary side voltage is high, it is automatically switched to the two-phase modulation at an early stage, the noise generation of the rotating electrical machine is reduced, and the reliability of the rotating electrical machine drive control is further increased. improves.
  • the inverter includes first and second inverters (19m, 19g) that control power exchange with the first and second rotating electrical machines;
  • the resolver generates a first resolver (17m) that generates a rotation detection signal corresponding to the rotation angle and rotation speed of the first rotating electric machine, and a rotation detection signal that corresponds to the rotation angle and rotation speed of the second rotating electric machine.
  • the means for calculating the rotation angle and the rotation speed includes a first means (30m) for calculating a rotation angle and a rotation speed of the first rotating electric machine based on a rotation detection signal of the first resolver, and a rotation of the second resolver.
  • the secondary-side target voltage determining means is a first target voltage corresponding to the rotational speed of the first rotating electrical machine based on a secondary target voltage characteristic corresponding to the rotational speed assigned to the target torque of the first rotating electrical machine.
  • the first secondary target voltage determining means (30m) for deriving the rotational speed of the second rotating electrical machine
  • Second secondary target voltage determining means (30g) for deriving a second target voltage corresponding to
  • means (30m) for determining the higher one of the first and second target voltages as the secondary target voltage, Including:
  • the three-phase / two-phase modulation switching means controls the first inverter, and a first modulation ratio which is a ratio of a voltage applied to the first rotating electrical machine with respect to a voltage input to the first inverter is a first modulation ratio.
  • the first three-phase / two-phase modulation switching means (30 m) for switching the control of the first inverter from the three-phase modulation to the two-phase modulation when the boundary becomes larger than the three-phase / two-phase modulation switching boundary, and the second inverter is controlled.
  • the second modulation ratio which is the ratio of the voltage applied to the second rotating electrical machine to the voltage input to the second inverter, becomes larger than the second three-phase / two-phase modulation switching boundary, the control of the second inverter is performed.
  • the motor control means corresponds to the first three-phase / two-phase modulation switching boundary.
  • Two-phase modulation is performed in the first specific region where the electrical noise applied to the first resolver by the first rotating electrical machine is greater than the torque of the single rotating electrical machine, the first torque threshold lower than the rotational speed, and the first rotational speed threshold.
  • the second electrical rotating machine corresponding to the modulation switching boundary has a large electrical noise applied to the second resolver by the second electrical rotating machine exceeding the second rotational speed threshold and the second rotational speed threshold lower than the rotational speed.
  • the spike current generated with PWM switching of the inverter increases.
  • the higher one of the first and second target voltages is selected as the secondary target voltage (Vuc *) and the secondary voltage (Vuc) of the converter is controlled to be this voltage, the one that was not selected.
  • the inverter that supplies power to the rotating electrical machine PWM-switches higher voltage than necessary, so there is a high possibility that the noise of the rotating electrical machine will increase, but the threshold torque for switching from 3-phase modulation to 2-phase modulation is lowered and specified. Since the area is expanded, when the secondary side voltage is high, it is automatically switched to the two-phase modulation at an early stage, the noise generation of the rotating electrical machine is reduced, and the reliability of the rotating electrical machine drive control is improved.
  • the first motor control means (30m) decreases the first torque threshold and increases the first specific region as the secondary side voltage increases; the rotating electrical machine control device according to (6) above.
  • the control of the first inverter is automatically switched to the two-phase modulation at an early stage, the noise generation of the first rotating electrical machine is reduced, and the reliability of the rotating electrical machine drive control is further improved.
  • the second motor control means (30g) decreases the second torque threshold and increases the second specific region as the secondary side voltage increases; the rotation according to (6) or (7) above Electric control device.
  • the control of the second inverter is automatically switched to the two-phase modulation at an early stage, the noise generation of the second rotating electrical machine is reduced, and the reliability of the rotating electrical machine drive control is further improved.
  • FIG. 1 is a block diagram showing an outline of the configuration of the first embodiment of the present invention.
  • FIG. 2 is a block diagram showing an outline of a functional configuration of the motor control device 30m shown in FIG.
  • FIG. 3 is a flowchart showing an outline of motor control of the microcomputer MPU shown in FIG.
  • FIG. 4 is a flowchart showing the contents of “modulation mode determination” (14) shown in FIG.
  • FIG. 5 is a block diagram showing an outline of the configuration of the second embodiment of the present invention.
  • 6 is a block diagram showing an outline of a functional configuration of the motor control device 30m shown in FIG.
  • FIG. 7 is a flowchart showing an outline of motor control of the microcomputer MPU shown in FIG.
  • FIG. 8 is a flowchart showing the contents of “modulation mode determination” (14a) shown in FIG.
  • FIG. 9 is a graph showing a modulation area section of the electric motor 10m.
  • FIG. 1 shows an outline of the first embodiment of the present invention.
  • an electric motor (electric motor) 10m that is a first rotating electrical machine to be controlled is a permanent magnet type synchronous motor that is mounted on a vehicle and rotationally drives wheels, and has a permanent magnet built into the rotor.
  • the stator includes U-phase, V-phase, and W-phase three-phase coils 11 to 13.
  • a voltage type inverter 19m which is a first inverter, supplies electric power to the electric motor 10m from the battery 18 on the vehicle.
  • the rotor of the first resolver 17m for detecting the magnetic pole position of the rotor is connected to the rotor of the electric motor 10m.
  • the resolver 17m generates an analog voltage (rotation angle signal) SG ⁇ m representing the rotation angle of the rotor, and supplies the analog voltage to the motor control device 30m.
  • the battery 18 which is a storage battery on the vehicle is connected to the primary side capacitor 22 when the electrical component on the vehicle is turned on, and constitutes a primary side power source together with the battery 18.
  • One end of the reactor 2 of the bidirectional converter circuit 1 is connected to the positive electrode (+ line) of the primary power supply.
  • the converter circuit 1 further includes a step-up switching element 3 for turning on and off between the other end of the reactor 2 and the negative electrode ( ⁇ line) of the primary power supply, and between the positive electrode of the secondary capacitor 23 and the other end.
  • step-down switching element 4 for turning on and off, and diodes 5 and 6 connected in parallel to switching elements 3 and 4.
  • the anode of the diode 5 is connected to the other end of the reactor 2, the cathode is connected to the negative electrode ( ⁇ line) of the primary power supply, the anode of the diode 6 is connected to the positive electrode of the secondary capacitor 23, and the cathode is connected to the reactor 2.
  • an IGBT Insulated Gate Bipolar Transistor
  • the step-up switching element 3 When the step-up switching element 3 is turned on (conductive), a current flows from the primary power source (18, 22) to the step-up switching element 3 via the reactor 2, whereby the reactor 2 stores electricity and the step-up switching element 3 is turned off ( When switched to non-conduction, the reactor 2 discharges to the secondary capacitor 23 through the diode 6 at a high voltage. That is, a voltage higher than that of the primary power supply is induced to charge the secondary capacitor 23. By repeating ON / OFF of the step-up switching element 3, the high-voltage charging of the secondary side capacitor 23 is continued. That is, the secondary side capacitor 23 is charged with a high voltage.
  • the electric power stored in the reactor 2 increases according to the length of the ON period, so the ON time during the fixed cycle (ON duty: ON time ratio to the fixed cycle)
  • ON duty ON time ratio to the fixed cycle
  • the speed at which power is supplied from the primary power supplies 18 and 22 to the secondary capacitor 23 via the converter circuit 1 can be adjusted by PWM control.
  • the step-down switching element 4 When the step-down switching element 4 is turned on (conductive), the stored power of the secondary capacitor 23 is supplied to the primary power sources 18 and 22 through the step-down switching element 4 and the reactor 2 (reverse power feeding: regeneration). Also in this case, reverse power is supplied from the secondary capacitor 23 to the primary power sources 18 and 22 via the converter circuit 1 by adjusting the ON time of the step-down switching element 4 during a certain period, that is, by PWM control. The speed (power supply speed for regeneration) can be adjusted.
  • the voltage-type inverter 19m includes six switching transistors Tr1 to Tr6, and the transistors Tr1 to Tr6 are turned on (conducted) by each of a series of six drive signals generated in parallel by the drive circuit 20m.
  • the three-phase of the electric motor 10m is obtained by converting the DC voltage of the side capacitor 23 (the output voltage of the converter circuit 1, that is, the secondary side voltage) into a triple AC voltage having a phase difference of 2.pi. It is applied to each of the stator coils 11 to 13 (U phase, V phase, W phase).
  • the respective phase currents iUm, iVm, iWm flow through the stator coils 11 to 13 of the electric motor 10m, and the rotor of the electric motor 10m rotates.
  • the six switching transistors Tr1 to Tr6 are all IGBTs.
  • the secondary output line of the converter circuit 1 which is an input line of the inverter 19m A large-capacity secondary capacitor 23 is connected.
  • the primary side capacitor 22 constituting the primary side power source is a small and low-cost capacitor having a small capacity, and the capacity of the primary side capacitor 22 is considerably smaller than the capacity of the secondary side capacitor 23.
  • Voltage sensor 24 detects secondary side voltage Vuc of converter circuit 1 and provides it to converter control device 30v.
  • FIG. 2 shows a functional configuration of the first motor control device 30m.
  • the first motor control device 30m is an electronic control device mainly composed of a microcomputer (hereinafter referred to as a microcomputer) MPU.
  • the microcomputer MPU a drive circuit 20m, current sensors 14 to 16, resolvers 17 and 2 are used.
  • An interface (signal processing circuit) (not shown) between the secondary side voltage sensor 24 and a microcomputer MPU and a main controller of a vehicle travel control system (not shown) on the vehicle and a motor control device 30g,
  • An interface (communication circuit) not shown is also included.
  • the microcomputer MPU which is the motor control device 30m determines the rotation angle (magnetic pole position) ⁇ and the rotation speed (angular velocity) ⁇ of the rotor of the electric motor 10m. calculate.
  • the rotation angle of the rotor of the electric motor 10m and the magnetic pole position are not the same, but they are in a proportional relationship and the proportionality coefficient is determined by the number of magnetic poles p of the electric motor 10m. Further, although the rotational speed and the angular speed are not the same, both are in a proportional relationship, and the proportionality coefficient is determined by the number of magnetic poles p of the electric motor 10m.
  • the rotation angle ⁇ means the magnetic pole position.
  • the rotational speed ⁇ means an angular speed, but sometimes means a rotational speed.
  • a main controller of the vehicle travel control system (not shown) supplies the motor target torque TM * to the motor control device 30m, that is, the microcomputer MPU.
  • the main controller calculates a vehicle required torque TO * based on the vehicle speed and the accelerator opening of the vehicle, generates a motor target torque TM * corresponding to the required vehicle torque TO *, the microcomputer MPU give.
  • the microcomputer MPU outputs the rotational speed ⁇ rpm of the electric motor 10m to the main controller.
  • the microcomputer MPU reads the limit torque TM * max corresponding to the secondary target voltage Vuc * and the rotational speed ⁇ from the limit torque table (look-up table) by the torque command limit 34, and the target torque TM * becomes TM * max. If it exceeds, TM * max is set to the target torque T * . When TM * max or less, the motor target torque TM * is set to the target torque T * . The motor target torque T * generated by adding such a restriction is given to the secondary target voltage calculation 45 and the output calculation 35.
  • each value of the secondary target voltage Vuc * and the voltage within the rotation speed range is used as an address, and the maximum torque that can be generated in the electric motor 10m at each value is written as the limit torque TM * max.
  • it means one memory area of a RAM (not shown) in the microcomputer MPU.
  • the limit torque TM * max is larger as the secondary target voltage Vuc * is higher and is smaller as it is lower. Further, the lower the rotation speed ⁇ , the larger the value, and the smaller the rotation speed ⁇ .
  • the microcomputer there is a non-volatile memory in which the limit torque table data TM * max is written, and the microcomputer initializes itself and the motor drive system shown in FIG. 1 when an operating voltage is applied to the microcomputer. Then, the data is read from the nonvolatile memory and written to the RAM.
  • the microcomputer There are a plurality of other similar look-up tables in the microcomputer, which will be described later. These, like the limit torque table, also mean a memory area on the RAM in which the reference data in the nonvolatile memory is written.
  • the microcomputer MPU of the motor control device 30m determines “powering” or “regeneration” based on the target torque T * and the rotational speed ⁇ .
  • the first target voltage Vuc * m assigned to the rotational speed ⁇ of the electric motor 10m is obtained from the first target voltage table assigned to the target torque T * within the “regeneration” group. read out.
  • the microcomputer of the other motor control device 30g is “power running” or “regenerative” based on the target torque T * and the rotational speed ⁇ of the motor (generator) 10g by data processing similar to the secondary target voltage calculation 45.
  • the second target voltage Vuc * g assigned to the speed ⁇ is read out. This second target voltage Vuc * g is given to the microcomputer MPU (FIG. 2).
  • the secondary target voltage calculation 45 (FIG. 2) of the microcomputer MPU is a higher one of the first target voltage Vuc * m calculated by itself and the second target voltage Vuc * g given by the microcomputer of the motor control device 30g.
  • the secondary target voltage Vuc * is given to the torque command limit 34 and the feedback control calculation 46.
  • the feedback control calculation 46 calculates a control output Pvc for setting the secondary voltage Vuc detected by the voltage sensor 24 to the secondary target voltage Vuc * by a feedback PI (proportional / integral) calculation, and gives it to the PWM pulse generation 47. .
  • the pulse generation 47 converts the control signal Pvc into a step-up (power running) PWM pulse for turning on / off the step-up switching element 3 and a step-down (regenerative) PWM pulse for turning on / off the step-down switching element 4. Output to 20v.
  • the drive circuit 20v turns on / off the step-up switching element 3 corresponding to the step-up PWM pulse, and turns on / off the step-down switching element 4 corresponding to the step-down PWM pulse.
  • the secondary side voltage Vuc of the bidirectional converter 1 is controlled to the secondary target voltage Vuc * or a value closest thereto.
  • the step-up switching element 3 and the step-down switching element 4 are simultaneously turned on (output short circuit) between the step-up PWM pulse and the step-down PWM pulse, when one is at the ON instruction level, the other is set to the off-constraint level.
  • the protection period (dead time) to be set is set.
  • the microcomputer MPU of the motor control device 30m uses the d-axis in the direction of the magnetic pole pair in the rotor of the electric motor 10m and the q-axis in the direction perpendicular to the d-axis. Feedback control for driving the motor by vector control calculation on the q-axis model is performed. Therefore, the microcomputer digitally converts and reads the current detection signals iU, iV, iW of the current sensors 14 to 16 and uses a known three-phase / two-phase conversion which is a fixed / rotational coordinate conversion in a current feedback calculation. The three-phase current values iU, iV, iW on the fixed coordinates are converted into the two-phase current values id, iq on the d-axis and the q-axis on the rotation coordinates.
  • the first high-efficiency torque curve table A which is one look-up table, is included in the output calculation 35, and each of the first high-efficiency torque curve tables A is associated with the motor speed ⁇ and the motor target torque T *. Each d-axis current value id for generating each target torque T * at the motor speed is written.
  • the output torque of the electric motor is determined corresponding to each value of the d-axis current id and the q-axis current iq, but id for outputting the same torque for one rotation speed value, that is, at the same motor rotation speed.
  • Iq are innumerable and are on a constant torque curve.
  • On the constant torque curve there is a combination of id and iq with the highest power usage efficiency (lowest power consumption), which is the high efficiency torque point.
  • a curve connecting high efficiency torque points on a plurality of torque curves is a high efficiency torque curve and exists for each rotation speed.
  • the electric motor 10m By energizing the electric motor 10m with the d-axis current id and the q-axis current iq at the position of the given motor target torque T * on the high efficiency torque curve addressed to the rotation speed of the motor as a target current value, The electric motor 10m outputs the torque T * , and the power use efficiency of the motor energization is high.
  • the high-efficiency torque curve is divided into two systems: a first high-efficiency torque curve A that represents the d-axis value and a second high-efficiency torque curve B that represents the q-axis value.
  • the high-efficiency torque curve A is a pair of the one applied to the power running region and the one applied to the regeneration region, and both represent the d-axis target current with respect to the motor rotation speed and the target torque.
  • the first high-efficiency torque curve table A is a memory area in which a d-axis target current for generating the target torque with minimum power consumption, which is addressed to the target torque T * , is written.
  • a pair of regeneration tables A2 for regeneration is configured. Whether to use a table for power running or regeneration is determined according to the determination result by determining whether the table is power running or regeneration based on the rotational speed ⁇ of the electric motor and the target torque T * to be given.
  • the d-axis field weakening current ⁇ id is generated by field adjustment allowance calculation, calculates a d-axis current command, and calculates a q-axis current command.
  • the d-axis field weakening current ⁇ id is calculated by the field weakening current calculation 41. The contents will be described later.
  • the second high efficiency torque curve table B in the output calculation 35 is used.
  • the second high-efficiency torque curve table B further includes a second high-efficiency torque curve B representing the q-axis value of the high-efficiency torque curve, and a d-axis field weakening current ⁇ id and a pair of q-axis field weakening current ⁇ iq.
  • the data is corrected to a curve representing the subtracted q-axis target current, and the data of the corrected second high efficiency torque curve B is stored.
  • the second high-efficiency torque curve table B is the d-axis target current for generating the target torque with the lowest power consumption, which is addressed to the target torque T * and the d-axis field weakening current ⁇ id, that is, the corrected second axis.
  • This is a memory area in which the target current value of the high-efficiency torque curve B is written, and this is also composed of a pair of a power running table B1 for power running and a regeneration table B2 for regeneration. Whether to use power running or regenerative power is determined based on the determination result by determining whether it is power running or regenerating based on the rotational speed ⁇ of the electric motor and the target torque T * .
  • the target torque T * and the q-axis target current iq * addressed to the d-axis field weakening current ⁇ id are read from the second high efficiency torque curve table B and used as the q-axis current command.
  • the microcomputer MPU of the motor control device 30m calculates the current deviation ⁇ id between the d-axis target current id * and the d-axis current id and the current deviation ⁇ iq between the q-axis target current iq * and the q-axis current iq. Based on the current deviations ⁇ id and ⁇ iq, proportional control and integral control (PI calculation of feedback control) are performed, and a d-axis voltage command value vd * and a q-axis voltage command value vq * are calculated as output voltages. .
  • the field weakening current calculation 41 calculates a voltage saturation index m that is a parameter for field weakening control. That is, based on the d-axis voltage command value vd * and the q-axis voltage command value vq * , the voltage saturation calculation value ⁇ V is calculated as a value representing the degree of voltage saturation, and the field adjustment allowance is calculated. In the calculation of the field adjustment allowance, when ⁇ V is integrated and the integrated value ⁇ V takes a positive value, the integrated value ⁇ V is multiplied by a proportional constant to calculate the d-axis field weakening current ⁇ id for performing field weakening control.
  • the adjustment value ⁇ id and the integrated value ⁇ V are set to zero.
  • the adjustment value ⁇ id is used for calculating the d-axis current command and the q-axis current command in the output calculation 35 described above.
  • the target voltages vd * and vq * on the rotation coordinates are converted into the target voltages VU * on the fixed coordinates according to the two-phase / three-phase conversion . , VV * , and VW * .
  • This is sent to the PWM pulse generator 50 via the modulation 37 when the voltage control mode is three-phase modulation.
  • the voltage control mode is two-phase modulation
  • each phase target voltage VU * , VV * , VW * in the three-phase modulation mode is converted into the two-phase modulation by the two-phase modulation of the modulation 37 and the PWM pulse generation 50 is performed. send.
  • each phase target voltage VU * , VV * , VW * in the 3-phase modulation mode is energized with each phase rectangular wave by 1-pulse conversion of the modulation 37. This is converted to a PWM pulse generator 50.
  • the PWM pulse generation 50 When the PWM pulse generation 50 is given the three-phase target voltages VU * , VV * , and VW * , the PWM pulse generation 50 is converted into PWM pulses MU, MV, and MW for outputting voltages of these values, as shown in FIG. Output to the drive circuit 20m.
  • the drive circuit 20m generates six series of drive signals in parallel based on the PWM pulses MU, MV, and MW, and turns on / off each of the transistors Tr1 to Tr6 of the voltage-type inverter 19m with each series of drive signals. .
  • VU * , VV * and VW * are applied to each of the stator coils 11 to 13 of the electric motor 10m, and phase currents iU, iV and IW flow.
  • the PWM pulse generator When each phase target voltage in the two-phase modulation mode is given, the PWM pulse generator generates a PWM pulse for two phases and an on or off (constant voltage output) signal for the remaining one phase. The phase to be the on or off constant voltage is sequentially switched.
  • the drive circuit 20m outputs an energizing section signal for energizing each phase with a rectangular wave.
  • the motor target voltage Vm * is calculated in the process of the two-phase / three-phase conversion.
  • Vm * ⁇ (Vd * 2 + Vq * 2 ).
  • the modulation mode determination 44 determines the modulation mode based on the modulation ratio Mi, the target torque T *, and the rotational speed ⁇ of the electric motor 10m.
  • each phase target voltage in the modulation mode is instructed to the selection 40 in the modulation 37.
  • the selection 40 is sent to the PWM pulse generation 50 via the modulation 37 when the modulation mode is three-phase modulation.
  • each phase target voltage VU * , VV * , VW * in the three-phase modulation mode is converted into a two-phase modulation one by the two-phase modulation 38 of the modulation 37 and the PWM pulse generation 50 is performed. send.
  • each phase target voltage VU * , VV * , VW * in the 3-phase modulation mode is converted into each phase rectangular wave energization by a 1 pulse conversion 39 of the modulation 37.
  • the PWM pulse generation 50 is given by converting to
  • the microcomputer MPU shown in FIG. 2 includes RAM, ROM, and flash memory for recording data and various programs, and programs stored in the ROM or flash memory. , The reference data and the lookup table are written in the RAM, and input processing, calculation and output processing shown in FIG. 2 surrounded by a two-dot chain line block are performed based on the program.
  • FIG. 3 shows an outline of the motor drive control MDC executed by the microcomputer MPU (or its CPU) based on the program.
  • the microcomputer MPU initializes itself, the PWM pulse generation 50 and the drive circuit 20m, and sets the inverter 19m for driving the electric motor 10m to a stop standby state. Then, it waits for a motor drive start instruction from a main controller of a vehicle travel control system (not shown).
  • the microcomputer MPU sets the initial value of the motor control in the internal register by the “start process” (step 1), and the input signal or data by the “input read” (step 2). Is read.
  • the first target torque TM * provided by the main controller and the second target voltage Vuc * g provided by the motor control device 30g are read, and the phase current values iU, iV, iW detected by the current sensors 14m to 16m, the resolver
  • the rotation angle signal SG ⁇ m of 17 and the secondary side voltage Vuc detected by the voltage sensor 24 are read by digital conversion.
  • step is abbreviated and only the step number is written in parentheses.
  • the microcomputer MPU calculates the rotation angle ⁇ and the rotation speed ⁇ of the electric motor 10m based on the read rotation angle signal SG ⁇ m (rotation angle data SG ⁇ m) (3). This function is shown as an angle / speed calculation 32 in FIG.
  • the microcomputer MPU reads the read motor target torque TM * , the read secondary voltage Vuc and the limit torque TM * max corresponding to the calculated rotational speed ⁇ from the limit torque table, and reads the read motor target torque TM. and * exceeds the TM * max, determines the TM * max to the target torque T *.
  • TM * max or less the read motor target torque TM * is determined as the target torque T * (4).
  • This function is shown as a torque command limit 34 in FIG.
  • the microcomputer MPU determines whether the motor 10m is in “powering” operation or “regenerative” operation, selects a group according to the determination result,
  • the first target voltage Vuc * m assigned to the current rotational speed ⁇ is read from the first target voltage table associated with the target torque T *, and the second target given by the motor control device 30g.
  • the higher one of the voltages Vuc * g is determined as the secondary target voltage VUc *.
  • the contents of “secondary target voltage calculation” (5) are the contents of the secondary target voltage calculation 45 shown in FIG.
  • the microcomputer MPU performs a feedback PI (proportional / integral) calculation on the control output Pvc for setting the secondary side voltage Vuc detected by the voltage sensor 24 to the secondary target voltage Vuc * in “Pvc calculation” (6). calculate.
  • Pvf, Pvr calculation (7), the control output Pvc, the on-duty data Pvf of the step-up PWM pulse for turning on / off the step-up switching element 3 and the on-duty of the step-down PWM pulse for turning on / off the step-down switching element 4 are set. Convert to data Pvr.
  • “Pvc calculation” (6) is the content of the feedback control calculation (46) shown in FIG. 2, and “Pvf, Pvr calculation” (7) corresponds to the duty signal conversion of the PWM pulse generation 47 shown in FIG. .
  • the PWM pulse output corresponding to the duty signal of the PWM pulse generation 47 is performed by the output update in step 15.
  • the microcomputer MPU converts the read three-phase current detection signals iU, IV, iW into a two-phase d-axis current value id and a q-axis current value by three-phase / two-phase conversion (8). This function is shown as current feedback 31 in FIG.
  • the microcomputer MPU calculates a d-axis field weakening current ⁇ id for performing d-axis field weakening control (9). This function is shown as field weakening current calculation 41 in FIG.
  • the contents of the “output calculation” (10) are the same as the contents of the output calculation 35 shown in FIG.
  • the dq axis voltage target values Vd * and Vq * calculated in the “output calculation” (10) are converted into the phase target voltages VU *, VV * and VW * in the three-phase modulation mode (11).
  • the motor target voltage Vm * is also calculated.
  • the modulation ratio Mi is calculated (13), and the modulation mode is determined based on the modulation ratio Mi, the target torque T *, the rotational speed ⁇ , and the secondary side voltage Vuc (14). ). This will be described later with reference to FIG.
  • Fig. 9 shows the outline (outline) of the modulation mode classification.
  • FIG. 9 shows the target torque T * and the rotational speed ⁇ as parameters, and another parameter is the modulation ratio Mi.
  • the output voltage of the converter 1, that is, the secondary side voltage Vuc is also a parameter for switching the modulation mode.
  • the microcomputer MPU has a modulation threshold table (look-up table) associated with a modulation mode (three-phase modulation, two-phase modulation, 1 pulse), and each modulation threshold table includes a threshold value of a modulation mode boundary (in this embodiment, , The rotational speed value ⁇ ) associated with the target torque value T * is stored.
  • FIG. 9 shows the boundary between the torque threshold value and the rotation speed threshold value corresponding to the modulation ratio boundary of the modulation switching boundary.
  • the torque threshold value and the rotational speed threshold value corresponding to the modulation ratio boundary for switching from the three-phase modulation to the two-phase modulation are the solid curve part A and the two-dot chain line part Ao shown in FIG.
  • the torque threshold value and the rotation speed threshold value corresponding to the modulation ratio boundary for switching to the three-phase modulation are a dotted curve portion B shown in FIG. 9 and a dotted line portion Bo continuous thereto.
  • the torque threshold value and the rotational speed threshold value of that portion are set to As (threshold for changing from three-phase modulation to two-phase modulation) ), Bs (threshold for change from two-phase modulation to three-phase modulation) to expand the two-phase modulation region. Between As / Ao and between Bs / Bo are the enlarged specific areas.
  • a thin solid line C in FIG. 9 represents a switching threshold value from two-phase modulation to 1 pulse
  • a thin dotted line D represents a switching threshold value from 1 pulse to two-phase modulation
  • a two-dot chain line E represents the limit of two-phase modulation.
  • the switching threshold value (A, Ao) from the three-phase modulation to the two-phase modulation is set such that the threshold value Ao higher than the region An where the noise of the electric motor 10m with respect to the resolver 17m increases and becomes higher in the direction lower than the region An. It is a shifted one.
  • the threshold here is a rotational speed threshold associated with the target torque.
  • the switching threshold value from the two-phase modulation to the three-phase modulation is also shifted to Bs.
  • the two-phase modulation with less noise is adopted. Therefore, disturbance of the rotation detection signal SG ⁇ of the resolver 17m due to motor noise is reduced, and the reliability of drive control of the motor 10m is improved.
  • the threshold Bs is lower than As and a margin is provided between the two. Yes. That is, a hysteresis is given to the switching of the modulation mode.
  • FIG. 4 shows the contents of “Modulation mode determination” (11).
  • the modulation mode is limited to the two-phase modulation or the 1 pulse mode when the modulation ratio Mi is less than the threshold value (fixed value) Mit, and is limited to the three-phase modulation or the two-phase modulation above the Mit.
  • the microcomputer MPU determines that the current modulation ratio Mi is less than Mit, the standard threshold value for switching from three-phase modulation to two-phase modulation corresponding to the current target torque T *.
  • the standard threshold value ⁇ 23 at the boundary for switching to ⁇ 32 and vice versa is read from the modulation threshold value table (22).
  • each threshold value is changed to a value (reference threshold value) obtained by multiplying each threshold value by “Vst / Vuc” in order to lower these threshold values ⁇ 32 and ⁇ 23 (23).
  • Vst is a reference voltage
  • Vuc is an output voltage of the converter 1, that is, a secondary side voltage.
  • the optimum modulation switching boundary value when the secondary side voltage is Vst is written in the modulation threshold value table as a standard threshold value. If the current secondary voltage Vuc is higher than the reference voltage Vst by changing the threshold value in step 23, the reference threshold value is changed to a lower value. When the secondary side voltage Vuc is equal to the reference voltage Vst, the threshold value is not changed.
  • the modulation mode is determined to be three-phase modulation (24, 25), but if it is more than the reference threshold value ⁇ 32, it is determined to be two-phase modulation (26, 27). In any case, two-phase modulation is determined if the current modulation mode is 1 pulse (28, 27), but if it is not 1 pulse, the current modulation mode is maintained (28, 29). That is, the current modulation mode is determined as the modulation mode set in the next “output update” 15.
  • the boundary standard threshold value ⁇ 21 corresponding to the current target torque T * and the boundary threshold value ⁇ 12 for switching from two-phase modulation to 1 pulse modulation, and vice versa Read from the modulation threshold table (30).
  • each threshold value is changed to a value (reference threshold value) obtained by multiplying each threshold value by “Vst / Vuc” in order to lower these threshold values ⁇ 21 and ⁇ 12 (31).
  • the modulation mode is determined to be 1 pulse modulation (32, 33), but if it is equal to or lower than the reference threshold ⁇ 12, it is determined to be two-phase modulation (34, 35). Nonetheless, if the current modulation mode is three-phase modulation, it is determined as two-phase modulation (36, 35), but if it is not three-phase modulation, the current modulation mode is maintained (36, 37). That is, the current modulation mode is determined as the modulation mode set in the next “output update” 15.
  • the first and second inverters 19m and 19g for driving the two electric motors 10m and 10g are connected to one bidirectional converter 1, and the secondary target voltage Vuc * of the converter is used to drive the first electric motor 10m. Since the higher one of the first target voltage Vuc * m and the second target voltage Vuc * g required for driving the second motor 10g is set to the higher one, the second motor 10g is in the power generation (regeneration) mode in most cases.
  • the second target voltage Vuc * g required by the second inverter 19g that receives power from the second electric motor 10g is higher than the first target voltage Vuc * m required by the first inverter 19m that supplies power to the first electric motor 10m.
  • the spike current generated by the PWM switching of the first inverter 19m may be increased.
  • the reference threshold value standard threshold value ⁇ (Vst / Vuc) is set to 2 from the three-phase modulation. Since the reference threshold value for switching to phase modulation is reduced, switching from three-phase modulation to two-phase modulation is performed early.
  • each phase target voltage calculated in the three-phase conversion (11) of the modulation mode determined in the modulation control (12) is output to the PWM pulse generation 50. Further, the step-up PWM pulse and the step-down PWM pulse with the duties Pvf and Pvr calculated by “Pvf, Pvr” (7) are output to the drive circuit 20v, and the secondary target voltage Vuc * is output to the second motor control device 30g.
  • the process proceeds to "input reading” (2) again. Then, the above-described “input reading” (2) and subsequent processes are executed. If there is a stop instruction from the system controller while waiting for the next repetitive processing timing, the microcomputer MPU stops the output for energizing the motor rotation (17, 18).
  • the electric motor (electric motor) 10g which is the second rotating electrical machine that is rotationally driven by the on-vehicle engine, is sometimes referred to as a generator or a generator.
  • the electric motor 10g operates the engine when starting the engine. It is an electric motor (power running) that is driven to start, and is a generator (regeneration) that is rotationally driven by the engine to generate electric power when the engine is started.
  • the function and operation of the second motor control device 30g for controlling the electric motor 10g are the same as those of the motor control device 30m, and the configuration and operation of the second inverter 19g for supplying power to the electric motor 10g are the same as those of the first inverter 19m. It is the same.
  • the configuration and function of the second motor control device 30g are the same as those of the first motor control device 30m.
  • the first motor control device 30m calculates the secondary target voltage Vuc * to control the bidirectional converter 1 (FIGS. 2 to 45 to 47, steps 6 and 7 in FIG. 3).
  • the two-motor control device 30g calculates the second target voltage Vuc * g but does not control the bidirectional converter 1.
  • a positive target torque TM * g is given to the second motor control device 30g from a main controller (not shown) when starting the engine, and the second motor control device 30g is the above-mentioned motor of the first motor control device 30m.
  • a motor control operation similar to the control operation is performed.
  • the main controller switches the target torque TM * g to a negative value for power generation (regeneration).
  • the second motor control device 30g controls the second inverter 19g so that the output torque of the second electric motor 10g becomes a negative target torque (engine target load).
  • This content (output calculation) is also the same as the above-described output calculation of the first motor control device 30m.
  • FIG. 5 shows an outline of the second embodiment of the present invention.
  • an electric motor (electric motor) 10m which is a rotating electrical machine to be controlled, is a permanent magnet type synchronous motor that is mounted on a vehicle and rotationally drives wheels, and has a permanent magnet built into the rotor.
  • the stator includes U-phase, V-phase, and W-phase three-phase coils 11 to 13.
  • a voltage type inverter 19m which is a first inverter, supplies electric power to the electric motor 10m from the battery 18 on the vehicle.
  • the rotor of the first resolver 17m for detecting the magnetic pole position of the rotor is connected to the rotor of the electric motor 10m.
  • the resolver 17m generates an analog voltage (rotation angle signal) SG ⁇ m representing the rotation angle of the rotor, and supplies the analog voltage to the motor control device 30m.
  • the input voltage of the inverter 19m is substantially constant. That is, the input voltage of the inverter 19m does not fluctuate as much as the secondary side voltage Vuc of the first embodiment. In contrast to the fluctuation, the input voltage of the inverter 19m of the second embodiment is the battery voltage Vdc. It can be considered constant.
  • FIG. 6 shows a functional configuration of the motor control device 30m shown in FIG. Since this configuration does not use a bidirectional converter, the converter control units (45 to 47) of the motor control device (FIG. 2) of the first embodiment are omitted.
  • the torque command limit 34 reads the maximum voltage Vdcm (fixed value) that can be output from the battery 18 and the limit torque TM * max corresponding to the rotational speed ⁇ from the limit torque table (lookup table), and the target torque TM * is TM *. If it exceeds max, TM * max is set as the target torque T * . When TM * max or less, the motor target torque TM * is set to the target torque T * .
  • the motor target torque T * generated by adding such a restriction is given to the output calculation 35.
  • the voltage sensor 21 detects the power supply voltage (battery voltage) Vdc
  • the field weakening current calculation 412 phase / 3 phase conversion 36 refers to the power supply voltage Vdc to adjust the d-axis field weakening current adjustment value.
  • ⁇ id is calculated, and the two-phase / three-phase converter 36 calculates each phase target voltage VU * , VV * , VW * based on the power supply voltage Vdc.
  • FIG. 7 shows an outline of the motor drive control MDC executed by the microcomputer MPU (CPU thereof) constituting the motor control device 30m of the second embodiment. This omits the processing from the secondary target voltage calculation 35 to the Pvf, Pvr calculation 7 in the first embodiment, and the modulation mode determination 14 in the modulation control 12 can be regarded as the inverter input voltage being substantially constant. This is changed to “modulation mode determination” 14a associated with the battery voltage Vdc.
  • FIG. 8 shows the content of “modulation mode determination” 14a. This is because the inverter input voltage is a battery voltage (substantially constant), so that the processing steps 23 and 31 for correcting the modulation mode switching boundary (threshold value) corresponding to the inverter input voltage Vuc in the first embodiment (FIG. 4). Is omitted.
  • the outline (summary) of the modulation mode classification of the second embodiment is the same as that shown in FIG. 9, but in the second embodiment, the input voltage of the inverter 19m is not a boosted voltage but a battery voltage.
  • the boundary threshold value is different from that in the first embodiment.
  • the switching boundaries A and Ao from the three-phase modulation to the two-phase modulation are set so that the low target torque and the low torque in the high torque and high rotation speed region An where the electric noise applied to the resolver 17m by the electric motor 10m is large.
  • the three-phase / two-phase modulation switching boundaries A and As shifted to the low rotational speed side when the target torque and the rotational speed exceed the boundaries A and As during execution of the three-phase modulation, the two-phase modulation is switched.
  • the two-phase modulation is automatically switched.
  • the number of PWM switching operations of the inverter is reduced, the occurrence of noise in the rotating electrical machine is reduced, the possibility that the rotation detection signal of the resolver is disturbed, and the reliability of the rotating electrical machine drive control is improved.
  • the specific regions (As to Ao, As ′ to Ao ′) are those that are generated during powering (As ′ to Ao ') is larger.
  • the required current (modulation rate) is larger during power running than during regeneration.
  • the motor control devices 30m and 30g perform two-phase modulation when the torque and rotational speed of the electric motors 10m and 10g are in specific regions (As to Ao, As ′ to Ao ′).
  • the above switching is performed and not performed during regeneration.
  • a motor current that is higher by the added loss of the inverter and motor is required during power running, but conversely during regeneration.
  • the motor current generated by the regenerative torque is as low as the motor and inverter losses. Therefore, the resolver noise in the specific region (As ′ to Ao ′) is small during regeneration.
  • Switching from the three-phase modulation to the two-phase modulation in the specific region controls the region that is originally desired to be controlled by the three-phase modulation by the two-phase modulation. Therefore, current distortion is not a problem.
  • this modification paying attention to this, at the time of regeneration with a low necessity for countermeasures against resolver noise, switching to two-phase modulation is not performed when in a specific region (As ′ to Ao ′), and an increase in current distortion is avoided.
  • the specific area (As ′ to Ao ′) during regeneration is omitted. That is, the specific area is only the specific area (As to Ao) at the time of regeneration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

 モータの駆動エラーを防止。具体的には、モータノイズによるレゾルバの回転検出信号の乱れを低減。  回転電機の目標トルク,回転速度,回転角を用いて、回転電機の出力トルクを目標トルクにするように、インバータを制御し、インバータに入力される電圧に対する回転電機に印加する電圧の比である変調比が3相/2相変調切換え境界より大きくなるとインバータの制御を3相変調から2相変調に切換える3相/2相変調を行うが、変調比が前記3相/2相変調切換え境界より小さい3相変調領域においても、前記3相/2相変調切換え境界に対応する回転電機のトルク,回転速度よりも低いトルク閾値,回転速度閾値を超える、回転電機がレゾルバに与える電気的ノイズが大きい特定領域では、2相変調に切換える。昇圧電圧Vucを用いる態様では、前記トルク閾値を、昇圧電圧Vucが高いほど低く下げて前記特定領域を広げる。

Description

回転電機制御装置
 本発明は、インバータから電動機に給電する電力およびその逆方向の回生電力を制御する回転電機制御装置に関し、特に、レゾルバを備える回転電機制御装置の、インバータ制御モードすなわち変調モードの制御に関する。本発明の回転電機制御装置は例えば、電動機で車輪を駆動する電気自動車(EV)、および、該電動機に加えて燃料エンジンおよび該エンジンによって回転駆動される発電機(電動機または発電動機と言われることもある)を備えるハイブリッド電気自動車(HEV)に使用することができる。
 3相インバータの、3相のPWMスイッチングにより3相交流を生成して3相交流回転電機の各相コイルに印加する3相変調モードは、PWMスイッチングを3相に対して行うのでスイッチング電力損失が高く、2相変調による電流歪が小さくなる運転領域では、3相変調モードから、2相変調モードに切換えることが行われている(例えば特許文献1)。なお、2相変調モードとは、1相は正弦波を形成するためのPWMスイッチングを停止して半波区間の間連続高レベル又は低レベルとし、これを相を順番に切り換えて実行するものである。
 ところで、ベクトル制御を用いる電動機制御では、電動機の動作状態を把握しベクトル制御にフィードバックするために、電動機の回転角(磁極位置)θの検出が必要である。特許文献2は、モータ電流に基づいて磁極位置を推定算出し、モータ電流の高周波成分を抽出してそれに基づいて磁極位置補正量を算出して、磁極位置を補正する、センサレスのモータ制御を記載している。しかし、電動機にロータリーエンコーダ又はレゾルバを連結して磁極位置を検出する態様もある。
 レゾルバは、高周波電流で励磁される巻線がある回転子を電動機で回転駆動し、固定子巻線に誘起する電圧が、励磁電流周波数の誘起電圧が回転子の回転により昇降する(変調される)ものであるので、これを広域カットフィルタを通して(復調して)回転子の回転を表す正弦波(又は余弦波)を、電動機の回転角および回転速度を表す回転検出信号として出力するものである。回転検出信号の位相は、電動機の回転角(電気角θ)に対応し、周波数は電動機の回転速度ωに比例する。回転検出信号から、角度,速度演算によって、電動機の回転角θおよび回転速度ωを算出することができる。
 なお、特許文献3は、弱め界磁制御による電力損失やシステム効率の低下をなくすために、弱め界磁制御を省略し、インバータに印加する動作電圧を高くする昇圧回路を備え、バッテリ電圧がモータの目標動作に対して不足するときは、昇圧回路からインバータに給電するモータ駆動制御装置を記載している。特許文献4は、バッテリ電圧を昇圧する回路を備えて、モータの目標動作および速度起電力に対応する所要昇圧電圧を算出して、該昇圧電圧になるように昇圧回路を制御するモータ駆動制御装置を記載している。
特許第3844060号公報 特開2007-151344号公報 特開平10-66383号公報 特許第3746334号公報
 ところが、レゾルバは電動機に、又はその近傍に配設されるので、電動機が発生する電気的ノイズすなわち高周波ノイズを受けやすい。電動機が発生する高周波ノイズがレゾルバの固定子巻線または信号処理回路、あるいは出力リードに作用すると、レゾルバの回転検出信号が乱される可能性がある。車輪駆動モータの場合は、通電電流が大きいので、そのスイッチングノイズは強く、レゾルバの回転検出信号が乱される可能性が高い。
 仮に、ノイズの作用によってレゾルバの回転検出信号(正弦波又は余弦波)の波形が崩れると、電動機の回転角検出値θがエラーとなって、ベクトル制御で電動機を正確に制御できなくなってしまう。特に、3相変調モードでは、インバータのスイッチング回数が多いので、高トルク(高電流)出力になると、電流の高調波成分が増大することにより電磁ノイズが増大して、レゾルバの回転検出信号が乱される可能性が高くなる。また3相変調モードでは、回転数が高くなるとコンバータ(昇圧回路)の2次側電圧(出力電圧)を上げるので、インバータ電圧があげられ、インバータのスイッチングで発生する電界ノイズが強くなり、レゾルバの回転検出信号が乱される可能性が高くなる。
 本発明は、回転電機の駆動制御エラーを防止することを目的とする。具体的には、電気的ノイズによるレゾルバの回転検出信号の乱れを低減すること、換言すると、回転検出信号の乱れによる回転電機の駆動制御の乱れを低減すること、を目的とする。
 上記目的を達成するために本発明においては、回転電機の目標トルク,回転速度,回転角を用いて、回転電機の出力トルクを目標トルクにするように、インバータを制御し、インバータに入力される電圧に対する回転電機に印加する電圧の比である変調比が3相/2相変調切換え境界より大きくなるとインバータの制御を3相変調から2相変調に切換える3相/2相変調を行うが、変調比が前記3相/2相変調切換え境界より小さい領域においても、前記回転電機がレゾルバに与える電気的ノイズが大きい特定領域(An)では2相変調に切換える。これを実施する本発明の第1態様の電動機制御装置は、次の(1)項のものである。
 (1)1次側直流電源(18,22)と回転電機(10m)との間で電力変換を行うインバータ(19m);
 前記回転電機の回転角(θ)および回転速度(ω)に対応する回転検出信号(SG θm)を発生するレゾルバ(17m);
 該回転検出信号に基づいて、回転角および回転速度を算出する手段(32);
 前記回転電機の目標トルク,前記回転速度,回転角を用いて、前記回転電機の出力トルクを前記目標トルクにするように、前記インバータを制御し、前記インバータに入力される電圧に対する前記回転電機に印加する電圧の比である変調比が3相/2相変調切換え境界より大きくなると前記インバータの制御を3相変調から2相変調に切換える3相/2相変調切換え手段(30m);および、
 前記変調比が前記3相/2相変調切換え境界より小さい領域においても、前記回転電機がレゾルバに与える電気的ノイズが大きい特定領域(An)では2相変調に切換える、モータ制御手段(30m);
を備える回転電機制御装置(図5~図9)。
 なお、理解を容易にするためにカッコ内には、図面に示し後述する実施例の対応又は相当要素又は事項の符号を、例示として参考までに付記した。以下も同様である。
 回転電機がレゾルバに与える電気的ノイズが大きい特定領域(An)では、2相変調に切換えるので、回転電機の目標トルクおよび回転速度が、3相変調では電気的ノイズが強くなる高トルクかつ高回転速度の領域(An)となるときには、自動的に2相変調に切り換えられる。これにより、インバータのPWMスイッチングの回数が減少し、回転電機のノイズ発生が低減し、その分レゾルバの回転検出信号が乱れる可能性が低減し、回転電機駆動制御の信頼性が向上する。
 (2)前記モータ制御手段(30m)は、前記変調比が前記3相/2相変調切換え境界より小さい領域においても、前記3相/2相変調切換え境界に対応する前記回転電機の回転速度より低い回転速度値を超え、かつ所定のトルク閾値を超える、前記回転電機がレゾルバに与える電気的ノイズが大きい特定領域(An)では2相変調に切換える;上記(1)に記載の回転電機制御装置。
 変調比が前記3相/2相変調切換え境界より小さい3相変調領域においても、前記3相/2相変調切換え境界に対応する前記回転電機のトルク,回転速度よりも低いトルク閾値,回転速度閾値を超える、前記回転電機がレゾルバに与える電気的ノイズが大きい特定領域(An)では、2相変調に切換えるので、回転電機の目標トルクおよび回転速度が、3相変調では電気的ノイズが強くなる高トルクかつ高回転速度の領域(An)となるときには、自動的に2相変調に切り換えられる。これにより、インバータのPWMスイッチングの回数が減少し、回転電機のノイズ発生が低減し、その分レゾルバの回転検出信号が乱れる可能性が低減し、回転電機駆動制御の信頼性が向上する。
 (3)前記特定領域は、前記回転電機の回生時より力行時の方が大きい;上記(1)又は(2)に記載の回転電機制御装置。
 同一トルク,回転速度の場合、力行時の方が回生時よりも、必要な電流(変調率)が大きい。力行時には、モータ電流→インバータ(損失)→モータ(損失)→トルクの過程でモータ電流がトルクに変換されるのに対し、回生時は、トルク→モータ(損失)→インバータ(損失)→モータ電流の過程でトルクがモータ電流に変換される。力行時と回生時とでトルクを同じにしようとした場合、力行時はインバータ損失とモータ損失を追加した分だけ高いモータ電流が必要になるのに対し、回生時は逆に回生トルクによって発生するモータ電流は、モータ損失とインバータ損失の分だけ低いものとなる。このため、同一トルク,回転速度では回生時より力行時のほうが大きなモータ電流となる。レゾルバノイズの大きさはモータ電流(変調率)に比例して大きくなる傾向がある。すなわち前記特定領域が広がる。本実施態様ではこれに着目して前記特定領域を、前記回転電機の回生時より力行時の方を大きくするので、力行時の回転電機のノイズ発生を十分に低減することができる。
 (4)前記特定領域は、前記回転電機の力行時のみ設定され、回生時には設定されない;上記(1)乃至(3)のいずれか1つに記載の回転電機制御装置。
 上記(3)項で説明したように、力行時と回生時とでトルクを同じにしようとした場合、力行時はインバータとモータの損失を追加した分だけ高いモータ電流が必要になるのに対し、回生時は逆に回生トルクによって発生するモータ電流は、モータとインバータの損失分だけ低いものとなる。したがって回生時は前記特定領域でのレゾルバノイズは小さい。前記特定領域での3相変調から2相変調の切換えは、本来3相変調で制御したい領域を2相変調で制御することになるため、少なからず電流歪が発生する。本実施態様ではこれに着目してレゾルバノイズ対策の必要性が低い回生時には、前記特定領域は設定せず、2相変調への切換えは行わず、電流歪の増大を回避する。
 (5)前記1次側直流電源の電圧を昇圧して2次側電圧(Vuc)として前記インバータに給電し、前記インバータからの回生電力を降圧して前記1次側直流電源に逆給電するコンバータ(1);
 前記回転電機の目標トルクおよび回転速度に対応した2次側目標電圧(Vuc*)を導出する2次側目標電圧決定手段(45);および、
 前記2次側電圧を、前記2次側目標電圧とするように、前記コンバータを制御するコンバータ制御手段(46,47);を更に備え、
 前記モータ制御手段(30m)は、前記目標トルク,回転速度,回転角および2次側目標電圧を用いて、前記回転電機の出力トルクを前記目標トルクにするように、前記インバータを制御し、前記2次側電圧が高くなるほど3相変調から2相変調に切換える前記閾値トルクを小さくして前記特定領域(An)を大きくする;上記(1)乃至(5)のいずれか1つに記載の回転電機制御装置。
 これは、1次側直流電源(18,22)の電圧を昇圧してインバータに給電する双方向コンバータを備える態様である。昇圧電圧すなわち2次側電圧(Vuc)が高くなるとインバータのPWMスイッチングに伴って生じるスパイク電流が大きくなって、回転電機のノイズが増大する可能性が高いが、3相変調から2相変調に切換える前記閾値トルクを下げて特定領域を広げるので、2次側電圧が高いときには自動的に早期に2相変調に切換えられて、回転電機のノイズ発生が低減し、回転電機駆動制御の信頼性が更に向上する。
 (6)前記インバータは、第1および第2回転電機と電力のやり取りを制御する第1および第2インバータ(19m,19g)を含み;
 前記レゾルバは、第1回転電機の回転角および回転速度に対応する回転検出信号を発生する第1レゾルバ(17m)、および、第2回転電機の回転角および回転速度に対応する回転検出信号を発生する第2レゾルバ(17g)、を含み;
 前記回転角および回転速度を算出する手段は、第1レゾルバの回転検出信号に基づいて、第1回転電機の回転角および回転速度を算出する第1手段(30m)、および、第2レゾルバの回転検出信号に基づいて、第2回転電機の回転角および回転速度を算出する第2手段(30g)、を含み;
 前記2次側目標電圧決定手段は、第1回転電機の目標トルクに割り当てられた、回転速度対応の2次側目標電圧特性に基づいて、第1回転電機の回転速度に対応する第1目標電圧を導出する第1の2次側目標電圧決定手段(30m),第2回転電機の目標トルクに割り当てられた、回転速度対応の2次側目標電圧特性に基づいて、第2回転電機の回転速度に対応する第2目標電圧を導出する第2の2次側目標電圧決定手段(30g)、および、第1および第2目標電圧の高い方を、2次側目標電圧に定める手段(30m)、を含み;
 前記3相/2相変調切換え手段は、前記第1インバータを制御し、前記第1インバータに入力される電圧に対する前記第1回転電機に印加する電圧の比である第1変調比が第1の3相/2相変調切換え境界より大きくなると前記第1インバータの制御を3相変調から2相変調に切換える第1の3相/2相変調切換え手段(30m)、および、前記第2インバータを制御し、前記第2インバータに入力される電圧に対する前記第2回転電機に印加する電圧の比である第2変調比が第2の3相/2相変調切換え境界より大きくなると前記第2インバータの制御を3相変調から2相変調に切換える第2の3相/2相変調切換え手段(30g)、を含み;
 前記モータ制御手段は、前記第1変調比が前記第1の3相/2相変調切換え境界より小さい3相変調領域においても、前記第1の3相/2相変調切換え境界に対応する前記第1回転電機のトルク,回転速度よりも低い第1トルク閾値,第1回転速度閾値を超える、前記第1回転電機が前記第1レゾルバに与える電気的ノイズが大きい第1特定領域では、2相変調に切換える、第1モータ制御手段(30m)、および、前記第2変調比が前記第2の3相/2相変調切換え境界より小さい3相変調領域においても、前記第2の3相/2相変調切換え境界に対応する前記第2回転電機のトルク,回転速度よりも低い第2トルク閾値,第2回転速度閾値を超える、前記第2回転電機が前記第2レゾルバに与える電気的ノイズが大きい第2特定領域では、2相変調に切換える、第1モータ制御手段(30g)、を含む;上記(5)に記載の回転電機制御装置。
 2次側電圧(Vuc)が高くなるとインバータのPWMスイッチングに伴って生じるスパイク電流が大きくなる。第1および第2目標電圧の高い方を、2次側目標電圧(Vuc*)に選択して、この電圧になるようにコンバータの2次側電圧(Vuc)を制御すると、選択されなかった方の回転電機に給電するインバータは、必要以上に高い電圧をPWMスイッチングするので、該回転電機のノイズが増大する可能性が高いが、3相変調から2相変調に切換える前記閾値トルクを下げて特定領域を広げるので、2次側電圧が高いときには自動的に早期に2相変調に切換えられて、回転電機のノイズ発生が低減し、回転電機駆動制御の信頼性が向上する。
 (7)第1モータ制御手段(30m)は、前記2次側電圧が高くなるほど前記第1トルク閾値を小さくして第1特定領域を大きくする;上記(6)に記載の回転電機制御装置。2次側電圧が高いときには、第1インバータの制御が自動的に早期に2相変調に切換えられて、第1回転電機のノイズ発生が低減し、回転電機駆動制御の信頼性が更に向上する。
 (8)第2モータ制御手段(30g)は、前記2次側電圧が高くなるほど前記第2トルク閾値を小さくして第2特定領域を大きくする;上記(6)又は(7)に記載の回転電機制御装置。2次側電圧が高いときには、第2インバータの制御が自動的に早期に2相変調に切換えられて、第2回転電機のノイズ発生が低減し、回転電機駆動制御の信頼性が更に向上する。
図1は、本発明の第1実施例の構成の概略を示すブロック図である。 図2は、図1に示すモータ制御装置30mの機能構成の概要を示すブロック図である。 図3は、図2に示すマイコンMPUのモータ制御の概要を示すフローチャートである。 図4は、図3に示す「変調モード決定」(14)の内容を示すフローチャートである。 図5は、本発明の第2実施例の構成の概略を示すブロック図である。 図6は、図5に示すモータ制御装置30mの機能構成の概要を示すブロック図である。 図7は、図6に示すマイコンMPUのモータ制御の概要を示すフローチャートである。 図8は、図7に示す「変調モード決定」(14a)の内容を示すフローチャートである。 図9は、電気モータ10mの変調領域区分を示すグラフである。
符号の説明
2:リアクトル
3:スイッチング素子(昇圧用)
4:スイッチング素子(降圧用)
5,6:ダイオード
7:温度センサ
10m,10g:電気モータ
11~13:3相のステータコイル
14m~16m:電流センサ
17m:第1レゾルバ
17g:第2レゾルバ
18:車両上のバッテリ
21:電圧センサ
22:1次側コンデンサ
23:2次側コンデンサ
24:2次側電圧センサ
Vdc:1次電圧(バッテリ電圧)
Vuc:2次側電圧(昇圧電圧)
Vuc*:2次目標電圧
 本発明の他の目的および特徴は、図面を参照した以下の実施例の説明より明らかになろう。
 -第1実施例-
 図1に、本発明の第1実施例の概要を示す。制御対象の第1回転電機である電気モータ(電動機)10mは、この実施例では、車両に搭載されており車輪を回転駆動するための永久磁石形同期電動機であって、ロータに永久磁石を内蔵したものであり、ステータにはU相,V相及びW相の3相コイル11~13がある。電気モータ10mには、第1インバータである電圧型インバータ19mが、車両上のバッテリ18の電力を供給する。電気モータ10mのロータに、ロータの磁極位置を検出するための第1レゾルバ17mのロータが連結されている。レゾルバ17mは、そのロータの回転角を表すアナログ電圧(回転角信号)SG θmを発生し、モータ制御装置30mに与える。
 車両上の蓄電池であるバッテリ18には、車両上の電装部が電源オンのときには、1次側コンデンサ22が接続されて、バッテリ18と共に1次側電源を構成する。1次側電源の正極(+ライン)には、双方向コンバータ回路1のリアクトル2の一端が接続されている。
 コンバータ回路1には更に、該リアクトル2の他端と1次側電源の負極(-ライン)の間をオン,オフする昇圧スイッチング素子3,2次側コンデンサ23の正極と前記他端との間をオン,オフする降圧スイッチング素子4、および、各スイッチング素子3,4に並列に接続された各ダイオード5,6がある。ダイオード5のアノードはリアクトル2の他端に、カソードは1次側電源の負極(-ライン)に接続されており、ダイオード6のアノードは2次側コンデンサ23の正極に、カソードはリアクトル2の他端に接続されている。スイッチング素子3,4のいずれにも、本実施例では、IGBT(Insulated Gate Bipolar Transistor)を用いた。
 昇圧スイッチング素子3をオン(導通)にすると1次側電源(18,22)からリアクトル2を介して昇圧スイッチング素子3に電流が流れ、これによりリアクトル2が蓄電し、昇圧スイッチング素子3がオフ(非導通)に切換るとリアクトル2がダイオード6を通して2次側コンデンサ23に高圧放電する。すなわち1次側電源の電圧よりも高い電圧を誘起して2次側コンデンサ23を充電する。昇圧スイッチング素子3のオン,オフを繰り返すことにより、2次側コンデンサ23の高圧充電が継続する。すなわち、高い電圧で2次側コンデンサ23が充電される。一定周期でこのオン,オフを繰り返すと、オン期間の長さに応じてリアクトル2が蓄積する電力が上昇するので、該一定周期の間のオン時間(オンデューティ:該一定周期に対するオン時間比)を調整することによって、すなわちPWM制御によって、1次側電源18,22からコンバータ回路1を介して2次側コンデンサ23に給電する速度(力行用の給電速度)を調整することが出来る。
 降圧スイッチング素子4をオン(導通)にすると、2次側コンデンサ23の蓄積電力が、降圧スイッチング素子4およびリアクトル2を通して、1次側電源18,22に与えられる(逆給電:回生)。この場合も、一定周期の間の降圧スイッチング素子4のオン時間を調整することによって、すなわちPWM制御によって、2次側コンデンサ23からコンバータ回路1を介して1次側電源18,22に逆給電する速度(回生用の給電速度)を調整することができる。
 電圧型インバータ19mは、6個のスイッチングトランジスタTr1~Tr6を備え、ドライブ回路20mが並行して発生する6連の駆動信号の各連によってトランジスタTr1~Tr6をオン(導通)駆動して、2次側コンデンサ23の直流電圧(コンバータ回路1の出力電圧すなわち2次側電圧)を3連の、位相差が2π/3の交流電圧、すなわち3相交流電圧に変換して、電気モータ10mの3相(U相,V相,W相)のステータコイル11~13のそれぞれに印加する。これにより電気モータ10mのステータコイル11~13のそれぞれに各相電流iUm,iVm,iWmが流れ、電気モータ10mのロータが回転する。6個のスイッチングトランジスタTr1~Tr6は、いずれもIGBTである。
 PWMパルスによるトランジスタTr1~Tr6のオン/オフ駆動(スイッチング)に対する電力供給能力を高くしかつ電圧サージを抑制するために、インバータ19mの入力ラインである、コンバータ回路1の2次側出力ラインには、大容量の2次側コンデンサ23が接続されている。これに対して1次側電源を構成する1次側コンデンサ22は、小型かつ低コストの小容量のものであり、1次側コンデンサ22の容量は、2次側コンデンサ23の容量よりもかなり小さい。電圧センサ24が、コンバータ回路1の2次側電圧Vucを検出してコンバータ制御装置30vに与える。電気モータ10mのステータコイル11~13に接続した給電線には、ホールICを用いた電流センサ14m~16mが装着されており、それぞれ、各相電流iUm,iVm,iWmを検出し電流検出信号(アナログ電圧)を発生し、モータ制御装置30mに与える。
 図2に、第1モータ制御装置30mの機能構成を示す。第1モータ制御装置30mは、本実施例では、マイクロコンピュータ(以下マイコンと言う)MPUを主体とする電子制御装置であり、マイコンMPUと、ドライブ回路20m,電流センサ14~16,レゾルバ17および2次側電圧センサ24との間の、図示しないインターフェイス(信号処理回路)を含み、さらに、マイコンMPUと、前記車両上の図示しない車両走行制御システムのメインコントローラならびにモータ制御装置30gとの間の、図示しないインターフェイス(通信回路)も含む。
 図2を参照すると、レゾルバ17mが与える回転角信号SG θmに基づいて、モータ制御装置30mであるマイコンMPUが、電気モータ10mのロータの回転角度(磁極位置)θおよび回転速度(角速度)ωを算出する。
 なお、正確にいうと、電気モータ10mのロータの回転角度と磁極位置とは同一ではないが、両者は比例関係にあり比例係数が電気モータ10mの磁極数pによって定まる。また、回転速度と角速度とは同一ではないが、両者も比例関係にあり比例係数が電気モータ10mの磁極数pによって定まる。本書においては、回転角度θは磁極位置を意味する。回転速度ωは角速度を意味するが、回転速度を意味する場合もある。
 図示しない車両走行制御システムのメインコントローラが、モータ目標トルクTM*をモータ制御装置30mすなわちマイコンMPUに与える。なお、該メインコントローラは、前記車両の車速及びアクセル開度に基づいて車両要求トルクTO*を算出し、該車両要求トルクTO*に対応してモータ目標トルクTM*を発生して、マイコンMPUに与える。マイコンMPUは、電気モータ10mの回転速度ωrpmをメインコントローラに出力する。
 マイコンMPUは、トルク指令制限34によって、2次目標電圧Vuc*および回転速度ωに対応する制限トルクTM*maxを制限トルクテーブル(ルックアップテーブル)から読み出して、目標トルクTM*がTM*maxを超えていると、TM*maxを目標トルクT*に定める。TM*max以下のときには、モータ目標トルクTM*を目標トルクT*に定める。このような制限を加えて生成したモータ目標トルクT*が、2次目標電圧算出45および出力演算35に与えられる。
 なお、制限トルクテーブルは、2次目標電圧Vuc*および回転速度範囲内の電圧の各値をアドレスとし、該各値で電気モータ10mに生起させることができる最大トルクを制限トルクTM*maxとして書込んだメモリ領域であり、本実施例ではマイコンMPU内の図示しないRAMの1メモリ領域を意味する。制限トルクTM*maxは、2次目標電圧Vuc*が高いほど大きく、低いほど小さい。また、回転速度ωが低いほど大きく、高いほど小さい。
 上記マイコン内には、該制限トルクテーブルのデータTM*maxを書込んだ不揮発性メモリがあり、マイコンに動作電圧が印加されてマイコンが、自身および図1に示すモータ駆動システムを初期化する過程で、不揮発性メモリから読み出してRAMに書き込む。マイコンにはその他の同様なルックアップテーブルが複数あり後に言及するが、これらも、制限トルクテーブルと同様に、不揮発性メモリにあった参照データが書き込まれた、RAM上のメモリ領域を意味する。
 モータ制御装置30mのマイコンMPUは、2次目標電圧算出45において、目標トルクT*と回転速度ωに基づいて「力行」か「回生」かを判定して、「力行」であると「力行」グループ内の、「回生」であると「回生」グループ内の、目標トルクT*に割り当てられた第1目標電圧テーブルから、電動機10mの回転速度ωに割り当てられた第1目標電圧Vuc*mを読み出す。
 もう1つのモータ制御装置30gのマイコンも、2次目標電圧算出45と同様なデータ処理によって、電動機(発電機)10gの目標トルクT*と回転速度ωに基づいて「力行」か「回生」かを判定して、「力行」であると「力行」グループ内の、「回生」であると「回生」グループ内の、目標トルクT*に割り当てられた第2目標電圧テーブルから、電動機10gの回転速度ωに割り当てられた第2目標電圧Vuc*gを読み出す。この第2目標電圧Vuc*gがマイコンMPU(図2)に与えられる。
 マイコンMPUの2次目標電圧算出45(図2)は、自身が算出した第1目標電圧Vuc*mと、モータ制御装置30gのマイコンが与えた第2目標電圧Vuc*gの内、高い方を2次目標電圧Vuc*として、前記トルク指令制限34とフィードバック制御演算46に与える。
 フィードバック制御演算46は、電圧センサ24が検出した2次側電圧Vucを2次目標電圧Vuc*とするための制御出力PvcをフィードバックPI(比例・積分)演算により算出し、PWMパルス発生47に与える。該パルス発生47は、制御信号Pvcを、昇圧スイッチング素子3をオン,オフする昇圧(力行)PWMパルスと、降圧スイッチング素子4をオン,オフする降圧(回生)PWMパルスに変換して、ドライブ回路20vに出力する。ドライブ回路20vは、昇圧PWMパルスに対応して昇圧スイッチング素子3をオン,オフし、降圧PWMパルスに対応して降圧スイッチング素子4をオン,オフする。これにより、双方向コンバータ1の2次側電圧Vucが、2次目標電圧Vuc*又はそれに直近の値に制御される。なお、昇圧PWMパルスと降圧PWMパルスとの間には、昇圧スイッチング素子3と降圧スイッチング素子4の同時オン(出力短絡)を防止するために、一方がオン指示レベルのときには他方をオフ拘束レベルとする保護期間(デッドタイム)が設定されている。
 モータ制御装置30mのマイコンMPUは、「出力演算」35において、電気モータ10mのロータにおける磁極対の方向にd軸を、該d軸と直角の方向にq軸をそれぞれ採った、公知のd-q軸モデル上のベクトル制御演算、による電動機駆動のためのフィードバック制御を行う。そのため該マイコンは、電流センサ14~16の電流検出信号iU,iV,iWをデジタル変換して読込み、電流帰還演算にて、公知の固定/回転座標変換である3相/2相変換を用いて、固定座標上の3相電流値iU,iV,iWを、回転座標上のd軸およびq軸の2相電流値id,iqに変換する。
 1つのルックアップテーブルである第1高効率トルク曲線テーブルAが出力演算35にあり、この第1高効率トルク曲線テーブルAには、モータ速度ωおよびモータ目標トルクT*に対応付けられた、各モータ速度で各目標トルクT*を発生するための各d軸電流値idが書き込まれている。
 d軸電流idおよびq軸電流iqの各値に対応して電気モータの出力トルクが定まるが、1つの回転速度値に対して、すなわち同一のモータ回転速度において、同一トルクを出力するためのid,iqの組合せが無数にあり、定トルクカーブ上にある。定トルクカーブ上に、最も電力使用効率が高い(最低電力消費の)id,iqの組合せがあり、そこが高効率トルク点である。複数のトルクカーブ上の高効率トルク点を連ねる曲線が、高効率トルク曲線であって各回転速度に対して存在する。モータの回転速度宛ての高効率トルク曲線上の、与えられたモータ目標トルクT*の位置のd軸電流idおよびq軸電流iqを目標電流値として電気モータ10mの付勢を行うことにより、目標トルクT*を電気モータ10mが出力し、しかもモータ付勢の電力使用効率が高い。
 本実施例では、高効率トルク曲線を、d軸の値を表す第1高効率トルク曲線Aと、q軸の値を表わす第2高効率トルク曲線Bの、2系統に分け、しかも、第1高効率トルク曲線Aは、力行領域に適用するものと回生領域に適用するものを対にしたものとし、いずれもモータ回転速度と目標トルクに対するd軸目標電流を表すものである。
 第1高効率トルク曲線テーブルAは、目標トルクT*に宛てられた、最低電力消費で目標トルクを発生するためのd軸目標電流を書込んだメモリ領域であり、力行用の力行テーブルA1と、回生用の回生テーブルA2をあわせた1対で構成されている。力行用と回生用のいずれのテーブルを用いるかは、電気モータの回転速度ωと与えられる目標トルクT*に基づいて、力行か回生かを判定し、判定結果に従って決定する。
 ただし、電気モータ10mの回転速度ωが上昇するのに伴ってステータコイル11~13に発生する逆起電力が上昇し、コイル11~13の端子電圧が上昇する。これに伴ってインバータ19からコイル11~13への目標電流の供給が難しくなり、目標とするトルク出力が得られなくなる。この場合、与えられたモータ目標トルクT*の定トルク曲線上で、曲線に沿ってΔid,Δiq分、d軸電流idおよびq軸電流iqを下げることにより、電力使用効率は低下するが、目標トルクT*を出力することができる。これが弱め界磁制御といわれている。d軸弱め界磁電流Δidは、界磁調整代演算により生成して、d軸電流指令を算出し、q軸電流指令を算出する。d軸弱め界磁電流Δidは、弱め界磁電流演算41が算出する。その内容は後に説明する。
 マイコンMPUは、「出力演算」35の中のd軸電流指令の算出では、トルク指令制限34によって決定した目標トルクT*に対応して第1高効率トルク曲線テーブルAから読出したd軸電流値idから、d軸弱め界磁電流Δidを減算して、d軸目標電流id*を、id*=-id-Δid、と算出する。
 q軸電流指令の算出では、出力演算35にある第2高効率トルク曲線テーブルBを用いる。第2高効率トルク曲線テーブルBは、高効率トルク曲線の、q軸の値を表わす第2高効率トルク曲線Bを更に、d軸弱め界磁電流Δidと対のq軸弱め界磁電流Δiqを減算したq軸目標電流を表わす曲線に補正し、補正後の第2高効率トルク曲線Bのデータ、を格納したものである。第2高効率トルク曲線テーブルBは、目標トルクT*およびd軸弱め界磁電流Δidに宛てられた、最低電力消費で目標トルクを発生するためのd軸目標電流、すなわち、補正後の第2高効率トルク曲線Bの目標電流値、を書込んだメモリ領域であり、これも、力行用の力行テーブルB1と、回生用の回生テーブルB2をあわせた1対で構成されている。力行用と回生用のいずれを用いるかは、電気モータの回転速度ωと目標トルクT*に基づいて、力行か回生かを判定し、判定結果に従って決定する。
 q軸電流指令の算出では、目標トルクT*およびd軸弱め界磁電流Δidに宛てられたq軸目標電流iq*を、第2高効率トルク曲線テーブルBから読み出してq軸電流指令とする。
 モータ制御装置30mのマイコンMPUは、出力演算35にて、d軸目標電流id*とd軸電流idとの電流偏差δid、及びq軸目標電流iq*とq軸電流iqとの電流偏差δiqを算出し、各電流偏差δid,δiqに基づいて、比例制御及び積分制御(フィードバック制御のPI演算)を行い、出力電圧としてのd軸電圧指令値vd*およびq軸電圧指令値vq*を算出する。
 弱め界磁電流演算41は、弱め界磁制御のためのパラメータである電圧飽和指標mを算出する。すなわち、d軸電圧指令値vd*及びq軸電圧指令値vq*に基づいて、電圧飽和の程度を表す値として、電圧飽和算定値ΔVを算出し、界磁調整代を算出する。該界磁調整代の算出では、ΔVを積算し、積算値ΣΔVが正の値を採る場合、積算値ΣΔVに比例定数を乗算して弱め界磁制御を行うためのd軸弱め界磁電流Δidを算出し、正の値に設定し、電圧飽和算定値ΔV又は積算値ΣΔVが零以下の値を採る場合、前記調整値Δidおよび積算値ΣΔVを零にする。調整値Δidは、前述の出力演算35において、d軸電流指令の算出およびq軸電流指令の算出に使用する。
 次に、回転/固定座標変換である2相/3相変換36にて、回転座標上の目標電圧vd*及びvq*を、2相/3相変換に従って固定座標上の各相目標電圧VU*,VV*,VW*に変換する。これは、電圧制御モードが3相変調であるときには、変調37を介してPWMパルス発生50に送る。電圧制御モードが2相変調であるときには、変調37の2相変調で3相変調モードの各相目標電圧VU*,VV*,VW*を2相変調のものに変換してPWMパルス発生50に送る。電圧モードが、全相を矩形波通電とする1pulseモードであるときには、変調37の1pulse変換で、3相変調モードの各相目標電圧VU*,VV*,VW*を各相矩形波通電とするものに変換してPWMパルス発生50に与える。
 PWMパルス発生50は、3相目標電圧VU*,VV*,VW*が与えられると、それら各値の電圧を出力するための、PWMパルスMU,MV,MWに変換して、図1に示されるドライブ回路20mに出力する。ドライブ回路20mは、PWMパルスMU,MV,MWに基づいて6連の駆動信号を並行して発生し、各連の駆動信号で、電圧型インバータ19mのトランジスタTr1~Tr6のそれぞれをオン/オフする。これにより、電気モータ10mのステータコイル11~13のそれぞれに、VU*,VV*およびVW*が印加され、相電流iU,iVおよびIWが流れる。2相変調モードの各相目標電圧が与えられると、PWMパルス発生器は、2相はPWMパルスを発生し残りの1相はオン又はオフ(定電圧出力)信号とする。該オン又はオフの定電圧とする相は、順次に切り換える。1pulse変調モードの各相目標電圧が与えられるときは、ドライブ回路20mは、各相を矩形波通電とする通電区間信号を出力する。
 更に、2相/3相変換36にて、2相/3相変換の過程で電動機目標電圧Vm*を算出する。Vm*=√(Vd*2+Vq*2)、である。この電動機目標電圧Vm*と2次側コンデンサ23の電圧Vuc(電圧センサ24の電圧検出値)とから、変調制御42の変調比算出43が、変調比Mi=Vm*/Vuc*mを算出する。変調モード決定44が、電動機10mの変調比Mi,目標トルクT*および回転速度ωに基いて、変調モードを決定する。決定した変調モードに応じて、該変調モードの各相目標電圧の出力を、変調37の中の選択40に指示する。選択40は、変調モードが3相変調であるときには、変調37を介してPWMパルス発生50に送る。変調モードが2相変調であるときには、変調37の2相変調38で3相変調モードの各相目標電圧VU*,VV*,VW*を2相変調のものに変換してPWMパルス発生50に送る。変調モードが、全相を矩形波通電とする1pulseモードであるときには、変調37の1pulse変換39で、3相変調モードの各相目標電圧VU*,VV*,VW*を各相矩形波通電とするものに変換してPWMパルス発生50に与える。
 図2に示すマイコンMPUには、CPUの他に、データを記録したり、各種のプログラムを記録したりするためのRAM,ROMおよびフラッシュメモリが備わっており、ROM又はフラッシュメモリに格納されたプログラム,参照データおよびルックアップテーブルをRAMに書き込んで、該プログラムに基づいて、図2に2点鎖線ブロックで囲んで示す入力処理,演算および出力処理を行う。
 図3に、該プログラムに基づいてマイコンMPU(のCPU)が実行するモータ駆動制御MDCの概要を示す。動作電圧が印加されるとマイコンMPUは、自身およびPWMパルス発生50およびドライブ回路20mの初期化を行って、電動機10mを駆動するインバータ19mを停止待機状態に設定する。そして図示しない車両走行制御システムのメインコントローラからのモータ駆動スタート指示を待つ。モータ駆動スタート指示が与えられると、マイコンMPUは、「開始処理」(ステップ1)によって、内部レジスタに電動機制御の初期値を設定して、「入力読込み」(ステップ2)で、入力信号又はデータを読み込む。すなわち、メインコントローラが与える第1目標トルクTM*およびモータ制御装置30gが与える第2目標電圧Vuc*gを読み込み、また、電流センサ14m~16mが検出した各相電流値iU,iV,iW,レゾルバ17の回転角信号SG θmおよび電圧センサ24が検出した2次側電圧Vucをデジタル変換により読込む。
 なお、以下においては、括弧内には、ステップという語を省略して、ステップ番号のみを記す。
 次にマイコンMPUは、読込んだ回転角信号SG θm(回転角データSG θm)に基づいて電動機10mの回転角度θおよび回転速度ωを算出する(3)。この機能を図2上には、角度,速度演算32として示した。次にマイコンMPUは、読み込んだモータ目標トルクTM*,読込んだ2次側電圧Vucおよび算出した回転速度ωに対応する制限トルクTM*maxを制限トルクテーブルから読み出して、読み込んだモータ目標トルクTM*がTM*maxを超えていると、TM*maxを目標トルクT*に定める。TM*max以下のときには、読み込んだモータ目標トルクTM*を目標トルクT*に定める(4)。この機能を図2上には、トルク指令制限34として示した。
 次にマイコンMPUは、「2次側目標電圧算出」(5)で、電動機10mが「力行」運転か「回生」運転かを判定し、判定結果に対応してグループを選択し、その中の、目標トルクT*に対応付けられている第1目標電圧テーブルから、現在の回転速度ωに割り当てられている第1目標電圧Vuc*mを読み出し、それと、モータ制御装置30gが与えた第2目標電圧Vuc*gの内、高い方を2次目標電圧VUc*に定める。この「2次側目標電圧算出」(5)の内容は、上述の、図2に示す2次側目標電圧算出45の内容である。
 次にマイコンMPUは、「Pvc算出」(6)で、電圧センサ24が検出した2次側電圧Vucを2次目標電圧Vuc*とするための制御出力PvcをフィードバックPI(比例・積分)演算により算出する。そして「Pvf,Pvr算出」(7)で、制御出力Pvcを、昇圧スイッチング素子3をオン,オフする昇圧PWMパルスのオンデューティデータPvfおよび降圧スイッチング素子4をオン,オフする降圧PWMパルスのオンデューティデータPvrに変換する。「Pvc算出」(6)は図2に示すフィードバック制御演算(46)の内容であり、「Pvf,Pvr算出」(7)は、図2に示すPWMパルス発生47の、デューティ信号変換に該当する。PWMパルス発生47の、デューティ信号対応のPWMパルス出力は、ステップ15の出力更新で行う。
 次にマイコンMPUは、読込んだ3相の電流検出信号iU,IV,iWを、3相/2相変換により、2相のd軸電流値idおよびq軸電流値に変換する(8)。この機能を図2上には、電流帰還31として示した。次にマイコンMPUは、d軸弱め界磁制御を行うためのd軸弱め界磁電流Δidを算出する(9)。この機能を図2上には、弱め界磁電流演算41として示した。
 「出力演算」(10)の内容は、上述の、図2に示す出力演算35の内容と同様である。該「出力演算」(10)で算出したd-q軸の電圧目標値Vd*,Vq*を、3相変調モードの各相目標電圧VU*,VV*,VW*に変換する(11)。このとき電動機目標電圧Vm*も算出する。つぎの「変調制御」(12)で、変調比Miを算出し(13)、変調比Mi,目標トルクT*,回転速度ωおよび2次側電圧Vucに基いて、変調モードを決定する(14)。この内容は図4を参照して後述する。
 図9に、変調モードの区分の大要(概要)を示す。図9には目標トルクT*と回転速度ωをパラメータとして示すが、もう一つのパラメータとして変調比Miがある。また、本実施例では、コンバータ1の出力電圧すなわち2次側電圧Vucも、変調モード切換えのパラメータである。マイコンMPUには、変調モード(3相変調,2相変調,1pulse)に対応付けた変調閾値テーブル(ルックアップテーブル)があり、各変調閾値テーブルには、変調モード境界の閾値(本実施例では、目標トルク値T*に対応付けた回転速度値ω)が格納されている。
 図9は、変調切換え境界の変調比境界に対応する、トルク閾値,回転速度閾値の境界を示している。3相変調から2相変調への切換えの変調比境界に対応するトルク閾値,回転速度閾値は、図9上に示す実線曲線部Aとそれに連続する2点鎖線部Aoであり、2相変調から3相変調への切換えの変調比境界に対応するトルク閾値,回転速度閾値は、図9上に示す点線曲線部Bとそれに連続する点線部Boである。しかし、電動機10mがレゾルバ17mに与える電気的ノイズが大きい領域Anも2相変調とするために、その部分のトルク閾値,回転速度閾値を、As(3相変調から2相変調への変更の閾値),Bs(2相変調から3相変調への変更の閾値)に変更して、2相変調領域を拡大している。As/Ao間,Bs/Bo間が、拡大した特定領域である。
 図9上の細実線Cが2相変調から1pulseへの切換え閾値を表し、細点線Dが1pulseから2相変調への切換え閾値を表している。2点鎖線Eは、2相変調の限界を表す。3相変調から2相変調への切換え閾値(A,Ao)は、レゾルバ17mに対する電動機10mのノイズが多く強くなる領域Anよりも高側の閾値Aoを、該領域Anよりも低い方向にAsまでシフトしたものである。ここでの閾値は、目標トルクに対応付けた回転速度閾値である。これと同様に、2相変調から3相変調への切換え閾値もBsまでシフトしたものである。これにより、3相変調では電動機ノイズが多く強くなる領域Anでは、それよりもノイズが少ない2相変調が採用される。したがって、電動機ノイズによるレゾルバ17mの回転検出信号SG θもの乱れが低減し、電動機10mの駆動制御の信頼性が向上する。なお、3相変調と2相変調の間の、目標トルクT*又は回転速度の僅かな増減による頻繁な切換えを防止するために、閾値BsはAsよりも低値として両者間にマージンを設けている。すなわち、変調モードの切換りにヒステリシスを持たせている。
 図4に、「変調モード決定」(11)の内容を示す。本実施例は大枠として、変調比Miが閾値(固定値)Mit未満では、変調モードは2相変調又は1pulseモードに限定し、Mit以上では3相変調又は2相変調に限定するものである。「変調モード決定」(11)に進むとマイコンMPUは、現在の変調比MiがMit未満であると、現在の目標トルクT*に対応する、3相変調から2相変調に切り換える境界の標準閾値ω32とその逆に切り換える境界の標準閾値ω23を、変調閾値テーブルから読み出す(22)。そして2次側電圧Vucが高いとこれらの閾値ω32,ω23を下げるために、各閾値に「Vst/Vuc」を乗算した値(参照閾値)に、各閾値を変更する(23)。Vstは基準電圧であり、Vucはコンバータ1の出力電圧すなわち2次側電圧である。2次側電圧がVstである場合の、最適な変調切り替え境界値が、標準閾値として変調閾値テーブルに書き込まれている。ステップ23の閾値変更により、現在の2次側電圧Vucが基準電圧Vstより高いと、低い値に参照閾値が変更される。2次側電圧Vucが基準電圧Vstと等しいと、閾値は変更されない。
 現在の回転速度が参照閾値ω23以下であると変調モードを3相変調に定めるが(24,25)、そうではなく参照閾値ω32以上であると2相変調に定める(26,27)。いずれでもなく、現在の変調モードが1pulseであると2相変調に定めるが(28,27)、1pulseでないと現在の変調モードを維持する(28,29)。すなわち次の「出力更新」15で設定する変調モードに、現在の変調モードを定める。
 現在の変調比MiがMit以上であった場合には、現在の目標トルクT*に対応する、2相変調から1pulse変調に切り換える境界の標準閾値ω21とその逆に切り換える境界の標準閾値ω12を、変調閾値テーブルから読み出す(30)。そして2次側電圧Vucが高いとこれらの閾値ω21,ω12を下げるために、各閾値に「Vst/Vuc」を乗算した値(参照閾値)に、各閾値を変更する(31)。そして、現在の回転速度が参照閾値ω21以上であると変調モードを1pulse変調に定めるが(32,33)、そうではなく参照閾値ω12以下であると2相変調に定める(34,35)。いずれでもなく、現在の変調モードが3相変調であると2相変調に定めるが(36,35)、3相変調でないと現在の変調モードを維持する(36,37)。すなわち次の「出力更新」15で設定する変調モードに、現在の変調モードを定める。
 2つの電動機10m,10gを駆動する第1,第2インバータ19m,19gを1つの双方向コンバータ1に接続し、該コンバータの2次目標電圧Vuc*を、第1電動機10mの駆動に必要な第1目標電圧Vuc*mと第2電動機10gの駆動に必要な第2目標電圧Vuc*gとの、高い方とするので、第2電動機10gが発電(回生)モードであるときには大抵の場合、第2電動機10gから受電する第2インバータ19gが必要とする第2目標電圧Vuc*gが、第1電動機10mに給電する第1インバータ19mが必要とする第1目標電圧Vuc*mよりも高い。すなわち、2次目標電圧Vuc*(=Vuc*g)が第1目標電圧Vuc*mよりも高い。これにより第1インバータ19mのPWMスイッチングに伴って生じるスパイク電流が大きくなるおそれがあるが、この場合、本実施例では、参照閾値=標準閾値×(Vst/Vuc)としこれにより3相変調から2相変調に切り換える参照閾値がさがるので、早期に3相変調から2相変調に切り換えられる。これにより、必要以上に高い第2目標電圧Vuc*gが2次目標電圧Vuc*(Vuc)に選択されることによる電動機10mのノイズ増大が抑制され、電動機10mの駆動制御の信頼性が向上する。
 図3を再度参照する。次の「出力更新」(15)では、変調制御(12)で決定した変調モードの、3相変換(11)で算出した各相目標電圧をPWMパルス発生50に出力する。また、「Pvf,Pvr」(7)で算出したデューティPvf,Pvrの昇圧PWMパルスおよび降圧PWMパルスをドライブ回路20vに出力し、2次目標電圧Vuc*を第2モータ制御装置30gに出力する。
 次に、次の繰返し処理タイミングになるのを待ってから(16)、再度「入力読込み」(2)に進む。そして上述の「入力読込み」(2)以下の処理を実行する。次の繰返し処理タイミングになるのを待っている間に、システムコントローラから停止指示があると、マイコンMPUはそこでモータ回転付勢のための出力を停止する(17,18)。
 以上、車輪を回転駆動する電気モータ10mの動作を制御するモータ制御装置30mの制御機能を説明した。
 図1を再度参照する。車両上エンジンによって回転駆動される第2回転電機である電気モータ(電動機)10gは、発電機又は発電動機といわれることもあるが、本実施例では、電動機10gは、エンジンを始動するときにはエンジンを始動駆動する電気モータ(力行)であり、エンジンが始動するとエンジンによって回転駆動されて発電する発電機(回生)である。この電動機10gを制御する第2モータ制御装置30gの機能および動作は、モータ制御装置30mのものと同様であり、また、電動機10gに給電する第2インバータ19gの構成および動作は、第1インバータ19mと同様である。第2モータ制御装置30gの構成および機能は、第1モータ制御装置30mと同様である。ただし、本実施例では、第1モータ制御装置30mが2次目標電圧Vuc*を算出して双方向コンバータ1を制御するが(図2~45~47,図3のステップ6,7)、第2モータ制御装置30gは、第2目標電圧Vuc*gを算出するが双方向コンバータ1の制御はしない。
 第2モータ制御装置30gに、エンジンを始動するときに図示しないメインコントローラから、正値の目標トルクTM*gが与えられ、第2モータ制御装置30gは、第1モータ制御装置30mの上述のモータ制御動作と同様なモータ制御動作を行う。エンジンが始動しその出力トルクが上昇するとメインコントローラが目標トルクTM*gを、発電(回生)用の負値に切換える。これにより第2モータ制御装置30gは、第2電動機10gの出力トルクが、負値の目標トルク(エンジンの目標負荷)となるように、第2インバータ19gを制御する。この内容(出力演算)も、第1モータ制御装置30mの上述の出力演算と同様である。
 -第2実施例-
 図5に、本発明の第2実施例の概要を示す。制御対象の回転電機である電気モータ(電動機)10mは、この実施例では、車両に搭載されており車輪を回転駆動するための永久磁石形同期電動機であって、ロータに永久磁石を内蔵したものであり、ステータにはU相,V相及びW相の3相コイル11~13がある。電気モータ10mには、第1インバータである電圧型インバータ19mが、車両上のバッテリ18の電力を供給する。電気モータ10mのロータに、ロータの磁極位置を検出するための第1レゾルバ17mのロータが連結されている。レゾルバ17mは、そのロータの回転角を表すアナログ電圧(回転角信号)SG θmを発生し、モータ制御装置30mに与える。
 この第2実施例では、1次側電源18,22の電圧を昇圧出力するコンバータはなく、インバータにはバッテリ電圧Vdcを印加するので、インバータ19mの入力電圧は略一定である。すなわち、インバータ19mの入力電圧は、第1実施例の2次側電圧Vucのように大きく変動することはなく、該変動と対比すると、第2実施例のインバータ19mの入力電圧はバッテリ電圧Vdcであって、一定とみなすことができる。
 図6に、図5に示すモータ制御装置30mの機能構成を示す。この構成は、双方向コンバータを用いていないので、第1実施例のモータ制御装置(図2)のコンバータ制御部(45~47)を省略したものとなっている。トルク指令制限34は、バッテリ18が出力できる最高電圧Vdcm(固定値)および回転速度ωに対応する制限トルクTM*maxを制限トルクテーブル(ルックアップテーブル)から読み出して、目標トルクTM*がTM*maxを超えていると、TM*maxを目標トルクT*に定める。TM*max以下のときには、モータ目標トルクTM*を目標トルクT*に定める。このような制限を加えて生成したモータ目標トルクT*が、出力演算35に与えられる。
 第2実施例では、電圧センサ21が電源電圧(バッテリ電圧)Vdcを検出し、弱め界磁電流演算412相/3相変換36は、電源電圧Vdcを参照してd軸弱め界磁電流調整値Δidを算出し、2相/3相変換36は、電源電圧Vdcにもとづいて各相目標電圧VU*,VV*,VW*を算出する。
 図7に、第2実施例のモータ制御装置30mを構成するマイコンMPU(のCPU)が実行するモータ駆動制御MDCの概要を示す。これは、第1実施例の、2次目標電圧算出35からPvf,Pvr算出7までの処理を省略し、しかも、変調制御12の中の変調モード決定14を、インバータ入力電圧が略一定とみなせるバッテリ電圧Vdcに対応付けた、「変調モード決定」14aに変更したものである。
 図8に、「変調モード決定」14aの内容を示す。これは、インバータ入力電圧がバッテリ電圧(略一定)であるので、第1実施例(図4)の、インバータ入力電圧Vucに対応して変調モード切換え境界(閾値)を補正する処理ステップ23,31を省略したものとなっている。第2実施例の変調モード区分の大要(概要)は、図9に示すものと同様であるが、第2実施例ではインバータ19mの入力電圧が昇圧電圧ではなくバッテリ電圧であるので、変調領域境界の閾値は、第1実施例とは異なった値である。
 第2実施例のその他の構成および機能は、上述の第1実施例のもの(図1~図4)と同様である。第2実施例によっても、3相変調から2相変調への切換え境界A,Aoを、電気モータ10mがレゾルバ17mに与える電気的ノイズが大きい高トルクかつ高回転速度の領域Anで低目標トルクおよび低回転速度側にシフトした3相/2相変調切換え境界A,As、を用いて、3相変調を実行中に目標トルクおよび回転速度が該境界A,Asを超えると2相変調に切り換えるので、回転電機の目標トルクおよび回転速度が、3相変調では電気的ノイズが強くなる高トルクかつ高回転速度の領域Anとなるときには、自動的に2相変調に切り換えられる。これにより、インバータのPWMスイッチングの回数が減少し、回転電機のノイズ発生が低減し、その分レゾルバの回転検出信号が乱れる可能性が低減し、回転電機駆動制御の信頼性が向上する。
 なお、上述の第1および第2実施例のいずれでも、図9に示すように、特定領域(As~Ao,As’~Ao’)は、力行時のものを回生じのもの(As’~Ao’)より大きくしている。同一トルク,回転速度の場合、力行時の方が回生時よりも、必要な電流(変調率)が大きい。力行時には、
モータ電流→インバータ(損失)→モータ(損失)→トルク
の過程でモータ電流がトルクに変換されるのに対し、回生時は、
トルク→モータ(損失)→インバータ(損失)→モータ電流
の過程でトルクがモータ電流に変換される。力行時と回生時とでトルクを同じにしようとした場合、力行時はインバータ損失とモータ損失を追加した分だけ高いモータ電流が必要になるのに対し、回生時は逆に回生トルクによって発生するモータ電流は、モータ損失とインバータ損失の分だけ低いものとなる。このため、同一トルク,回転速度では回生時より力行時のほうが大きなモータ電流となる。レゾルバノイズの大きさはモータ電流(変調率)に比例して大きくなる傾向がある。すなわち前記特定領域が広がる。第1および第2実施例は、これに着目して前記特定領域を、前記回転電機の回生時より力行時の方を大きくしている。
 これらの実施例の一変形例では、モータ制御装置30m,30gは、電気モータ10m,10gのトルク,回転速度が特定領域(As~Ao,As’~Ao’)にあるときの2相変調への前記切換えを行い、回生時には行わない。上述のように、力行時と回生時とでトルクを同じにしようとした場合、力行時はインバータとモータの損失を追加した分だけ高いモータ電流が必要になるのに対し、回生時は逆に回生トルクによって発生するモータ電流は、モータとインバータの損失分だけ低いものとなる。したがって回生時は特定領域(As’~Ao’)でのレゾルバノイズは小さい。特定領域での3相変調から2相変調の切換えは、本来3相変調で制御したい領域を2相変調で制御することになるため、少なからず電流歪が発生する。本変形例ではこれに着目してレゾルバノイズ対策の必要性が低い回生時には、特定領域(As’~Ao’)にあるときの2相変調への切換えは行わず、電流歪の増大を回避する。もう1つの変形例では、回生時の特定領域(As’~Ao’)を省略する。すなわち、特定領域を、回生時の特定領域(As~Ao)のみとする。

Claims (8)

  1.  1次側直流電源と回転電機との間で電力変換を行うインバータ;
     前記回転電機の回転角および回転速度に対応する回転検出信号を発生するレゾルバ;
     該回転検出信号に基づいて、回転角および回転速度を算出する手段;
     前記回転電機の目標トルク,前記回転速度,回転角を用いて、前記回転電機の出力トルクを前記目標トルクにするように、前記インバータを制御し、前記インバータに入力される電圧に対する前記回転電機に印加する電圧の比である変調比が3相/2相変調切換え境界より大きくなると前記インバータの制御を3相変調から2相変調に切換える3相/2相変調切換え手段;および、
     前記変調比が前記3相/2相変調切換え境界より小さい領域においても、前記回転電機がレゾルバに与える電気的ノイズが大きい特定領域では2相変調に切換える、モータ制御手段;
    を備える回転電機制御装置。
  2.  前記モータ制御手段は、前記変調比が前記3相/2相変調切換え境界より小さい領域においても、前記3相/2相変調切換え境界に対応する前記回転電機の回転速度よりも低い回転速度閾値を超え、かつ所定のトルク閾値を超える、前記回転電機がレゾルバに与える電気的ノイズが大きい特定領域では2相変調に切換える;請求項1に記載の回転電機制御装置。
  3.  前記特定領域は、前記回転電機の回生時より力行時の方が大きい;請求項1又は2に記載の回転電機制御装置。
  4.  前記特定領域は、前記回転電機の力行時のみ設定され、回生時には設定されない;請求項1乃至3のいずれか1つに記載の回転電機制御装置。
  5.  前記1次側直流電源の電圧を昇圧して2次側電圧として前記インバータに給電し、前記インバータからの回生電力を降圧して前記1次側直流電源に逆給電するコンバータ;
     前記回転電機の目標トルクおよび回転速度に対応した2次側目標電圧を導出する2次側目標電圧決定手段;および、
     前記2次側電圧を、前記2次側目標電圧とするように、前記コンバータを制御するコンバータ制御手段;を更に備え、
     前記モータ制御手段は、前記目標トルク,回転速度,回転角および2次側目標電圧を用いて、前記回転電機の出力トルクを前記目標トルクにするように、前記インバータを制御し、前記2次側電圧が高くなるほど3相変調から2相変調に切換える前記閾値トルクを小さくして前記特定領域を大きくする;請求項1乃至4のいずれか1つに記載の回転電機制御装置。
  6.  前記インバータは、第1および第2回転電機と電力のやり取りを制御する第1および第2インバータを含み;
     前記レゾルバは、第1回転電機の回転角および回転速度に対応する回転検出信号を発生する第1レゾルバ、および、第2回転電機の回転角および回転速度に対応する回転検出信号を発生する第2レゾルバ、を含み;
     前記回転角および回転速度を算出する手段は、第1レゾルバの回転検出信号に基づいて、第1回転電機の回転角および回転速度を算出する第1手段、および、第2レゾルバの回転検出信号に基づいて、第2回転電機の回転角および回転速度を算出する第2手段、を含み;
     前記2次側目標電圧決定手段は、第1回転電機の目標トルクに割り当てられた、回転速度対応の2次側目標電圧特性に基づいて、第1回転電機の回転速度に対応する第1目標電圧を導出する第1の2次側目標電圧決定手段,第2回転電機の目標トルクに割り当てられた、回転速度対応の2次側目標電圧特性に基づいて、第2回転電機の回転速度に対応する第2目標電圧を導出する第2の2次側目標電圧決定手段、および、第1および第2目標電圧の高い方を、2次側目標電圧に定める手段、を含み;
     前記3相/2相変調切換え手段は、前記第1インバータを制御し、前記第1インバータに入力される電圧に対する前記第1回転電機に印加する電圧の比である第1変調比が第1の3相/2相変調切換え境界より大きくなると前記第1インバータの制御を3相変調から2相変調に切換える第1の3相/2相変調切換え手段、および、前記第2インバータを制御し、前記第2インバータに入力される電圧に対する前記第2回転電機に印加する電圧の比である第2変調比が第2の3相/2相変調切換え境界より大きくなると前記第2インバータの制御を3相変調から2相変調に切換える第2の3相/2相変調切換え手段、を含み;
     前記モータ制御手段は、前記第1変調比が前記第1の3相/2相変調切換え境界より小さい3相変調領域においても、前記第1の3相/2相変調切換え境界に対応する前記第1回転電機のトルク,回転速度よりも低い第1トルク閾値,第1回転速度閾値を超える、前記第1回転電機が前記第1レゾルバに与える電気的ノイズが大きい第1特定領域では、2相変調に切換える、第1モータ制御手段、および、前記第2変調比が前記第2の3相/2相変調切換え境界より小さい3相変調領域においても、前記第2の3相/2相変調切換え境界に対応する前記第2回転電機のトルク,回転速度よりも低い第2トルク閾値,第2回転速度閾値を超える、前記第2回転電機が前記第2レゾルバに与える電気的ノイズが大きい第2特定領域では、2相変調に切換える、第1モータ制御手段、を含む;
    請求項5に記載の回転電機制御装置。
  7.  第1モータ制御手段は、前記2次側電圧が高くなるほど前記第1トルク閾値を小さくして2相変調の領域を大きくする;請求項6に記載の回転電機制御装置。
  8.  第2モータ制御手段は、前記2次側電圧が高くなるほど前記第2トルク閾値を小さくして2相変調の領域を大きくする;請求項6又は7に記載の回転電機制御装置。
PCT/JP2008/068202 2008-01-31 2008-10-07 回転電機制御装置 WO2009096066A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2008801070875A CN101803171B (zh) 2008-01-31 2008-10-07 旋转电机控制装置
DE112008002482.0T DE112008002482B4 (de) 2008-01-31 2008-10-07 Steuerungsvorrichtung für eine elektrische Drehmaschine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008020752A JP5018516B2 (ja) 2008-01-31 2008-01-31 回転電機制御装置
JP2008-020752 2008-01-31

Publications (1)

Publication Number Publication Date
WO2009096066A1 true WO2009096066A1 (ja) 2009-08-06

Family

ID=40912429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/068202 WO2009096066A1 (ja) 2008-01-31 2008-10-07 回転電機制御装置

Country Status (5)

Country Link
US (1) US7952309B2 (ja)
JP (1) JP5018516B2 (ja)
CN (1) CN101803171B (ja)
DE (1) DE112008002482B4 (ja)
WO (1) WO2009096066A1 (ja)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4434184B2 (ja) * 2006-08-17 2010-03-17 アイシン・エィ・ダブリュ株式会社 電気モータのフィードバック制御方法および装置
JP5116490B2 (ja) * 2008-01-08 2013-01-09 株式会社マキタ モータ制御装置とそれを用いた電動工具
JP5471255B2 (ja) * 2009-09-30 2014-04-16 アイシン・エィ・ダブリュ株式会社 電動機駆動装置の制御装置
JP5222839B2 (ja) * 2009-12-21 2013-06-26 株式会社日立製作所 電動車両の冷却システム
US8975847B2 (en) * 2010-03-26 2015-03-10 Mitsubishi Electric Corporation Power conversion device
JP5234050B2 (ja) * 2010-04-27 2013-07-10 株式会社デンソー 車両用電源装置
JP5636741B2 (ja) * 2010-06-01 2014-12-10 トヨタ自動車株式会社 モータ制御装置
US20120024552A1 (en) * 2010-07-30 2012-02-02 Hitachi Koki Co., Ltd. Inverter Device and Electrical Power Tool
CN101997463B (zh) * 2010-10-20 2012-09-26 夷中机科技(北京)有限公司 一种点钞仪双直流无刷电机控制器及其控制方法
JP5530905B2 (ja) * 2010-11-19 2014-06-25 日立アプライアンス株式会社 モータ制御装置,空気調和機
JP5413420B2 (ja) * 2011-08-08 2014-02-12 株式会社デンソー 回転機の制御装置
JP5444304B2 (ja) * 2011-10-25 2014-03-19 ファナック株式会社 無効電流指令作成部を有するモータ駆動装置
JP5873716B2 (ja) * 2011-12-28 2016-03-01 日立アプライアンス株式会社 モータ制御装置
JP5622053B2 (ja) * 2012-02-09 2014-11-12 株式会社デンソー 多相回転機の制御装置、および、これを用いた電動パワーステアリング装置
JP6013031B2 (ja) * 2012-06-08 2016-10-25 ナブテスコ株式会社 三相交流モータの駆動制御装置及びアクチュエータの油圧システム
JP5614661B2 (ja) 2012-10-09 2014-10-29 株式会社デンソー 回転電機制御装置、および、これを用いた電動パワーステアリング装置
JP5874688B2 (ja) 2013-06-05 2016-03-02 株式会社デンソー 制御装置
JP6062324B2 (ja) * 2013-06-14 2017-01-18 日立オートモティブシステムズ株式会社 エンジン始動装置およびエンジン始動制御方法
US10317245B2 (en) * 2014-01-27 2019-06-11 Ford Global Technologies, Llc Resolver excitation frequency scheduling for noise immunity
JP6693178B2 (ja) * 2016-03-07 2020-05-13 株式会社デンソー モータ制御装置
JP6635059B2 (ja) * 2017-01-24 2020-01-22 株式会社デンソー 交流電動機の制御装置
FR3062758B1 (fr) * 2017-02-09 2020-11-06 Valeo Equip Electr Moteur Procede de commande d'une machine electrique tournante lors d'un changement de modulation de type pleine onde vers une modulation de largeur d'impulsion
JP6862943B2 (ja) * 2017-03-10 2021-04-21 トヨタ自動車株式会社 駆動装置
CN110870197B (zh) * 2017-07-31 2023-06-20 日本电产株式会社 电力转换装置、马达模块以及电动助力转向装置
US11356036B2 (en) * 2017-07-31 2022-06-07 Nidec Corporation Power conversion apparatus, motor module, and electric power steering apparatus
WO2019184975A1 (zh) * 2018-03-28 2019-10-03 南京德朔实业有限公司 电动工具及其控制方法
US11147151B2 (en) * 2019-05-07 2021-10-12 Shimadzu Corporation Rotary anode type X-ray tube apparatus comprising rotary anode driving device
JP7318470B2 (ja) * 2019-10-03 2023-08-01 株式会社豊田自動織機 モデル特性算出装置、モデル特性算出方法、及びプログラム
CN110759004B (zh) * 2019-12-25 2020-03-31 常州磐宇仪器有限公司 电机边界判定方法及其在进样针推杆上的自适应定位使用
CN111262394B (zh) * 2020-03-05 2021-06-25 东南大学 一种基于高频旋转变压器的无刷双馈电机
CN113794421A (zh) 2021-09-18 2021-12-14 江门市科业电器制造有限公司 一种蓄电池电机的控制电路及风扇
US20240072694A1 (en) * 2022-08-30 2024-02-29 L3Harris Technologies, Inc. Complex Baseband Rotary Resolver
CN117155207B (zh) * 2023-10-31 2024-01-26 奥铄动力科技(天津)有限公司 一种基于d、q轴电流控制的电机控制方法和供电方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290170A (ja) * 1987-05-20 1988-11-28 Mitsubishi Electric Corp Pwmインバ−タ装置
JPH0823698A (ja) * 1994-07-05 1996-01-23 Nippondenso Co Ltd インバータ制御装置
JP2004364460A (ja) * 2003-06-06 2004-12-24 Toyota Motor Corp モータ制御装置
JP2007110781A (ja) * 2005-10-11 2007-04-26 Aisin Aw Co Ltd モータ制御装置
JP2007202311A (ja) * 2006-01-26 2007-08-09 Toyota Motor Corp 車両の電源装置および車両

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59216476A (ja) * 1983-05-19 1984-12-06 Toyota Central Res & Dev Lab Inc 電圧形インバータの電流制御方法および装置
JP3746334B2 (ja) * 1996-08-22 2006-02-15 トヨタ自動車株式会社 永久磁石型同期モータの駆動制御装置及び方法
JP3844060B2 (ja) 2000-02-28 2006-11-08 株式会社安川電機 Pwmパルス制御方法
JP4024096B2 (ja) 2002-07-10 2007-12-19 三菱電機株式会社 電力変換装置
JP2004289985A (ja) 2003-03-25 2004-10-14 Matsushita Electric Ind Co Ltd モータ駆動用インバータ制御装置および空気調和機
JP2005000510A (ja) 2003-06-13 2005-01-06 Toshiba Corp 洗濯機およびインバータ装置
JP4140500B2 (ja) 2003-10-10 2008-08-27 株式会社デンソー 二相変調制御式インバータ装置
US7053587B2 (en) * 2004-02-10 2006-05-30 Denso Corporation Apparatus for controlling three-phase AC motor on two-phase modulation technique
JP2007110780A (ja) 2005-10-11 2007-04-26 Aisin Aw Co Ltd モータ制御装置
JP4631672B2 (ja) 2005-11-29 2011-02-16 株式会社デンソー 磁極位置推定方法、モータ速度推定方法及びモータ制御装置
KR100886194B1 (ko) * 2007-06-08 2009-02-27 한국전기연구원 계통 연계형 고압 권선형 유도 발전기 제어 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290170A (ja) * 1987-05-20 1988-11-28 Mitsubishi Electric Corp Pwmインバ−タ装置
JPH0823698A (ja) * 1994-07-05 1996-01-23 Nippondenso Co Ltd インバータ制御装置
JP2004364460A (ja) * 2003-06-06 2004-12-24 Toyota Motor Corp モータ制御装置
JP2007110781A (ja) * 2005-10-11 2007-04-26 Aisin Aw Co Ltd モータ制御装置
JP2007202311A (ja) * 2006-01-26 2007-08-09 Toyota Motor Corp 車両の電源装置および車両

Also Published As

Publication number Publication date
DE112008002482B4 (de) 2023-06-15
DE112008002482T5 (de) 2010-07-08
JP2009183092A (ja) 2009-08-13
CN101803171A (zh) 2010-08-11
US7952309B2 (en) 2011-05-31
US20090195197A1 (en) 2009-08-06
CN101803171B (zh) 2013-03-20
JP5018516B2 (ja) 2012-09-05

Similar Documents

Publication Publication Date Title
JP5018516B2 (ja) 回転電機制御装置
JP4985780B2 (ja) 電動機制御装置,駆動装置およびハイブリッド駆動装置
JP4978429B2 (ja) 電動機制御装置,電気自動車およびハイブリッド電気自動車
JP4957538B2 (ja) コンバータ装置,回転電機制御装置および駆動装置
US8264181B2 (en) Controller for motor drive control system
JP4968089B2 (ja) 電動機制御装置および駆動装置
JP4353304B2 (ja) モータ駆動制御装置
US8310197B2 (en) Control device for electric motor drive device
US8497646B2 (en) Controller for AC electric motor and electric powered vehicle
WO2010073866A1 (ja) ハイブリッド車両の電動機制御装置および駆動装置
US20140152214A1 (en) Vehicle and method for controlling vehicle
JP6119585B2 (ja) 電動機駆動装置
JP2010154598A (ja) センサレス電動機制御装置および駆動装置
JP2009112163A (ja) 電動機制御装置,駆動装置およびハイブリッド駆動装置
JP2009112164A (ja) 電動機制御装置,駆動装置およびハイブリッド駆動装置
JP7415579B2 (ja) 車両の駆動制御システム
JP2012223026A (ja) 駆動装置
JP2009124837A (ja) 電動機制御装置および駆動装置
JP2019140824A (ja) 駆動装置
JP2008236971A (ja) モータ制御装置及び、モータ制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880107087.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08871980

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120080024820

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112008002482

Country of ref document: DE

Date of ref document: 20100708

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 08871980

Country of ref document: EP

Kind code of ref document: A1