WO2015158222A1 - 煤炭共气化方法 - Google Patents

煤炭共气化方法 Download PDF

Info

Publication number
WO2015158222A1
WO2015158222A1 PCT/CN2015/076344 CN2015076344W WO2015158222A1 WO 2015158222 A1 WO2015158222 A1 WO 2015158222A1 CN 2015076344 W CN2015076344 W CN 2015076344W WO 2015158222 A1 WO2015158222 A1 WO 2015158222A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
containing gas
oxygen
gasification
injected
Prior art date
Application number
PCT/CN2015/076344
Other languages
English (en)
French (fr)
Inventor
陈�峰
潘霞
Original Assignee
新奥气化采煤有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新奥气化采煤有限公司 filed Critical 新奥气化采煤有限公司
Priority to EP15780192.9A priority Critical patent/EP3133139A1/en
Priority to US15/126,595 priority patent/US20170101593A1/en
Publication of WO2015158222A1 publication Critical patent/WO2015158222A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/721Multistage gasification, e.g. plural parallel or serial gasification stages
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/466Entrained flow processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/723Controlling or regulating the gasification process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/726Start-up
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0969Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1223Heating the gasifier by burners
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/169Integration of gasification processes with another plant or parts within the plant with water treatments
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water

Definitions

  • the invention relates to the field of coal gasification, in particular to a coal co-gasification method.
  • Coal gasification refers to a series of chemical reactions between organic matter in a coal and a gasifying agent (such as oxygen) under a certain temperature and pressure, converting solid coal into combustible gas containing CO, H 2 , CH 4 and CO 2 , N 2 Non-combustible gas processes
  • the common coal gasification technologies currently include coal-water slurry gasification technology, powder coal gasification technology, biomass gasification, and multi-powder gasification technology that is still in a state of perfect technology.
  • the gasification methods of gasification raw materials of different phases are significantly different.
  • CN101760244A discloses a three-phase multi-feed gasification coal gasification device and a process thereof.
  • the gasification process comprises grinding the crushed raw coal, water and additives into a coal water slurry, and the coal water slurry enters the combustion chamber through the mixing nozzle; the crushed dry coal powder is transported through the mixing nozzle into the combustion chamber with high pressure carbon dioxide gas, and then High pressure oxygen is injected into the combustion chamber. Under the action of high temperature, the high pressure oxygen reacts with the coal water slurry and the coal powder to form a synthesis gas (industrial gas) mainly composed of carbon monoxide and hydrogen.
  • synthesis gas industrial gas
  • an object of the present invention is to provide a coal co-gasification method which is stable in operation.
  • the present invention provides a coal co-gasification method comprising the steps of: injecting fuel and a first pressure oxygen-containing gas into a gasifier, and igniting the fuel to heat the inside of the gasifier Step 2: stopping the injection of the fuel and the first pressure oxygen-containing gas when the temperature is raised to ignite the temperature of the coal water to be injected, and then injecting the coal water to be injected and the second pressure oxygen-containing gas into the gasifier For the gasification of the coal water slurry; step 3, after the gasification of the coal water slurry is stabilized, the third pressure oxygen-containing gas and the pressure carbon dioxide gas carrying the coal powder are injected into the gasification furnace for co-gasification.
  • the same pressure oxygen-containing gas is distinguished by "first, second, and third pressure oxygen-containing gases" when the "time to start injection” is different.
  • the first, second and third pressure oxygen-containing gases are the same pressure oxygen-containing gas, and the “first, second and third” only have different “starting injection times” for the above three pressure oxygen-containing gases.
  • the injection locations of the first, second and third pressure oxygen-containing gases may preferably be different, and the same injection location may employ the same or different injection devices.
  • step 2 the ratio of the injected second pressure oxygen-containing gas to the oxygen-coal to be injected into the coal water slurry is in the range of 0.54-0.70 Nm 3 /kg.
  • step 3 the ratio of the injected third pressure oxygen-containing gas to the oxy-coal of the coal powder is in the range of 0.49-0.65 Nm 3 /kg.
  • the ratio of oxygen to coal is the ratio of the volume of oxygen passing through the effective section to the mass of coal per unit time, that is, the ratio of the volume flow of oxygen to the mass flow of coal, in units of Nm 3 /kg.
  • the above coal is carried by the pressurized carbon dioxide gas.
  • the quality of the above coal refers to the quality of the coal powder carried by the pressure carbon dioxide gas or the quality of the coal in the coal water slurry, regardless of the quality of the carrier gas or water and additives.
  • the fuel and the first pressure oxygen-containing gas in step 1 are injected into the gasifier by an ignition burner disposed at the top of the gasifier.
  • the step 2 is a step sequentially performed as follows: Step 2.1: stopping the injection of the fuel and the first pressure oxygen-containing gas when the temperature is raised to ignite the temperature to be injected into the coal water slurry, step 2.2, point The fire burner is replaced with a pulverized coal burner, and the high temperature protection system of the pulverized coal burner is turned on; step 2.3, the furnace side burner is installed on the side wall of the gasification furnace, and The high temperature protection system for opening the furnace side burner is opened; in step 2.4, the coal water to be injected and the second pressure oxygen-containing gas are injected into the gasification furnace through the furnace side burner to gasify the coal water slurry.
  • step 3 a third pressure oxygen-containing gas and a pressurized carbon dioxide gas carrying pulverized coal are injected into the gasifier from the pulverized coal burner.
  • the mass flow rate of the coal water slurry to be injected is greater than or equal to 70% of the load of the furnace side burner.
  • step 2.4 the black water circulation system of the gasifier is turned on while the coal water slurry is gasified.
  • the step 3 further comprises the step of adjusting the oxygen to coal ratio of the third pressure oxygen-containing gas to the coal powder in the range of 0.49-0.65 Nm 3 /kg, and/or by passing in the range of 0.54-0.70 Nm 3 Within the range of /kg, the ratio of the second pressure oxygen-containing gas to the oxygen-to-coal to be injected into the coal water slurry is adjusted to control the operating temperature of the gasifier.
  • the operating temperature of the gasifier when the lining of the gasifier is a water wall, the operating temperature of the gasifier is controlled to be in the range of 1400-1600 ° C; when the lining of the gasifier is refractory brick, the operating temperature of the gasifier is controlled at 1300-1400 ° C range.
  • the step 3 further includes the steps of: increasing or decreasing the volume flow rate of oxygen in the third pressure oxygen-containing gas, the mass flow rate of the coal powder, the volume flow rate of the oxygen in the second pressure oxygen-containing gas, and the like.
  • the mass flow of coal to be injected into the coal water slurry controls the operating pressure of the gasifier.
  • the operating pressure of the gasifier when the inner liner of the gasifier is a water wall, the operating pressure of the gasifier is controlled to be in the range of 4.5-7.0 MPa; when the lining of the gasifier is refractory brick, the operating pressure of the gasifier is controlled at Within the range of 4.5-7.0 MPa.
  • step 1 the rate of temperature rise is controlled to be less than or equal to 50 ° C / h by adjusting the injection flow rate of the fuel and the first pressure oxygen-containing gas.
  • the temperature at which the coal water slurry to be injected can be ignited is greater than or equal to 1000 °C.
  • step 1 the first pressure oxygen-containing gas and fuel are injected into the gasifier by mutually isolated passages of the ignition burner; in step 3: the third pressure oxygen-containing gas and the pressure carbon dioxide carrying the coal powder The gas is injected into the gasifier from mutually isolated channels of the pulverized coal burner.
  • the fuel is fuel oil or fuel gas
  • the first pressure oxygen-containing gas, the second pressure oxygen-containing gas, and the third pressure oxygen-containing gas are all pressurized oxygen; wherein, when the fuel is fuel oil, the fuel oil passes through the mist. After injection, it is injected into the gasifier.
  • the inside of the gasification furnace is first heated by injecting a fuel and a first pressure oxygen-containing gas into the gasification furnace and igniting the fuel. Then, when the temperature is raised to ignite the temperature of the coal water to be injected, the injection of the fuel and the first pressure oxygen-containing gas is stopped, and the coal water slurry and the second pressure oxygen-containing gas are injected into the gasification furnace to perform water.
  • Coal slurry gasification that is, gasification of coal water slurry in a gasifier.
  • the coal powder and the third pressure oxygen-containing gas are injected into the gasifier for co-gasification, that is, at this time, the gasification of the coal powder and the water coal are simultaneously performed in the gasification furnace.
  • the gasification of the slurry thus constitutes the co-gasification of coal.
  • the coal co-gasification method constructs co-gasification after ensuring the stability of the coal-water slurry, thereby ensuring stable operation in the co-gasification process, without facing the cumbersome, time-consuming and difficult adjustment steps in the prior art.
  • Figure 1 is a schematic illustration of one embodiment of a coal co-gasification process of the present invention in an application process.
  • a gasification furnace of one embodiment of a coal co-gasification process to which the present invention is applied is illustrated.
  • the inner liner of the gasification furnace is a water wall.
  • a furnace side burner 1 is disposed on the side wall of the gasification furnace, and a furnace top burner 2 is disposed at the top of the gasification furnace.
  • the first injection line 3 and the first line 4 are in communication with the top burner 2, and the second injection line 5 and the second line 6 are in communication with the furnace side burner 1.
  • the top burner 2 simultaneously shows the position of the ignition burner and the pulverized coal burner.
  • the positions of the two may be different.
  • the gasification furnace has a first chamber 8 and a second chamber 9 communicating with the first chamber 8, the first chamber 8 being close to the top of the gasifier with respect to the second chamber 9, Further, the furnace side burner 1 is disposed in communication with the first chamber 8 on the side wall of the first chamber 8 of the gasification furnace.
  • the first chamber 8 performs co-gasification of coal, and the gas generated during the gasification process is discharged by the third line 7 disposed on the side wall of the first chamber 8 of the gasification furnace, and the coal ash generated by the gasification enters.
  • a fourth conduit 10 and a fifth conduit 11 are connected to the side wall of the second chamber 9, and one end of the two conduits is connected to the interior of the second chamber 9, and the other end is Connected to the black water circulation system.
  • the step of applying the coal co-gasification method of the present invention to the gasification furnace includes the steps of: injecting fuel and a first pressure oxygen-containing gas into the gasification furnace, and igniting the fuel to vaporize the gas.
  • the inside of the furnace is heated; in step 2, when the temperature is raised to ignite the temperature of the coal slurry to be injected, the injection of the fuel and the first pressure oxygen-containing gas is stopped, and then the coal slurry to be injected and the second to be injected into the gasifier are injected.
  • the third pressure oxygen-containing gas and the pressure carbon dioxide gas carrying the coal powder are injected into the gasification furnace for co-gasification .
  • the above coal co-gasification method firstly establishes a stable coal-water slurry gasification in a gasification furnace and then performs co-gasification to ensure stable operation of the gasification furnace in the co-gasification process, and does not need to face the prior art. A cumbersome, time-consuming, and difficult adjustment step.
  • step 1 is specifically implemented as follows:
  • An ignition burner is disposed at the top of the gasifier.
  • the ignition burner has a second passage at the center of the ignition burner, and an ignition device (ignition rod) disposed at the front end of the second passage.
  • An annular first passage outside the second passage, a cooling jacket may be optionally disposed between the second passage and the first passage, and a cooling jacket or coil is disposed outside the first passage, and the cooling jacket is a double layer inside and outside, usually
  • the cooling medium enters from the inner layer and exits from the outer layer. All of the above cooling jackets and/or coils are high temperature protection systems.
  • the first injection line 3 is in communication with the first passage, and the first line 4 is connected to the second passage.
  • the gasifier is injected such that the first pressure oxygen-containing gas and fuel are injected into the gasifier from the mutually isolated passages of the ignition burners, i.e., the first pressure oxygen-containing gas and fuel are not mixed in the ignition burner.
  • a plurality of mutually isolated channels can also be provided, and some of the channels are selected to inject pulverized coal, and a part of the channels are injected with the first pressure oxygen-containing gas.
  • the ignition burner is connected to the gasifier furnace body through a flange.
  • the fuel is burned in the gasifier to heat the gasifier.
  • the first pressure oxygen-containing gas is pressurized oxygen, and the pressure of the pressurized oxygen is in the range of 6.5-7.5 MPa, and the fuel is liquefied petroleum gas.
  • the first pressure oxygen-containing gas may be a pressurized other oxygen-containing gas, such as a pressurized steam oxygen gas mixture or a pressurized carbon dioxide gas oxygen gas mixture, wherein "pressurized" means greater than the corresponding The pressure of the gas under normal pressure.
  • the fuel may be fuel oil or fuel gas known to those skilled in the art, and after passing through the ignition burner, the fuel oil is atomized and then enters the gasifier. .
  • the rate of temperature rise is controlled to be less than or equal to 50 ° C / h by adjusting the injection flow rate of the fuel and the first pressure oxygen-containing gas. It can be understood that when the rate of temperature rise is greater than 50 ° C / h, the injection flow rate of the fuel and the first pressure oxygen-containing gas is reduced, so that the fuel burned in the gasifier per unit time is reduced, thereby reducing the combustion per unit time. Exothermic, which in turn slows down the rate of temperature increase in the gasifier.
  • the injection flow rate of the first pressure oxygen-containing gas and the fuel is optionally the volume flow rate at the time of its injection. Of course, depending on the fuel used in the actual production, it is possible to operate at a mass flow rate or a volume flow rate.
  • the flue gas generated by the combustion of the fuel in the gasifier is discharged from the third pipeline 7 to the flare, wherein the torch used in the present invention is a torch known to those skilled in the art, which is a chemical industry.
  • the important safety and environmental protection facilities of the plant are mainly used to deal with the flammable gas that cannot be effectively recovered in the production and shutdown of production equipment, abnormal production and emergency.
  • step 2 is specifically implemented as follows:
  • step 2.1 when the temperature rise of the gasification furnace reaches a temperature capable of igniting the coal water slurry to be injected (in the embodiment, the temperature at which the coal water slurry to be injected is ignited is greater than or equal to 1000 ° C), the process is stopped. Injection of fuel and first pressure oxygen-containing gas. It can be understood that those skilled in the art can determine the temperature at which the coal water slurry can be ignited in a temperature range greater than or equal to 1000 ° C according to the characteristics of the coal water slurry used.
  • the purpose of heating the gasifier is to The temperature inside the gasifier is raised to a temperature capable of burning the coal water slurry to be injected The degree, that is, is raised to a temperature that ensures the combustion of the coal water slurry to be injected without raising it to an excessively high temperature.
  • step 2.2 Immediately after the injection of the fuel and the first pressure oxygen-containing gas is stopped, the following step 2.2 is performed.
  • the ignition burner with a pulverized coal burner and turn on the high temperature protection system of the pulverized coal burner.
  • the high temperature protection system of the pulverized coal burner is a pipeline coiled on the outer wall of the burner, and the fluid flowing through the heat exchange with the burner is used to cool the burner, thereby thereby When the coal slurry is gasified and co-gasified in the furnace and has a higher temperature (greater than or equal to 1000 ° C), the normal operation of the burner can be ensured.
  • other burners known to those skilled in the art can also be used to protect the burner.
  • the typical structure of the pulverized coal burner is a plurality of concentric tubes, the center is an oxygen passage, the outer annular gap of the central oxygen passage is a pulverized coal passage, and the annulus outside the pulverized coal passage has an annular gap oxygen passage, a pulverized coal passage and a ring.
  • a cooling jacket is optionally disposed between the gap oxygen passages, and a cooling jacket is disposed outside the annular gap oxygen passage, and the cooling jacket is an inner and outer double layer.
  • the cooling medium enters from the inner layer and is discharged from the outer layer.
  • the above two cooling jackets are high temperature protection systems.
  • the pulverized coal burner is connected to the gasifier furnace through a flange.
  • the disadvantage that the combined integrated burner is difficult to withstand high temperature (1000 ° C) and is easily damaged is overcome, and the combined integrated burner has a complicated structure and a relatively high cost.
  • the use of ignition burners and pulverized coal burners, respectively, can reduce production costs.
  • the following step 2.3 is performed.
  • the furnace side burner is installed on the side wall of the gasifier, and the high temperature protection system of the furnace side burner is opened.
  • the high temperature protection system is the same as the high temperature protection system of the above pulverized coal burner, and therefore will not be described again.
  • the furnace side burner is a coal water slurry burner structure, which is a series of concentric tube nozzles
  • the inner nozzle is a central oxygen flow channel
  • the outer wall of the inner nozzle and the inner wall of the middle nozzle form an annular gap channel.
  • the end surface of the inner nozzle is offset from the end surface of the middle nozzle to form a premixing chamber, so that oxygen and coal water slurry can be mixed therein, and the annular gap formed by the outer wall of the middle nozzle and the inner wall of the outer nozzle is external.
  • the end surface of the middle nozzle is substantially flush with the end surface of the outer nozzle, and the outer surface of the outer nozzle has a cooling water coil to cool the entire burner.
  • the second injection line 5 is connected to the central oxygen flow channel and the outer oxygen flow channel, and the second pipeline 6 is connected with the coal water slurry flow passage, and the coal water slurry is injected into the coal water slurry flow passage through the second pipeline 6.
  • the above structure can be referred to the structure disclosed in the prior art CN103013574A, but is not limited thereto. In alternative embodiments, it is also possible to have only one passage for injecting a second pressure oxygen-containing gas, and a passage for injecting coal water slurry.
  • the furnace side burner and the gasifier furnace body are fixed by a flange.
  • step 2.4 the coal water slurry and the second pressure oxygen-containing gas are injected into the gasifier through the furnace side burner to gasify the coal water slurry.
  • the second pressure oxygen-containing gas is injected into the above-mentioned coal water slurry burner through the second injection line 5, and the coal water slurry is injected into the coal water slurry burner through the second line 6.
  • the second pressure oxygen-containing gas and the coal water slurry are injected into the gasification furnace through the coal water slurry burner to vaporize the coal water slurry.
  • the coal water slurry before being injected into the interior of the gasifier is understood to be injected into the coal water slurry, and the “water coal slurry” mentioned in the present invention is not injected into the gasification furnace, and will be injected in the subsequent step. In the gasifier, it is “to be injected into the coal slurry”.
  • the oxygen-coal ratio of the second pressure oxygen-containing gas to the coal water slurry is in the range of 0.54-0.70 Nm 3 /kg.
  • the furnace side burner 1 is installed, the simultaneously injected coal water slurry and the second pressure oxygen-containing gas are started, and the volume flow rate of oxygen in the second pressure oxygen-containing gas injected at this time (volume unit is Nm 3 )
  • the ratio of the mass flow rate (mass unit in kg) of coal in the coal water slurry simultaneously injected is in the range of 0.54 - 0.70 Nm 3 /kg.
  • the second pressure oxygen-containing gas is the same pressure oxygen-containing gas as the first pressure oxygen-containing gas, that is, pressurized oxygen, so the volume flow rate of oxygen in the second pressure oxygen-containing gas is pressure oxygen. Volume flow.
  • the second pressure oxygen-containing gas is a mixed gas of pressurized water vapor and pure oxygen
  • the volume flow rate of oxygen in the second pressure oxygen-containing gas is a pressurized mixed gas. The volumetric flow of oxygen in the medium.
  • the mass flow rate of the coal water slurry is greater than or equal to 70% of the load of the burner 1 of the furnace side.
  • the load of the furnace side burner 1 is an optimum flow rate value of the liquid flowing through the burner, and the optimum flow rate value is known at the time of discharge of the burner.
  • the coal water slurry undergoes a coal slurry gasification reaction inside the gasification furnace.
  • the black water is turned on. Circulatory system. Specifically, during the gasification of the coal water slurry in the first chamber 8, the vaporized coal ash enters the second chamber 9 through the fourth conduit 10 into the second chamber 9. Water is transported, the water fed into the second chamber 9 is mixed with the coal ash (ie, "black water” is formed), and the water with coal ash is discharged from the fifth line 11, thereby realizing the second The coal ash in the chamber 9 is taken out.
  • the coal ash-containing water discharged through the fifth line 11 passes through the black water circulation system, and the coal ash is filtered and recycled. Further, during the gasification of the coal water slurry, the produced synthesis gas is discharged from the third line 7. Further, it is checked whether the discharged syngas is qualified. If it is qualified, the syngas is sent to the downstream purification process, and if it is unqualified, the syngas is led to the torch. For example, the synthesis gas is extracted using a pressure difference between the inside of the gasifier and the outside. Of course, according to the different needs of actual production, there is a slight difference in the criteria for judging whether the syngas is qualified. Those skilled in the art can detect and judge whether the syngas is qualified according to the actual production needs.
  • adjusting the oxygen to coal ratio of the second pressure oxygen-containing gas and the coal water slurry in the range of 0.54-0.70 Nm 3 /kg adjusting the gasification of the coal water slurry
  • the composition of the syngas and the operating temperature in the gasifier, while adjusting the volume flow of the second pressure oxygen-containing gas and the mass flow rate of coal in the coal water slurry while maintaining the above-mentioned oxygen-to-coal ratio constant The operating pressure in the gasifier makes the coal slurry gasification gradually stable.
  • the method of adjusting the volume flow rate of the first pressure oxygen-containing gas and the mass flow rate of coal in the coal water slurry will be described in detail below.
  • the criteria for judging whether the coal water slurry gasification is stable or not are different according to actual production needs, and those skilled in the art can judge whether the coal gasification is stable according to actual production needs, for example, the detection by the third tube
  • the total volume percent of hydrogen, carbon monoxide, and methane in the syngas ie, the total volume of the three as a percentage of the volume of syngas produced
  • the volume percentage of hydrogen, carbon monoxide or methane in the gas does not exceed 20%, which is the effective component of the syngas (CO, H 2 , CH 4 ) Stable, that is, the gasification of coal water slurry is stable.
  • the content of H 2 by volume i.e.
  • the volume percentage of H 2 is less than the volume of synthesis gas) is greater than or equal to 30%, and / or volume of the CO content (i.e., a volume percentage of CO synthesis gas volume) is greater than or When it is equal to 40%, the content of one of the syngas (CO or H 2 ) or some components (CO and H 2 ) meets the requirements, that is, the gasification of the coal water slurry is stable.
  • the above is merely an example, and the numerical values thereof can be set according to specific production requirements, and the present invention is not limited thereto.
  • step 3 is specifically implemented as follows:
  • the third pressure oxygen-containing gas and the pressure carbon dioxide gas carrying the coal powder are injected into the gasification furnace from the pulverized coal burner located at the top of the furnace.
  • the first injection line 3 is connected to the central oxygen channel and the annulus oxygen channel of the pulverized coal burner, and the first line 4 is connected to the pulverized coal passage of the pulverized coal burner.
  • the third pressure oxygen-containing gas is injected into the gasification furnace via the first injection line 3 and the centrally located oxygen passage and the annulus oxygen passage, and the pressurized carbon dioxide gas carrying the pulverized coal is injected into the gas via the first line 4 and the pulverized coal passage.
  • the third pressure oxygen-containing gas and the pressurized carbon dioxide gas carrying the pulverized coal are injected into the gasifier from the mutually isolated channels of the pulverized coal burner, that is, the third pressure oxygen-containing gas and the pulverized coal carrying The pressurized carbon dioxide gas does not mix before entering the interior of the gasifier.
  • the pressure of the pressurized carbon dioxide gas is greater than 6 MPa.
  • the oxygen-coal ratio of the third pressure oxygen-containing gas to the pulverized coal is in the range of 0.49 to 0.65 Nm 3 /kg. That is, when injecting pressurized carbon dioxide gas carrying pulverized coal, the volume flow rate of oxygen in the third pressure oxygen-containing gas (volume unit is Nm 3 ) and the mass flow rate of the simultaneously injected coal powder (mass unit is kg) The ratio is in the range of 0.49-0.65 Nm 3 /kg.
  • the third pressure oxygen-containing gas is the same pressure oxygen-containing gas as the first pressure oxygen-containing gas and the second pressure oxygen-containing gas, that is, pressurized oxygen.
  • coal powder and coal water slurry are co-gasified in the gasification furnace by the oxygen supply of the second pressure oxygen-containing gas and the third pressure oxygen-containing gas and the reaction with the pressure carbon dioxide to form carbon monoxide and hydrogen. Syngas.
  • the syngas is discharged from the third line 7.
  • the same pressure oxygen-containing gas is distinguished by "first, second and third pressure oxygen-containing gases" when the "time to start injection” is different.
  • the first pressure oxygen-containing gas, the second pressure oxygen-containing gas, and the third pressure oxygen-containing gas are the same pressure oxygen-containing gas, and the "first, second, and third" are only for the above three pressure oxygen-containing gases.
  • time to start injection rather than a limitation on its pressure or its own parameters.
  • the injection locations of the first pressure oxygen-containing gas, the second pressure oxygen-containing gas, and the third pressure oxygen-containing gas may preferably be different, and the same injection location may employ the same or different injection devices.
  • the operating temperature of the gasification furnace ie, the temperature in the first chamber 8 of the gasification furnace
  • the oxygen-to-coal ratio of the third pressure oxygen-containing gas to the coal powder for example, increasing a third pressure oxygen flow rate of oxygen in the oxygen gas and/or a reduction in mass flow of the coal powder
  • an increase in the oxygen to coal ratio of the second pressure oxygen-containing gas to the coal water slurry eg, increasing the second pressure oxygen-containing gas
  • the volumetric flow of oxygen in the medium and/or the reduction of the mass flow of coal in the coal water slurry promotes the combustion of the coal powder and the coal water slurry in the gasifier, thereby increasing the operating temperature of the gasifier.
  • the operating temperature of the gasifier is higher than 1600 ° C
  • the oxygen to coal ratio of the third pressure oxygen-containing gas to the coal powder for example, reducing the volume flow of oxygen in the third pressure oxygen-containing gas and / or increasing the pulverized coal) Mass flow rate
  • the oxygen-to-coal ratio of the second pressure oxygen-containing gas to the coal water slurry eg, reducing the volumetric flow rate of oxygen in the second pressure oxygen-containing gas and/or increasing the mass flow rate of coal in the coal-water slurry
  • the combustion of the coal powder and the coal water slurry in the gasification furnace is weakened, and the water in the coal water slurry has a relative cooling effect, thereby reducing the operating temperature of the gasification furnace.
  • the operating pressure of the gasifier is further included as follows
  • the step of conditioning is performed, and preferably, the operating pressure of the gasifier is controlled to be in the range of 4.5 to 7.0 MPa.
  • Controlling the gasifier by increasing or decreasing the volume flow of oxygen in the third pressure oxygen-containing gas, the mass flow rate of the pulverized coal, the volumetric flow rate of oxygen in the second pressure oxygen-containing gas, and the mass flow rate of coal in the coal-water slurry Operating pressure.
  • the mass flow rate of pulverized coal there are at least three methods for changing the mass flow rate of pulverized coal: the first one, maintaining the volumetric flow rate of the carbon dioxide gas carrying the pulverized coal is constant, and changing the content of the pulverized coal therein (pressure carbon dioxide gas per unit volume) The mass of the coal powder carried, thereby changing the mass flow rate of the coal powder injected into the gasifier.
  • the content of pulverized coal in the pressurized carbon dioxide gas is kept constant, and the volumetric flow rate of the injected carbon dioxide into the gasifier is changed, thereby mass flow of the pulverized coal.
  • the third is the combination of the first two.
  • the first type maintaining the volume flow rate of the coal water slurry to be injected constant, and changing the content of coal (water coal per unit volume) The mass of coal carried by the pulp), thereby changing the mass flow of coal injected into the gasifier.
  • the content of coal to be injected into the coal water slurry is maintained, and the volume flow rate of the coal water slurry injected into the gasifier is changed, thereby mass flow of coal.
  • the third is the combination of the first two.
  • the volume flow rate of oxygen in the third pressure oxygen-containing gas simultaneously injected into the gasification furnace may be realized.
  • the mass flow rate of coal to be injected into the coal water slurry may be increased or decreased in equal proportion.
  • the above-described adjustment method is also applicable to the operation temperature and pressure of the gasification furnace in the process of gasification of the above-mentioned coal water slurry, and the step of adjusting the operating temperature of the gasification furnace in the above step 3.
  • the operating pressure in the gasifier (pressure in the first chamber 8) Below 4.5 MPa, simultaneously increasing the volume flow of oxygen in the third pressure oxygen-containing gas and the mass flow rate of the pulverized coal, and ensuring the volumetric flow rate of oxygen in the first pressure oxygen-containing gas during and during the above-mentioned increase process
  • the ratio of the mass flow rate of the pulverized coal i.e., the above-described oxygen to coal ratio
  • the volume flow rate of oxygen in the second pressure oxygen-containing gas and the mass flow rate of coal in the coal water slurry are simultaneously increased.
  • the volume flow of oxygen in the third pressure oxygen-containing gas injected from the pulverized coal burner and the mass flow rate of the pulverized coal are both increased by 5%, and the volume flow of the second pressure oxygen-containing gas injected from the furnace side burner and the water coal
  • the mass flow rate of coal in the slurry is also increased by 5%, which increases the gasification raw material entering the gasifier per unit time, thereby increasing the output of the syngas, thereby increasing the operating pressure of the gasifier.
  • the injection amount of oxygen and coal at each burner is reduced by an equal ratio, for example, the volume flow of oxygen in the third pressure oxygen-containing gas injected from the pulverized coal burner and the coal
  • the mass flow rate of the powder is reduced by 5%
  • the volume flow rate of oxygen in the second pressure oxygen-containing gas injected from the first burner and the mass flow rate of coal in the coal water slurry are also reduced by 5%, so that the gasification per unit time is entered.
  • the gasification of the furnace gas is reduced, thereby reducing the production of the synthesis gas; or the amount of gas passing through the third line 7 of the atmospheric furnace is increased, thereby reducing the operating pressure of the gasifier.
  • the pressurized carbon dioxide gas is used to carry the pulverized coal injection.
  • the participation of the carbon dioxide in the co-gasification reaction can increase the content of the effective component of the synthesis gas, and on the other hand, avoid the impurity gas in the synthesis gas and complicate the subsequent process. .
  • the positions of the ignition burner, the pulverized coal burner, and the furnace side burner 1 are not limited to the above.
  • the three can be located at any position of the gasifier as long as it does not affect the establishment of co-gasification in the gasifier.
  • the fuel is ignited by the automatic ignition mode of the ignition burner (ignition of the combustible gas by the high pressure of the electrode) or the artificial ignition mode (igniting the combustible gas with an open flame).
  • the first pressure oxygen-containing gas and fuel may be introduced through a nozzle provided at the top of the furnace, and the fuel in the gasification furnace may be spotted by other methods known to those skilled in the art.
  • the injection of the fuel and the first pressure oxygen-containing gas may be performed by different means through different means, pulverized coal, and injection of the third pressure oxygen-containing gas, and is not limited to the above-described only by the same burner or nozzle.
  • the coal water slurry and the second pressure oxygen-containing gas may also be injected through the nozzle, which is different from the burner in the embodiment, and the injection of the coal water slurry and the second pressure oxygen-containing gas may pass through different devices, and is not limited to the above. Only through the same burner or nozzle.
  • the gasifier is lined with refractory bricks, and in step 3, the third pressure oxygen-containing gas is adjusted by adjusting the range of 0.49-0.65 Nm 3 /kg.
  • the oxygen to coal ratio of the pulverized coal, and/or the operating temperature of the gasifier is controlled at 1300-1400 by adjusting the oxygen to coal ratio of the second pressure oxygen-containing gas to the coal water slurry in the range of 0.54-0.70 Nm 3 /kg.
  • the operating pressure of the gasifier was controlled to be in the range of 4.5 to 7.0 MPa (the method is the same as in the first embodiment). The remaining steps are the same as those of the first embodiment described above and will not be described again.
  • the present invention is not limited to the above embodiment, and is used for supplying pulverized coal heated inside the gasifier and the first pressure oxygen-containing gas, the coal water slurry for vaporizing the coal water slurry, and the second pressure oxygen-containing gas.
  • the injection position of the third pressure oxygen-containing gas for performing powder coal gasification and the pressure carbon dioxide gas carrying the coal powder may be located at any position of the first chamber of the gasification furnace, and a nozzle or a burner may be used.
  • Equipment injections well known to those skilled in the art.
  • a plurality of pulverized coal burners and furnace side burners may be provided, and the volume flow rate and mass flow rate referred to above are the sum of the volume flow rate or mass flow rate of the respective substances entering each burner.
  • the volumetric flow rate of oxygen in the second pressure oxygen-containing gas is the sum of the volumetric flows of oxygen in the second pressure oxygen-containing gas entering from the two furnace side burners.
  • the above steps disclosed in the present invention are more advantageous for the temperature and pressure of the gasifier.
  • the control process is simple, the operation is stable, the production is fast, and the safety is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Air Supply (AREA)

Abstract

一种煤炭共气化方法,包括如下步骤:1、向所述气化炉中注入燃料和第一压力含氧气体,并引燃燃料以对气化炉内部进行升温;2、在所述升温达到能引燃待注入水煤浆的温度时,停止所述燃料和所述第一压力含氧气体的注入,然后向所述气化炉内注入水煤浆和第二压力含氧气体以进行水煤浆气化;3、待所述水煤浆气化稳定后,将第三压力含氧气体和携带有煤粉的二氧化碳注入气化炉中进行共气化。该方法运行稳定,克服了现有技术繁琐,费时的调节步骤。

Description

煤炭共气化方法
本申请要求于2014年04月15日提交中国专利局、申请号为201410150394.9、发明名称为“煤炭共气化方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及煤炭气化领域,尤其涉及一种煤炭共气化方法。
背景技术
煤炭气化是指在一定温度及压力下使煤中有机质与气化剂(例如氧气)发生一系列化学反应,将固体煤转化为含有CO、H2、CH4等可燃气体和CO2、N2等非可燃气体的过程目前常见的煤炭气化技术主要包括水煤浆气化技术、粉煤气化技术、生物质气化、以及近期仍处于技术完善状态的多元浆料气化技术,其中,不同相态的气化原料的气化方法存在明显不同。不同相态原料的共气化,如粉煤与水煤浆的共气化,气化方法更为复杂,具体步骤明显不同于单独的水煤浆气化、粉煤气化和多元浆料气化。
CN101760244A公开了一种三相态多原料加压煤气化装置及其工艺。气化工艺包括将破碎后的原料煤、水及添加剂研磨成水煤浆,水煤浆通过混合喷嘴进入燃烧室;将破碎后的干煤粉用高压二氧化碳气体输送通过混合喷嘴进入燃烧室,再向燃烧室注入高压压力氧气。在高温作用下,高压压力氧气与水煤浆和煤粉发生化学反应,生成以一氧化碳及氢气为主的合成气(工业煤气)。这种将多相态原料同时加入气化炉中混合燃烧,燃烧过程极易出现不稳定的现象,由此可能导致合成气的组分不稳定,或者导致合成气品质较低。而在出现上述不稳定的现象的时候,需要尝试对多种原料逐一进行调整以获得较为稳定的共气化过程,该调节步骤繁琐、费时、难度大。
发明内容
针对相关技术中存在的问题,本发明的目的在于提供一种运行稳定的煤炭共气化方法。
为实现上述目的,本发明提供一种煤炭共气化方法,包括如下步骤:步骤1、向气化炉中注入燃料和第一压力含氧气体,并引燃燃料以对气化炉内部进行升温;步骤2、在升温达到能引燃待注入水煤浆的温度时,停止燃料和第一压力含氧气体的注入,然后向气化炉注入上述待注入水煤浆和第二压力含氧气体以进行水煤浆气化;步骤3、待水煤浆气化稳定后,将第三压力含氧气体和携带有煤粉的压力二氧化碳气体注入气化炉中以进行共气化。
同样的压力含氧气体,当“开始注入的时间”不同时用“第一、第二和第三压力含氧气体”区分。换言之,第一、第二和第三压力含氧气体为相同的压力含氧气体,“第一、第二和第三”仅是对上述三个压力含氧气体具有不同的“开始注入的时间”的限定,而不是对其压力或自身参数构成的限定。第一、第二和第三压力含氧气体的注入位置优选地可以不同,而且同一注入位置可以采用相同或不同注入设备。
根据本发明,在步骤2中:注入的第二压力含氧气体与待注入水煤浆的氧煤比,位于0.54-0.70Nm3/kg的范围内。
根据本发明,在步骤3中:注入的第三压力含氧气体与煤粉的氧煤比,位于0.49-0.65Nm3/kg的范围内。
氧煤比为单位时间通过有效截面的氧气的体积与煤炭的质量之比,即氧气的体积流量与煤炭的质量流量的比,单位:Nm3/kg,上述煤炭是指压力二氧化碳气体所携带的煤粉或水煤浆中的煤炭,上述煤炭的质量是指压力二氧化碳气体所携带的煤粉的质量或水煤浆中的煤炭的质量,而不计载气或水及添加剂的质量。
根据本发明,在步骤1中的燃料和第一压力含氧气体由设置在气化炉的顶部的点火烧嘴注入气化炉。
根据本发明,所述步骤2为如下依次执行的步骤:步骤2.1、在升温达到能引燃待注入水煤浆的温度时,停止燃料和第一压力含氧气体的注入,步骤2.2、将点火烧嘴更换为粉煤烧嘴,并开启粉煤烧嘴的耐高温保护系统;步骤2.3、在气化炉的侧壁安装炉侧烧嘴,并 开启炉侧烧嘴的耐高温保护系统;步骤2.4、通过炉侧烧嘴向气化炉注入上述待注入水煤浆和第二压力含氧气体以进行水煤浆气化。
根据本发明,在步骤3中,第三压力含氧气体和携带有煤粉的压力二氧化碳气体由粉煤烧嘴注入气化炉中。
根据本发明,待注入水煤浆的质量流量大于或等于炉侧烧嘴的负荷的70%。
根据本发明,在步骤2.4中:在进行水煤浆气化的同时开启气化炉的黑水循环系统。
根据本发明,在步骤3中还包括如下步骤:通过在0.49-0.65Nm3/kg的范围内调节第三压力含氧气体与煤粉的氧煤比,和/或通过在0.54-0.70Nm3/kg的范围内调节第二压力含氧气体与待注入水煤浆的氧煤比,控制气化炉的运行温度。
根据本发明,当气化炉内衬为水冷壁时,控制气化炉的运行温度在1400-1600℃的范围内;当气化炉内衬为耐火砖时,控制气化炉的运行温度在1300-1400℃的范围内。
根据本发明,在步骤3中还包括如下步骤:通过等比例的增加或降低第三压力含氧气体中氧气的体积流量、煤粉的质量流量、第二压力含氧气体中氧气的体积流量和待注入水煤浆中煤炭的质量流量,控制气化炉的运行压力。
根据本发明,当气化炉内衬为水冷壁时,控制气化炉的运行压力在4.5-7.0MPa的范围内;当气化炉内衬为耐火砖时,控制气化炉的运行压力在4.5-7.0MPa的范围内。
根据本发明,在步骤1中:通过调节燃料和第一压力含氧气体的注入流量,控制升温的速率小于或等于50℃/h。
根据本发明,能引燃待注入水煤浆的温度大于或等于1000℃。
根据本发明,在步骤1中:第一压力含氧气体和燃料由点火烧嘴的相互隔离的通道注入气化炉;在步骤3中:第三压力含氧气体和携带有煤粉的压力二氧化碳气体由粉煤烧嘴的相互隔离的通道注入气化炉。
根据本发明,燃料为燃料油或燃料气,第一压力含氧气体、第二压力含氧气体和第三压力含氧气体均为压力氧气;其中,当燃料为燃料油时,燃料油经雾化后注入气化炉。
相比于现有技术,本发明的有益效果为:
本发明的煤炭共气化方法,首先通过向气化炉中注入燃料和第一压力含氧气体并引燃燃料以对气化炉内部进行升温。然后,在升温达到能引燃待注入水煤浆的温度时,停止注入燃料和第一压力含氧气体的注入,并将水煤浆和第二压力含氧气体注入气化炉中以进行水煤浆气化,即在气化炉中进行对水煤浆的气化。待水煤浆气化稳定后,向气化炉注入煤粉和第三压力含氧气体以进行共气化,即此时,在气化炉中同时进行对煤粉的气化以及对水煤浆的气化,由此构成了煤炭的共气化。该煤炭共气化方法,在保证水煤浆的稳定后构建共气化,保证了共气化过程中的运行稳定,无需面临现有技术中繁琐、费时、难度大的调节步骤。
附图说明
图1本发明的煤炭共气化方法的一个实施例在应用过程中的示意图。
具体实施方式
下面结合附图对本发明具体实施方式进行描述。
参照图1,示意出应用本发明的煤炭共气化方法的一个实施例的气化炉。其中,本实施例中,气化炉的内衬为水冷壁。在气化炉的侧壁设置炉侧烧嘴1,在气化炉的顶部设置炉顶烧嘴2。第一注入管线3和第一管路4与炉顶烧嘴2连通,第二注入管线5和第二管路6与炉侧烧嘴1连通。可理解,在本实施例中,炉顶烧嘴2同时示出了点火烧嘴和粉煤烧嘴的位置,当然,在其他可选地实施例中,二者位置可不同。并且在本实施例中,气化炉具有第一腔室8和与第一腔室8连通的第二腔室9,第一腔室8相对于第二腔室9靠近气化炉的顶部,并且炉侧烧嘴1设置在气化炉的第一腔室8的侧壁上与第一腔室8连通。在利用此气化炉进行煤炭共气化的时候,在 第一腔室8进行煤炭的共气化,气化过程中产生的气体由设置于气化炉的第一腔室8的侧壁上的第三管路7排出,气化产生的煤灰进入第二腔室9。在本实施例中,在第二腔室9的侧壁上连通有第四管路10和第五管路11,该两个管路的一端均第二腔室9的内部连通,另一端均与黑水循环系统连通。
继续参照图1,将本发明的煤炭共气化方法应用于上述气化炉的步骤包括:步骤1、向气化炉中注入燃料和第一压力含氧气体,并引燃燃料以对气化炉内部进行升温;步骤2、在升温达到能引燃待注入水煤浆的温度时,停止燃料和第一压力含氧气体的注入,然后向气化炉注入上述待注入水煤浆和第二压力含氧气体以进行水煤浆气化;步骤3、待水煤浆气化稳定后,将第三压力含氧气体和携带有煤粉的压力二氧化碳气体注入气化炉中以进行共气化。
上述煤炭共气化方法,先在气化炉中建立稳定的水煤浆气化后再进行共气化,保证了共气化过程中的气化炉的运行稳定,并无需面临现有技术中繁琐、费时、难度大的调节步骤。
进一步参照图1,在本实施例中,上述步骤1具体实施为:
在气化炉顶部设置点火烧嘴,在本实施例中,点火烧嘴的结构为具有位于点火烧嘴中心的第二通道,以及设置在第二通道前端的点火装置(点火棒),设置在第二通道外侧的环形的第一通道,第二通道和第一通道之间可选地设置冷却夹套,第一通道外设有冷却夹套或盘管,冷却夹套为内外双层,通常冷却介质由内层进入并且从外层排出。上述所有冷却夹套和/或盘管即耐高温保护系统。第一注入管线3连通于第一通道,第一管路4连通于第二通道。通过点火烧嘴同时注入第一压力含氧气体和燃料,即,将第一压力含氧气体经由第一注入管线3和第一通道注入气化炉,燃料经由第一管路4和第二通道注入气化炉,由此第一压力含氧气体和燃料由点火烧嘴的相互隔离的通道注入气化炉,即第一压力含氧气体和燃料在点火烧嘴中不混合。可理解,也可设置多个相互隔离的通道,并选择其中的部分通道注入煤粉,部分通道注入第一压力含氧气体。此外, 点火烧嘴与气化炉炉体通过法兰连接。
在点火装置的引燃下,燃料在气化炉中燃烧,从而对气化炉进行升温。在本实施例中,第一压力含氧气体的为压力氧气,并且该压力氧气的压力位于6.5-7.5MPa的范围内,燃料为液化石油气。当然,第一压力含氧气体可为加压的其它含有氧气的气体,如加压的水蒸气氧气混合气体或者加压的二氧化碳气氧气混合气体,其中,“加压的”意为大于相应的气体在常压状态下的压力。而燃料可为本领域技术人员公知的燃料油或燃料气,并且,经过点火烧嘴,燃料油雾化后进入气化炉。。
此外,在步骤1中的升温过程中,通过调节燃料和第一压力含氧气体的注入流量,控制升温的速率小于或等于50℃/h。可理解,当升温的速率大于50℃/h时,减小燃料和第一压力含氧气体的注入流量,以使单位时间内在气化炉中燃烧的燃料变少,从而降低了单位时间燃烧的放热,进而减慢气化炉的升温速率。其中,第一压力含氧气体和燃料的注入流量可选地为其注入时的体积流量。当然,根据在实际生产中所使用的燃料的不同,可选择以质量流量或体积流量进行操作。
另外,在为气化炉升温的过程中,气化炉中燃料燃烧产生的烟气由第三管路7排放至火炬,其中本发明使用的火炬是本领域技术人员公知的火炬,其是化工厂重要的安全和环保设施,主要用于处理生产装置开停工、非正常生产及紧急状态下无法进行有效回收的可燃气体。
在本实施例中,上述步骤2具体实施为:
执行如下步骤2.1,在气化炉的升温达到能引燃待注入水煤浆的温度(在本实施例中,该能引燃待注入水煤浆的温度为大于或等于1000℃)时,停止燃料和第一压力含氧气体的注入。可理解,本领域技术人员可根据使用的水煤浆的特性,在大于或等于1000℃的温度范围内确定能引燃该水煤浆的温度,也可理解,气化炉的升温目的为将气化炉内部的温度提升至能够使待注入的水煤浆燃烧的温 度,即提升至能够确保待注入的水煤浆燃烧的温度而无需提高至过高的温度。
在停止注入燃料和第一压力含氧气体后,立刻执行如下步骤2.2。将点火烧嘴更换为粉煤烧嘴,并开启粉煤烧嘴的耐高温保护系统。可选地,粉煤烧嘴的耐高温保护系统为盘绕在烧嘴外壁上的管路,通过流过其中的流体与烧嘴换热,以起到为烧嘴降温的作用,由此在气化炉内进行水煤浆气化和共气化而具有较高温度(大于或等于1000℃)时,能够保证烧嘴的正常运行。当然,也可使用其它本领域技术人员公知的设备对烧嘴起到保护作用。在本实施例中,粉煤烧嘴的典型结构为多个同心管,中心为氧气通道,中心氧通道外环隙为粉煤通道,粉煤通道外有环隙氧通道,粉煤通道和环隙氧通道之间可选地设置冷却夹套,环隙氧通道外设有冷却夹套,冷却夹套为内外双层,通常冷却介质由内层进入并且从外层排出。上述两个冷却夹套即为耐高温保护系统。此外,粉煤烧嘴与气化炉炉体通过法兰连接。
在此,通过分别设置点火烧嘴和粉煤烧嘴,克服了组合式一体烧嘴难以承受高温(1000℃)和容易损坏的缺陷,并且,组合式一体烧嘴结构复杂,成本相对较高。而分别使用点火烧嘴和粉煤烧嘴,可降低生产成本。在将点火烧嘴更换为上述粉煤烧嘴之后,执行下述步骤2.3。在气化炉的侧壁安装炉侧烧嘴,并开启炉侧烧嘴的耐高温保护系统。该耐高温保护系统同上述粉煤烧嘴的耐高温保护系统,故不再赘述。
其中,在本实施例中,炉侧烧嘴为水煤浆烧嘴结构,其为一系列同心管喷头,内喷头为中心氧流道,内喷头的外壁与中喷头的内壁形成环隙通道为水煤浆流道,内喷头的端面与中喷头的端面错开一段距离形成预混合腔,使得氧气和水煤浆在此可以混合,中喷头的外壁与外喷头的内壁构成的环隙通道为外氧流道,中喷头的端面与外喷头的端面基本平齐,外喷头的外表面有冷却水盘管给整个烧嘴降温。第二注入管线5与中心氧流道和外氧流道连通,第二管路 6与水煤浆流道连通,水煤浆经第二管路6注入到水煤浆流道。上述结构可参照现有技术CN103013574A公开的结构,但不局限于此。在可选地其他实施例中,也可仅具有一个用于注入第二压力含氧气体的通道,和一个用于注入水煤浆的通道。此外,炉侧烧嘴与气化炉炉体通过法兰盘固定。
然后执行下述步骤2.4。即通过炉侧烧嘴向气化炉注入待注入水煤浆和第二压力含氧气体以进行水煤浆气化。具体地,在本实施例中,第二压力含氧气体通过第二注入管线5注入到上述水煤浆烧嘴中,水煤浆通过第二管路6注入到水煤浆烧嘴中。由此,第二压力含氧气体与水煤浆通过水煤浆烧嘴注入到气化炉中进行水煤浆气化。其中,注入到气化炉内部之前的水煤浆理解为待注入水煤浆,本发明中所提及的“水煤浆”若为尚未注入到气化炉中,并且在后续步骤中将要注入到气化炉中,则为“待注入水煤浆”。
此外,开始注入水煤浆和第二压力含氧气体时,第二压力含氧气体与水煤浆的氧煤比位于0.54-0.70Nm3/kg的范围内。换言之,在安装完炉侧烧嘴1后,开始同时注入的水煤浆和第二压力含氧气体,此时注入的第二压力含氧气体中的氧气的体积流量(体积单位为Nm3)与同时注入的水煤浆中的煤炭的质量流量(质量单位为kg)的比,位于0.54-0.70Nm3/kg的范围内。在本实施例中,第二压力含氧气体与第一压力含氧气体为相同的压力含氧气体,即为压力氧气,故,第二压力含氧气体中的氧气的体积流量即为压力氧气的体积流量。当然,在其它可选的实施例中,例如第二压力含氧气体为加压的水蒸气和纯氧的混合气体时,第二压力含氧气体中的氧气的体积流量即为加压混合气体中的氧气的体积流量。
此外,在水煤浆的注入过程中,保证水煤浆的质量流量大于或等于炉侧烧嘴1的负荷的70%。其中,炉侧烧嘴1的负荷为该烧嘴中流过液体的最佳流量值,而该最佳流量值为烧嘴在出厂时已知的。
通过步骤2的上述步骤,水煤浆在气化炉内部发生水煤浆气化反应。可选地,气化炉内部开始发生水煤浆气化反应时,开启黑水 循环系统。具体地,在第一腔室8中进行水煤浆气化的过程中,会有气化后的煤灰进入第二腔室9中,通过由第四管路10向第二腔室9内输送水,该输送入第二腔室9内的水与煤灰混合(即形成了“黑水”),并由第五管路11排出带有煤灰的水,由此实现了将第二腔室9中的煤灰带出。而通过第五管路11排出的带有煤灰的水经过黑水循环系统,将煤灰滤除并循环使用上述水。此外,在水煤浆气化的过程中,将产生的合成气由第三管路7排出。并且,检测排出的合成气是否合格,若合格,将合成气输送至下游净化程序,若不合格,将合成气引至火炬。例如,利用气化炉内部和外界的压差,将合成气抽出。当然,根据实际生产的不同需求,判断合成气是否合格的标准略有差异。本领域技术人员可根据实际生产的需要,检测并判断合成气是否合格。
可选地,在进行水煤浆气化的过程中,通过在0.54-0.70Nm3/kg的范围内调节第二压力含氧气体与水煤浆的氧煤比,调节水煤浆气化产生的合成气的组分以及气化炉内的运行温度,同时,在维持上述氧煤比恒定的情况下,通过调节第二压力含氧气体的体积流量和水煤浆中煤炭的质量流量来调节气化炉内的运行压力,从而使得水煤浆气化逐渐稳定。其中,调节第一压力含氧气体的体积流量和水煤浆中煤炭的质量流量的方法会在下面详述。
此外,在实际生产过程中,判断水煤浆气化是否稳定的标准根据实际的生产需要各有不同,本领域技术人员可以根据实际生产需要判断粉煤气化是否稳定,例如,检测由第三管路7排出的合成气的组分,若合成气的有效组分(CO、H2、CH4)稳定,或合成气中某一个(CO或H2)或某几个组分(CO、H2、CH4)的含量符合要求,则为水煤浆气化稳定。可选地,当合成气中氢气、一氧化碳和甲烷的总体积百分含量(即三者的总体积占产生的合成气的体积的百分比)在75%~95%的范围内变化,或当合成气中氢气、一氧化碳或甲烷的体积百分含量(即三者各自的体积占合成气体积的百分比)波动幅度不超过20%,则为合成气的有效组分(CO、H2、CH4)稳 定,也即水煤浆气化稳定。此外可选地,H2的体积含量(即H2的体积占合成气体积的百分比)大于或等于30%、和/或CO的体积含量(即CO的体积占合成气体积的百分比)大于或等于40%时,则为合成气中某一个(CO或H2)或某几个组分(CO和H2)的含量符合要求,也即水煤浆气化稳定。当然,上述仅为实例,其中的数值可根据具体的生产需要设定,本发明不局限于此。
在本实施例中,上述步骤3具体实施为:
待水煤浆气化稳定后,将第三压力含氧气体和携带有煤粉的压力二氧化碳气体由位于炉顶的粉煤烧嘴注入到气化炉内。其中第一注入管线3连通于粉煤烧嘴的位于中心的氧气通道和环隙氧通道,第一管路4连通于粉煤烧嘴的粉煤通道。第三压力含氧气体经由第一注入管线3和位于中心的氧气通道和环隙氧通道注入气化炉中,携带有煤粉的压力二氧化碳气体经由第一管路4和粉煤通道注入到气化炉中,由此,第三压力含氧气体和携带有煤粉的压力二氧化碳气体由粉煤烧嘴的相互隔离的通道注入气化炉,即第三压力含氧气体和携带有煤粉的压力二氧化碳气体在进入气化炉内部之前不混合。其中,压力二氧化碳气体的压力大于6MPa。可理解,与粉煤烧嘴连通的第一注入管线3和第一管路4,可相同于与点火烧嘴连通的第一注入管线3和第一管路4,也可不同于与点火烧嘴连通的第一注入管线3和第一管路4,此处仅为为了简化描述而使用相同的名称。
进一步,当开始注入第三压力含氧气体和携带有煤粉的压力二氧化碳气体时,第三压力含氧气体与煤粉的氧煤比位于0.49-0.65Nm3/kg的范围内。即,在注入携带有煤粉的压力二氧化碳气体时,其中第三压力含氧气体中的氧气的体积流量(体积单位为Nm3)与同时注入的煤粉的质量流量(质量单位为kg)的比,位于0.49-0.65Nm3/kg的范围内。在本实施例中,第三压力含氧气体与第一压力含氧气体和第二压力含氧气体为相同的压力含氧气体,即为压力氧气。
至此,煤粉、水煤浆经第二压力含氧气体和第三压力含氧气体的供氧以及与压力二氧化碳的反应,在气化炉中进行共气化,生成以一氧化碳和氢气为主的合成气。该合成气由第三管路7排出。
在本发明的优选实施例中,同样的压力含氧气体,当“开始注入的时间”不同时用“第一、第二和第三压力含氧气体”区分。换言之,第一压力含氧气体、第二压力含氧气体和第三压力含氧气体为相同的压力含氧气体,“第一、第二和第三”仅是对上述三个压力含氧气体具有不同的“开始注入的时间”的限定,而不是对其压力或自身参数构成的限定。第一压力含氧气体、第二压力含氧气体和第三压力含氧气体的注入位置优选地可以不同,而且同一注入位置可以采用相同或不同注入设备。
在上述共气化的过程中,通过在0.49-0.65Nm3/kg的范围内调节第三压力含氧气体与煤粉的氧煤比,和/或通过在0.54-0.70Nm3/kg的范围内调节第二压力含氧气体与水煤浆的氧煤比,控制气化炉的运行温度在1400-1600℃的范围内。
具体地,若气化炉的运行温度(即气化炉的第一腔室8内的温度)低于1400℃时,通过提高第三压力含氧气体与煤粉的氧煤比(例如,增加第三压力含氧气体中氧气的体积流量和/或减少煤粉的质量流量),和/或提高第二压力含氧气体与水煤浆的氧煤比(例如,增加第二压力含氧气体中氧气的体积流量和/或减少水煤浆中煤炭的质量流量),促进气化炉内的煤粉和水煤浆的燃烧,从而提高气化炉的运行温度。
若气化炉的运行温度高于1600℃时,通过降低第三压力含氧气体与煤粉的氧煤比(例如,减小第三压力含氧气体中氧气的体积流量和/或增加煤粉的质量流量),和/或第二压力含氧气体与水煤浆的氧煤比(例如,减小第二压力含氧气体中氧气的体积流量和/或增加水煤浆中煤炭的质量流量),减弱气化炉内的煤粉和水煤浆的燃烧,并且水煤浆中的水相对具有降温作用,进而降低气化炉的运行温度。
此外,在本实施例的步骤3中还包括如下对气化炉的运行压力 进行调节的步骤,并优选地,控制气化炉的运行压力在4.5-7.0MPa的范围内。
通过等比例的增加或降低第三压力含氧气体中氧气的体积流量、煤粉的质量流量、第二压力含氧气体中氧气的体积流量和水煤浆中煤炭的质量流量,控制气化炉的运行压力。
其中,可理解,改变第三压力含氧气体和第二压力含氧气体中氧气的体积流量的方法至少有如下三种:第一种,维持压力含氧气体的体积流量恒定,而改变其中的氧气的体积含量,从而改变氧气的体积流量。第二种,维持压力含氧气体中的氧气的体积含量不变,而改变压力含氧气体的体积流量,从而改变氧气的体积流量。第三种为前两种的组合。同理,改变煤粉的质量流量的方法至少有如下三种:第一种,维持携带煤粉的压力二氧化碳气体的体积流量恒定,而改变其中的煤粉的含量(单位体积内的压力二氧化碳气体所携带的煤粉的质量),从而改变注入到气化炉中的煤粉的质量流量。第二种,维持压力二氧化碳气体中的煤粉的含量不变,而改变压力二氧化碳注入到气化炉中的体积流量,从而煤粉的质量流量。第三种为前两种的组合。当然,改变待注入水煤浆中煤炭的质量流量的方法至少有如下三种:第一种,维持待注入水煤浆的体积流量恒定,而改变其中的煤炭的含量(单位体积内的水煤浆所携带的煤炭的质量),从而改变注入到气化炉中的煤炭的质量流量。第二种,维持待注入水煤浆中的煤炭的含量不变,而改变水煤浆注入到气化炉中的体积流量,从而煤炭的质量流量。第三种为前两种的组合。而无论选择上述哪种方式进行调节,只要可以实现同时注入到气化炉中的第三压力含氧气体中氧气的体积流量、煤粉的质量流量、第二压力含氧气体中氧气的体积流量和待注入水煤浆中煤炭的质量流量是等比例增大或减少的即可。上述描述的调节方法,同样适用于上述水煤浆气化的过程中调节气化炉的运行温度和压力,以及上述在步骤3中调节气化炉的运行温度的步骤。
在本实施例中,在气化炉的运行压力(第一腔室8内的压力) 低于4.5MPa,同时增大第三压力含氧气体中氧气的体积流量以及煤粉的质量流量,并且保证在上述增大过程中以及完成时,第一压力含氧气体中的氧气的体积流量与煤粉的质量流量的比(即上述氧煤比)恒定,与此同时,同时增大第二压力含氧气体中的氧气的体积流量以及水煤浆中煤炭的质量流量。例如:由粉煤烧嘴注入的第三压力含氧气体中氧气的体积流量和煤粉的质量流量均提高5%,由炉侧烧嘴注入的第二压力含氧气体的体积流量和水煤浆中煤炭的质量流量也都提高5%,使得单位时间内进入气化炉气化原料增加,从而提高合成气的产量,进而提高气化炉的运行压力。当然,也可通过关小第三管路7的过气量,进而提高气化炉的运行压力。若气化炉的运行压力高于7.0MPa,通过等比例降低各烧嘴处氧气和煤的注入量,例如:由粉煤烧嘴注入的第三压力含氧气体中的氧气的体积流量和煤粉的质量流量均降低5%,由第一烧嘴注入的第二压力含氧气体中的氧气的体积流量和水煤浆中煤炭的质量流量也都降低5%,使得单位时间内进入气化炉气化原料减少,从而降低合成气的产量;或者开大气化炉第三管路7的过气量,进而降低气化炉的运行压力。
可理解,在上述实施例中,在单位体积的第二、第三压力含氧气体中的氧气的含量不变的情况下,增加第二、第三压力含氧气体中氧气的体积流量可通过增加第二、第三压力含氧气体的体积流量实现,反之亦然。而在单位体积的携带有煤粉的压力二氧化碳中的煤粉的质量含量不变时,减少煤粉的质量流量可通过减少携带有煤粉的压力二氧化碳的体积流量实现,反之亦然。在单位体积的水煤浆中的煤炭的质量含量不变的情况下,增大水煤浆中的煤炭的质量流量可通过增大水煤浆的体积流量实现,反之亦然。当然,本领域技术人员可同时实现上述压力和温度的控制。
进一步,在本实施例中使用压力二氧化碳气体携带煤粉注入,一方面二氧化碳参与共气化反应可提高合成气有效组分的含量,另一方面避免合成气中具有杂质气体而使后续工艺复杂化。
另外,点火烧嘴、粉煤烧嘴和炉侧烧嘴1的位置不局限于上述 实施例,三者可位于气化炉的任意位置,只要不影响在气化炉内建立共气化即可。而在本实施例中,通过点火烧嘴的自动点火方式(通过电极发出高压点燃可燃气体)或人工点火方式(用明火点燃可燃气体)点燃燃料。当然,不局限于此,可通过在炉顶设置的喷嘴将第一压力含氧气体和燃料引入,而通过其它本领域技术人员公知的方法点燃气化炉中的燃料。此外,燃料和第一压力含氧气体的注入可通过不同的装置、煤粉和第三压力含氧气体的注入可通过不同的装置,不限于上述仅通过同一烧嘴或喷嘴。同样,水煤浆和第二压力含氧气体也可通过喷嘴注入,区别于本实施例中的烧嘴,并且水煤浆和第二压力含氧气体的注入可通过不同的装置,不限于上述仅通过同一烧嘴或喷嘴。
在本发明的煤炭共气化的第二个实施例中,气化炉内衬为耐火砖,在步骤3中,通过在0.49-0.65Nm3/kg的范围内调节第三压力含氧气体与煤粉的氧煤比,和/或通过在0.54-0.70Nm3/kg的范围内调节由第二压力含氧气体与水煤浆的氧煤比,控制气化炉的运行温度在1300-1400℃的范围内。此外,控制气化炉的运行压力在4.5-7.0MPa的范围内(方法与第一个实施例相同)。其余步骤与上述第一个实施例相同,不再赘述。
当然,本发明并不局限于上述实施例,用于给气化炉内部升温的煤粉和第一压力含氧气体、用于进行水煤浆气化的水煤浆和第二压力含氧气体、以及用于进行粉煤气化的第三压力含氧气体和携带有煤粉的压力二氧化碳气体的注入位置可位于气化炉的第一腔室的任意位置,并且可使用喷嘴或烧嘴等本领域技术人员公知的设备注入。此外,可设置多个粉煤烧嘴和炉侧烧嘴,而上述涉及的体积流量和质量流量为各烧嘴进入的相应物质的体积流量或质量流量之和。例如,当设置有两个炉侧烧嘴时,第二压力含氧气体中氧气的体积流量为由两个炉侧烧嘴进入的第二压力含氧气体中的氧气的体积流量之和。
综上,本发明公开的上述步骤,更有利于气化炉的温度和压力 的控制,操作过程简单、运行稳定、投产快、安全性高。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (16)

  1. 一种煤炭共气化方法,包括如下步骤:
    步骤1、向所述气化炉中注入燃料和第一压力含氧气体,并引燃所述燃料以对所述气化炉内部进行升温;
    步骤2、在所述升温达到能引燃待注入水煤浆的温度时,停止所述燃料和所述第一压力含氧气体的注入,然后向所述气化炉注入所述待注入水煤浆和第二压力含氧气体以进行水煤浆气化;
    步骤3、待所述水煤浆气化稳定后,将第三压力含氧气体和携带有煤粉的压力二氧化碳气体注入所述气化炉中以进行共气化。
  2. 根据权利要求1所述的煤炭共气化方法,其特征在于,
    在所述步骤2中:注入的所述第二压力含氧气体与所述水煤浆氧煤比,位于0.54-0.70Nm3/kg的范围内。
  3. 根据权利要求1所述的煤炭共气化方法,其特征在于,
    在所述步骤3中:注入的所述第三压力含氧气体与所述煤粉的氧煤比,位于0.49-0.65Nm3/kg的范围内。
  4. 根据权利要求1所述的煤炭共气化方法,其特征在于,
    在步骤1中的所述燃料和所述第一压力含氧气体由设置在所述气化炉的顶部的点火烧嘴注入所述气化炉。
  5. 根据权利要求4所述的煤炭共气化方法,其特征在于,
    所述步骤2为如下依次执行的步骤:
    步骤2.1、在所述升温达到能引燃待注入水煤浆的温度时,停止所述燃料和所述第一压力含氧气体的注入,
    步骤2.2、将所述点火烧嘴更换为粉煤烧嘴,并开启所述粉煤烧嘴的耐高温保护系统;
    步骤2.3、在所述气化炉的侧壁安装炉侧烧嘴,并开启所述炉侧烧嘴的耐高温保护系统;
    步骤2.4、通过所述炉侧烧嘴向所述气化炉注入所述待注入水煤浆和第二压力含氧气体以进行水煤浆气化。
  6. 根据权利要求5所述的煤炭共气化方法,其特征在于,
    在所述步骤3中,所述第三压力含氧气体和所述携带有煤粉的压力二氧化碳气体由所述粉煤烧嘴注入所述气化炉中。
  7. 根据权利要求5所述的煤炭共气化方法,其特征在于,
    所述待注入水煤浆的质量流量大于或等于所述炉侧烧嘴的负荷的70%。
  8. 根据权利要求5所述的煤炭共气化方法,其特征在于,
    在所述步骤2.4中:在进行所述水煤浆气化的同时开启所述气化炉的黑水循环系统。
  9. 根据权利要求1-8中任一项所述的煤炭共气化方法,其特征在于,
    在所述步骤3中还包括如下步骤:
    通过在0.49-0.65Nm3/kg的范围内调节所述第三压力含氧气体与所述煤粉的氧煤比,和/或通过在0.54-0.70Nm3/kg的范围内调节所述第二压力含氧气体与所述待注入水煤浆的氧煤比,控制所述气化炉的运行温度。
  10. 根据权利要求9所述的煤炭共气化方法,其特征在于,
    当所述气化炉内衬为水冷壁时,控制所述气化炉的运行温度在1400-1600℃的范围内;
    当所述气化炉内衬为耐火砖时,控制所述气化炉的运行温度在1300-1400℃的范围内。
  11. 根据权利要求1-8中任一项所述的煤炭共气化方法,其特征在于,
    在所述步骤3中还包括如下步骤:
    通过等比例的增加或降低所述第三压力含氧气体中氧气的体积流量、所述煤粉的质量流量、所述第二压力含氧气体中氧气的体积流量和所述待注入水煤浆中煤炭的质量流量,控制所述气化炉的运行压力。
  12. 根据权利要求11所述的煤炭共气化方法,其特征在于,
    当所述气化炉内衬为水冷壁时,控制所述气化炉的运行压力在4.5-7.0MPa的范围内;
    当所述气化炉内衬为耐火砖时,控制气化炉的运行压力在4.5-7.0MPa的范围内。
  13. 根据权利要求1、4、5、6中任一项所述的煤炭共气化方法,其特 征在于,
    在所述步骤1中:
    通过调节所述燃料和所述第一压力含氧气体的注入流量,控制所述升温的速率小于或等于50℃/h。
  14. 根据权利要求1、4、5、6中任一项所述的煤炭共气化方法,其特征在于,
    所述能引燃待注入水煤浆的温度大于或等于1000℃。
  15. 根据权利要求6所述的煤炭共气化方法,其特征在于,
    在所述步骤1中:所述第一压力含氧气体和所述燃料由所述点火烧嘴的相互隔离的通道注入所述气化炉;
    在所述步骤3中:所述第三压力含氧气体和所述携带有煤粉的压力二氧化碳气体由所述粉煤烧嘴的相互隔离的通道注入所述气化炉。
  16. 根据权利要求1、4、5、6中任一项所述的煤炭共气化方法,其特征在于,
    所述燃料为燃料油或燃料气,所述第一压力含氧气体、所述第二压力含氧气体和所述第三压力含氧气体均为压力氧气;
    其中,当所述燃料为燃料油时,所述燃料油经雾化后注入所述气化炉。
PCT/CN2015/076344 2014-04-15 2015-04-10 煤炭共气化方法 WO2015158222A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15780192.9A EP3133139A1 (en) 2014-04-15 2015-04-10 Coal co-gasification method
US15/126,595 US20170101593A1 (en) 2014-04-15 2015-04-10 Coal co-gasification method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410150394.9 2014-04-15
CN201410150394.9A CN103897740B (zh) 2014-04-15 2014-04-15 煤炭共气化方法

Publications (1)

Publication Number Publication Date
WO2015158222A1 true WO2015158222A1 (zh) 2015-10-22

Family

ID=50989323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076344 WO2015158222A1 (zh) 2014-04-15 2015-04-10 煤炭共气化方法

Country Status (4)

Country Link
US (1) US20170101593A1 (zh)
EP (1) EP3133139A1 (zh)
CN (1) CN103897740B (zh)
WO (1) WO2015158222A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103897740B (zh) * 2014-04-15 2016-02-10 新奥气化采煤有限公司 煤炭共气化方法
CN103897739B (zh) * 2014-04-15 2015-12-09 新奥气化采煤有限公司 煤炭共气化方法
CN108485710A (zh) * 2018-05-30 2018-09-04 科林未来能源技术(北京)有限公司 一种可协同气化处理废液、浆料和煤粉的气化炉和方法
CN115044395A (zh) * 2022-06-27 2022-09-13 陕西榆能化学材料有限公司 一种环腔保护气用量的反馈调节方法、系统、设备及介质
CN115975678A (zh) * 2023-03-03 2023-04-18 西北大学 干湿法协同进料气化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000185235A (ja) * 1998-12-21 2000-07-04 Ishikawajima Harima Heavy Ind Co Ltd 石炭水スラリ製造方法及びその装置
CN101586040A (zh) * 2009-06-29 2009-11-25 西安热工研究院有限公司 采用二氧化碳气化的两段式加压气化工艺
CN103555370A (zh) * 2012-11-23 2014-02-05 新奥气化采煤有限公司 含碳有机物气化方法、及气化炉
CN103897739A (zh) * 2014-04-15 2014-07-02 新奥气化采煤有限公司 煤炭共气化方法
CN103897740A (zh) * 2014-04-15 2014-07-02 新奥气化采煤有限公司 煤炭共气化方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101760243B (zh) * 2008-12-24 2015-01-14 山东华鲁恒升化工股份有限公司 三相态多原料立体加压对撞煤气化装置及其工艺
CN102533345B (zh) * 2011-12-14 2014-02-19 中国科学院山西煤炭化学研究所 复合式流化床煤气化的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000185235A (ja) * 1998-12-21 2000-07-04 Ishikawajima Harima Heavy Ind Co Ltd 石炭水スラリ製造方法及びその装置
CN101586040A (zh) * 2009-06-29 2009-11-25 西安热工研究院有限公司 采用二氧化碳气化的两段式加压气化工艺
CN103555370A (zh) * 2012-11-23 2014-02-05 新奥气化采煤有限公司 含碳有机物气化方法、及气化炉
CN103897739A (zh) * 2014-04-15 2014-07-02 新奥气化采煤有限公司 煤炭共气化方法
CN103897740A (zh) * 2014-04-15 2014-07-02 新奥气化采煤有限公司 煤炭共气化方法

Also Published As

Publication number Publication date
CN103897740B (zh) 2016-02-10
EP3133139A1 (en) 2017-02-22
US20170101593A1 (en) 2017-04-13
CN103897740A (zh) 2014-07-02

Similar Documents

Publication Publication Date Title
WO2015158223A1 (zh) 煤炭共气化方法
WO2015158222A1 (zh) 煤炭共气化方法
US7762200B2 (en) Method for starting high-performance entrained flow gasification reactors with combination burner and multiple burner array
US4353712A (en) Start-up method for partial oxidation process
JP5166910B2 (ja) 石炭ガス化炉の起動方法および起動装置
US4400179A (en) Partial oxidation high turndown apparatus
RU2670506C2 (ru) Разжигающее факельное устройство
US4392869A (en) High turndown partial oxidation process
CA2958270C (en) Method for blowing substitute reducing agents into a blast furnace
JP5677095B2 (ja) 石炭ガス化反応器の始動方法
JP5130459B2 (ja) 石炭熱分解ガス化炉の操業方法
US4351645A (en) Partial oxidation burner apparatus
CN104312634A (zh) 一种复合式热氧喷嘴及其应用
US20120023822A1 (en) Method and System for Controlled Gasification
CN202392795U (zh) 一种用于沥青气化的气化炉燃烧器
DK2410276T4 (en) Process for chemical reaction of a fuel with oxygen-containing gas by means of a pre-mix burner
AU2012300696A1 (en) Combustion apparatus with indirect firing system
CN208964866U (zh) 一种可协同气化处理废液、浆料和煤粉的气化系统
EP2104801B1 (en) High capacity burner
RU2705536C1 (ru) Газовая горелка
CN115851322A (zh) 喷嘴及包含其的气化炉、废水和有机废液的处理方法
JP2016089134A (ja) ガス化炉及びガス化炉への燃料投入方法
JP2004091922A (ja) 鋼材加熱炉
JP2004101010A (ja) ガス化溶融炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15780192

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15126595

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: IDP00201606550

Country of ref document: ID

REEP Request for entry into the european phase

Ref document number: 2015780192

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015780192

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE