JP4070325B2 - 石炭ガス化炉用微粉炭供給システム - Google Patents

石炭ガス化炉用微粉炭供給システム Download PDF

Info

Publication number
JP4070325B2
JP4070325B2 JP29510898A JP29510898A JP4070325B2 JP 4070325 B2 JP4070325 B2 JP 4070325B2 JP 29510898 A JP29510898 A JP 29510898A JP 29510898 A JP29510898 A JP 29510898A JP 4070325 B2 JP4070325 B2 JP 4070325B2
Authority
JP
Japan
Prior art keywords
powder
pulverized coal
flow rate
gasification furnace
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29510898A
Other languages
English (en)
Other versions
JP2000119666A (ja
Inventor
義孝 古閑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP29510898A priority Critical patent/JP4070325B2/ja
Publication of JP2000119666A publication Critical patent/JP2000119666A/ja
Application granted granted Critical
Publication of JP4070325B2 publication Critical patent/JP4070325B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Description

【0001】
【発明の属する技術分野】
本発明は、石炭ガス化炉用微粉炭供給システムに関し、さらに詳しくは、石炭ガス化炉の各位置への微粉炭供給を制御することで、効率的かつ安定したガス化炉運転を可能にする微粉炭供給システムに関する。
【0002】
【従来の技術】
図4に、従来の石炭ガス化炉用微粉炭供給システムを示す。
図中、1は石炭をガス化するガス化炉であり、このガス化炉1は、熱エネルギーを発生させる燃焼部2と、その熱エネルギーによりガス化反応を行わせる反応部3と、により構成されている。上記燃焼部2および反応部3には、その目的に応じて、それぞれ1本または2本以上の燃焼部バーナー5と、1本または2本以上の反応部バーナー4とが備えられている。
図4のガス化炉1では、この燃焼部2と反応部3との間に仕切6を設けた2室方式を採用しているが、この仕切6がない1室方式の場合にも、通常はその目的に応じて、バーナーを2段以上にして、1本または2本以上の燃焼部バーナー5と、1本または2本以上の反応部バーナー4とが備えられる。
このようなガス化炉1は、その使用目的に応じ、通常、内圧約20kg/cm2以上で運転され、例えば石炭ガス化複合発電用ガス化炉の場合20kg〜30kg/cm2程度で運転される。従って、高圧の状態に微粉炭(粉状)を加圧してガス化炉に供給する必要があり、その微粉炭を加圧するシステムが図4のガス化炉に至るまでのシステムである。以下、従来のシステムについて説明する。
【0003】
燃料となる石炭は、ガス化に適正な粒度に粉砕され、微粉炭ビン10に一時、貯蔵(貯炭)される。
加圧方法としては、先ず、微粉炭を、常圧状態で微粉炭ビン10から、供給ホッパー入口弁18が開の状態にて、下方の供給ホッパー11(A又はB)に流下させる。そして、供給ホッパー出口弁17および供給ホッパー入口弁18を閉め切っておいて、窒素(N2)ガス供給管13から窒素ガスを供給ホッパー11に導入して、供給ホッパー11内を加圧する。供給ホッパー内が加圧状態になったら、出口弁17を開けて、差圧によって気体および微粉炭をガス化炉1の方に導出する。この際、装置の内圧は、例えばホッパーの内圧が33kg/cm2程度、ガス化炉の内圧が26kg/cm2程度である。
【0004】
微粉炭を加圧した後、供給ホッパーから供給を始めると、供給ホッパー11内の内圧が低下し、粉体気流も低下してくるので、粉体気流の安定供給を維持するため、窒素(N2)ガス供給管13から窒素ガスを圧力調節弁16経由供給ホッパー11に供給し、供給ホッパー11の圧力を保つようにする。更に供給ホッパー11から供給を続けると、供給ホッパー内の微粉炭のレベルが低下し、そのままにしておけば、供給が途切れてしまう。したがって、その前に、反対側(A又はB)の供給ホッパー11の圧力を下げておき、常圧状態の微粉炭ビン10から常圧状態になった供給ホッパー11へ微粉炭を供給する。そして、一方の供給ホッパーからの供給が途切れる前に、他方の供給ホッパーを加圧しておき、頃合を見計らって供給ホッパー11を、AからBへ、あるいはBからAへ切り替える。この際、A供給ホッパーおよびB供給ホッパーの出口弁は両方ともに開けて、一時的にはAとBの両方から平衡して粉体を流すようにする。
その後、一方の供給ホッパーの出口弁17を閉めれば、他方の供給ホッパーからのみ、粉体がガス化炉へ供給される。このように供給ホッパーを2以上設けることにより、ガス化炉への連続的な供給を可能にする微粉炭供給システムが用いられている。
【0005】
上記のようなシステムの場合には、AとBとを切り替えながら微粉炭の供給を行うが、それぞれの搬送管の出口は合流していて、合流後に全流量調整弁19、さらに、流量検出器20が設けられている。流量検出器20を経た後、微粉炭の流体は分配器29にて各搬送管に分けられ、搬送管の数はバーナーの数に対応している。ここでは、例えば反応系搬送管22を4本、燃料系搬送管23を4本とすることができる。
図4では、反応部バーナー4および燃焼部バーナー5をガス化炉1の両側から1本づつ図示してあるが、例えば、ガス化炉の縦方向の同じ高さにおいて円周状にバーナー部を設けることができる。ガス化炉1への投入口であるバーナー部自体の本数は複数であってよく、例えば反応部バーナー4が4本、燃焼部バーナー5が4本の場合が挙げられる。
【0006】
一方、微粉炭供給システムにおいては、微粉炭(粉体)を気流搬送で、分配器29まで移送する。従来、通常の気流搬送は低濃度搬送であり、固気比(粉/気体の重量比)は1程度で搬送していた。
この低濃度搬送では、気体が大きな流れを形成しており、その中に散り散りに粉体が存在しているような状態で搬送が行われる。これでは、濃度の差により、搬送の流れ自体にも差が生じるうる。このようなことから、従来の低濃度搬送では、流れを切り替えたり、流れを分割したり、ということは困難であった。
これに対して、近年、特に高濃度搬送という技術の開発が行われている。高濃度としては、固気比が約10以上のようなものがあり、粉体が多くて気体は少ない。このような高濃度状態の粉体気流においては、粉と気体が混ざり合っており、なかなか沈降が起こりにくく、もわもわ状態の気流のまま、搬送させる技術である。この高濃度搬送を用いれば、低濃度搬送では困難であった流れの切り替えや分割ができるようになる。
【0007】
そこで、上記の高濃度搬送によって粉体気流を供給する方法としては、図4に示すような供給システムが用いられる。このシステムでは、搬送管の本数分の分割を一気に分配器29で行う。
この場合、分配後の粉体量の分配比(分配割合)は分配器の性能により、ある一定のバラツキ内で分配されるが、その一本一本の粉体量を調整することが出来ず、ガス化炉を効率的に運転させる上では問題がある。
【0008】
他方、上述したように、ガス化炉1に粉体気流を投入する際には、通常、上部の反応部3と下部の燃焼部2とではガス化炉に必要な粉体流量が異なる。よって、ガス化炉1への投入位置を大きく2つに分け、下部の燃焼部2に導入した分の粉体は8割程度の燃焼にとどめる。例えば、ガス化炉1の下部では、空気を燃料に対する理論燃焼空気量の8割しか供給せず、2割分は不完全燃焼させることにより、下部温度の過度の上昇を押さえるとともに燃料の一部をガス化させるのである。
【0009】
すなわち、ガス化炉1では、下部の微粉炭の中には灰分(石炭中に存在)も入っているため、この灰分が溶ける温度以上に温度を上げて、灰分を溶かし、底部に溜めることが好ましい。また、これらを燃やすことによってエネルギーを得て、上部の反応部に熱エネルギーを送ることができる。一方では、過度に燃焼させて上部の反応部上部に設けられた反応部バーナー4からは、微粉炭を供給しているだけであり、上部では微粉炭を燃やすのではなく、分解させている。つまり、ガス化炉の上部の反応部3では、下部の熱ガスのエネルギーで微粉炭を分解させて、ガス化させているのである。
例えば、石炭の周囲を加熱すれば、先ず石炭中の揮発成分が出る。その後には、石炭の中には灰分やコークス(固定炭素)のような非揮発成分が残るが、温度が高い場合には、非揮発成分も周囲の酸素と反応して、COガスが生成する。このことから、ガス化炉1では、石炭の揮発成分はそのままガスとし、残りの固定炭素等も酸素と反応させてCOガスを生成させる。
ガス化炉1では、このような作用を行っていることから、上部の反応部3と下部の燃焼部2とに分けられているのが通常であり、それぞれの役割の違いから、各投入位置毎に最適な微粉炭の供給量は異なるのである。
【0010】
そして通常、石炭性状によって各投入位置への供給割合を変えているが、装置への負荷を考慮して、投入の割合を変化させることも有効である。この場合、低負荷になる程、空気比を上げる方向に調整することがよい。また、ガス化炉全体の空気比を変化させることにより、一定の投入割合で運転することも行われる。
さらに、ガス化炉内の反応としては、十分に酸素が供給されてしまうと、全部酸素と反応して二酸化炭素になってしまうため、石炭の微粉炭を不完全燃焼させてCOガスを効率的に生成させるには、各部での供給量が十分に分配制御されていることが望ましい。
以上のことから、ガス化炉へ粉体気流を投入する場合には、投入位置毎に流量を変化させる必要があり、特に、ガス化炉の上部である反応部と下部である燃焼部とでは、流量を変えて分配制御する必要がある。そして、同じ投入位置の複数のバーナーについては、一本ずつは均等の流量であることが好ましい。
【0011】
しかしながら、従来のように分配器を用いて一気にバーナーと同数まで分配し、そのままガス化炉に投入する方法では、ガス化炉の上部および下部で流量を変化させることが困難であり、ガス化炉への微粉炭の供給を効果的に制御することができないという問題点があった。
また、流量調節弁と流量計とが効果的に作動するとともに、適正な分配比によるガス化炉への投入が行われるためには、分岐後の粉体気流が一定の高濃度で安定していなければならない。しかし、流量調節弁で絞って粉体及び気流流量が低下してしまった後では、搬送が良好に行われず、ガス化炉への供給が安定しない場合もある。したがって、粉体気流を分配させた後で、搬送を安定させる必要もある。
【0012】
【発明が解決しようとする課題】
本発明者らは、上記問題点に鑑み、流量を上部と下部とで変化させ、ガス化炉の上部と下部とで微粉炭の供給割合を分配制御できるシステムを開発すべく、鋭意検討を行った。
その結果、本発明者らは、ガス化炉の粉体気流投入位置(反応部および燃焼部)毎に予め搬送経路を分岐させ、これら搬送経路にそれぞれ粉体流量調節弁および粉体流量計を設け、粉体気流を分配制御してガス化炉に投入するシステムによって、上記問題点が解決されることを見い出した。
本発明は、かかる見地より完成されたものである。
【0013】
【課題を解決するための手段】
すなわち、本発明は、供給ホッパーおよびガス化炉を有する石炭ガス化炉用微粉炭供給システムにおいて、ガス化炉の粉体気流投入位置毎に搬送経路を分岐させ、それぞれの搬送経路に粉体流量調節弁および粉体流量計を設け、粉体気流の微粉炭量を分配制御してガス化炉に投入することを特徴とする石炭ガス化炉用微粉炭供給システムを提供するものである。
ここで、「ガス化炉の粉体気流投入位置毎」に搬送経路を分岐とは、例えば、ガス化炉への粉体気流投入位置が反応部投入位置と燃焼部投入位置との2つに分かれている場合、それぞれの投入位置に対応して搬送経路を分岐させることを意味する。このような場合には、少なくとも2つ以上の搬送経路に分岐されることが必要であるが、同じ投入位置に複数の投入口(バーナー)が設けられていても良い。また、粉体流量調節弁および粉体流量計については、粉体気流投入位置に対応して、システム全体に少なくとも2つ以上が設けられていることが必要である。
【0014】
また、本発明の石炭ガス化炉用微粉炭供給システムには、上記分岐が分配器によって行われ、該分配器とガス化炉との間の搬送経路に、粉体流量調節弁および粉体流量計が設けられている態様、
上記分岐が分岐部位によって行われ、該分岐部位とガス化炉との間の搬送経路に、粉体流量調節弁および粉体流量計が設けられている態様、又は、
上記分岐が供給ホッパー流動化室からの2以上の搬送管の取り出しによって行われ、それぞれの搬送管が独立してガス化炉の粉体気流投入位置に接続している態様、などがある。
ここで、上記分岐部位を用いる場合には、該分岐部位の流体上流側に、全ての粉体の流量を調節可能な全流量調節弁を設けることが好ましい。又、全流量調整機能と分配機能とを分岐部位とガス化炉との間の搬送経路中に設ける粉体流量調節弁に合わせ持たせる事で、全流量調節弁を省く事も出来る。
さらに、上記分岐部位を用いる場合、および2以上の搬送管の取り出しによる場合には、上記粉体流量調節弁および粉体流量計よりも流体下流側の搬送管に、流速を安定させるための追加搬送気体投入ラインがそれぞれ設けられていることが好ましい。
【0015】
本発明によれば、粉体気流の高濃度搬送であっても、均等な粉体気流に分割することができるとともに、この粉体気流を流量調節弁等によって、ガス化炉1の粉体気流投入位置毎に、分配制御して投入することができる。すなわち、ガス化炉におけるバーナーからの投入量の割合として、例えば、下部の燃焼部バーナーで全体供給量の約20〜50%の範囲、上部の反応部バーナーで約50〜80%の範囲で調整することが可能である。20〜50%の範囲では、石炭の性状によって、燃やす量と揮発する量とを考慮して、任意に割合を決定して調整することができる。このように、本発明では、揮発成分が多い場合には、50:50のような割合で供給し、揮発成分が少ない場合には、20:80あるいは30:70のような割合まで調整して供給することができる。
【0016】
そして、本発明の特に好ましい実施の形態によれば、流量調整弁の開放度を10%程度にまで閉めても、流調弁が詰まって運転に支障をきたすようなことがなく、ガス化炉1の投入位置毎に、十分な範囲で粉体気流の分配比を制御してガス化炉に投入することができる。
また、本発明によれば、流調弁の弁開度を絞って流れる気体の量が少ない場合にも、適宜、追加の搬送気体を投入できるので、配管内での粉体の詰まりが起こらず、搬送管の粉体気流の流速を安定させることができ、システム全体としても安定した運転が可能である。
以下、本発明について、詳細に説明する。
【0017】
【発明の実施の形態】
添付図面(図1〜3)を参照しながら、本発明の実施の形態および参考となる形態を説明する。
参考となる形態(その1)
図1に、本発明の石炭ガス化炉用微粉炭供給システムに対して参考となる形態を示す。本参考となる形態では、微粉炭を含む気体の搬送は、上記したような高濃度搬送にて行われ、この粉体気流(粉体流体)を分割してガス化炉に供給する方法が採用される。本参考となる形態では、図1に示すように、例えば搬送管8本分の分岐を一気に行う円錐状分配器21を用いることができる。この円錐状分配器21の分割部分の形状は特殊形状であって、円錐頂点部分から粉体気流を導入して、導出部は反対の円形状に広がった部分であり、この円板状の縁に、放射状に配置された複数本の搬送管の数に応じて分配される。
円錐状分配器21の円錐形状の向きは特に限定されないが、通常、円錐頂点部分を下部にして、円板状が上部になるように配置する。したがって、粉体気流が流れてくると、円錐の頂点である下部に当たり、後は円錐形状に沿って上部へと流れ、この粉体気流を分離する。この円錐状分配器21によれば、粉体気流を一気に約40本程度にまで分配することも可能であり、例えば、図1のように8本に分配することができる。
ここで、ガス化炉用供給システムでは、図1に示すように、供給ホッパー11としてAとBとがあって連続運転を可能にしており、全流量を全流量調節弁19および流量計20によって検出,調節して、粉体気流を分配器21に送る。この微粉炭ビン10から供給ホッパー11を経て、粉体気流を送るシステムについては、後述する。
【0018】
参考となる形態では、図1に示すように、分配器21でバーナーの数と同数に分岐された搬送管に、それぞれ個別粉体流量調節弁24および個別粉体流量計(検出器)25が設けられている。つまり、図1では、分配器21の気流下流側に、流量調節弁24を設けた構造のシステムである。
この個別粉体流量調節弁24では、各々の搬送管の流量をそれぞれ調節して、個別粉体流量計25で流量を測定して制御する。搬送管を22と23とで区別しているが、22は反応部搬送管であり、23は燃焼部搬送管である。ガス化炉の反応部と燃焼部とで流量を調整したい場合には、反応部搬送管22の調節弁24と燃焼部搬送管23の調整弁24をそれぞれ4つまとめて調節することで、反応部バーナー4および燃焼部バーナー5の投入量の比を調整することができる。
具体的には図1において、例えば反応部搬送管22の調節弁24は40%開放しており、燃焼部搬送管23の調節弁24は25%開放するような設定により、22および23の搬送管をそれぞれ4本まとめて流量を制御する。
【0019】
また、調節弁24は搬送管1本づつでも調節できるが、通常、反応部あるいは燃焼部にそれぞれ複数本のバーナーが設けられている場合、すなわちガス化炉1の粉体気流投入位置が同じである複数本のバーナーが設けられている場合には、それぞれのバーナーからの微粉炭投入量はほぼ均等である。例えば、図1のように、22の搬送管を4本とした場合、4本の各搬送管の流量はほぼ均等であり、変化させたとしても、配管の長さ等による1〜2%程度の変化である。
なお、全粉体流量の調節は、あくまで全流量調節弁19で行い、上記個別粉体調節弁24は絞り加減を調整するだけである。
【0020】
次に、微粉炭ビン10から供給ホッパー11を経て、粉体気流を送るシステムについて、図1に基づいて説明する。なお、上述したように、ガス化炉1への微粉炭の供給を連続的に可能にするため、供給ホッパー11は少なくとも2つ以上必要であり、ここでは供給ホッパーを2つ有する場合の一例として、AおよびBを設けたシステムについて説明する。
微粉炭ビン10は常圧付近に維持されており、供給ホッパー11にはそれぞれ減圧ラインが設けられている(図示せず)。微粉炭ビン10の常圧状態にて、一方の供給ホッパー(例えば11A)に微粉炭を送った後、供給ホッパー入口弁18aを閉める。そして、この供給ホッパー11Aに、窒素ガス供給管13から窒素(N2)を導入して、ホッパー内部を加圧する。
ここで、供給ホッパー11A内を加圧する場合、中の粉体が圧密しないように、先ず、供給ホッパー11下部の流動化窒素弁14aから窒素を流動化室12aに導入し、次に供給ホッパー11Aの下方部の加圧窒素弁15aから窒素を導入し加圧する。このように供給ホッパー11A内の微粉炭を解きほぐしながら徐々に加圧していき、ホッパー内の圧力を上げていく。ガス化炉1の運転圧と同じ以上の圧力まで加圧したら、加圧窒素弁15a及び流動化窒素弁14aを閉とし、ホッパー11Aの内圧を保持する。
この際、他方の供給ホッパー11Bはガス化炉1への供給によって、粉体レベルが低下してきている。そこで、一定レベルに低下したことをロードセル26(重量検出器)による測定によって確認する。一定値になったら、供給ホッパー11Bから11Aへの切り替えを行う。
【0021】
即ち、まず、供給ホッパー11Aは搬送準備のために下部から流動化を行う。
供給ホッパー11内は、通常、目皿のような細孔のある板が設けられ、これによって下部の気体層と上部の粉体層とに分けられている。したがって、供給ホッパー11は流動床のような作用を有しており、板の多数の細孔を通じて、下部の気体室から上部に窒素ガスが導入される。これによって、上部の粉体が流動化する。この際、導入される窒素ガスの量は僅かであり、圧力も少し上がる程度で行われる。供給ホッパー出口弁17aを開ける。この際には、他方の供給ホッパー出口弁17bも開いている。微粉炭を含む気流は圧力差の関係で流出するので、一時、両方の供給ホッパー11から粉体気流が流れる。それから、他方の供給ホッパー11Bの供給ホッパー出口弁17bを閉めて、供給ホッパー11Bからの微粉炭の流出を止める。
【0022】
このように、供給ホッパー11をAからB又はBからAに切り替えを行う際には、先ず、約1分以内でホッパー内を若干流動化させた後に、供給ホッパー出口弁17aを開ける。
これによって、上記したように一時両方の供給ホッパー11から流出が行われるが、数十秒後、供給ホッパー出口弁17bを閉める。この際、一方の流動化窒素弁14bも閉める。後は、自動的に一方の供給ホッパー11Aのみから、粉体気流が流出する。供給ホッパー11A内の圧力が下がったら、圧力調節弁16aを開けて窒素ガスを供給し、供給ホッパー内の圧力を調整する。
【0023】
上記したように供給ホッパー11からのガス化炉への供給を行う場合、加圧→流動化→出口弁開け→粉体の流出→ホッパー内の圧調、の順で行われる。
ここで、加圧窒素弁15は加圧段階が終わったら閉め、流動化窒素弁14は供給中は開放しており、圧力調節弁16は圧力が低下する間は開放している。なお、14,15,16の各弁に至るそれぞれの配管には、粉体が逆流しないように逆止弁が設けられているのが良い。また、加圧は窒素ガスを多く含むガスによって行われるが、空気では酸素が微粉炭と結びついて温度が上昇してしまうので、供給管13からは窒素ガスのみを送るのが好ましい。
以上のような手順により、供給ホッパー11Aからのガス化炉1への供給が終わったら、新たに微粉炭を取り入れて加圧された供給ホッパー11Bに切り替えを行う。そして、供給ホッパー11Aでは、供給ホッパー出口弁17aを閉めてから、付随する減圧ライン(図示せず)によってホッパー内を減圧した後、供給ホッパー入口弁18aを開けて、常圧状態の微粉炭ビン10から微粉炭を再度受け入れる。
【0024】
参考となる形態(その1)によれば、粉体気流の高濃度搬送であっても、均等な粉体気流に分割することができるとともに、この粉体気流を流量調節弁等によって、ガス化炉1の粉体気流投入位置毎に、粉体気流を分配制御してガス化炉に投入することができる。すなわち、従来のガス化炉供給システムでは、搬送管の本数分の分割を一気に行う場合には、その分配器の機能性能によっては均等な気流に分割することが容易ではなく、また、分割した粉体気流を、さらにガス化炉1の粉体気流投入位置毎に制御することは困難であった。よって、ガス化炉への投入口であるバーナー毎に、粉体気流の分配比(分配割合)が異なってしまう等、ガス化炉への粉体投入を正確に制御することができず、ガス化炉を効率的に運転させる上では問題があった。本参考となる形態によれば、これらの不都合を解消して、ガス化炉1の粉体気流投入位置(反応部および燃焼部)毎に、粉体気流を分配制御してガス化炉に投入することができる。具体的には、個別粉体流量調節弁24の調整により、反応部バーナー4と燃焼部バーナー5とで±5%程度の粉体量を制御が可能であり、反応部の複数本のバーナーについては均等な粉体量を投入できる。
【0025】
実施の形態(その2)
図2に、本発明の石炭ガス化炉用微粉炭供給システムの一実施の形態を示す。
本実施の形態では高濃度搬送にてガス化炉1への供給が行われ、基本的には上記参考となる形態(その1)と同様の構成であるが、全流量調節弁19からガス化炉1へ至る、搬送管の分岐方法が異なっている。本実施の形態においては、微粉炭を含む粉体気流は、一気に分配器によって搬送管の本数分に分岐されることはない。これにより、流量調節弁の数が少なくて足りる利点がある。
本実施の形態では、粉体気流の分岐が分岐部位によって行われ、この分岐部位とガス化炉との間の搬送経路に、粉体流量調節弁(流調弁)および粉体流量計が設けられている。また、分岐部位の流体上流側に、全ての粉体の流量を調節可能な全流量調節弁19が備えられている。ここで、分岐部位の分岐数については、特に限定されるものではなく、ガス化炉の粉体気流投入位置に合わせて任意に定められるが、好ましくは2〜5程度の少数の分岐が適する。以下、2つに分岐する二分岐部位の場合について説明する。
【0026】
図2に示すように、二分岐部位によって分かれた2つのラインは、それぞれ反応部搬送管22および燃焼部搬送管23として、ガス化炉1に粉体気流を投入する。この二分岐部位では、5:5〜8:2の比率の間で、粉体気流中の微粉炭を振り分けする。具体的には、上部の反応部への割合が80〜50%,好ましくは70〜55%、下部の燃焼部への割合が20〜50%,好ましくは30〜45%である。
このような粉体気流の比率を変えることは、例えば二分岐部位の下流に設けられた流調弁30および31を制御することによって行われ、粉体流量計32および33によって実際の流量が測定される。本実施の形態では、流調弁30および31の開度で流量比を調節するため、弁開度が小さくなり過ぎないように、大きな調整弁を用いることが好ましい。これによって、一方の流調弁を絞っても気流が詰まらないようにし、他方の流調弁を全開すること等により、流量比を調整することができる。
このように本実施の形態では、30,31の流量調節弁を用いるが、これらの弁は粉体気流を一定の比率で分配させるものであり、その機能は流量調節であるが、目的は粉体気流の分配である。
なお、全粉体流量の制御は全流量調節弁19で行い、この全量の制御は、32,33の流量計で測定した合計量に対して、19で調整を行う。
また、全流量信号を分配比調整器等により分割し、全流量調節弁で行なう全粉体流量制御の機能を流量調節弁30、31に持たせる事により、全流量調節弁を省く事もできる。この場合、分配比をも加味した個々の流量調節弁30、31により、各々の流量を調節し、各搬送管の流量合計が全流量となる。
【0027】
一方、流調弁の弁開度を絞り過ぎると流れる気体の量も少なくなって管内流速が低下し過ぎ、配管が詰まり易い。そこで、本実施の形態のように、流調弁30,31の流体下流側の搬送管に、流速を安定させるための追加搬送気体投入ラインがそれぞれ設けられていることが好ましい。搬送気体としては、通常、窒素ガスが用いられる。
追加搬送気体投入ラインからは、反応部搬送管22および燃焼部搬送管23の流速を一定値以上に保つように、分岐後の搬送管に窒素ガスを送る。
図2中、34,35は窒素ガス(気体)の流量調整弁であり、36,37は気体流量計(オリフィス流量計)であり、この搬送気体投入管では気体のみを搬送する。これに対して、上記した32,33の流量計は粉体流量計であり、30,31は粉体流量調節弁である。
図2では、分配器27,28の前で2つに分岐させて、2つの流量調節弁を設け、その下流側で、それぞれ分配器27,28による分配を行う。分配器としては、上記参考となる形態(その1)において説明したものと同様の機能を有する円錐状分配器を好ましく用いることができる。
【0028】
分配器27,28は共に、ガス化炉の同じ粉体気流投入位置に搬送される搬送管に分岐されることから、通常、均等にそれぞれの位置のバーナーの本数分に分配される。図2では、ガス化炉1において、下部燃焼部のバーナー5の4本は均等に粉体気流が分配されていることが好ましい。したがって、反応系搬送管22の4本、および燃料系搬送管5の4本については、均等に粉体気流が分配されていることが好ましいので、それぞれの搬送管に調節弁を設ける必要はない。
但し、反応部バーナー4と燃焼部バーナー5とでは、粉体気流の比率を変化させたいので、上記30,31の流量調節弁によって比率を調整する。
【0029】
以上のような本実施の形態(その2)によれば、ガス化炉1への粉体気流の分配機能がさらに向上する。すなわち、本発明のシステムでは、高濃度搬送によって粉と気体とが同時に流れているため、多量の粉体気流を一度に分岐させることの方が流量の制御が容易であり、確実である。上記参考となる形態(その1)の場合には、分配器にて一気に分岐させる効率の良さもあるが、粉体の量比を大きく制御することは容易でない面もある。
本実施の形態(その2)によれば、流量調整弁を閉めて10%程度の開放度にしても、流調弁が詰まって運転に支障をきたすようなことがなく、ガス化炉1の投入位置毎に、十分な範囲で粉体気流の分配比を制御してガス化炉に投入することができる。
【0030】
実施の形態(その3)
図3に、本発明の石炭ガス化炉用微粉炭供給システムの一実施の形態を示す。
本実施の形態では高濃度搬送にてガス化炉1への供給が行われ、基本的には上記実施に形態(その2)と同様の構成・機能を有するが、供給ホッパー11から流量調節弁30,31に至るまでの粉体気流の搬送方法が異なっている。本実施の形態においては、微粉炭を含む粉体気流は、供給ホッパーAおよびBからそれぞれ分岐しており、二分岐部位による分岐が行われることはない。
本実施の形態では、粉体気流の分岐が供給ホッパー流動化室12からの2以上の搬送管の取り出しによって行われ、それぞれの搬送管が独立してガス化炉の粉体気流投入位置(反応部およぶ燃焼部)に接続している。具体的には、図3に示すように、供給ホッパー11の出口から2系統に分岐されており、反応部と燃焼部との流量制御は個別に30,31流量調節弁にて行う。したがって、搬送管を通過する粉体気流になってからの分配は行われない。
また、搬送管中における沈降防止のため、追加搬送気体投入ラインが流量計32,33の下流に設けられていることが好ましい。追加搬送気体投入ラインについては、上記実施の形態(その2)と同様である。
【0031】
【発明の効果】
本発明は、石炭ガス化炉の各位置への微粉炭供給を制御することで、効率的かつ安定したガス化炉運転を可能にする微粉炭供給システムを提供できる。
すなわち、本発明によれば、粉体気流の高濃度搬送であっても、均等な粉体気流に分割することができるとともに、この粉体気流を流量調節弁等によって、ガス化炉の粉体気流投入位置毎に、分配制御して投入することができる。
また、本発明によれば、流量調整弁の開放度を10%程度にまで閉めても、流調弁が詰まって運転に支障をきたすようなことがなく、ガス化炉1の投入位置毎に、十分な範囲で粉体気流の分配比を制御してガス化炉に投入することができる。
さらに、本発明によれば、流調弁の弁開度を絞って流れる気体の量が少ない場合にも、適宜、追加の搬送気体を投入できるので、配管の詰まりが起こらず、搬送管の粉体気流の流速を安定させることができ、システム全体としても安定した運転が可能であり、産業上も大きな意義を有する。
【図面の簡単な説明】
【図1】 図1は、参考となる形態(その1)のシステムを表す概略構成図である。
【図2】 図2は、本発明の実施の形態(その2)のシステムを表す概略構成図である。
【図3】 図3は、本発明の実施の形態(その3)のシステムを表す概略構成図である。
【図4】 図4は、従来のガス化炉用微粉炭供給システムを表す概略構成図である。

Claims (5)

  1. 供給ホッパーと、バーナーを上部の反応部と下部の燃焼部と間に仕切りを設けて2段するとともに、各段2本以上のバーナーを備えたガス化炉と、上記供給ホッパーから上記ガス化炉の各バーナーへと微粉炭を含む粉体気流を供給する搬送経路とを有する石炭ガス化炉用高濃度搬送微粉炭供給システムにおいて、上記搬送経路を上記ガス化炉のバーナーの段数と同数に分岐させ、この分岐させた各搬送経路に粉体流量調節弁および粉体流量計を設けるとともに、上記粉体流量調節弁および粉体流量計よりも粉体気流下流側の各搬送経路に、上記各段のバーナーの本数と同数にさらに分岐させる分配器を設け、粉体気流の微粉炭量をガス化炉上部の反応部への割合が80〜55%、下部の燃焼部への割合が20〜45%に分配制御してガス化炉に投入することを特徴とする石炭ガス化炉用微粉炭供給システム。
  2. 上記バーナーの段数と同数にする分岐が分岐部位によって行われることを特徴とする請求項1記載の石炭ガス化炉用微粉炭供給システム。
  3. 上記分岐部位の粉体気流上流側に、全ての粉体の流量を調節可能な全流量調節弁を設けたことを特徴とする請求項2記載の石炭ガス化炉用微粉炭供給システム。
  4. 上記バーナーの段数と同数にする分岐が上記供給ホッパーの流動化室からの2以上の搬送経路の取り出しによって行われることを特徴とする請求項1記載の石炭ガス化炉用微粉炭供給システム。
  5. 上記分配器よりも粉体気流上流側であって上記粉体流量調節弁および粉体流量計よりも粉体気流下流側の各搬送経路に、上記粉体気流の流速を安定させるため、追加の搬送気体を投入する追加搬送気体投入ラインがそれぞれ設けられていることを特徴とする請求項1〜4のいずれかに記載の石炭ガス化炉用微粉炭供給システム。
JP29510898A 1998-10-16 1998-10-16 石炭ガス化炉用微粉炭供給システム Expired - Lifetime JP4070325B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29510898A JP4070325B2 (ja) 1998-10-16 1998-10-16 石炭ガス化炉用微粉炭供給システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29510898A JP4070325B2 (ja) 1998-10-16 1998-10-16 石炭ガス化炉用微粉炭供給システム

Publications (2)

Publication Number Publication Date
JP2000119666A JP2000119666A (ja) 2000-04-25
JP4070325B2 true JP4070325B2 (ja) 2008-04-02

Family

ID=17816408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29510898A Expired - Lifetime JP4070325B2 (ja) 1998-10-16 1998-10-16 石炭ガス化炉用微粉炭供給システム

Country Status (1)

Country Link
JP (1) JP4070325B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4095829B2 (ja) * 2002-05-21 2008-06-04 三菱重工業株式会社 チャー循環型の石炭ガス化発電プラントシステム
JP2008150463A (ja) * 2006-12-15 2008-07-03 Mitsubishi Heavy Ind Ltd 二段噴流床ガス化炉及びその運転制御方法
JP5166910B2 (ja) 2008-01-29 2013-03-21 三菱重工業株式会社 石炭ガス化炉の起動方法および起動装置
JP5629887B2 (ja) * 2010-07-20 2014-11-26 電源開発株式会社 石炭ガス化炉システム
JP2012162660A (ja) * 2011-02-08 2012-08-30 Babcock Hitachi Kk 石炭ガス化石炭搬送システム及び石炭ガス化複合発電プラント
JP6742746B2 (ja) 2016-02-08 2020-08-19 三菱日立パワーシステムズ株式会社 粉体供給ホッパの加圧システム、ガス化設備およびガス化複合発電設備ならびに粉体供給ホッパの加圧方法
JP6695163B2 (ja) * 2016-02-17 2020-05-20 三菱日立パワーシステムズ株式会社 微粉燃料供給装置及び方法、ガス化複合発電設備
CN107314393A (zh) * 2017-08-03 2017-11-03 中国华冶科工集团有限公司 微煤雾化锅炉炉前多进多出给料系统
JP7191528B2 (ja) * 2018-03-09 2022-12-19 三菱重工業株式会社 粉体燃料供給装置、ガス化炉設備およびガス化複合発電設備ならびに粉体燃料供給装置の制御方法
CN108545483B (zh) * 2018-06-13 2024-02-27 华东理工大学 一种粉体物料密相气力输送的设备及方法
JP2024056360A (ja) * 2022-10-11 2024-04-23 三菱重工業株式会社 粉体回収装置および粉体回収装置の制御方法

Also Published As

Publication number Publication date
JP2000119666A (ja) 2000-04-25

Similar Documents

Publication Publication Date Title
JP4070325B2 (ja) 石炭ガス化炉用微粉炭供給システム
CA1047074A (en) Disperser
CN1945121B (zh) 流动悬浮粉尘气化装置中调控输送粉尘燃料的方法和设备
EP0081622B1 (en) Method and apparatus for distributing powdered particles
CN102656408B (zh) 计量配料装置,密相输送装置以及输入粉尘状松散材料的方法
US3720351A (en) Pulverized fuel delivery system for a blast furnace
US5129766A (en) Aeration tube discharge control device
CN101152932B (zh) 具有多个出料口的含碳固体粉料供料装置及其供料方法
CN101798022B (zh) 多路出料密相气力输送装置和方法
JP2822064B2 (ja) 渦流層式燃焼装置において一定の調節量を維持する方法と装置
JPS61119514A (ja) 粒状材料を搬送ガス内で流動化する装置
CN203144352U (zh) 一种干煤粉加压气化的粉煤加压密相输送装置
CN103710051B (zh) 流化和输送粉末状物料的系统
JP2012162660A (ja) 石炭ガス化石炭搬送システム及び石炭ガス化複合発電プラント
JPH0283027A (ja) 分室化したガス注入装置
JPH10110937A (ja) 石炭ガス化炉の粉粒体分配器
NZ214257A (en) Transporting disintegrated particulate solids by air
JP2004035913A (ja) 粉粒体吹込み制御方法及び装置
JP4006798B2 (ja) 気流層ガス化炉の石炭供給装置
US4943190A (en) Aeration tube discharge control device with variable fluidic valve
JP2000119665A (ja) 高濃度粉体用分配弁および高濃度粉体用分配装置
JP3689171B2 (ja) 流動層ボイラと流動層燃焼炉
JPH10109754A (ja) 粉粒体用ホッパ
JP4916851B2 (ja) 微粉炭吹き込み装置
CN109312918A (zh) 用于均匀分配固体燃料材料的方法和设备

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070913

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term