WO2009096054A1 - 石炭ガス化炉の起動方法および起動装置 - Google Patents

石炭ガス化炉の起動方法および起動装置 Download PDF

Info

Publication number
WO2009096054A1
WO2009096054A1 PCT/JP2008/063090 JP2008063090W WO2009096054A1 WO 2009096054 A1 WO2009096054 A1 WO 2009096054A1 JP 2008063090 W JP2008063090 W JP 2008063090W WO 2009096054 A1 WO2009096054 A1 WO 2009096054A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
pulverized coal
coal
furnace
burner
Prior art date
Application number
PCT/JP2008/063090
Other languages
English (en)
French (fr)
Inventor
Katsuhiko Yokohama
Hiromi Ishii
Yuichiro Kitagawa
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to CA2695025A priority Critical patent/CA2695025A1/en
Priority to US12/452,854 priority patent/US8414668B2/en
Priority to EP08791377A priority patent/EP2239312A4/en
Publication of WO2009096054A1 publication Critical patent/WO2009096054A1/ja
Priority to ZA2010/00949A priority patent/ZA201000949B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/726Start-up
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/466Entrained flow processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal

Definitions

  • the present invention relates to a start method and starter for a coal gasification furnace in which pulverized coal is put into a furnace by an inert carrier gas and gasified, and more specifically, the coal gas is generated by a combustible start gas.
  • the present invention relates to a starting method suitable for starting a chemical furnace and a starting device for carrying out the method. Background art
  • Fig. 6 shows the main configuration of a conventional coal gasifier startup system. As shown in Fig.
  • the coal gasifier 0 2 consisting of the pressure vessel 0 1 has a compass evening pan 0 3 below the interior, a reductor pan 0 4 above the compass evening par 0 0 3 and a compass evening pan 0 Under the slag taps 0 5 below the slag taps 0 5, the starter spans 0 6 are respectively provided.
  • the fuel supply passage 08 is conveyed by nitrogen (carrier gas), and air is supplied together with coal (pulverized coal). High temperature combustion gas is generated by the combustion of coal. Also, molten slag generated and separated from the high-temperature gas adheres to the furnace wall or falls to the furnace bottom, and is discharged downward from the slag tap 05.
  • cooling water 09 for cooling the discharged slag is stored at the bottom.
  • the coal pulverized coal
  • the carrier gas nitrogen gas
  • combustible gas is generated by mixing with the high temperature gas generated in the compass evening part 0 7 and performing a gasification reaction force in a high temperature reducing atmosphere field.
  • the starter burner 06 When starting the coal gasification furnace 02, the starter burner 06 is used to supply the starter auxiliary fuel and air or oxygen to the starter burner 06 to start the combustion chamber 0. 1 Charged into 2 and heated inside the gasification furnace 0 2 by the combustion heat of this auxiliary fuel and air or oxygen. After the temperature inside the gasification furnace 0 2 reaches the ignition temperature of pulverized coal, the compressor spanner 0 As air is introduced together with pulverized coal from 3, the supply of auxiliary fuel for start-up is stopped.
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 0 2-1 6 1 2 8 3 is known.
  • Patent Document 1 discloses a gasification furnace 0 20, pulverized coal provided in the gasification furnace 0 20, and oxygen while being supplied to the furnace 0 2 1 and heated to pulverized coal.
  • a tap burner 0 2 5 is provided below the plug 0 24 to heat the slag tap 0 24.
  • the tap burners 0 2 5 are burned to heat the slag taps 0 2 4 and A configuration is shown in which the temperature in the furnace 0 2 1 is increased by heating.
  • the present invention has been made in view of such a background.
  • the starter burner is not required.
  • Coal that can eliminate the combustion chamber for the gasification, and can reduce the height of the entire gasification furnace by reducing the size of the combustion chamber for the starter by making it smaller and lighter than the conventional starter It is an object of the present invention to provide a gasification furnace start-up method and start-up device.
  • the first invention relates to a method for starting a coal gasification furnace, and in a method for starting a coal gasification furnace in which pulverized coal is introduced into the furnace by an inert carrier gas and gasified.
  • Supply of the combustible gas after the start-up combustible gas is supplied in the middle of the fuel supply passage of the pulverized coal to the combustion burner and the furnace temperature reaches the first temperature at which the pulverized coal can be ignited. This is characterized by increasing the input amount of the pulverized coal and the carrier gas while reducing the amount of combustion, and shifting to combustion by the pulverized coal and the carrier gas.
  • the second invention relates to a starter for a coal gasification furnace, and relates to a starter for a coal gasification furnace in which pulverized coal is put into the furnace by an inert carrier gas to be gasified.
  • a start gas supply passage for supplying start-up combustible gas is provided in the middle of the fuel supply passage for the pulverized coal, and the furnace temperature can be ignited by the pulverized coal based on the detected value from the furnace temperature detection means. After reaching 1 temperature, start up to shift to combustion by pulverized coal and carrier gas by increasing the amount of pulverized coal and carrier gas input while decreasing the amount of combustible gas supplied from the starter gas supply passage
  • a special feature is the provision of control means.
  • the start-up method invention of the first invention and the start-up device invention of the second invention supply startable combustible gas in the middle of the fuel supply passage of the pulverized coal to the combustion burner. Then, after the furnace temperature reaches the first temperature at which pulverized coal can be ignited, the input amount of the pulverized coal and the carrier gas is increased while the supply amount of the combustible gas is decreased, and the pulverized coal and the carrier are conveyed. Since it is shifted to combustion by gas, the coal gasifier can be started using the combustion burner as the start burner at the start.
  • a trapping starter is installed below the combustion panner and below the slag cup, and the inside of the furnace reaches the first temperature by the auxiliary starter.
  • the starting combustible gas is preferably supplied to the fuel supply passage.
  • an auxiliary start burner is installed below the combustion burner and below the slag tap, and the start control means is installed in the furnace by the auxiliary start burner. Has an auxiliary start burner control unit that heats to a second temperature before reaching the first temperature, and after reaching the second temperature in the auxiliary start burner control unit, It is recommended to supply a starting combustible gas.
  • the start-up is performed by heating with the auxiliary start-up and combustion burners, so that only the start-up burner as in the prior art is used. Compared to heating, it takes less time to reach the first temperature in the furnace where pulverized coal can be ignited.
  • the auxiliary start-up burner can be made smaller and the height of the coal gasifier can be reduced compared to ignition using only the start-up burner. Furthermore, since the upper and lower surfaces of the slag tap can be heated evenly, the slag discharge at the initial coal input is stabilized.
  • the starting combustible to the fuel supply passage is When supplying the combustible gas, an inert seal gas may be vented between the outlet of the pulverized coal hopper and the starting combustible gas supply position so that the combustible gas does not flow backward in the pipe.
  • a seal gas supply passage for venting an inert seal gas is provided between the outlet of the pulverized coal hopper and the start-up combustible gas supply position, and the fuel supply passage is provided.
  • the seal gas is vented to prevent the combustible gas from flowing back through the pipe.
  • the starting method of the first invention and the configuration of the starting device of the second invention it is possible to prevent the starting combustible gas from flowing back into the fuel supply passage at the time of starting.
  • combustible gas at startup can be stably supplied to the gasifier, and startup can be stabilized.
  • the starter burner is not required, and the start-up combustion chamber is eliminated.
  • FIG. 1 is a block diagram of the main part of a coal gasifier showing a first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram showing an operation flow at the start-up of the first embodiment.
  • FIG. 3 is a configuration diagram of the main part of the coal gasifier showing the second embodiment, and corresponds to FIG.
  • FIG. 4 is an explanatory view showing an operation flow at the start of the second embodiment, and corresponds to FIG.
  • FIG. 5 is a block diagram of the main part of the coal gasifier showing the third embodiment.
  • FIG. 6 is a block diagram of the main part for explaining the prior art.
  • FIG. 7 is an overall configuration diagram for explaining the prior art. BEST MODE FOR CARRYING OUT THE INVENTION
  • exemplary embodiments of the present invention will be described in detail with reference to the drawings.
  • the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Only.
  • FIG. 1 is a configuration diagram of a main part showing the first embodiment.
  • a coal gasification furnace 1 that gasifies coal is composed of a compass section (combustion section) 5 that is formed by a pressure vessel 3 and generates heat energy, and a reductor that performs a gasification reaction using the heat energy.
  • Part (reaction part) 7 and the compass evening part 5 and the reductor part 7 are each equipped with one or more compass tapers (combustion burners) 9 and one or more reductor burners 1 1. One of them is shown in the figure.
  • a partition 13 is formed between the compass evening panner 9 and the reductor spanner 11, and a slag discharge port, that is, a slag tap 15 is provided below the compass evening parner 9. Be dropped. Cooling water 17 for cooling the dropped slag is stored at the bottom.
  • the coal used as fuel is temporarily stored in the supply hopper (pulverized coal hopper) 1 9 (see Fig. 5), and the coal ( Inert nitrogen (carrier gas) that transports pulverized coal is introduced, and pulverized coal is introduced into the reductor burner 1 1 through the transport pipe 2 1, and further to this transport pipe 2 1. Additional nitrogen is being supplied.
  • Pulverized coal is introduced into the compass panner 9 through the fuel supply passage 2 3, and the supply amount of carrier gas nitrogen (N 2 A) is adjusted by the flow control valve 25. . Further, a flow meter 27 is provided in the fuel supply passage 23 at the inlet P position to the compass evening pan 9, and based on the detected value of the flow meter 27 and the detected values of the pipe diameter, the temperature in the pipe, and the like, The flow rate of pulverized coal supplied to the compass taper 9 is calculated.
  • compass evening panner 9 is supplied with air or oxygen, and is introduced into compass evening section 5 together with coal (pulverized coal) conveyed by nitrogen (N 2 A) in fuel supply passage 23. High temperature combustion gas is generated by burning coal. Then, in Redac evening part 7, it is mixed with the high-temperature combustion gas generated in compass evening part 5 and a gasification reaction is performed in a high-temperature reducing atmosphere field, so that combustible gas is generated. ing.
  • a start gas supply passage 29 is connected to the fuel supply passage 23 to the compass evening pan 9, and additional nitrogen (N 2 B) is supplied via the flow meter 31 and the flow control valve 33.
  • a starting fuel (NG1) for example, a combustible gas such as natural gas or propane gas, is supplied through the flow meter 35 and the flow control valve 37.
  • a detection signal from the furnace temperature sensor 41 for detecting the furnace temperature is input to the start control means 39, and a signal from the flow meter 27 at the inlet P position to the compass burner 9 is added.
  • the signal from the flow meter 31 for nitrogen (N 2 B) and the signal from the flow meter 35 for starting fuel (NG1) are input to each.
  • the flow rate of nitrogen (N 2 A), additional nitrogen (N 2 B), and starter fuel (NG1) is mainly adjusted by the flow rate adjustment valves 25, 33, and 37, respectively.
  • the ignition device 43 As the ignition device 43, a red hot wire or a plasma ignition device is used.
  • the flow rate adjustment valve 37 is opened to start supplying the starting fuel (NG 1) at a constant flow rate. Natural gas as starting fuel (NG1) is vented from the starting gas supply passage 29 to the fuel supply passage 23 to ignite the natural gas. After ignition, the ignition device 43 is stopped.
  • the starting fuel (NG1) When the starting fuel (NG1) is ignited at t 0, the internal temperature of the coal gasification furnace 1 starts to rise as shown in Fig. 2, and when the furnace temperature reaches the first temperature T 1 at t 1, Since the charcoal can be ignited, the start fuel (NG1) is switched to the supply of pulverized coal.
  • the flow control valves 25 and 33 are controlled to control the flow rate of carrier gas nitrogen (N.8) and additional nitrogen (N 2 B). Being Nitrogen (N 2 A, N 2 B) and starting fuel (NG 1) raise the flow velocity in the pipe at point P so that it falls within the stable flow velocity range H for pulverized coal.
  • the supply of pulverized coal is started.
  • the flow rate adjustment valves 2 5 and 3 3 are controlled to increase the flow rate of pulverized coal, while the flow rate adjustment valve 3 7 fc reduces the amount of start fuel (NG 1) and (NG 1) is replaced with the inert gas nitrogen, and finally, at time t 2, the supply of the starting fuel (NG 1) is cut off and the operation is switched to the operation using only pulverized coal.
  • the starting fuel (NG 1) which is a starting combustible gas
  • the starting fuel (NG 1) is supplied in the middle of the fuel supply passage 2 3 for pulverized coal to the compass evening pan 9, and the furnace
  • the input of pulverized coal and carrier gas is increased while the supply amount of startup fuel (NG 1) is decreased, and combustion by pulverized coal and carrier gas is performed Therefore, the coal gasifier 1 can be started using the compass burner 9 as a starting burner when starting up.
  • the height of the gasifier becomes compact, and the pressure vessel 3 of the coal gasifier 1 Since the number of nozzles constituting the pipe can be reduced, the cost can be reduced.
  • the compass section 5 is directly heated by the compass evening pan 9, the heating power in the furnace is obtained effectively, the heating efficiency at the start is good, and the starting fuel is economical.
  • FIG. 3 is a configuration diagram of the main part showing the second embodiment, and is a configuration diagram corresponding to FIG.
  • the second embodiment further includes an auxiliary starting panner 50 as compared to the first embodiment. Since the provisions are different and the other configurations are the same, the same components are denoted by the same reference numerals.
  • an auxiliary starter 50 is installed below the compass taper 9 and below the slag tap 15, and the start control means 52 has the inside of the furnace by the auxiliary starter 50.
  • the auxiliary starter controller 54 for heating is provided until a second temperature T lower than the first temperature T1 is reached.
  • auxiliary start burner controller 54 is furnace temperature 2nd?
  • the fuel for starting (NG2) is supplied to the auxiliary starting pan 50 through the auxiliary starting gas supply passage 56 until the viewing degree T 2 is reached.
  • the start control means 52 receives a signal from the flow meter 58 of the start fuel (NG2) to the auxiliary start pan 50 and adjusts the flow rate of the start fuel (NG2). It is configured to adjust with valve 60.
  • the ignition device 62 is mounted on the auxiliary starting burner 50 in the same manner as the Conno IX taberna 9. First, when starting the coal gasification furnace 1, air is passed through the auxiliary starter burner 50, the ignition device 62 provided at the tip of the burner is started, the flow rate adjustment valve 60 is opened, and the starter fuel (NG2) is supplied. Supply and ignite the natural gas of the starting fuel (NG2).
  • the temperature in the gasifier 1 starts to rise as shown in Fig. 4, and when the furnace temperature reaches the second temperature T 2 at t 1,
  • the flow regulating valve 37 is opened to supply the starting fuel (NG1) to the natural gas of the starting fuel (NG1). Ignite.
  • the starting fuel (NG1) of compass evening panner 9 When the starting fuel (NG1) of compass evening panner 9 is ignited at t 1, the temperature in the gasifier begins to rise further as shown in Fig. 4, and the furnace temperature reaches the first temperature T1 at t 2. Then, since the pulverized coal reaches a temperature that can be ignited, it is switched from the starting fuel (NG1, NG2) to the supply of pulverized coal.
  • the activation is performed by heating with the auxiliary activation burner 50 and the compass evening burner 9, and thus heating is performed only with the activation burner as in the conventional technique.
  • the time until the pulverized coal reaches the first temperature T 1 in the furnace where ignition is possible is shortened.
  • the auxiliary start burner 50 can be made smaller and the height of the coal gasifier 1 can be made compact compared to ignition by only the start burner.
  • the upper and lower surfaces of the slag tap 15 can be heated evenly, the slag discharge when the initial coal is charged is stabilized.
  • the third embodiment is inactive between the outlet portion 63 of the supply hopper 19 storing and supplying pulverized coal and the connection position 65 to the fuel supply passage 23 of the starting gas supply passage 29.
  • the seal gas supply passage 67 for venting the seal gas is connected.
  • Nitrogen gas is supplied to the seal gas supply passage 67 as a seal gas.
  • the seal gas By supplying the seal gas, it is possible to prevent backflow to the start-up combustible gas power supply hopper 19 side in the fuel supply passage 23 at the time of start-up.
  • the combustible gas at start-up described in the first embodiment and the second embodiment can be stably supplied to the gasification furnace, and the start-up control is stabilized.
  • the starter burner is not required, the starter combustion chamber is eliminated, and the starter Even if it is provided, a startup method for a coal gasification furnace that can be reduced in size and weight compared to a conventional startup burner, and that can reduce the height of the entire gasification furnace, and a starter for performing the method. This is beneficial when applied to coal gasifiers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

微粉炭を不活性の搬送ガスによって炉内に投入してガス化せしめる石炭ガス化炉において、起動用バーナを不要として起動用燃焼室をなくし、また、起動用バーナを備えていても従来の起動用バーナより小型軽量化して起動用燃焼室を小型化して、ガス化炉全体の高さを抑えること。コンバスタバーナ9への微粉炭の燃料供給通路23の途中に起動用の可燃性ガス(NG1)を供給する起動ガス供給通路29を設け、炉内温度検出手段41からの検出値に基づいて炉内温度が微粉炭の着火可能な第1温度T1に達した後に、前記起動ガス供給通路29からの可燃性ガス(NG1)の供給量を減少させながら前記微粉炭および搬送ガスの投入量を増大して前記微粉炭と搬送ガスによる燃焼へと移行させることを特徴とする。

Description

明 細 書 石炭ガス化炉の起動方法および起動装置 技術分野
本発明は、 微粉炭を不活性の搬送ガスによつて炉内に投入してガス化せしめる 石炭ガス化炉の起動方法および起動装置に関し、 さらに詳しくは、 可燃性の起動 ガスによつて石炭ガス化炉を起動するのに好適な起動方法および該方法を実施す る起動装置に関する。 背景技術
コンバス夕とリダクタからなる空気吹き加圧二段噴流床式石炭ガス化炉では、 石炭中の灰分が溶融しガラス状のスラグが生成し排出されるため、 ガス化炉内部 の壁面は溶融したスラグで覆われる。 このため、 起動用バーナをガス化炉内のコ ンパスタ部に設置した場合には、 起動パーナが停止し長期間再起動が行なわれな い場合には起動パーナ部分がスラグで覆われてしまい、再起動が困難となるため、 起動用パーナはコンパス夕部とは別に設けた起動用燃焼室に配置する必要がある。 例えば、 図 6に、 従来の石炭ガス化炉の起動システムの要部構成を示す。 図 6 に示すよう 圧力容器 0 1からなる石炭ガス化炉 0 2には、 内部下方にコンパ ス夕パーナ 0 3と、 同コンパス夕パーナ 0 3の上方にリダクタパーナ 0 4と、 コ ンバス夕パーナ 0 3の下方でスラグタップ 0 5の下方に起動用パーナ 0 6とがそ れぞれ設けられている。
そして、コンパス夕パーナ 0 3から石炭ガス化炉 0 2内のコンパス夕部 0 7に、 燃料供給通路 0 8内を窒素 (搬送ガス) により搬送され石炭 (微粉炭) とともに 空気が投入され、 主に石炭の燃焼により高温燃焼ガスが発生される。 また、 高温 ガス中より生成分離される溶融スラグが炉壁へ付着または炉底へ落下し、 スラグ タップ 0 5から下方へ排出される。
さらに、 スラグタップ 0 5の下方には排出されたスラグを冷却する冷却水 0 9 が底部に溜められている。 また、 コンパス夕パーナ 0 3の上方に配置されリダクタパーナ 0 4からも、 燃 料供給通路 0 1 0を通って搬送ガス (窒素ガス) により石炭 (微粉炭) がリダク 夕部 0 1 1に投入される。 このリダクタ部 0 1 1において、 コンパス夕部 0 7で 発生した高温ガスと混合して、 高温の還元雰囲気場においてガス化反応力行われ て、 可燃性ガスが生成されるようになっている。
そして、この石炭ガス化炉 0 2を起動する際には、起動用パーナ 0 6を用いて、 起動用の補助燃料と空気または酸素とを起動用パーナ 0 6へ供給して起動用燃焼 室 0 1 2内に投入し、 この補助燃料と空気または酸素との燃焼熱によりガス化炉 0 2内を加熱し、 ガス化炉 0 2内が微粉炭の着火温度以上になった後に、 コンパ スタパーナ 0 3から微粉炭とともに空気が投入されるとともに、 起動用の補助燃 料の供給が停止されるようになつている。
一方、 石炭ガス化炉の起動方法の技術 fcついては、 例えば、 特許文献 1 (特開 2 0 0 2 - 1 6 1 2 8 3号公報) が知られている。
この特許文献 1は図 7に示すように、 ガス化炉 0 2 0と、 このガス化炉 0 2 0 に設けられた微粉炭と酸素を炉内 0 2 1に供給しながら加熱して微粉炭をガス化 する石炭パーナ 0 2 2、 0 2 3と、 石炭パーナ 0 2 3の下方に設けられた溶融し たスラグを炉内 0 2 1から排出するスラグタップ 0 2 4と、 このスラグ夕ップ 0 2 4の下方に設けられスラグタップ 0 2 4を加熱するタップバ一ナ 0 2 5とを備 えて構成されている。
そして、 このガス化装置を起動する際に、 微粉炭が石炭パーナ 0 2 2、 0 2 3 に供給される前に、 タップバ一ナ 0 2 5を燃焼させてスラグタップ 0 2 4を加熱 するとともに炉内 0 2 1を加熱して昇温させる構成が示されている。
しかし、 前記図 6に示す従来技術の起動バ一ナ 0 6においては、 ガス化炉 0 2 内のコンパス夕部 0 7の下方に起動用燃焼室 0 1 2を設けてそこに起動パーナ 0 6を設置するようにしなければならないため、 石炭ガス化炉 0 2の全体の高さが 増加しシステムが大型化するとともに、 圧力容器の貫通管台が必要となりコスト 上昇を招く。
また、 特許文献 1に示される技術においても、 前記従来技術と同様にタップバ —ナ 0 2 5をスラグタップ 0 2 4の下方に設置する必要があるため、 石炭ガス化 炉全体の高さが増加しシステムが大型化するとともに、 圧力容器が大型化してコ スト上昇を招く。 また、 タップパーナ 0 2 5を設置しなければ起動システムが成 立しないため、 タップパーナ 0 2 5を設置しないシステムには適用できない問題 もある。 発明の開示
そこで、 本発明は、 このような背景に鑑みてなされたものであり、 微粉炭を不 活性の搬送ガスによって炉内に投入してガス化せしめる石炭ガス化炉において、 起動用バーナを不要として起動用燃焼室をなくし、 また、 起動用パーナを備えて いても従来の起動用パーナより小型軽量ィヒして起動用燃焼室を小型化して、 ガス 化炉全体の高さを抑えることができる石炭ガス化炉の起動方法および起動装置を 提供することを課題とする。
前記課題を解決するため、 第 1発明は、 石炭ガス化炉の起動方法に関し、 微粉 炭を不活性の搬送ガスによって炉内に投入してガス化せしめる石炭ガス化炉の起 動方法において、
燃焼用バーナヘの前記微粉炭の燃料供給通路の途中に起動用の可燃性ガスを供 給し、 炉内温度が微粉炭の着火可能な第 1温度に達した後に、 前記可燃性ガスの 供給量を減少させながら前記微粉炭および搬送ガスの投入量を増大して前記微粉 炭と搬送ガスによる燃焼へと移行させることを特徵とする。
また、 第 2発明は、 石炭ガス化炉の起動装置に関し、 微粉炭を不活性の搬送ガ スによって炉内に投入してガス化せしめる石炭ガス化炉の起動装置において、 燃 焼用パーナへの前記微粉炭の燃料供給通路の途中に起動用の可燃性ガスを供給す る起動ガス供給通路を設け、 炉内温度検出手段からの検出値に基づいて炉内温度 が微粉炭の着火可能な第 1温度に達した後に、 前記起動ガス供給通路からの可燃 性ガスの供給量を減少させながら前記微粉炭および搬送ガスの投入量を増大して 前記微粉炭と搬送ガスによる燃焼へと移行させる起動制御手段を備えたことを特 徵とする。
力、かる第 1発明の起動方法の発明、および第 2発明の起動装置の発明によれば、 燃焼用バーナヘの前記微粉炭の燃料供給通路の途中に起動用の可燃性ガスを供給 し、 炉内温度が微粉炭の着火可能な第 1温度に達した後に、 前記可燃性ガスの供 給量を減少させながら前記微粉炭および搬送ガスの投入量を増大して前記微粉炭 と搬送ガスによる燃焼へと移行させるので、 燃焼用バ一ナを起動時に起動用のバ ーナとして用いて石炭ガス化炉を起動することができる。
また、 起動バーナをコンパスタ内に別途設置することが不要となるので、 石炭 中のスラグが固化することでパーナが埋没するおそれがなくなるため起動が安定 化する。
また、 起動バ一ナを別途設置することが不要となるので、 起動燃焼室が不要と なりガス化炉の高さがコンパクトになるとともに、 ガス化炉の圧力容器を構成す る管台の数を少なくできるため、 コスト低減ともなる。
さらに、 燃焼用バ一ナによってガス化炉を直接加熱するので、 ガス化炉の炉内 の昇温が効果的に得られ起動時の加熱効率がよく、 起動用燃料が経済的である。 また、 第 1発明において好ましくは、 前記燃焼用パーナの下方でかつスラグ夕 ップの下方に捕助起動用パーナを設置し、 該補助起動用パーナによって炉内が前 記第 1温度に達する前の第 2温度に達するまで加熱し、 その後前記燃料供給通路 に前記起動用可燃ガスを供給するとよい。 さらに、 第 2発明の装置発明において 好ましくは、 前記燃焼用パーナの下方でかつスラグタップの下方に補助起動用バ ーナを設置し、 前記起動制御手段は前記補助起動用パーナによつて炉内が前記第 1温度に達する前の第 2温度まで加熱する補助起動用バ一ナ制御部を有し、 該補 助起動用パーナ制御部で第 2温度に達した後に、 前記燃料供給通路に前記起動用 可燃ガスを供給するとよい。
かかる第 1発明の起動方法、 および第 2発明の起動装置の構成によれば、 補助 起動用パーナと燃焼用パーナとによる加熱によって起動を行うため、 従来技術の ような起動用バ一ナだけで加熱する場合に比べて、 微粉炭が着火可能な炉内の第 1温度に到達するまでの時間が短縮される。 また、 起動用パーナだけによる着火 に比べて補助起動用バーナを小型にでき、 石炭ガス化炉の高さをコンパクトにす ることができる。 さらに、 スラグタップの上面と下面を均等に加熱できるため、 初期石炭投入時のスラグ排出が安定化する。
また、 第 1発明において好ましくは、 前記燃料供給通路への前記起動用の可燃 性ガスの供給時に、 該可燃性ガスが配管内を逆流しないように微粉炭ホッパの出 口から起動用の可燃性ガス供給位置までの間に不活性のシールガスを通気すると よい。 さらに、 第 2発明の装置発明において好ましくは、 微粉炭ホッパの出口か ら起動用の可燃性ガス供給位置までの間に不活性のシールガスを通気するシール ガス供給通路を設け、前記燃料供給通路への前記起動用の可燃性ガスの供給時に、 前記シールガスを通気して可燃性ガスが配管内を逆流しないように構成するとよ い。
かかる第 1発明の起動方法、 および第 2発明の起動装置の構成によれば、 起動 時に燃料供給通路に起動用の可燃性ガスが逆流することを防止できる。 これによ つて、 起動時の可燃性ガスをガス化炉に安定して供給でき起動が安定化する。 本発明によれば、 微粉炭を不活性の搬送ガスによつて炉内に投入してガス化せ しめる石炭ガス化炉において、起動用パーナを不要として起動用燃焼室をなくし、 また、 起動用バーナを備えていても従来の起動用パーナより小型軽量化して起動 用燃焼室を小型化して、 ガス化炉全体の高さを抑えることができる石炭ガス化炉 の起動方法および該方法を実施する起動装置を提供することができる。 図面の簡単な説明
第 1図は、 本願発明の第 1実施形態を示す石炭ガス化炉の主要部の構成図であ る。
第 2図は、 第 1実施形態の起動時の作動流れ示す説明図である。
第 3図は、 第 2実施形態を示す石炭ガス化炉の主要部の構成図であり、 図 1に 対応する図である。
第 4図は、 第 2実施形態の起動時の作動流れ示す説明図であり、 図 2に対応す る図である。
第 5図は、 第 3実施形態を示す石炭ガス化炉の主要部の構成図である。
第 6図は、 従来技術を説明する主要部の構成図である。
第 7図は、 従来技術を説明する全体構成図である。 発明を実施するための最良の形態 以下、 図面を参照して本発明の好適な実施の形態を例示的に詳しく説明する。 但しこの実施の形態に記載されている構成部品の寸法、 材質、 形状、 その相対的 配置等は特に特定的な記載がない限りは、 この発明の範囲をそれに限定する趣旨 ではなく、 単なる説明例に過ぎない。
(第 1実施形態)
図 1、 図 2を参照して本発明の第 1実施形態について説明する。 図 1は、 第 1 実施形態を示す主要部の構成図である。
図 1において、 石炭をガス化する石炭ガス化炉 1は、 圧力容器 3によって形成 され、 熱エネルギーを発生されるコンパスタ部 (燃焼部) 5と、 その熱エネルギ 一によりガス化反応を行わせるリダクタ部 (反応部) 7と、 により構成されてい る。 コンパス夕部 5およびリダクタ部 7には、 その目的に応じて、 それぞれ 1本 または 2本以上のコンパスタパーナ (燃焼用パーナ) 9と、 1本または 2本以上 のリダクタパーナ 1 1とが備えられており、 その 1本の部分について図示してい る.。
また、 コンパス夕パーナ 9と、 リダクタパーナ 1 1との間には仕切部 1 3が形 成され、 コンパス夕パーナ 9の下方には、 スラグの排出口、 すなわちスラグタツ プ 1 5が設けられ、 下方へ落下される。 そして底部には落下されたスラグを冷却 する冷却水 1 7が溜められている。
燃料となる石炭は、 ガス化に適正な粒度に粉碎された微粉炭が供給ホッパ (微 粉炭ホツバ) 1 9 (図 5参照) に一時的に貯蔵され、 供給ホッパ 1 9の出口には 石炭 (微粉炭) を搬送する不活性の窒素 (搬送ガス) が導入され、 リダクタバ一 ナ 1 1へは、 搬送管 2 1を通って微粉炭が導入され、 またこの搬送管 2 1にはさ らに追加窒素が供給されるようになつている。
コンパス夕パーナ 9へは、 燃料供給通路 2 3を通って微粉炭が導入され、 また 搬送ガスの窒素 (N 2 A) の供給量が、 流量調整弁 2 5によって調整されるよう になっている。 さらにコンパス夕パーナ 9への入口部 P位置の燃料供給通路 2 3 には流量計 2 7が設けられ、 該流量計 2 7の検出値、 さらに管径、 管内温度等の 検出値に基づいて、 コンパスタパーナ 9へ供給される微粉炭の流速が算出される ようになつている。 また、 コンパス夕パーナ 9には、 空気または酸素が供給され、 燃料供給通路 2 3内を窒素 (N2A) により搬送された石炭 (微粉炭) とともにコンパス夕部 5 に投入されて、 主に石炭の燃焼により高温燃焼ガスを発生する。 そして、 リダク 夕部 7では、 コンパス夕部 5で発生した飴記高温燃焼ガスと混合して、 高温の還 元雰囲気場においてガス化反応が行われて、 可燃性ガスが生成されるようになつ ている。
コンバス夕パーナ 9への燃料供給通路 23には、 図 1に示すように、 起動ガス 供給通路 29が連結し、 追加窒素 (N2B) が流量計 31と流量調整弁 33を介 して供,袷され、 また起動用燃料(NG1)、 例えば天然ガス、 プロパンガス等の可 燃性ガスが流量計 35と流量調整弁 37を介して供給される。
次に、 起動制御手段 39について図 2の作動流れ図を参照して説明する。 この起動制御手段 39には、 炉内温度を検出する炉内温度センサ 41からの検 出信号が入力されると共に、 コンパスタバ一ナ 9への入口部 P位置の流量計 27 からの信号、 追加窒素 (N2B) の流量計 31からの信号、 起動用燃料 (NG1) の流量計 35からの信号がそれぞれに入力される。
そして、 主に窒素 (N2A)、 追加窒素 (N2B)、 起動用燃料 (NG1) の流量 をそれぞれの流量調整弁 25、 33、 37で調整するように構成されている。 まず、 石炭ガス化炉 1の起動に際して、 コンパス夕パーナ 9に空気を通して、' 該バ一ナ先端に設けた着火装置 43を起動する。 着火装置 43には、 赤熱電熱線 やプラズマ式の着火装置等を使用する。 着火装置 43が起動後、 流量調整弁 37 を開弁して一定の流速で起動用燃料(NG 1)の供給を開始する。起動用燃料(N G1) としての天然ガスを起動ガス供給通路 29から燃料供給通路 23に通気し て、 該天然ガスに着火する。 着火後は着火装置 43を停止する。
起動用燃料 (NG1) に t 0で着火すると、 石炭ガス化炉 1の内部温度は図 2 に示すように上昇を開始し、 t 1で炉内温度が第 1温度 T 1に達すると、 微粉炭 が着火可能になることから、 起動用燃料 (NG1) から微粉炭の供給へと切り換 える。
この炉内温度が第 1温度 T 1に達すると、 流量調整弁 25、 33の開度を制御 して、搬送ガスの窒素(N。八)、 および追加窒素(N2B) の流量が制御されて、 窒素 (N2A、 N 2 B) と起動用燃料 (N G 1 ) とによって P点の配管内流速が微 粉炭の搬送安定流速範囲 Hに入るように上昇される。
すなわち、 燃料供給通路 2 3の配管内の流速が変化すると微粉炭の搬送が不安 定になり、 微粉炭による安定したガス化が得られないため搬送安定流速範囲 Hに 入るように制御される。
そして、 該搬送安定流速範囲 Hに C点で入ると、 微粉炭の供給を開始する。 流 量調整弁 2 5、 3 3の開度が制御されて、 微粉炭の流量を増加させながら、 流量 調整弁 3 7 fcよって起動用燃料 (N G 1 ) の量を減少させて、 起動用燃料 (N G 1 )を不活性ガスの窒素に置換していき、最終的には時間 t 2で、起動用燃料(N G 1 ) の供給を遮断して微粉炭だけによる運転に切り換える。
以上のように、 第 1実施形態によれば、 コンパス夕パーナ 9への微粉炭の燃料 供給通路 2 3の途中に起動用の可燃性ガスである起動用燃料 (N G 1 )を供給し、 炉内温度が微粉炭の着火可能な T 1温度に達した後に、 起動用燃料 (N G 1 ) の 供給量を減少させながら微粉炭および搬送ガスの投入量を増大して微粉炭と搬送 ガスによる燃焼へと移行させるので、 コンパスタバ一ナ 9を起動時に起動用のバ —ナとして用いて石炭ガス化炉 1を起動することができる。
従って、起動用のバ一ナをコンパス夕内に別途設置することが不要となるので、 石炭中のスラグが固化することでパーナが埋没するおそれがなくなるため起動が 安定化する。
また、 起動用のパーナを別途設置することが不要となるので、 起動燃焼室を設 置することが不要となりガス化炉の高さがコンパク卜になるとともに、 石炭ガス 化炉 1の圧力容器 3を構成する管台の数を少なくできるため、 コスト低減ともな る。
さらに、 コンパス夕パーナ 9によってコンパスタ部 5を直接加熱するので、 炉 内の昇温力 ^効果的に得られ起動時の加熱効率がよく、起動用燃料が経済的である。
(第 2実施形態)
次に、図 3、図 4を参照して本発明の第 2実施形態について説明する。図 3は、 第 2実施形態を示す主要部の構成図であり、 図 1に対応する構成図である。 第 2実施形態は、 前記第 1実施形態に対して、 補助起動用パーナ 5 0をさらに 設けた点が相違し、 その他の構成については同様であるため、 同一構成部品には 同一符号を付する。
図 3に示すように、 コンパスタパーナ 9の下方でかつスラグタップ 15の下方 に補助起動用パーナ 50を設置し、 起動制御手段 52には該補助起動用パーナ 5 0によつて炉内が前記第 1温度 T 1より低い第 2温度 T に達するまで加熱する 補助起動用パーナ制御部 54を備えている。
補助起動用バ一ナ制御部 54では、 炉内温度が第 2?显度 T 2に達するまで補助 起動ガス供給通路 56を通して、 補助起動用パーナ 50に起動用燃料 (NG2) を供給する。
具体的な制御について、 図 4の作動流れ図を参照して説明する。
起動制御手段 52には、 第 1実施形態に加えて、 補助起動用パーナ 50への起 動用燃料 (NG2) の流量計 58からの信号が入力され、 起動用燃料 (NG2) の流量を流量調整弁 60で調整するように構成されている。 さらに、 補助起動用 バ一ナ 50にも、 コンノ IXタバ一ナ 9と同様に着火装置 62が装着されている。 まず、石炭ガス化炉 1の起動に際して、補助起動用パーナ 50に空気を通して、 該バ一ナ先端に設けた着火装置 62を起動後、 流量調整弁 60を開いて起動用燃 料 (NG2) を供給して該起動用燃料 (NG2) の天然ガスに着火する。
起動用燃料 (NG2) に t 0で着火すると、 ガス化炉 1内の温度は図 4に示す ように上昇を開始し、 t 1で炉内温度が第 2温度 T 2に達すると、 次に、 コンパ スタパーナ 9に空気を通して、 該パーナ先端に設けた着火装置 43を起動後、 流 量調整弁 37を開いて起動用燃料 (NG1) を供給して該起動用燃料 (NG1) の天然ガスに着火する。
コンパス夕パーナ 9の起動用燃料 (NG1) に t 1で着火すると、 ガス化炉内 の温度は図 4に示すようにさらに上昇を開始し、 t 2で炉内温度が第 1温度 T1 に達すると、 微粉炭が着火可能に温度に達することから、 起動用燃料 (NG1、 NG2) から微粉炭の供給へと切り換える。
この後の微粉炭への切換えは、 第 1実施形態と同様であり、 搬送安定流速範囲 Hに C点で入ると、 微粉炭の供給を開始し、 流量調整弁 25、 33の開度が制御 されて、 微粉炭の流量を増加させながら、 起動用燃料 (NG1、 NG2) の天然 ガスから不活性ガスの窒素に置換していき、 最終的には時間 t 3で、 起動用燃料 の天然ガスの供給を遮断して微粉炭だけによる運転に切り換える。
以上のように、 第 2実施形態によれば、 補助起動用バ一ナ 5 0とコンパス夕バ ーナ 9とによる加熱によって起動を行うため、 従来技術のような起動用バーナだ けで加熱する場合に比べて、 微粉炭が着火可能な炉内の第 1温度 T 1に到達する までの時間が短縮される。 また、 起動用バ一ナだけによる着火に比べて補助起動 用バ一ナ 5 0を小型にでき、 石炭ガス化炉 1の高さをコンパクトにすることがで きる。 さらに、 スラグタップ 1 5の上面と下面を均等に加熱できるため、 初期石 炭投入時のスラグ排出が安定化する。
(第 3実施形態)
次に、 図 5を参照して、 第 3実施形態について説明する。
第 3実施形態は、微粉炭を貯蔵して供給する供給ホッパ 1 9の出口部 6 3から、 起動ガス供給通路 2 9の燃料供給通路 2 3への連結位置 6 5までの間に不活性の シールガスを通気するシールガス供給通路 6 7を連結する。
このシールガス供給通路 6 7には、 シールガスとして窒素ガスが供給される。 そしてシールガスを供給することで、 起動時に燃料供給通路 2 3に起動用の可燃 性ガス力供給ホッパ 1 9側に逆流することを防止できる。 これによつて、 第 1実 施形態、 および第 2実施形態において説明した起動時の可燃性ガスをガス化炉に 安定して供給でき起動制御が安定化する。 産業上の利用可能性
本発明によれば、 微粉炭を不活性の搬送ガスによって炉内に投入してガス化せ しめる石炭ガス化炉において、起動用パーナを不要として起動用燃焼室をなくし、 また、 起動用パーナを備えていても従来の起動用パーナより小型軽量化して起動 用燃焼室を小型化して、 ガス化炉全体の高さを抑えることができる石炭ガス化炉 の起動方法および該方法を実施する起動装置を提供することができるので、 石炭 ガス化炉への適用に際して有益である。

Claims

請 求 の 範 囲
1 . 微粉炭を不活性の搬送ガスによって炉内に投入してガスィ匕せしめる石炭ガ ス化炉の起動方法において、
燃焼用バーナヘの前記微粉炭の燃料供給通路の途中に起動用の可燃性ガスを供 給し、 炉内温度が微粉炭の着火可能な第 1温度に達した後に、 前記可燃性ガスの 供給量を減少させながら前記微粉炭および搬送ガスの投入量を増大して前記微粉 炭と搬送ガスによる燃焼へと移行させることを特徴とする石炭ガス化炉の起動方 法。
2 . 前記燃焼用パーナの下方でかつスラグ夕ップの下方に補助起動用パーナを 設置し、 該補助起動用パーナによって炉内が前記第 1温度に達する前の第 2温度 に達するまで加熱し、 その後前記燃料供給通路に前記起動用可燃ガスを供給する ことを特徴とする請求項 1記載の石炭ガス化炉の起動方法。
3. 前記燃料供給通路への前記起動用の可燃性ガスの供給時に、 該可燃性ガス が配管内を逆流しないように微粉炭ホツバの出口から起動用の可燃性ガス供給位 置までの間に不活性のシールガスを通気することを特徴とする請求項 1または 2 記載の石炭ガス化炉の起動方法。
4. 微粉炭を不活性の搬送ガスによつて炉内に投入してガス化せしめる石炭ガ ス化炉の起動装置において、
燃焼用バーナヘの前記微粉炭の燃料供給通路の途中に起動用の可燃性ガスを供 給する起動ガス供給通路を設け、 炉内温度検出手段からの検出値に基づいて炉内 温度が微粉炭の着火可能な第 1温度に達した後に、 前記起動ガス供給通路からの 可燃性ガスの供給量を減少させながら前記微粉炭および搬送ガスの投入量を増大 して前記微粉炭と搬送ガスによる燃焼へと移行させる起動制御手段を備えたこと を特徴とする石炭ガス化炉の起動装置。
5 - 前記燃焼用パーナの下方でかつスラグタップの下方に補助起動用パーナを 設置し、 前記起動制御手段は前記補助起動用パーナによって炉内が前記第 1温度 に達する前の第 2温度まで加熱する補助起動用パーナ制御部を有し、 該補助起動 用パーナ制御部で第 2温度に達した後に、 前記燃料供給通路に前記起動用可燃ガ スを供給することを特徴とする請求項 4記載の石炭ガス化炉の起動装置。
6 . 微粉炭ホツバの出口から起動用の可燃性ガス供給位置までの間に不活性の シ一ルガスを通気するシールガス供給通路を設け、 前記燃料供給通路への前記起 動用の可燃性ガスの供給時に、 前記シールガスを通気して可燃性ガスが配管内を 逆流しないように構成したことを特徴とする請求項 4または 5記載の石炭ガス化 炉の起動装置。
PCT/JP2008/063090 2008-01-29 2008-07-15 石炭ガス化炉の起動方法および起動装置 WO2009096054A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2695025A CA2695025A1 (en) 2008-01-29 2008-07-15 Starting method of coal gasifier and starting device therefor
US12/452,854 US8414668B2 (en) 2008-01-29 2008-07-15 Starting method of coal gasifier and starting device therefor
EP08791377A EP2239312A4 (en) 2008-01-29 2008-07-15 METHOD FOR STARTING A COAL GASIFICATION OVEN AND ITS START-UP DEVICE
ZA2010/00949A ZA201000949B (en) 2008-01-29 2010-02-09 Starting method of coal gasifier and starting device therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-043561 2008-01-29
JP2008043561A JP5166910B2 (ja) 2008-01-29 2008-01-29 石炭ガス化炉の起動方法および起動装置

Publications (1)

Publication Number Publication Date
WO2009096054A1 true WO2009096054A1 (ja) 2009-08-06

Family

ID=40912419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/063090 WO2009096054A1 (ja) 2008-01-29 2008-07-15 石炭ガス化炉の起動方法および起動装置

Country Status (7)

Country Link
US (1) US8414668B2 (ja)
EP (1) EP2239312A4 (ja)
JP (1) JP5166910B2 (ja)
CA (1) CA2695025A1 (ja)
RU (1) RU2434932C2 (ja)
WO (1) WO2009096054A1 (ja)
ZA (1) ZA201000949B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011529970A (ja) * 2008-08-01 2011-12-15 コーレン・インダストリーズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 粉末燃料を用いて駆動されるガス化炉を始動するための方法および装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101838557B (zh) * 2010-02-10 2011-09-21 马鞍山科达洁能股份有限公司 煤气发生炉和煤气生产方法
JP5678606B2 (ja) * 2010-11-25 2015-03-04 株式会社Ihi ボイラ装置
JP5654338B2 (ja) * 2010-12-20 2015-01-14 日本エア・リキード株式会社 窒素ガス製造装置およびこれを用いたガス化複合発電システム
JP5615199B2 (ja) * 2011-02-21 2014-10-29 三菱重工業株式会社 燃焼装置
US9028571B2 (en) 2011-04-06 2015-05-12 Ineos Bio Sa Syngas cooler system and method of operation
US8945507B2 (en) * 2011-04-21 2015-02-03 Kellogg Brown & Root Llc Systems and methods for operating a gasifier
US8673181B2 (en) 2011-08-11 2014-03-18 Kellogg Brown & Root Llc Systems and methods for starting up a gasifier
PL3161109T3 (pl) 2014-06-27 2019-04-30 Tubitak Układ podawania węgla
CN104479759B (zh) * 2014-12-19 2016-09-07 刘晓军 一种提高气化炉开工烧嘴点火成功率的方法
CN105132023B (zh) * 2015-08-26 2018-06-19 上海泽玛克敏达机械设备有限公司 块粉一体化气化炉及块粉一体化气化的方法
JP6637797B2 (ja) * 2016-03-11 2020-01-29 三菱日立パワーシステムズ株式会社 炭素含有原料ガス化システム及びその酸化剤分配比設定方法
JP2020514520A (ja) * 2017-01-06 2020-05-21 フェニックス アドバンスド テクノロジーズ リミテッドFenix Advanced Technologies,Limited 固体燃料粒子の可搬性可燃性気体浮遊物
CN113341703B (zh) * 2021-05-11 2022-11-15 中国大唐集团科学技术研究院有限公司西北电力试验研究院 一种启磨预判的预加煤前馈的最优时间差方法
AU2023225669A1 (en) * 2022-02-25 2024-09-12 Sierra Energy Fixed bed gasifier
CN114644946B (zh) * 2022-03-01 2022-11-29 徐州乔氏机械设备有限公司 一种智能煤制气装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154797A (ja) * 1982-03-10 1983-09-14 Babcock Hitachi Kk 噴流式石炭ガス化炉の起動方法
JPS63135492A (ja) * 1986-11-27 1988-06-07 Babcock Hitachi Kk 石炭ガス化炉用バ−ナ装置
JP2002161283A (ja) 2000-11-27 2002-06-04 Babcock Hitachi Kk 石炭ガス化装置の起動方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2099843B (en) 1981-06-10 1985-01-30 Texaco Development Corp Partial oxidation process
US4490156A (en) 1981-06-10 1984-12-25 Texaco Inc. Partial oxidation system
GB2202234B (en) * 1987-03-16 1991-09-18 Shell Int Research Method for starting up a partial combustion process
RU2009402C1 (ru) 1991-03-04 1994-03-15 Варанкин Геннадий Юрьевич Способ сжигания малореакционного пылевидного топлива и устройство для его осуществления
JP3492099B2 (ja) 1995-10-03 2004-02-03 三菱重工業株式会社 バーナ
US6033447A (en) * 1997-06-25 2000-03-07 Eastman Chemical Company Start-up process for a gasification reactor
JPH11279568A (ja) 1998-03-26 1999-10-12 Nippon Steel Corp 石炭ガス化設備のチャー供給装置
JP4070325B2 (ja) 1998-10-16 2008-04-02 三菱重工業株式会社 石炭ガス化炉用微粉炭供給システム
AU1671702A (en) * 2000-11-17 2002-05-27 Future Energy Resources Corp Small scale high throughput biomass gasification system and method
RU49186U1 (ru) 2005-07-08 2005-11-10 Общество с ограниченной ответственностью Научно производственная компания "АДАПТИКА" Установка для сжигания древесных отходов

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154797A (ja) * 1982-03-10 1983-09-14 Babcock Hitachi Kk 噴流式石炭ガス化炉の起動方法
JPS63135492A (ja) * 1986-11-27 1988-06-07 Babcock Hitachi Kk 石炭ガス化炉用バ−ナ装置
JP2002161283A (ja) 2000-11-27 2002-06-04 Babcock Hitachi Kk 石炭ガス化装置の起動方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2239312A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011529970A (ja) * 2008-08-01 2011-12-15 コーレン・インダストリーズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 粉末燃料を用いて駆動されるガス化炉を始動するための方法および装置

Also Published As

Publication number Publication date
ZA201000949B (en) 2011-04-28
EP2239312A1 (en) 2010-10-13
RU2434932C2 (ru) 2011-11-27
US8414668B2 (en) 2013-04-09
RU2010105050A (ru) 2011-08-20
US20100180503A1 (en) 2010-07-22
JP5166910B2 (ja) 2013-03-21
CA2695025A1 (en) 2009-08-06
JP2009179790A (ja) 2009-08-13
EP2239312A4 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
JP5166910B2 (ja) 石炭ガス化炉の起動方法および起動装置
JP4979615B2 (ja) 燃焼器及び燃焼器の燃料供給方法
WO2015158223A1 (zh) 煤炭共气化方法
CN102537972A (zh) 干馏气化焚烧处理装置
JP5677095B2 (ja) 石炭ガス化反応器の始動方法
AU2009275490B2 (en) Method and apparatus for starting up gasifying reactors operated with combustible dust
WO2015158222A1 (zh) 煤炭共气化方法
CA2380349A1 (en) Process and device for waste pyrolysis and gasification
JP2002161283A (ja) 石炭ガス化装置の起動方法
JP6228788B2 (ja) 石炭ガス化装置
JP4243764B2 (ja) 熱分解ガス化溶融システムとその昇温方法
JP4285760B2 (ja) ガス化溶融システムの運転制御方法及び該システム
JP5146027B2 (ja) ガス化設備のパージ方法及び装置
JP2010163499A (ja) 気流層ガス化炉の運転方法
WO2011013017A1 (en) A plant for molecular dissociation of waste material
JPS63135492A (ja) 石炭ガス化炉用バ−ナ装置
JPS63248893A (ja) 石炭ガス化装置
JP2006070171A (ja) 流動層式ガス化方法および装置
JP3868205B2 (ja) 廃棄物のガス化燃焼装置及び燃焼方法
JP4679390B2 (ja) 木質バイオマス用ガス発生装置
CN118146837A (zh) 一种水煤浆气化系统及投料控制方法
JP2005201620A (ja) ごみガス化溶融方法と装置
JP2002030290A (ja) ガス化炉
JP2011225685A (ja) ガス化発電システム
JP2004101010A (ja) ガス化溶融炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08791377

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2695025

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010105050

Country of ref document: RU

Ref document number: 2008791377

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12452854

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE