WO2009093284A1 - 走査型プローブ顕微鏡 - Google Patents

走査型プローブ顕微鏡 Download PDF

Info

Publication number
WO2009093284A1
WO2009093284A1 PCT/JP2008/000078 JP2008000078W WO2009093284A1 WO 2009093284 A1 WO2009093284 A1 WO 2009093284A1 JP 2008000078 W JP2008000078 W JP 2008000078W WO 2009093284 A1 WO2009093284 A1 WO 2009093284A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
cantilever
light source
change
source unit
Prior art date
Application number
PCT/JP2008/000078
Other languages
English (en)
French (fr)
Inventor
Takeshi Ito
Original Assignee
Shimadzu Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corporation filed Critical Shimadzu Corporation
Priority to PCT/JP2008/000078 priority Critical patent/WO2009093284A1/ja
Priority to JP2009550375A priority patent/JP4873081B2/ja
Priority to CN2008801255068A priority patent/CN101952706B/zh
Priority to US12/864,491 priority patent/US8321960B2/en
Publication of WO2009093284A1 publication Critical patent/WO2009093284A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q20/00Monitoring the movement or position of the probe
    • G01Q20/02Monitoring the movement or position of the probe by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q30/00Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
    • G01Q30/04Display or data processing devices
    • G01Q30/06Display or data processing devices for error compensation

Definitions

  • the present invention relates to a scanning probe microscope, and more particularly to a scanning probe microscope provided with a displacement detection means for optically detecting a mechanical displacement of a cantilever provided with a probe.
  • An atomic force microscope Atomic
  • Force Microscope typified by Force Microscope.
  • a cantilever equipped with a probe is vibrated near its resonance point, and the interaction between the sample surface acting on the probe in that state is cantilever.
  • a method called a non-contact mode or a dynamic mode is used in which the vibration is converted into a change in amplitude, phase, or frequency.
  • FIG. 5 is a configuration diagram of a main part of a conventionally known scanning probe microscope described in, for example, Patent Document 1.
  • a sample 1 to be observed is held on a sample table 2 provided on a scanner 3 having a substantially cylindrical shape.
  • the scanner 3 includes an XY scanner 3a that scans the sample 1 in two directions of X and Y orthogonal to each other, and a Z scanner 3b that finely moves the sample 1 in the Z-axis direction orthogonal to the X and Y axes.
  • the drive source is a piezoelectric element that is displaced by an applied voltage.
  • a cantilever 4 having a probe 5 at its tip is disposed above the sample 1, and this cantilever 4 is vibrated by an excitation unit including a piezoelectric element (not shown).
  • an optical displacement detector 10 including a laser light source 11, mirrors 13 and 14, and a photodetector 15 is provided above the cantilever 4.
  • the laser light emitted from the laser light source 11 is reflected substantially vertically by the mirror 13 and is irradiated near the tip of the cantilever 4.
  • the light reflected by the cantilever 4 is detected by the photodetector 15 via the mirror 14.
  • the photodetector 15 has a light receiving surface divided into a plurality (usually two) in the displacement direction (Z axis direction) of the cantilever 4, or has a light receiving surface divided into four in the Z axis direction and the Y axis direction.
  • the amount of displacement of the cantilever 4 can be calculated by calculating a detection signal corresponding to the plurality of received light amounts. .
  • the measurement operation in the non-contact mode in the scanning probe microscope having the above configuration will be briefly described.
  • the cantilever 4 is vibrated in the Z-axis direction at a frequency near the resonance point by an excitation unit (not shown).
  • an attractive force or a repulsive force acts between the probe 5 and the surface of the sample 1
  • the vibration amplitude of the cantilever 4 changes.
  • a small change amount of the vibration amplitude is detected by a detection signal from the photodetector 15, and the sample 1 is moved in the Z-axis direction so that the change amount is zero, that is, the vibration amplitude is kept constant.
  • the piezoelectric element of the scanner 3b is feedback controlled.
  • the emission angle (emission direction) of the laser light emitted from the laser light source 11 may slightly change due to the influence of temperature change in the characteristics of the laser oscillation circuit.
  • the variation in the emission angle of the laser beam occurs as described above, the following problem occurs.
  • FIG. 6 is a diagram schematically showing a normal operation of the optical displacement detector 10.
  • the probe 5 is scanning the flat surface on the sample 1
  • a spot of the reflected light from the cantilever 4 is located at a position indicated by P on the light receiving surface of the photodetector 15 as shown in FIG. can get.
  • the cantilever 4 bends upward as shown in FIG. 5B, and the spot position P of the reflected light on the light receiving surface of the photodetector 15 is downward. It is displaced to. Due to such displacement, the detection signal from the photodetector 15 changes, and information reflecting the height of the convex portion 1a and the like is obtained.
  • FIG. 7 is a diagram schematically showing the operation when the emission direction of the laser light from the laser light source 11 is inclined upward.
  • FIG. 7A when there is no inclination (shift) in the laser beam emission direction (in this example, the laser beam is emitted in the X-axis direction), the position indicated by P on the light receiving surface of the photodetector 15 A spot of reflected light from the cantilever 4 is obtained.
  • the emission direction of the laser beam is slightly inclined upward due to the change in ambient temperature, the incident angle of the irradiation light Lm to the cantilever 4 also changes.
  • the spot position P of the reflected light on the light receiving surface of the photodetector 15 is displaced downward, even though the probe 5 is scanning the flat surface on the sample 1. That is, on the light receiving surface of the photodetector 15, the state is the same as when the convex portion 1a is present on the surface of the sample 1 as shown in FIG. Therefore, when the laser beam emission direction (emission angle) changes as described above, it is erroneously recognized that there is a convex portion or a concave portion on the surface of the sample 1.
  • the laser light source 11 that suppresses the change in the emission angle with respect to the temperature or the like is adopted, or a temperature control device that maintains the ambient temperature of the laser light source 11 constant is provided.
  • a temperature control device that maintains the ambient temperature of the laser light source 11 constant is provided.
  • the present invention has been made to solve the above-mentioned problems, and the object of the present invention is that even when a change occurs in the emission angle of the laser beam from the laser light source, it is unevenness on the sample surface.
  • An object of the present invention is to provide a scanning probe microscope that can prevent erroneous recognition.
  • the first invention made to solve the above-mentioned problems is a flexible cantilever provided with a probe, a light source unit for irradiating light to the cantilever, and the cantilever for the irradiated light.
  • a scanning detector that detects the displacement of the cantilever based on positional information of the reflected light obtained by the photodetector when the probe scans the surface of the sample.
  • the easiest way for the compensation means to control the light source unit is to change the posture (tilt) of the light source unit.
  • An actuator such as a piezoelectric element can be used as a drive source for such changes.
  • the second invention made to solve the above-mentioned problems is a flexible cantilever provided with a probe, a light source unit for irradiating light to the cantilever, and the cantilever for the irradiated light.
  • a light detector for detecting reflected light from the probe, and when the probe scans the surface of the sample, scanning for obtaining displacement of the cantilever based on positional information of the reflected light obtained by the light detector
  • Type probe microscope a) a light splitting unit that splits and extracts a light beam on the optical path of the irradiation light from the light source unit to the cantilever; b) Compensation light detection means for detecting the arrival position of the light split and extracted by the light splitting means; c) Recognizing a change in the emission angle of the light emitted from the light source unit according to the information obtained by the compensation light detection means, so that the influence of the change is reduced in the position information of the reflected light Compensation means for controlling the optical element inserted in the optical path of the i
  • the optical element can be, for example, a single lens or a lens mechanism in which a plurality of lenses are combined, and the compensation means can control the position and angle of the lens mechanism.
  • the compensation means can control the position and angle of the lens mechanism.
  • an optical element capable of electrically changing optical characteristics can also be used.
  • a third aspect of the present invention made to solve the above-described problems is a flexible cantilever provided with a probe, a light source unit for irradiating light to the cantilever, and the cantilever for the irradiated light.
  • a light detector for detecting reflected light from the probe, and when the probe scans the surface of the sample, scanning for obtaining displacement of the cantilever based on positional information of the reflected light obtained by the light detector
  • Type probe microscope a) a light splitting unit that splits and extracts a light beam on the optical path of the irradiation light from the light source unit to the cantilever; b) Compensation light detection means for detecting the arrival position of the light split and extracted by the light splitting means; c) moving means for moving at least one of the sample and the cantilever to change a relative distance; d) Recognizing a change in the emission angle of the light emitted from the light source unit according to the information obtained by the compensation light detection means, so that the influence of the change is
  • the moving means can be, for example, a scanner that moves a sample and uses a piezoelectric element as a drive source.
  • a fourth aspect of the present invention made to solve the above-described problems includes a flexible cantilever provided with a probe, a light source unit for irradiating light to the cantilever, and the cantilever for the irradiated light.
  • a light detector for detecting reflected light from the probe, and when the probe scans the surface of the sample, scanning for obtaining displacement of the cantilever based on positional information of the reflected light obtained by the light detector
  • Type probe microscope a) a light splitting unit that splits and extracts a light beam on the optical path of the irradiation light from the light source unit to the cantilever; b) Compensation light detection means for detecting the arrival position of the light split and extracted by the light splitting means; c) Recognizing a change in the emission angle of light emitted from the light source unit according to the information obtained by the compensation light detection means, and depending on the amount of change, the position information of the reflected light or the position information Compensation means for correcting data reflecting the irregularities and physical properties of
  • a beam splitter such as a half mirror can be used as the light splitting means.
  • a light detector such as a photodiode having a light receiving surface divided into a plurality of light receiving surfaces such as 2, 4 can be used.
  • the said light source part is a laser light source normally.
  • the incident angle of the irradiation light to the cantilever also changes.
  • the arrival position of the light divided and extracted by the light dividing means changes on the light receiving surface of the compensation light detecting means, and the amount of change corresponds to the change in the emission angle.
  • the light reception of the photodetector for detecting the displacement of the cantilever by correcting the change in the optical path due to the change in the emission angle of the emission light from the light source unit.
  • the spot position of the reflected light obtained on the surface is prevented from shifting. In this case, by performing feedback control based on information obtained by the compensation light detection means, it is possible to eliminate the influence of fluctuations in the emission angle in almost real time.
  • the amount of movement of the moving means that is feedback-controlled according to the change in the spot position of the reflected light on the light receiving surface of the photodetector is set. , Based on the information obtained by the compensation light detection means. Therefore, although the optical path of the light irradiated to the cantilever does not change, the influence of the variation of the emission angle of the emitted light does not appear in the spot position of the reflected light on the light receiving surface of the photodetector.
  • the optical path of the irradiation light hitting the cantilever and the distance between the sample and the cantilever are not particularly changed.
  • the change in the angle appears as it is as the change in the spot position of the reflected light on the light receiving surface of the photodetector. That is, the position information of the reflected light obtained by the photodetector at this time includes the influence of the change in the outgoing angle of the outgoing light.
  • the degree of the influence can be quantitatively grasped based on the information obtained by the light detection means, for example, after the data reflecting the unevenness and physical properties of the sample surface is calculated, the change in the emission angle of the emitted light Correct the data according to the amount.
  • the scanning probe microscope According to the scanning probe microscope according to the first to fourth inventions, even when the emission angle of light emitted from the light source unit varies due to factors such as changes in ambient temperature, the variation is caused by unevenness on the sample surface. It is no longer erroneously recognized as being present, and it is possible to create a surface image of the sample and measure the surface roughness with high accuracy. Further, as compared with the case where the temperature dependency of the emission angle is improved by the light source unit itself or the temperature of the light source unit is controlled, the cost can be suppressed and the effect is more certain. Furthermore, the same effect can be obtained even with respect to changes in the emission angle due to factors such as changes with time other than temperature.
  • FIG. 1 is a configuration diagram of a main part of a scanning probe microscope according to the first embodiment.
  • the same components as those already described in FIG. 5 are denoted by the same reference numerals and description thereof is omitted.
  • a half mirror 20 corresponding to the light splitting means in the present invention is provided in the optical displacement detection unit 10 in place of the conventional mirror 13.
  • the emitted light is divided into irradiation light Lm and monitor light Ls directed to the cantilever 4.
  • the light receiving surface is divided into four along the two axis directions of the Y axis and the Z axis, which corresponds to the compensation light detection means in the present invention.
  • An optical detector 21 is disposed.
  • the laser light source 11 can be rotated within a predetermined angle range in the rotation direction around the Y axis and the rotation direction around the Z axis by an actuator 23 composed of a piezoelectric element or the like. Detection signals from the four light receiving surfaces 21a, 21b, 21c, and 21d of the photodetector 21 are input to the drive amount calculation unit 22, and the drive amount calculation unit 22 calculates the drive amount in the rotation direction around the Y axis and the Z axis. Then, the actuator 23 is controlled.
  • the drive amount calculation unit 22 sets the drive amount to zero, and the actuator 23 does not operate.
  • the position of the light spot Q by the monitor light Ls on the light receiving surface of the photodetector 21 is, for example, It moves as shown in FIG.
  • the amount of movement of the light spot Q at this time corresponds to the magnitude of the inclination in the light emission direction, and the movement direction corresponds to the direction of inclination. Therefore, the drive amount calculation unit 22 calculates the drive amount that recognizes the magnitude and direction of the inclination of the light emission direction and can cancel the result by calculating the four detection signals.
  • a drive signal corresponding to the obtained drive amount is sent to the actuator 23 to control the displacement amount of the actuator 23.
  • the attitude of the laser light source 11 changes due to the displacement of the actuator 23, and the direction of the emitted light from the laser light source 11 approaches the X-axis direction.
  • the position of the light spot Q of the monitor light Ls on the light receiving surface of the photodetector 21 approaches the state shown in FIG. In this state, if there is an error from the state of FIG. 8A, the driving amount is further corrected, and the light spot Q is adjusted to the state of FIG. 8A.
  • the light emission direction from the laser light source 11 can be made to coincide with the X-axis direction. Thereby, the influence of the inclination of the light emission direction from the laser light source 11 is eliminated.
  • the photodetector 21 with the light receiving surface divided into four parts is used as described above, the inclination of the emitted light in any direction can be detected.
  • the direction of the inclination is limited due to the characteristics of the laser light source 11.
  • a light detector 21 having a light receiving surface divided into two can be used.
  • FIG. 2 is a configuration diagram of a main part of a scanning probe microscope according to the second embodiment.
  • the same components as those already described in FIGS. 1 and 5 are denoted by the same reference numerals, and description thereof is omitted.
  • the deviation (tilt) of the emission direction of the emitted light is compensated by controlling the attitude of the laser light source 11 itself.
  • the laser light source 11 is fixed.
  • the lens 25 inserted in the optical path between the laser light source 11 and the half mirror 20 can be moved by the actuator 24 in the Y-axis and Z-axis directions.
  • the lens 25 may be a single lens, but if a lens group is formed by combining a plurality of lenses and one to a few lenses are moved, the direction of the emitted light from the laser light source 11 is X. Even when tilted from the axial direction, it becomes easy to correct the tilt and make it incident on the half mirror 20 along the X-axis direction.
  • the lens 25 may be rotated as in the first embodiment.
  • FIG. 3 is a configuration diagram of a main part of a scanning probe microscope according to the third embodiment.
  • the same components as those already described in FIGS. 1 and 5 are denoted by the same reference numerals, and description thereof is omitted.
  • the drive amount calculation unit 16 obtains a minute change amount of the vibration amplitude of the cantilever 4 based on the detection signal from the photodetector 15, and obtains a drive amount Ka that makes this change amount zero, that is, keeps the vibration amplitude constant. .
  • the driving unit 17 feedback-controls the piezoelectric element of the Z scanner 3b so as to move the sample 1 in the Z-axis direction according to the driving amount Ka.
  • the drive amount calculation unit 30 calculates the deviation amount of the outgoing angle of the outgoing light in the Z-axis direction based on the four detection signals of the photodetector 21, and calculates it.
  • a compensation driving amount Kb that cancels out is calculated.
  • the adder 31 subtracts the compensation drive amount Kb from the drive amount Ka, and the drive unit 17 drives the piezoelectric element of the Z scanner 3b with the drive amount Ka-Kb.
  • the amount of displacement of the sample 1 in the Z-axis direction by the Z scanner 3b changes so as to reduce the influence of the tilt in the direction of light emission from the laser light source 11.
  • the feedback control is performed in the same manner as in the first and second embodiments, so that the influence of the inclination of the direction of light emission from the laser light source 11 can be minimized.
  • control responsiveness is poor.
  • the change in the direction of light emission from the laser light source 11 occurs gradually, it is possible to sufficiently follow such a slow change.
  • FIG. 4 is a configuration diagram of a main part of a scanning probe microscope according to the fourth embodiment.
  • the same components as those already described in FIGS. 1 and 5 are denoted by the same reference numerals, and description thereof is omitted.
  • the feedback control as in the first to third embodiments is not performed, and an error amount corresponding to the change in the direction of the light emitted from the laser light source 11 is considered in data processing. It is corrected with. That is, the detection signal of the photodetector 15 is converted into digital data by the A / D converter 40 and input to the unevenness data calculation processing unit 43 included in the data processing unit 42.
  • the unevenness data calculation processing unit 43 included in the data processing unit 42.
  • data reflecting the unevenness of the surface of the sample 1 is calculated, but when the direction of the light emitted from the laser light source 11 changes, an error is included with the change.
  • the detection signal of the photodetector 21 is converted into digital data by the A / D converter 41 and input to the emission angle data calculation processing unit 44 included in the data processing unit 42.
  • the emission angle data calculation processing unit 44 calculates error data associated with a change in direction of light emitted from the laser light source 11. Therefore, for example, as shown in FIG. 8A, when there is no change in the emission angle, the error data calculated by the emission angle data calculation processing unit 44 is zero.
  • the correction processing unit 45 subtracts the error data from the data obtained by the concavo-convex data calculation processing unit 43 to perform the correction to remove the influence of the direction change of the emitted light, and outputs the corrected data to obtain the accuracy.
  • a high sample surface image is displayed on the display unit 46.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

 カンチレバー(4)の変位を検出するためにレーザ光源(11)から出射された光の一部をハーフミラー(20)で取り出し、4分割された受光面を有する光検出器(21)に導入する。周囲温度の変化等の要因により出射光の出射方向が傾くと、光検出器(21)の受光面上で光スポット位置が移動するから、その移動量と移動方向から出射方向の傾き量と傾き方向とが認識可能である。駆動量演算部(22)はその傾き量及び方向に応じて駆動量を計算し、アクチュエータ(23)によりレーザ光源(11)をY軸周り及びZ軸周りに変位させる。これにより、出射光の出射方向の傾きが補償され、試料表面の凹凸であるとの誤認識を防止することができる。

Description

走査型プローブ顕微鏡
 本発明は走査型プローブ顕微鏡に関し、さらに詳しくは、探針が設けられたカンチレバーの機械的な変位を光学的に検出する変位検出手段を備える走査型プローブ顕微鏡に関する。
 金属、半導体、セラミック、合成樹脂等の表面観察や表面粗さ等の測定を行うものとして、探針(プローブ)と試料表面間に作用する原子間力を測定する原子間力顕微鏡(AFM=Atomic Force Microscope)を代表とする走査型プローブ顕微鏡(SPM=Scanning Probe Microscope)が広く知られている。原子間力顕微鏡ではいくつかの測定モードが用いられるが、最近では、探針を設けたカンチレバーをその共振点付近で振動させ、その状態で探針に働く試料表面との間の相互作用をカンチレバーの振動の振幅、位相、或いは周波数の変化に変換して検出する、ノンコンタクトモードやダイナミックモードと呼ばれる方法が用いられることが多い。
 図5は例えば特許文献1などに記載の従来から知られている走査型プローブ顕微鏡の要部の構成図である。観察対象である試料1は略円筒形状であるスキャナ3の上に設けられた試料台2の上に保持される。このスキャナ3は、試料1を互いに直交するX、Yの2軸方向に走査するXYスキャナ3aとX軸及びY軸に対し直交するZ軸方向に微動させるZスキャナ3bとを含み、それぞれ外部から印加される電圧によって変位を生じる圧電素子を駆動源としている。試料1の上方には先端に探針5を備えるカンチレバー4が配置され、このカンチレバー4は図示しない圧電素子を含む励振部により振動される。
 カンチレバー4のZ軸方向の変位を検出するために、カンチレバー4の上方には、レーザ光源11、ミラー13、14、及び光検出器15を含む光学的変位検出部10が設けられている。光学的変位検出部10では、レーザ光源11から出射したレーザ光をミラー13で略垂直に反射させ、カンチレバー4の先端付近に照射する。そして、カンチレバー4で反射した光をミラー14を介して光検出器15で検出する。光検出器15はカンチレバー4の変位方向(Z軸方向)に複数(通常2つ)に分割された受光面を有するか、或いは、Z軸方向及びY軸方向に4分割された受光面を有する。カンチレバー4が上下に変位すると複数の受光面に入射する光量の割合が変化するから、その複数の受光光量に応じた検出信号を演算処理することで、カンチレバー4の変位量を算出することができる。
 上記構成の走査型プローブ顕微鏡におけるノンコンタクトモードでの測定動作を簡単に説明する。図示しない励振部により、カンチレバー4はその共振点付近の周波数でZ軸方向に振動される。このとき探針5と試料1の表面との間に引力又は斥力が作用すると、カンチレバー4の振動振幅が変化する。光検出器15による検出信号によりこの振動振幅の微小な変化量を検知し、この変化量をゼロにする、つまり振動振幅を一定に維持するように試料1をZ軸方向に移動させるべく、Zスキャナ3bの圧電素子をフィードバック制御する。その状態でXYスキャナ3aの圧電素子を制御することで試料1をX-Y面内で走査すると、上述したZ軸方向に関するフィードバック制御量は試料1表面の微小な凹凸を反映したものとなる。そこで、この信号を用いて試料1の表面画像を作成することができる。
 上記構成の走査型プローブ顕微鏡において、レーザ光源11から出射するレーザ光の出射角(出射方向)は、レーザ発振回路の特性の温度変化などの影響により微妙に変化することがある。このようにレーザ光の出射角の変動が生じると、次のような問題が起こる。
 図6は光学的変位検出部10の通常の動作を模式的に示した図である。試料1上の平坦面を探針5が走査しているときには、図6(a)に示すように、光検出器15の受光面上でPで示す位置にカンチレバー4からの反射光のスポットが得られる。探針5が試料1上の凸部1aに達すると、図5(b)に示すようにカンチレバー4は上方向に撓み、光検出器15の受光面上における反射光のスポット位置Pは下方向に変位する。このような変位によって光検出器15からの検出信号は変化し、凸部1aの高さ等を反映した情報が得られる。
 一方、図7はレーザ光源11からのレーザ光の出射方向が上向きに傾いた場合の動作を模式的に示した図である。図7(a)に示すように、レーザ光の出射方向に傾き(ずれ)がない(この例ではX軸方向に出射する)場合には、光検出器15の受光面上でPで示す位置にカンチレバー4からの反射光のスポットが得られる。これは図6(a)と同じである。例えば周囲温度の変化の影響でレーザ光の出射方向が僅かに上向きに傾くと、カンチレバー4への照射光Lmの入射角も変化する。そのため、試料1上の平坦面を探針5が走査しているにも拘わらず、光検出器15の受光面上における反射光のスポット位置Pは下方向に変位する。即ち、光検出器15の受光面上では、図6(b)に示したように試料1表面に凸部1aがある場合と同様の状態になる。そのため、上述のようにレーザ光の出射方向(出射角)が変化すると、試料1表面に凸部又は凹部があるものと誤認識することになる。
 上記のような誤認識を防止するには、温度等に対する出射角の変化を抑えたレーザ光源11を採用するか、或いはレーザ光源11の周囲温度を一定に維持するような温調装置を設けることなどの対策が考えられる。しかしながら、いずれにしても大幅なコストアップが避けられない。また、温度以外の要因、例えば経時変化などにより出射角が変化することがある場合には対応できない。
特開2005-233669号公報
 本発明は上記課題を解決するために成されたものであり、その目的とするところは、レーザ光源からのレーザ光の出射角に変化が生じた場合でも、それが試料表面の凹凸であると誤認識してしまうことを防止することができる走査型プローブ顕微鏡を提供することである。
 上記課題を解決するために成された第1発明は、探針が設けられた可撓性を有するカンチレバーと、前記カンチレバーに対し光を照射するための光源部と、その照射光に対する前記カンチレバーからの反射光を検出する光検出器と、を具備し、前記探針が試料表面を走査する際に、前記光検出器により得られる反射光の位置情報に基づいて前記カンチレバーの変位を求める走査型プローブ顕微鏡において、
 a)前記光源部から前記カンチレバーまでの照射光の光路上で光束を分割して取り出す光分割手段と、
 b)前記光分割手段により分割して取り出された光の到達位置を検出する補償用光検出手段と、
 c)前記補償用光検出手段により得られる情報に応じて前記光源部から出射される光の出射角の変化を認識し、前記反射光の位置情報において前記変化の影響が軽減されるように前記光源部を制御する補償手段と、
 を備えることを特徴としている。
 ここで、補償手段が光源部を制御する方法として、最も容易であるのは、光源部の姿勢(傾き)を変化させることである。そうした変化のための駆動源としては、圧電素子などのアクチュエータを利用することができる。
 また上記課題を解決するために成された第2発明は、探針が設けられた可撓性を有するカンチレバーと、前記カンチレバーに対し光を照射するための光源部と、その照射光に対する前記カンチレバーからの反射光を検出する光検出器と、を具備し、前記探針が試料表面を走査する際に、前記光検出器により得られる反射光の位置情報に基づいて前記カンチレバーの変位を求める走査型プローブ顕微鏡において、
 a)前記光源部から前記カンチレバーまでの照射光の光路上で光束を分割して取り出す光分割手段と、
 b)前記光分割手段により分割して取り出された光の到達位置を検出する補償用光検出手段と、
 c)前記補償用光検出手段により得られる情報に応じて前記光源部から出射される光の出射角の変化を認識し、前記反射光の位置情報において前記変化の影響が軽減されるように前記照射光の光路中に挿入された光学素子を制御する補償手段と、
 を備えることを特徴としている。
 ここで、前記光学素子としては例えば単独のレンズ又は複数のレンズを組み合わせたレンズ機構とすることができ、補償手段は、そうしたレンズ機構の位置や角度などを制御するものとすることができる。もちろん、電気的に光学特性を変化させることができる光学素子を用いることもできる。
 また上記課題を解決するために成された第3発明は、探針が設けられた可撓性を有するカンチレバーと、前記カンチレバーに対し光を照射するための光源部と、その照射光に対する前記カンチレバーからの反射光を検出する光検出器と、を具備し、前記探針が試料表面を走査する際に、前記光検出器により得られる反射光の位置情報に基づいて前記カンチレバーの変位を求める走査型プローブ顕微鏡において、
 a)前記光源部から前記カンチレバーまでの照射光の光路上で光束を分割して取り出す光分割手段と、
 b)前記光分割手段により分割して取り出された光の到達位置を検出する補償用光検出手段と、
 c)前記試料と前記カンチレバーとの相対的な距離を変化させるべく少なくともいずれか一方を移動させる移動手段と、
 d)前記補償用光検出手段により得られる情報に応じて前記光源部から出射される光の出射角の変化を認識し、前記反射光の位置情報において前記変化の影響が軽減されるように前記移動手段を制御する補償手段と、
 を備えることを特徴としている。
 ここで、前記移動手段は、例えば試料を移動させる、圧電素子を駆動源とするスキャナとすることができる。
 また上記課題を解決するために成された第4発明は、探針が設けられた可撓性を有するカンチレバーと、前記カンチレバーに対し光を照射するための光源部と、その照射光に対する前記カンチレバーからの反射光を検出する光検出器と、を具備し、前記探針が試料表面を走査する際に、前記光検出器により得られる反射光の位置情報に基づいて前記カンチレバーの変位を求める走査型プローブ顕微鏡において、
 a)前記光源部から前記カンチレバーまでの照射光の光路上で光束を分割して取り出す光分割手段と、
 b)前記光分割手段により分割して取り出された光の到達位置を検出する補償用光検出手段と、
 c)前記補償用光検出手段により得られる情報に応じて前記光源部から出射される光の出射角の変化を認識し、その変化量に応じて、前記反射光の位置情報又は該位置情報に基づいて得られる試料表面の凹凸や物性を反映したデータを補正する補償手段と、
 を備えることを特徴としている。
 第1乃至第4発明に係る走査型プローブ顕微鏡において、上記光分割手段としては例えばハーフミラー等のビームスプリッタを用いることができる。また、上記補償用光検出手段としては受光面が2、4など複数に分割されたフォトダイオードなどの光検出器を用いることができる。また、カンチレバーには小さなスポット径で光を照射する必要があるから、通常、上記光源部はレーザ光源である。
 例えば周囲温度等の環境の変化によって光源部から出射される光の出射角(出射方向)に変化が生じた場合、カンチレバーに対する照射光の入射角も変化する。このとき、補償用光検出手段の受光面においては光分割手段で分割して取り出された光の到達位置が変化し、その変化量は出射角の変化に対応したものとなる。このような、光源部から出射される光の出射角の変化を認識する手法は、第1乃至第4発明で共通であり、その変化の影響を軽減するための手法、つまりは補償手段の技術事項が第1乃至第4発明ではそれぞれ異なる。
 第1及び第2発明に係る走査型プローブ顕微鏡では、光源部からの出射光の出射角が変化したことによる光路の変化を修正することにより、カンチレバーの変位を検出するための光検出器の受光面上において得られる反射光のスポット位置がずれないようにする。この場合、補償用光検出手段で得られる情報に基づいてフィードバック制御を行うことで、ほぼリアルタイムで出射角の変動の影響を解消することができる。
 第3発明に係る走査型プローブ顕微鏡では、探針で試料表面を走査する際に、光検出器の受光面上における反射光のスポット位置の変化に応じてフィードバック制御される移動手段の移動量を、補償用光検出手段により得られる情報に基づいて変化させる。したがって、カンチレバーへ照射される光の光路は変わらないものの、光検出器の受光面上における反射光のスポット位置には、出射光の出射角の変動の影響は現れない。
 第4発明に係る走査型プローブ顕微鏡では、光源部からの出射光の出射角が変化しても、カンチレバーに当たる照射光の光路や試料とカンチレバーとの間の距離などについては特に変えないから、出射角の変化は光検出器の受光面上における反射光のスポット位置の変化としてそのまま現れる。即ち、このとき光検出器により得られる反射光の位置情報は出射光の出射角の変化の影響を含む。但し、その影響の度合いは光検出手段により得られる情報に基づいて定量的に把握可能であるから、例えば試料表面の凹凸や物性を反映したデータが算出された後に、出射光の出射角の変化量に応じてデータを補正する。
 第1乃至第4発明に係る走査型プローブ顕微鏡によれば、例えば周囲温度の変化などにの要因によって光源部から出射される光の出射角が変動した場合でも、その変動が試料表面の凹凸であると誤って認識されることがなくなり、高い精度で以て試料の表面画像を作成したり表面粗さの測定を行ったりすることができる。また、光源部自体で出射角の温度依存性を改善したり光源部の温調を行ったりする場合に比較して、コストを抑えることができるとともに、その効果もより確実である。さらにまた、温度以外の経時変化などの要因による出射角の変化に対しても同様の効果を得ることができる。
第1実施例による走査型プローブ顕微鏡の要部の構成図。 第2実施例による走査型プローブ顕微鏡の要部の構成図。 第3実施例による走査型プローブ顕微鏡の要部の構成図。 第4実施例による走査型プローブ顕微鏡の要部の構成図。 従来の走査型プローブ顕微鏡の要部の構成図。 光学的変位検出部の通常の動作を模式的に示した図。 レーザ光源からのレーザ光の出射方向が上向きに傾いた場合の動作を模式的に示した図。 第1乃至第4実施例の走査型プローブ顕微鏡における特徴的な動作を説明するための図。
符号の説明
1…試料
2…試料台
3…スキャナ
3a…XYスキャナ
3b…Zスキャナ
4…カンチレバー
5…探針
10…光学的変位検出部
11…レーザ光源
14…ミラー
15…光検出器
17…駆動部
20…ハーフミラー
21…補償用光検出器
21a、21b、21c、21d…受光面
16、22、30…駆動量演算部
23、24…アクチュエータ
31…加算部
40、41…A/D変換器
42…データ処理部
43…凹凸データ算出処理部
44…出射角データ算出処理部
45…補正処理部
46…表示部
 [第1実施例]
 まず第1発明の一実施例(第1実施例)である走査型プローブ顕微鏡について、図面を参照して具体的に説明する。図1は第1実施例による走査型プローブ顕微鏡の要部の構成図である。既に説明した図5中に記載の構成要素と同一の構成要素には同一の符号を付して説明を略す。
 この走査型プローブ顕微鏡では、光学的変位検出部10にあって、従来のミラー13に代えて本発明における光分割手段に相当するハーフミラー20が設けられ、このハーフミラー20により、レーザ光源11から出射され光がカンチレバー4へ向かう照射光Lmとモニタ光Lsとに分割される。このモニタ光Lsの到達位置を検出するために、受光面が図8に示すように、Y軸、Z軸の2軸方向に沿って4分割された、本発明における補償用光検出手段に相当する光検出器21が配設されている。また、レーザ光源11は圧電素子などから構成されるアクチュエータ23により、Y軸周りの回転方向、Z軸周りの回転方向にそれぞれ所定角度範囲で回動可能となっている。光検出器21の4つの受光面21a、21b、21c、21dによる検出信号は駆動量演算部22に入力され、この駆動量演算部22がY軸及びZ軸周りの回転方向の駆動量を算出してアクチュエータ23を制御する。
 いま、レーザ光源11からの出射される光の出射方向がX軸方向と一致しているとき、図8(a)に示すように、光検出器21の受光面上におけるモニタ光Lsの光スポットQが、4分割された分割受光面21a~21dの中心に位置しているものとする。この場合、4つの分割受光面21a~21dでそれぞれ得られる検出信号は理想的には同一である。このときには駆動量演算部22は駆動量をゼロとし、アクチュエータ23は動作しない。
 周囲温度の変化等の影響でレーザ光源11からの出射される光の出射方向がX軸方向から傾いたとすると、光検出器21の受光面上でモニタ光Lsによる光スポットQの位置が、例えば図8(b)に示すように移動する。このときの光スポットQの移動量は光の出射方向の傾きの大きさに対応し、移動方向は傾きの方向に対応する。そこで、駆動量演算部22は4つの検出信号を演算処理することで、光の出射方向の傾きの大きさと方向とを認識し、それを相殺できるような駆動量を求める。そうして求めた駆動量に応じた駆動信号をアクチュエータ23に送り、アクチュエータ23の変位量を制御する。
 アクチュエータ23の変位によりレーザ光源11の姿勢は変化し、レーザ光源11からの出射光の方向はX軸方向に近付く。これにより、光検出器21の受光面上におけるモニタ光Lsの光スポットQの位置は図8(a)の状態に近づく。この状態で図8(a)の状態との誤差があればさらに駆動量を修正し、光スポットQが図8(a)の状態になるように調整する。このように光検出器21で得られた検出信号に基づいたフィードバック制御を行うことにより、レーザ光源11からの光の出射方向がX軸方向と一致するようにすることができる。これによって、レーザ光源11からの光の出射方向の傾きの影響は解消される。
 なお、上記説明のように受光面が4分割された光検出器21を用いれば、出射光のあらゆる方向への傾きを検知可能であるが、レーザ光源11の特性上、傾きの方向が限定されている場合には、光検出器21として受光面が2分割されたものを用いることができる。
 [第2実施例]
 次に第2発明の一実施例(第2実施例)である走査型プローブ顕微鏡について、図面を参照して具体的に説明する。図2は第2実施例による走査型プローブ顕微鏡の要部の構成図である。既に説明した図1、図5中に記載の構成要素と同一の構成要素には同一の符号を付して説明を略す。
 第1実施例では、レーザ光源11自体の姿勢を制御することで出射光の出射方向のずれ(傾き)を補償するようにしていたが、この第2実施例の構成では、レーザ光源11は固定し、レーザ光源11とハーフミラー20との間の光路中に挿入したレンズ25をアクチュエータ24によりY軸及びZ軸の2軸方向に移動可能としている。このレンズ25は単一のレンズでもよいが、複数枚のレンズを組み合わせたレンズ群とし、その中の1乃至少数枚のレンズを移動させるようにすると、レーザ光源11からの出射光の方向がX軸方向から傾いた場合でも、その傾きを修正してX軸方向に沿ってハーフミラー20に入射させることが容易になる。また、レンズ25をY軸及びZ軸の2軸方向に移動させるほかに、第1実施例と同様に回動させるようにしてもよい。
 [第3実施例]
 次に第3発明の一実施例(第3実施例)である走査型プローブ顕微鏡について、図面を参照して具体的に説明する。図3は第3実施例による走査型プローブ顕微鏡の要部の構成図である。既に説明した図1、図5中に記載の構成要素と同一の構成要素には同一の符号を付して説明を略す。
 駆動量演算部16は光検出器15による検出信号によりカンチレバー4の振動振幅の微小な変化量を求め、この変化量をゼロにする、つまり振動振幅を一定に維持するような駆動量Kaを求める。従来の走査型プローブ顕微鏡では、駆動部17はこの駆動量Kaに応じて、試料1をZ軸方向に移動させるべく、Zスキャナ3bの圧電素子をフィードバック制御している。それに対し、第3実施例の走査型プローブ顕微鏡では、駆動量演算部30は光検出器21の4つの検出信号に基づいて出射光の出射角のZ軸方向におけるずれ量を計算し、それを相殺するような補償駆動量Kbを算出する。そして、加算器31において駆動量Kaから補償駆動量Kbを差し引き、駆動部17は駆動量Ka-Kbで以てZスキャナ3bの圧電素子を駆動する。これにより、Zスキャナ3bによる試料1のZ軸方向の変位量は、レーザ光源11からの光の出射の方向の傾きの影響を軽減するように変化する。
 この実施例の構成では、第1、第2実施例と同様にフィードバック制御を行うことで、レーザ光源11からの光の出射の方向の傾きの影響を最小化することができるが、第1、第2実施例に比べると制御の応答性が悪い。しかしながら、一般に、レーザ光源11からの光の出射の方向の変化は徐々に起こるので、こうした遅い変化に対しては十分に追従が可能である。
 [第4実施例]
 次に第4発明の一実施例(第4実施例)である走査型プローブ顕微鏡について、図面を参照して具体的に説明する。図4は第4実施例による走査型プローブ顕微鏡の要部の構成図である。既に説明した図1、図5中に記載の構成要素と同一の構成要素には同一の符号を付して説明を略す。
 この第4実施例に係る走査型プローブ顕微鏡では、第1乃至第3実施例のようなフィードバック制御を行わず、レーザ光源11から出射される光の方向の変化に相当する誤差量をデータ処理上で補正している。即ち、光検出器15の検出信号はA/D変換器40でデジタルデータに変換されてデータ処理部42に含まれる凹凸データ算出処理部43に入力される。ここでは、従来と同様に、試料1表面の凹凸を反映したデータが算出されるが、レーザ光源11から出射される光の方向が変化した場合にはその変化に伴い誤差を含むことになる。
 他方、光検出器21の検出信号はA/D変換器41でデジタルデータに変換されてデータ処理部42に含まれる出射角データ算出処理部44に入力される。出射角データ算出処理部44はレーザ光源11から出射される光の方向変化に伴う誤差データを算出する。したがって、例えば図8(a)に示したように出射角に変化がない場合には、出射角データ算出処理部44により算出される誤差データはゼロである。そして、補正処理部45は凹凸データ算出処理部43で得られるデータから誤差データを差し引くことで、出射光の方向変動の影響を除去する補正を行い、補正されたデータを出力することで、精度の高い試料表面画像を表示部46に表示する。
 なお、1つの試料についての試料表面の凹凸データを収集するには或る程度時間が掛かるが、上述のように一般的にはレーザ光源11からの出射光の方向変化の速度は緩慢であるので、凹凸データの各測定点(X-Y面上の1つの測定点)毎に誤差データを求めず、代表の誤差データを用いて補正を行っても十分であることが多い。もちろん、凹凸データの各測定点毎に誤差データを求めて補正を行えば、より高精度な補正が可能となる。また、デジタル化する前のアナログ信号の段階で同様の補正を行うことも可能である。
 なお、上述した各実施例は本発明の一例に過ぎず、本発明の趣旨の範囲で適宜に修正、変更、追加などを行っても本願請求の範囲に包含されることは明らかである。
 
 

Claims (4)

  1.  探針が設けられた可撓性を有するカンチレバーと、前記カンチレバーに対し光を照射するための光源部と、その照射光に対する前記カンチレバーからの反射光を検出する検出器と、を具備し、前記探針が試料表面を走査する際に、前記検出器により得られる反射光の位置情報に基づいて前記カンチレバーの変位を求める走査型プローブ顕微鏡において、
     a)前記光源部から前記カンチレバーまでの照射光の光路上で光束を分割して取り出す光分割手段と、
     b)前記光分割手段により分割して取り出された光の到達位置を検出する光検出手段と、
     c)前記光検出手段により得られる情報に応じて前記光源部から出射される光の出射角の変化を認識し、前記反射光の位置情報における前記変化の影響が軽減されるように前記光源部を制御する補償手段と、
     を備えることを特徴とする走査型プローブ顕微鏡。
  2.  探針が設けられた可撓性を有するカンチレバーと、前記カンチレバーに対し光を照射するための光源部と、その照射光に対する前記カンチレバーからの反射光を検出する検出器と、を具備し、前記探針が試料表面を走査する際に、前記検出器により得られる反射光の位置情報に基づいて前記カンチレバーの変位を求める走査型プローブ顕微鏡において、
     a)前記光源部から前記カンチレバーまでの照射光の光路上で光束を分割して取り出す光分割手段と、
     b)前記光分割手段により分割して取り出された光の到達位置を検出する光検出手段と、
     c)前記光検出手段により得られる情報に応じて前記光源部から出射される光の出射角の変化を認識し、前記反射光の位置情報における前記変化の影響が軽減されるように前記照射光の光路中に挿入された光学素子を制御する補償手段と、
     を備えることを特徴とする走査型プローブ顕微鏡。
  3.  探針が設けられた可撓性を有するカンチレバーと、前記カンチレバーに対し光を照射するための光源部と、その照射光に対する前記カンチレバーからの反射光を検出する検出器と、を具備し、前記探針が試料表面を走査する際に、前記検出器により得られる反射光の位置情報に基づいて前記カンチレバーの変位を求める走査型プローブ顕微鏡において、
     a)前記光源部から前記カンチレバーまでの照射光の光路上で光束を分割して取り出す光分割手段と、
     b)前記光分割手段により分割して取り出された光の到達位置を検出する光検出手段と、
     c)前記試料と前記カンチレバーとの相対的な距離を変化させるべく少なくともいずれか一方を移動させる移動手段と、
     d)前記光検出手段により得られる情報に応じて前記光源部から出射される光の出射角の変化を認識し、前記反射光の位置情報における前記変化の影響が軽減されるように前記移動手段を制御する補償手段と、
     を備えることを特徴とする走査型プローブ顕微鏡。
  4.  探針が設けられた可撓性を有するカンチレバーと、前記カンチレバーに対し光を照射するための光源部と、その照射光に対する前記カンチレバーからの反射光を検出する検出器と、を具備し、前記探針が試料表面を走査する際に、前記検出器により得られる反射光の位置情報に基づいて前記カンチレバーの変位を求める走査型プローブ顕微鏡において、
     a)前記光源部から前記カンチレバーまでの照射光の光路上で光束を分割して取り出す光分割手段と、
     b)前記光分割手段により分割して取り出された光の到達位置を検出する光検出手段と、
     c)前記光検出手段により得られる情報に応じて前記光源部から出射される光の出射角の変化を認識し、その変化量に応じて、前記反射光の位置情報又は該位置情報に基づいて得られる試料表面の凹凸や物性を反映したデータを補正する補償手段と、
     を備えることを特徴とする走査型プローブ顕微鏡。
     
     
PCT/JP2008/000078 2008-01-24 2008-01-24 走査型プローブ顕微鏡 WO2009093284A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2008/000078 WO2009093284A1 (ja) 2008-01-24 2008-01-24 走査型プローブ顕微鏡
JP2009550375A JP4873081B2 (ja) 2008-01-24 2008-01-24 走査型プローブ顕微鏡
CN2008801255068A CN101952706B (zh) 2008-01-24 2008-01-24 扫描探针显微镜
US12/864,491 US8321960B2 (en) 2008-01-24 2008-01-24 Scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/000078 WO2009093284A1 (ja) 2008-01-24 2008-01-24 走査型プローブ顕微鏡

Publications (1)

Publication Number Publication Date
WO2009093284A1 true WO2009093284A1 (ja) 2009-07-30

Family

ID=40900805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/000078 WO2009093284A1 (ja) 2008-01-24 2008-01-24 走査型プローブ顕微鏡

Country Status (4)

Country Link
US (1) US8321960B2 (ja)
JP (1) JP4873081B2 (ja)
CN (1) CN101952706B (ja)
WO (1) WO2009093284A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454454A (zh) * 2013-08-30 2013-12-18 哈尔滨工业大学 用于双探针原子力显微镜的激光测力系统

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5931537B2 (ja) * 2012-03-28 2016-06-08 東レエンジニアリング株式会社 レーザの光軸アライメント方法およびそれを用いたレーザ加工装置
JP2016520216A (ja) * 2013-05-23 2016-07-11 アプライド マテリアルズ イスラエル リミテッド 評価システムおよび基板を評価する方法
CN103472853B (zh) * 2013-08-29 2015-12-02 西安交通大学 基于fpga的扫描离子电导显微镜的控制器及控制方法
KR101678183B1 (ko) * 2014-12-24 2016-11-22 파크시스템스 주식회사 레이저 스팟의 이동 범위를 제한하는 헤드 및 이를 구비하는 원자현미경
JP2016128788A (ja) * 2015-01-09 2016-07-14 キヤノン株式会社 プローブ変位計測装置、およびそれを有するイオン化装置、質量分析装置、情報取得システム
JP6581790B2 (ja) * 2015-03-25 2019-09-25 株式会社日立ハイテクサイエンス 走査プローブ顕微鏡
JP6588278B2 (ja) * 2015-09-01 2019-10-09 株式会社日立ハイテクサイエンス 走査プローブ顕微鏡および走査プローブ顕微鏡の光軸調整方法
JP6704255B2 (ja) * 2016-01-19 2020-06-03 ソニー・オリンパスメディカルソリューションズ株式会社 医療用観察装置、医療用観察システム及び画揺れ補正方法
EP3324194B1 (en) * 2016-11-22 2019-06-26 Anton Paar GmbH Imaging a gap between sample and probe of a scanning probe microscope in substantially horizontal side view
JP2018151187A (ja) * 2017-03-10 2018-09-27 株式会社島津製作所 走査型プローブ顕微鏡
JP6885585B2 (ja) * 2017-03-28 2021-06-16 株式会社日立ハイテクサイエンス 走査型プローブ顕微鏡、及びその走査方法
GB201705613D0 (en) * 2017-04-07 2017-05-24 Infinitesima Ltd Scanning probe system
CN107576822B (zh) * 2017-09-30 2018-12-14 武汉锐科光纤激光技术股份有限公司 一种扫描探针检测装置
KR102461639B1 (ko) * 2017-12-06 2022-10-31 삼성전자주식회사 주사 탐침 검사기
JP7129099B2 (ja) * 2018-01-19 2022-09-01 Gセラノスティックス株式会社 走査プローブ顕微鏡、測定方法
JP6939686B2 (ja) * 2018-04-16 2021-09-22 株式会社島津製作所 走査型プローブ顕微鏡及びカンチレバー移動方法
JP6631650B2 (ja) * 2018-04-18 2020-01-15 株式会社島津製作所 走査型プローブ顕微鏡
US11454647B2 (en) * 2018-07-27 2022-09-27 Shimadzu Corporation Scanning type probe microscope and control device for scanning type probe microscope
CN111458537A (zh) * 2019-05-24 2020-07-28 天津大学 三维正交扫描式原子力显微镜测头
CN114765113B (zh) * 2021-01-15 2024-07-05 长鑫存储技术有限公司 半导体结构尺寸的测量方法及设备
CN113112494A (zh) * 2021-04-29 2021-07-13 同济大学 一种icf热斑空间形貌随时间演化图像的三维协同诊断装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07134132A (ja) * 1993-11-10 1995-05-23 Olympus Optical Co Ltd 走査型プローブ顕微鏡
US5560244A (en) * 1993-08-17 1996-10-01 Digital Instruments, Inc. Scanning stylus atomic force microscope with cantilever tracking and optical access
JPH10104245A (ja) * 1996-09-27 1998-04-24 Nikon Corp 微小変位測定装置
JPH1194854A (ja) * 1997-07-24 1999-04-09 Olympus Optical Co Ltd 走査型プローブ顕微鏡
JP2005118815A (ja) * 2003-10-16 2005-05-12 Hitachi Via Mechanics Ltd レーザ加工方法およびレーザ加工装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05256641A (ja) * 1992-03-11 1993-10-05 Olympus Optical Co Ltd カンチレバー変位検出装置
JP2936311B2 (ja) * 1994-09-09 1999-08-23 セイコーインスツルメンツ株式会社 液中観察機能付き走査型近視野原子間力顕微鏡
JP4658452B2 (ja) * 2003-02-07 2011-03-23 オリンパス株式会社 光学式エンコーダ
JP2005233669A (ja) 2004-02-17 2005-09-02 Shimadzu Corp 走査型プローブ顕微鏡
JP2006329973A (ja) * 2005-04-28 2006-12-07 Hitachi Ltd 走査プローブ顕微鏡およびこれを用いた試料観察方法およびデバイス製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5560244A (en) * 1993-08-17 1996-10-01 Digital Instruments, Inc. Scanning stylus atomic force microscope with cantilever tracking and optical access
JPH07134132A (ja) * 1993-11-10 1995-05-23 Olympus Optical Co Ltd 走査型プローブ顕微鏡
JPH10104245A (ja) * 1996-09-27 1998-04-24 Nikon Corp 微小変位測定装置
JPH1194854A (ja) * 1997-07-24 1999-04-09 Olympus Optical Co Ltd 走査型プローブ顕微鏡
JP2005118815A (ja) * 2003-10-16 2005-05-12 Hitachi Via Mechanics Ltd レーザ加工方法およびレーザ加工装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454454A (zh) * 2013-08-30 2013-12-18 哈尔滨工业大学 用于双探针原子力显微镜的激光测力系统

Also Published As

Publication number Publication date
CN101952706B (zh) 2012-08-29
JPWO2009093284A1 (ja) 2011-05-26
CN101952706A (zh) 2011-01-19
JP4873081B2 (ja) 2012-02-08
US8321960B2 (en) 2012-11-27
US20110113515A1 (en) 2011-05-12

Similar Documents

Publication Publication Date Title
JP4873081B2 (ja) 走査型プローブ顕微鏡
USRE37404E1 (en) Detection system for atomic force microscopes
JP2007218707A (ja) 原子間力顕微鏡
US7692138B1 (en) Integrated scanning probe microscope and confocal microscope
JP2006234507A (ja) 走査型プローブ顕微鏡とその測定方法
JP4939086B2 (ja) 原子間力顕微鏡
US7247827B1 (en) System for measurement of the height, angle and their variations of the surface of an object
JP5295814B2 (ja) 走査機構および走査型プローブ顕微鏡
US20080087820A1 (en) Probe control method for scanning probe microscope
WO2015140996A1 (ja) 走査型プローブ顕微鏡
US7962966B2 (en) Scanning probe microscope having improved optical access
JP2002031589A (ja) 走査型プローブ顕微鏡
US7334459B2 (en) Atomic force microscope and corrector thereof and measuring method
WO2007078979B1 (en) Probe module with integrated actuator for a probe microscope
JP2005147979A (ja) 走査形プローブ顕微鏡
JP2021131538A (ja) 表面の相対アライメントを捕捉するための方法
KR100927639B1 (ko) 레이저 가공 시편 틸트 보상 장치
US10564181B2 (en) Atomic force microscope with optical guiding mechanism
KR20190132923A (ko) 형상 측정용 프로브
JPH10267950A (ja) 横励振摩擦力顕微鏡
JP6042655B2 (ja) 走査機構および走査型プローブ顕微鏡
US10697997B2 (en) Scanning probe microscope
JP5276803B2 (ja) 形状測定方法
JP2003215017A (ja) 走査プローブ顕微鏡
JP2000234994A (ja) 走査プローブ顕微鏡におけるカンチレバー変位測定方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880125506.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08702819

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009550375

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12864491

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08702819

Country of ref document: EP

Kind code of ref document: A1