WO2009090994A1 - 基板ステージ、これを備えたスパッタ装置及び成膜方法 - Google Patents

基板ステージ、これを備えたスパッタ装置及び成膜方法 Download PDF

Info

Publication number
WO2009090994A1
WO2009090994A1 PCT/JP2009/050464 JP2009050464W WO2009090994A1 WO 2009090994 A1 WO2009090994 A1 WO 2009090994A1 JP 2009050464 W JP2009050464 W JP 2009050464W WO 2009090994 A1 WO2009090994 A1 WO 2009090994A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
magnetic field
field applying
magnetic
applying means
Prior art date
Application number
PCT/JP2009/050464
Other languages
English (en)
French (fr)
Inventor
Yukio Kikuchi
Guo Hua Shen
Original Assignee
Ulvac, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac, Inc. filed Critical Ulvac, Inc.
Priority to US12/808,045 priority Critical patent/US20100270143A1/en
Priority to JP2009550040A priority patent/JPWO2009090994A1/ja
Priority to DE112009000123T priority patent/DE112009000123T5/de
Priority to CN200980102039.1A priority patent/CN101910455B/zh
Publication of WO2009090994A1 publication Critical patent/WO2009090994A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F41/303Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices with exchange coupling adjustment of magnetic film pairs, e.g. interface modifications by reduction, oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/351Sputtering by application of a magnetic field, e.g. magnetron sputtering using a magnetic field in close vicinity to the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3295Spin-exchange coupled multilayers wherein the magnetic pinned or free layers are laminated without anti-parallel coupling within the pinned and free layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0273Magnetic circuits with PM for magnetic field generation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment

Definitions

  • the present invention relates to a substrate stage, a sputtering apparatus including the substrate stage, and a film forming method.
  • This application is based on Japanese Patent Application No. 2008-005993 filed in Japan on January 15, 2008 and Japanese Patent Application No. 2008-027719 filed in Japan on February 7, 2008, the contents of which are incorporated herein by reference. take in.
  • a sputtering apparatus has been widely used as a film forming apparatus suitable for forming a film constituting a semiconductor device such as a TMR (Tunneling Magnetic Resistive) element that constitutes an MRAM (Magnetic Random Access Memory).
  • TMR Transmission Magnetic Resistive
  • MRAM Magnetic Random Access Memory
  • a substrate stage on which a substrate is placed, and a sputtering cathode that is disposed so as to be inclined with respect to the normal direction of the substrate and that is provided with a target of a film forming material are disposed in a processing chamber.
  • a good film quality distribution can be obtained by performing the sputtering process while rotating the substrate stage.
  • the plasma generated in the vicinity of the target is not converged in the vicinity of the target as in the conventional balanced magnetron cathode, but is diffused to the vicinity of the substrate by intentionally breaking the balance of the magnetic field from the cathode. It is known (see, for example, Patent Document 1). JP 2000-282235 A Japanese Patent Laid-Open No. 06-264235
  • FIG. 1 is a cross-sectional view of a tunnel junction magnetoresistive element.
  • the tunnel junction element 10 is configured by laminating a magnetic layer (fixed layer) 14, a tunnel barrier layer (insulating layer) 15, a magnetic layer (free layer) 16, and the like. .
  • the perpendicular magnetization method uses a magnetization rotation in the vertical direction that is not easily affected by a demagnetizing field. According to this method, the element can be further miniaturized and the recording density can be increased. Therefore, adoption is considered indispensable to achieve the manufacture of gigabit class memory. Further, it is expected to be a method that can obtain a large resistance change rate (MR ratio) and can reduce the write current to several tenths.
  • MR ratio resistance change rate
  • the actual MR ratio is not obtained as described above. This is because, for example, the variation in the magnetization direction of the magnetic layers 14 and 16 cannot be sufficiently controlled.
  • the magnetic layers 14 and 16 are manufactured using only the property of perpendicular magnetization without applying a magnetic field in the magnetization direction when forming the perpendicular magnetization film. There is a problem that variation occurs in the magnetization direction. As a result, in the film forming process of the magnetic layers 14 and 16, film characteristics such as crystal orientation of the magnetic layers 14 and 16 are varied, and film resistance values are varied.
  • each cathode is arranged so as to be inclined with respect to the normal line of the substrate.
  • a configuration in which a permanent magnet, an electromagnet, or the like is provided on each cathode and a magnetic field is applied in the thickness direction (normal direction) of the substrate is not practical due to practical difficulties such as a complicated configuration.
  • a magnetic film forming apparatus in which a Helmholtz coil is arranged around a vacuum container (chamber) so that a magnetic field is applied between a target and a substrate in a direction perpendicular to the substrate surface (see Patent Document 2).
  • a Helmholtz coil is arranged around a vacuum container (chamber) so that a magnetic field is applied between a target and a substrate in a direction perpendicular to the substrate surface (see Patent Document 2).
  • FIG. 18 is a schematic configuration diagram showing a substrate stage in which a magnetic field applying unit is incorporated.
  • the substrate stage 300 includes a stage main body 301 on which the substrate W is placed, and a plurality of substrates that receive the substrate W and deliver the substrate W in the processing chamber (only one is shown in FIG. 18).
  • the elevating pins 302 are provided.
  • the stage main body 301 includes a magnetic field applying means 303 made of a permanent magnet or the like.
  • the elevating pin 302 is inserted into a through hole 304 that penetrates the stage main body 301 in the thickness direction, and is configured to be movable up and down with respect to the stage main body 301.
  • a through hole 304 through which the elevating pin 302 is inserted into the stage main body 301 and the magnetic field applying means 303 must be formed because the elevating pin 302 is provided in the stage main body 301. Therefore, a space where the magnetic field applying unit 303 does not exist is formed in the through hole 304 by the outer diameter of the through hole 304. In this case, the lines of magnetic force B ′ generated from the magnetic field applying unit 303 pass through the through-hole 304 to the back side of the magnetic field applying unit 303. That is, in the region in the vicinity of the through hole 304 on the substrate W, the direction of the magnetic field applied to the surface of the substrate W varies.
  • An object of the present invention is to provide a substrate stage capable of obtaining a high MR ratio by suppressing variations in the magnetization direction of layers, a sputtering apparatus including the substrate stage, and a film forming method.
  • a substrate stage of the present invention is a substrate stage that is disposed in a vacuum vessel and has a substrate placement surface on which a substrate is placed, A first magnetic field applying means for applying a magnetic field is provided, and the magnetization direction inside the first magnetic field applying means coincides with the thickness direction of the substrate.
  • the first magnetic field applying means may be provided so as to surround the periphery of the substrate placed on the substrate placement surface.
  • a magnetic field applying unit is provided so as to surround the periphery of the substrate, and a magnetic field component perpendicular to the surface of the substrate is obtained by matching the magnetization direction inside the magnetic field applying unit with the thickness direction of the substrate. Sputter deposition can be performed while applying a magnetic field having a high accuracy.
  • the center of the first magnetic field applying unit may be disposed at the same height as the surface of the substrate in the normal direction of the substrate mounting surface.
  • the magnetic field component incident perpendicularly to the surface of the substrate can be increased by disposing the surface of the substrate at the center of the magnetic field applying means in the thickness direction of the substrate.
  • the first magnetic field applying means having a size equal to or larger than the outer diameter of the substrate may be provided on the back side of the substrate placed on the substrate placement surface.
  • a magnetic field applying unit formed to have a size larger than the outer diameter of the substrate is provided, and the magnetic direction perpendicular to the surface of the substrate is set by matching the magnetization direction inside the magnetic field applying unit with the thickness direction of the substrate. Sputter deposition can be performed while accurately applying a magnetic field having components.
  • the first magnetic body between the magnetic field applying means and the substrate magnetic lines of force are arranged along the central axis inside the first magnetic body, so that the magnetic field incident on the surface of the substrate The verticality can be improved.
  • the second magnetic body so as to surround the periphery of the substrate, magnetic lines of force are arranged along the central axis inside the second magnetic body, so that the perpendicularity of the magnetic field incident on the surface of the substrate is increased. It can be improved further.
  • the first magnetic field is provided in the through hole formed in the stage main body and the first magnetic field applying means by providing the lifting pin with the second magnetic field applying means having the same magnetization direction as the inside of the first magnetic field applying means.
  • the second magnetic field applying means having the same magnetization direction as the inside of the applying means is interposed. Thereby, the space where the magnetic field applying means does not exist in the through hole can be reduced. Therefore, a magnetic field perpendicular to the entire surface of the substrate can be applied.
  • the upper end surface of the first magnetic field application unit and the upper end surface of the second magnetic field application unit may be arranged on the same plane.
  • the perpendicularity of the magnetic field applied to the surface of the substrate can be improved. it can.
  • a plurality of elevating pins and a support member for connecting the elevating pins to each other.
  • the first magnetic field applying means has a plurality of through holes, and the elevating pins are arranged in the through holes, respectively. May be.
  • the support member by connecting a plurality of elevating pins by the support member, it is possible to prevent the elevating pins from collapsing due to the attraction and repulsion between the first magnetic field applying means and the second magnetic field applying means, and to prevent the elevating pins from moving. it can.
  • the magnetic body located between the said 1st magnetic field application means and the said board
  • the sputtering apparatus of the present invention includes: the substrate stage; a sputter cathode disposed so as to be inclined with respect to a normal line of the substrate placed on the substrate placing surface; and the substrate stage and the sputter cathode are disposed.
  • a evacuation unit for evacuating the sputtering chamber; a gas supply unit for supplying a sputtering gas into the sputtering chamber; and a power source for applying a voltage to the sputtering cathode.
  • a sputtering gas is introduced from the gas supply means into the sputtering chamber, and a voltage is applied from the power source to the target to generate plasma. Then, ions of the sputtering gas collide with the target that is the cathode, and particles of the film forming material jump out of the target and adhere to the substrate. Thereby, sputtering film formation can be performed on the surface of the substrate.
  • a magnetic field perpendicular to the entire surface of the substrate can be applied. Therefore, it is possible to perform sputter deposition while accurately applying a magnetic field having a magnetic field component perpendicular to the surface of the substrate. Therefore, for example, in the film formation process of the magnetic layer, film formation can be performed while aligning the magnetization direction of the magnetic layer on the entire surface of the substrate in a direction perpendicular to the surface of the substrate. Thereby, since the perpendicularity of the magnetization direction in the plane of the magnetic layer can be improved, variation in the magnetization direction in the plane of the magnetic layer can be suppressed. Therefore, since a magnetic multilayer film with improved in-plane uniformity of the magnetization direction of the magnetic layer can be formed, a high MR tunnel junction element can be provided.
  • a first magnetic field applying unit applies a first magnetic field to a substrate placed in a vacuum vessel and placed on a substrate stage having a substrate placement surface on which the substrate is placed. Sputtering is performed on the surface of the substrate while applying a magnetic field so that the magnetization direction inside the applying means matches the thickness direction of the substrate.
  • the first magnetic field applying unit may be provided so as to surround the periphery of the substrate. In this case, by applying a magnetic field in the thickness direction of the substrate by the magnetic field applying means, it is possible to perform sputter deposition while accurately applying a magnetic field having a magnetic field component perpendicular to the surface of the substrate.
  • the first magnetic field applying means may be provided on the back side of the substrate and may have a size equal to or larger than the outer diameter of the substrate.
  • a magnetic field having a magnetic field component perpendicular to the surface of the substrate can be accurately applied by applying a magnetic field in the thickness direction of the substrate by a magnetic field applying means formed to have a size larger than the outer diameter of the substrate.
  • sputter film formation can be performed.
  • the second magnetic field applying means provided in the raising / lowering pins that are slidably inserted into the through holes provided in the first magnetic field applying means and raise and lower the substrate with respect to the substrate mounting surface.
  • a magnetic field is applied to the first magnetic field applying unit so that the magnetization direction inside the first magnetic field applying unit coincides with the magnetization direction inside the second magnetic field applying unit, and the upper end surface of the first magnetic field applying unit and the second magnetic field applying unit Sputtering may be performed on the substrate with the upper end surface of the magnetic field applying means arranged on the same plane.
  • a second magnetic field applying means having the same magnetization direction as the inside of the first magnetic field applying means is provided on the elevating pin, and the upper end surfaces of the first magnetic field applying means and the second magnetic field applying means are on the same plane.
  • the second magnetic field applying means having the same magnetization direction as the inside of the first magnetic field applying means is interposed in the through holes formed in the stage main body and the first magnetic field applying means. Thereby, the space where the magnetic field applying means does not exist in the through hole can be reduced. Therefore, the sputtering process can be performed in a state where a magnetic field perpendicular to the entire surface of the substrate is applied.
  • the film forming method of the present invention is characterized in that a perpendicular magnetization film for forming a tunnel junction element is formed using the above film forming method.
  • a perpendicular magnetization film for forming a tunnel junction element is formed using the above film forming method.
  • sputtering film formation can be performed while accurately applying a magnetic field having a magnetic field component perpendicular to the surface of the substrate, the magnetization direction in the plane of the perpendicular magnetization film is perpendicular to the surface of the substrate.
  • Film formation can be performed while aligning in the direction.
  • the perpendicularity of the magnetization direction in the plane of the perpendicular magnetization film can be improved, the variation in the plane of the magnetization direction of the perpendicular magnetization film can be suppressed. Therefore, a magnetic multilayer film with improved film characteristics, crystal orientation, and in-plane uniformity of the magnetization direction of the perpendicular magnetization film can be formed, so that a high MR tunnel junction element can
  • the present invention by making the magnetization direction inside the magnetic field applying means coincide with the thickness direction of the substrate, sputter film formation is performed while accurately applying a magnetic field having a magnetic field component perpendicular to the surface of the substrate. be able to.
  • the film formation can be performed while aligning the magnetization direction of the perpendicular magnetization film perpendicular to the surface of the substrate.
  • the elevating pin is provided with the second magnetic field applying means having the same magnetization direction as the inside of the first magnetic field applying means, so that the through hole formed in the stage main body and the first magnetic field applying means.
  • the second magnetic field applying means having the same magnetization direction as the inside of the first magnetic field applying means is interposed therein.
  • FIG. 1 is a cross-sectional view of a tunnel junction element.
  • FIG. 2 is a schematic configuration diagram of a tunnel junction element manufacturing apparatus according to the first embodiment of the present invention.
  • FIG. 3A is a perspective view of the sputtering apparatus according to the first embodiment.
  • FIG. 3B is a side cross-sectional view of the sputtering apparatus according to the first embodiment. It is principal part sectional drawing of the magnetic field application means in 1st Embodiment of this invention.
  • FIG. 5A is a perspective view of a main part of a magnetic field applying unit according to the second embodiment of the present invention.
  • FIG. 5B is a cross-sectional view of the main part of the magnetic field applying means in the second embodiment of the present invention.
  • FIG. 5A is a perspective view of a main part of a magnetic field applying unit according to the second embodiment of the present invention.
  • FIG. 5B is a cross-sectional view of the main part of the magnetic field applying means in the second embodiment of
  • FIG. 6 is a cross-sectional view of the main part of the magnetic field applying means in the third embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of the main part of the magnetic field applying means in the fourth embodiment of the present invention.
  • FIG. 8 is an explanatory diagram showing the definition of parallelism.
  • FIG. 9 is a graph showing the distribution of parallelism (degrees) at a distance (mm) from the center of the substrate.
  • FIG. 10 is a plan view showing another configuration of the magnetic field applying means in the present invention.
  • FIG. 11 is a plan view showing another configuration of the substrate according to the present invention.
  • FIG. 12 is a cross-sectional view of the tunnel junction element.
  • FIG. 13 is a schematic block diagram of the manufacturing apparatus of the tunnel junction element in the 5th Embodiment of this invention.
  • FIG. 14A is a perspective view of a sputtering apparatus according to the fifth embodiment.
  • FIG. 14B is a side sectional view taken along line A-A ′ of the sputtering apparatus according to the fifth embodiment.
  • FIG. 15 is a perspective view of a substrate stage in the fifth embodiment of the present invention.
  • FIG. 16 is a cross-sectional view corresponding to the line C-C ′ of FIG. 15.
  • FIG. 17 is an explanatory diagram for explaining magnetic lines of force generated from the magnetic field applying means.
  • FIG. 18 is a schematic configuration diagram showing a substrate stage in which a magnetic field applying unit is incorporated.
  • FIG. 1 is a side sectional view of a tunnel junction element.
  • the tunnel junction element 10 includes a magnetic layer (fixed layer) 16 on a substrate W, a tunnel barrier layer 15 made of MgO or the like, a magnetic layer (free layer) 14, an antiferromagnetic layer (not shown) made of PtMn, IrMn, or the like. Is a perpendicular magnetization type tunnel junction element 10 which is mainly laminated.
  • the material of the magnetic layers 14 and 16 for example FePt, it is possible TbFeCo, Co / Pd, Fe / EuO, Co / Pt, Co / Pd, CoPtCr-SiO 2, CoCrTaPt, be employed CoCrPt, etc. .
  • the tunnel junction element 10 actually has a multilayer structure of about 15 layers in which functional layers other than those described above are also laminated.
  • the magnetic layer (fixed layer) 14 is a layer fixed so that its magnetization direction is perpendicular to the surface of the substrate W. Specifically, the magnetic layer (fixed layer) 14 is fixed upward with respect to the surface of the substrate W. Yes.
  • the magnetic layer (free layer) 14 is a layer whose magnetization direction changes according to the direction of the external magnetic field, and can be reversed to be parallel or antiparallel to the magnetization direction of the magnetic layer (fixed layer) 14.
  • the resistance value of the tunnel junction element 10 varies depending on whether the magnetization directions of the fixed layer 16 and the free layer 14 are parallel or antiparallel. By providing such a tunnel junction element 10 in an MRAM (not shown), it is possible to have information “0” and “1” in the magnetization direction of the magnetic material, so that “1” or “0” is read. Can be rewritten.
  • FIG. 2 is a schematic configuration diagram of a magnetic multilayer film manufacturing apparatus (hereinafter referred to as a manufacturing apparatus) according to the present embodiment.
  • the manufacturing apparatus 20 of the present embodiment has a plurality of sputtering apparatuses 21 to 24 arranged radially around a substrate transfer chamber 26.
  • the magnetic apparatus constituting the tunnel junction element described above is used.
  • This is a cluster-type manufacturing apparatus 20 that consistently performs multilayer film pretreatment and film formation steps.
  • the manufacturing apparatus 20 includes a substrate cassette chamber 27 in which a substrate W before film formation is held, a first sputtering apparatus 21 that performs an antiferromagnetic layer film formation process, and a magnetic layer (fixed layer) 16.
  • a substrate pretreatment device 25 is provided on the transfer side of the sputtering device 24 via the substrate transfer chamber 26.
  • a magnetic multilayer film such as the magnetic layer 16, the tunnel barrier layer 15, and the magnetic layer 14 is formed on the substrate W in each of the sputtering apparatuses 21 to 24 after necessary substrate pretreatment.
  • the magnetic multilayer film can be formed on the substrate W without exposing the substrate W supplied to the manufacturing apparatus 20 to the atmosphere.
  • the tunnel junction element 10 is formed by forming a resist pattern on the magnetic multilayer film, patterning the magnetic multilayer film into a predetermined shape by etching, and then removing the resist pattern.
  • FIG. 3A is a perspective view of the sputtering apparatus according to the present embodiment
  • FIG. 3B is a side sectional view taken along the line AA in FIG. 3A
  • FIG. 4 is a cross-sectional view of the main part. As shown in FIGS.
  • the sputtering apparatus 22 is configured by arranging a table 62 on which a substrate W is placed and a target 64 at predetermined positions.
  • the substrate W that has undergone the antiferromagnetic layer deposition process in the first sputtering apparatus 21 described above is transferred from the substrate transfer chamber 26 through a loading port (not shown).
  • the sputtering apparatus 22 includes a chamber 61 formed in a box shape from a metal material such as an Al alloy or stainless steel.
  • a table 62 on which the substrate W is placed is provided in the center near the bottom surface of the chamber 61.
  • the table 62 is configured to be rotatable at an arbitrary number of rotations by aligning the rotation shaft 62a with the center O of the substrate W by a rotation mechanism (not shown). Thereby, the board
  • the substrate W of the present embodiment uses a silicon wafer having a substrate size of, for example, an outer diameter of 300 mm.
  • Shield plates (side shield plate 71 and lower shield plate 72) made of stainless steel or the like are provided so as to surround the table 62 and the target 64 described above.
  • the side shield plate 71 is formed in a cylindrical shape, and is arranged so that its central axis coincides with the rotation shaft 62 a of the table 62.
  • a lower shield plate 72 is provided from the lower end of the side shield plate 71 to the outer peripheral edge of the table 62.
  • the lower shield plate 72 is formed in parallel with the surface of the substrate W, and is arranged so that the central axis thereof coincides with the rotation shaft 62 a of the table 62.
  • the space surrounded by the table 62, the lower shield plate 72, the side shield plate 71, and the ceiling surface of the chamber 61 is formed as a sputtering processing chamber 70 (sputtering chamber) for performing a sputtering process on the substrate W.
  • the sputter processing chamber 70 has an axisymmetric shape, and the axis of symmetry coincides with the rotation axis 62 a of the table 62. This makes it possible to perform a homogeneous sputtering process on each part of the substrate W, and reduce variations in film thickness distribution.
  • a sputtering gas supply means (gas supply means) 73 for supplying a sputtering gas is connected to the upper part of the side shield plate 71 that forms the sputtering treatment chamber 70.
  • This sputter gas supply means 73 introduces a sputter gas such as argon (Ar) into the sputter processing chamber 70, and the sputter gas is supplied from a sputter gas supply source 74 provided outside the sputter processing chamber 70. It is configured to be. It is possible to supply a reaction gas such as O 2 from the sputtering gas supply means 73.
  • An exhaust port 69 is provided on the side surface of the chamber 61. The exhaust port 69 is connected to an exhaust pump (evacuation unit) (not shown).
  • a plurality of (for example, four) targets 64 are arranged at equal intervals around the rotation shaft 62 a of the table 62 (in the circumferential direction of the substrate W) at the peripheral edge near the ceiling surface of the chamber 61.
  • the target 64 is connected to an external power source (power source) (not shown) and is held at a negative potential (cathode).
  • On the surface of each target 64 a plurality of types of film-forming materials that can be stacked on the magnetic multilayer film, such as the film-forming material of the magnetic layer 14 and the film-forming material of the base film, are arranged.
  • positioned at each target 64 can be changed suitably. Further, a configuration in which the film forming materials for the magnetic layers 14 and 16 are arranged on all the targets 64 is also possible.
  • the target 64 described above is disposed so as to be inclined with respect to the normal line of the substrate W placed on the table 62. Further, the normal line (center axis) 64a passing through the center point T of the surface of the target 64 is inclined with respect to the rotation axis 62a of the substrate W, for example, at an angle ⁇ , and the normal line 64a of the target 64 and the substrate The surface of W is arranged so as to intersect at the peripheral edge of the substrate W.
  • an annular permanent magnet (magnetic field applying means) 65 is disposed outside the substrate W in the radial direction so as to surround the periphery of the substrate W.
  • the permanent magnet 65 is formed such that the inner diameter and thickness thereof are larger than those of the substrate W, and the magnetization direction inside the permanent magnet 65 coincides with the thickness direction (normal direction) of the substrate W.
  • the substrate W is configured to be disposed in the central portion of the permanent magnet 65 in the axial direction. That is, the surface of the substrate W is arranged at the center of the permanent magnet 65 in the normal direction of the substrate W.
  • the magnetic field lines B1 extending from the permanent magnet 65 are generated from the N pole (for example, the upper surface side) through the central hole, passing through the surface of the substrate W substantially vertically, and then toward the S pole (for example, the lower surface side). Therefore, the magnetic field lines B ⁇ b> 1 extending inside the permanent magnet 65 have a magnetic field component perpendicular (normal direction) to the surface of the substrate W and are incident substantially perpendicular to the entire surface of the substrate W.
  • the magnetic field applying unit is described as an annular permanent magnet. However, as long as the configuration surrounds the substrate, a plurality of permanent magnets may be provided separately.
  • the target 64 By applying a voltage to the target 64 from an external power source connected to the target 64, plasma is generated. Then, ions of the sputtering gas collide with the target 64 that is a cathode, and particles of the film forming material jump out of the target 64 and adhere to the substrate W. Thus, the magnetic layer 14 is formed on the surface of the substrate W (see FIG. 1). At that time, by generating high-density plasma in the vicinity of the target 64, the deposition rate can be increased.
  • the perpendicular magnetization type tunnel junction element uses the magnetization rotation in the vertical direction which is not easily affected by the demagnetizing field. According to this method, the element can be further miniaturized and the recording density can be increased. Therefore, it is considered to be indispensable to achieve the manufacture of the gigabit class memory. Furthermore, a high MR ratio can be obtained, and the write current can be reduced to several tenths. However, in the magnetic layer deposition process, a desired MR ratio is not obtained due to the influence of variations in the magnetization directions of the deposited magnetic layers 14 and 16.
  • film formation is performed while a magnetic field perpendicular to the surface of the substrate W is generated by the permanent magnet 65 provided around the substrate W.
  • the magnetic field lines B ⁇ b> 1 extending from the permanent magnet 65 are perpendicularly incident on the entire surface of the substrate W.
  • the magnetic field lines B ⁇ b> 1 extending inside the permanent magnet 65 are generated from the N pole (upper surface side) and enter the S pole (lower surface side) through the inner side of the permanent magnet 65.
  • the film forming material of the magnetic layer 14 jumping out from the target 64 is deposited on the surface of the substrate W while receiving a magnetic field perpendicular to the surface of the substrate W.
  • the magnetic field applied by the permanent magnet 65 is preferably 50 (Oe) or more in each part of the surface of the substrate W.
  • the film formation process of the magnetic layer 14 can be performed such that the magnetization direction of the magnetic layer 14 is perpendicular to the surface of the substrate W.
  • the parallelism of the magnetic layer 14 (the definition of parallelism will be described later) can be suppressed to 1 degree or less.
  • the permanent magnet 65 is provided so as to surround the periphery of the substrate W, and the magnetization direction inside the permanent magnet 65 is made to coincide with the normal direction of the substrate W.
  • the permanent magnet 65 having the magnetization direction in the normal direction of the substrate W sputtering film formation is performed while accurately applying a magnetic field having a magnetic field component perpendicular to the surface of the substrate W. It can be carried out. Therefore, in the film formation process of the magnetic layer 14, the film formation can be performed while aligning the magnetization direction of the magnetic layer 14 perpendicular to the surface of the substrate W.
  • the magnetic field component incident perpendicularly to the surface of the substrate W can be increased. Therefore, variations in the magnetization direction of the magnetic layer 14 can be further reduced. Thereby, the tunnel junction element 10 having a high MR and a low write current can be provided without complicating the configuration of the sputtering apparatus 22.
  • FIG. 5A is a perspective view of an essential part in the second embodiment
  • FIG. 5B is a cross-sectional view. 5A and 5B, the description of the above-described chamber 61 (see FIGS. 3A and 3B) and the like is omitted for easy understanding.
  • a permanent magnet 100 is disposed on the back side of the substrate W in parallel with the back side of the substrate W.
  • the permanent magnet 100 has a disk shape, and is arranged such that the central axis thereof coincides with the center O of the substrate W.
  • the magnetization direction inside the permanent magnet 100 coincides with the thickness direction (normal direction) of the substrate W. Therefore, the magnetic field line B2 extending from the permanent magnet 100 passes the surface of the substrate W substantially perpendicularly from the N pole (for example, the upper surface side) of the permanent magnet 100, and then wraps around the outer periphery of the substrate W to cause the S pole (for example, the lower surface side). ).
  • the magnetic force line B ⁇ b> 2 has a magnetic field component perpendicular (normal direction) to the surface of the substrate W, and enters the entire surface of the substrate W perpendicularly.
  • the outer diameter of the permanent magnet 100 is formed larger than the outer diameter (for example, 300 mm) of the substrate W.
  • the design can be changed as appropriate if the outer diameter of the permanent magnet is equal to or larger than the outer diameter of the substrate.
  • the permanent magnet is preferably integral, but a permanent magnet having an outer diameter larger than that of the substrate can be formed using a plurality of permanent magnets. In this case, the interval between the permanent magnets is preferably 1 mm or less.
  • the permanent magnet 100 having a size equal to or larger than the outer diameter of the substrate W is provided on the back surface side of the substrate W, and the magnetization direction inside the permanent magnet 100 is set to the normal line of the substrate W. It was set as the structure matched with a direction. According to this configuration, the same effects as those of the first embodiment described above can be achieved. Further, by forming the outer diameter of the permanent magnet 100 to be equal to or larger than the outer diameter of the substrate W, the perpendicularity of the magnetic lines B2 incident on the substrate W, that is, the magnetic field component perpendicular to the surface of the substrate W can be increased.
  • FIG. 6 is a cross-sectional view of a main part in the third embodiment.
  • the description of the above-described chamber 61 see FIGS. 3A and 3B) and the like is omitted for easy understanding.
  • a magnetic body (first magnetic body) 101 is provided on the permanent magnet 100.
  • the magnetic body 101 is made of nickel plated Fe, magnetic stainless steel (SUS430), or the like.
  • the permanent magnet 100 has a disk shape and is formed larger than the outer diameter of the permanent magnet 100.
  • the same effect as in the second embodiment described above can be obtained, and by forming the magnetic body 101 on the permanent magnet 100, the magnetic lines of force are arranged along the central axis inside the magnetic body 101. Therefore, the perpendicularity of the magnetic field lines B3 extending from the permanent magnet 100 can be improved. That is, since the magnetic field component perpendicular to the surface of the substrate W can be increased, variations in the magnetization direction of the magnetic layer 14 can be further reduced in the film formation process of the magnetic layers 14 and 16 (see FIG. 1). .
  • FIG. 7 is a cross-sectional view of a main part in the fourth embodiment.
  • the description of the above-described chamber 61 see FIGS. 3A and 3B) and the like is omitted for easy understanding.
  • a yoke (second magnetic body) 103 is provided on the magnetic body 101.
  • the yoke 103 is made of nickel plated Fe, magnetic stainless steel (SUS430), or the like, similar to the magnetic body 101 described above.
  • the yoke 103 is formed so as to rise vertically from the surface of the magnetic body 101 at the outer peripheral portion of the magnetic body 101, and is formed over the entire circumference of the magnetic body 101. Therefore, the yoke 103 is disposed so as to surround the periphery of the substrate W.
  • the same effects as those of the second embodiment described above can be obtained, and by arranging the yoke 103 on the magnetic body 101, magnetic lines of force are arranged along the central axis inside the yoke 103.
  • the perpendicularity of the magnetic lines of force B4 extending from the permanent magnet 100 can be further improved. That is, since the magnetic field component perpendicular to the surface of the substrate W can be increased, variations in the magnetization direction of the magnetic layer 14 can be further reduced in the film formation process of the magnetic layer 14 (see FIG. 1).
  • the inventor of the present application performed a test for measuring the parallelism of the magnetic field with respect to the normal direction of the substrate, using the sputtering apparatus provided with the magnetic field applying unit in each of the above-described embodiments.
  • the parallelism in this test was measured with a three-dimensional magnetic field measuring device using a Hall element at the surface position of the substrate separated from the magnetic field applying means by about 5 mm.
  • the measurement location of the magnetic field in this test is considered to be axially symmetric with respect to the center of the substrate, and in the section from the center of the substrate to the outer periphery (position about 2 mm from the outer periphery) on the surface of the substrate, Measured along the radial direction. Note that the measurement was performed in two orthogonal directions on the substrate.
  • Condition A Permanent magnet (outer diameter 300 mm, thickness 5 mm) only (same configuration as the second embodiment shown in FIGS. 5A and 5B)
  • Condition B Permanent magnet (outer diameter 300 mm, thickness 5 mm) + magnetic material (Fe: outer diameter 300 mm, thickness 1.5 mm)
  • condition C permanent magnet (outer diameter 300 mm, thickness 5 mm) + magnetic material (Fe: outer diameter) 300 mm, thickness 1.5 mm) + yoke (Fe: inner diameter 330 mm, width 20 mm, height 30 mm) (same configuration as the fourth embodiment shown in FIG. 7)
  • FIG. 8 is an explanatory diagram showing the definition of parallelism.
  • the parallelism is an angle ⁇ formed by a normal line perpendicular to the surface and a tangential direction of the magnetic force line B0 at each point of the substrate W. That is, if the angle ⁇ is 0 degree, the magnetic field is perpendicular to the substrate W.
  • the magnetic field component Bh perpendicular to the surface of the substrate W and the magnetic field component Bh parallel to the surface are measured, and the angle ⁇ is calculated from arctan (Bh / Bs). Ask.
  • FIG. 9 shows the distribution of parallelism (degrees) at a distance (mm) from the center of the substrate.
  • the parallelism tends to increase from the center (0 mm) of the substrate toward the outer periphery, but in the case of the condition A, the outermost periphery (148 mm) of the substrate. ), The parallelism could be suppressed to about 11 degrees. In the case of condition B, the parallelism could be suppressed to about 8 degrees. This is considered to be because by arranging the magnetic body on the permanent magnet, magnetic lines of force are arranged along the central axis inside the magnetic body, so that the perpendicularity of the magnetic lines of force extending from the permanent magnet is improved.
  • the parallelism at the outermost periphery of the substrate could be suppressed to about 5 mm, and the variation in the magnetization direction could be greatly reduced.
  • the magnetic lines of force are arranged along the central axis inside the yoke by arranging a yoke that surrounds the substrate in the outer peripheral part of the magnetic material, so that the perpendicularity of the magnetic force lines especially in the outer peripheral part of the substrate is improved. It is thought that it is to do.
  • the magnetization direction of the magnetic layer can be changed.
  • Film formation can be performed while being aligned perpendicular to the surface of the substrate.
  • the film characteristics and crystal orientation of the magnetic layer can be improved, the perpendicularity of the magnetization direction of the magnetic layer can be improved, and variations in the magnetization direction of the magnetic layer can be suppressed, so that a high MR is obtained. be able to.
  • the present invention is not limited to the magnetic layer and can be applied to various film forming materials.
  • 10 and 11 are plan views showing other configurations of the magnetic field applying means.
  • the design can be changed as appropriate, such as using a rectangular permanent magnet 105.
  • the case where the disk-shaped substrate W see, for example, FIGS. 3A and 3B
  • FIG. Design changes are possible. 10 and 11, it is preferable to set the outer diameter of the permanent magnet 105 to be equal to or larger than the outer diameter of the substrates W and 105 from the viewpoint of improving the perpendicularity of the magnetic field.
  • FIG. 12 is a side sectional view of the tunnel junction element.
  • the tunnel junction element 210 includes a magnetic layer (fixed layer) 216 on a substrate W, a tunnel barrier layer 215 made of MgO or the like, a magnetic layer (free layer) 214, and an antiferromagnetic layer (not shown) made of PtMn, IrMn, or the like. Is a tunnel junction element 210 of a perpendicular magnetization system, which is mainly stacked.
  • the tunnel junction element 210 actually has a multilayer structure of about 15 layers in which functional layers other than those described above are also laminated.
  • the magnetic layer (fixed layer) 214 is a layer that is fixed so that its magnetization direction is perpendicular to the surface of the substrate W. Specifically, the magnetic layer (fixed layer) 214 is fixed upward with respect to the surface of the substrate W. Yes.
  • the magnetic layer (free layer) 214 is a layer whose magnetization direction changes according to the direction of the external magnetic field, and can be reversed to be parallel or antiparallel to the magnetization direction of the magnetic layer (fixed layer) 214.
  • the resistance value of the tunnel junction element 210 differs depending on whether the magnetization directions of the fixed layer 216 and the free layer 214 are parallel or antiparallel. By providing such a tunnel junction element 210 in an MRAM (not shown), it is possible to have information of “0” and “1” in the magnetization direction of the magnetic material, so that “1” or “0” is read. Can be rewritten.
  • FIG. 13 is a schematic configuration diagram of a magnetic multilayer film manufacturing apparatus (hereinafter referred to as a manufacturing apparatus) according to the present embodiment.
  • the manufacturing apparatus 220 of the present embodiment includes a substrate pretreatment chamber 225 and a plurality of sputtering devices 221 to 224 arranged radially with a substrate transfer chamber 226 as a center.
  • This is a cluster type manufacturing apparatus 220 that consistently performs pre-processing and film-forming steps of a magnetic multilayer film that constitutes a bonding element.
  • the manufacturing apparatus 220 performs a substrate pretreatment chamber 225 that performs a substrate W pretreatment process, a substrate cassette chamber 227 that holds a substrate W before film formation, and a film formation process of an antiferromagnetic layer.
  • a fourth sputtering device (sputtering device) 224 that performs a film forming step of (free layer) 216.
  • the magnetic layers 216, the tunnel barrier layer 215, the magnetic layer 214, etc. on the substrate W in each of the sputtering apparatuses 221 to 224 are formed.
  • a multilayer film is formed.
  • the magnetic multilayer film can be formed on the substrate W without exposing the substrate W supplied to the manufacturing apparatus 220 to the atmosphere.
  • the tunnel junction element 210 is formed by forming a resist pattern on the magnetic multilayer film, patterning the magnetic multilayer film into a predetermined shape by etching, and then removing the resist pattern.
  • FIG. 14A is a perspective view of the sputtering apparatus according to the present embodiment
  • FIG. 14A is a perspective view of the sputtering apparatus according to the present embodiment
  • the sputtering apparatus 222 is configured by disposing a substrate stage 262 on which a substrate W is placed and a sputtering cathode 265 provided with a film-forming material target 264 at predetermined positions. ing.
  • the substrate W that has undergone the antiferromagnetic layer deposition process in the first sputtering device 221 is transported from the substrate transport chamber 226 to the sputtering device 222 through a loading port (not shown).
  • the sputtering apparatus 222 includes a chamber 261 formed in a box shape from a metal material such as an Al alloy or stainless steel.
  • a substrate stage 262 on which the substrate W is placed is provided in the center near the bottom surface of the chamber 261.
  • the substrate stage 262 is configured to be rotatable at an arbitrary number of rotations by aligning the rotation shaft 262a with the center O of the substrate W by a rotation mechanism (not shown). Thereby, the substrate W placed on the substrate stage 262 can be rotated in parallel with the surface thereof.
  • a silicon wafer having an outer diameter of 300 mm is used as the substrate W of this embodiment.
  • Shield plates (side shield plate 271 and lower shield plate 272) made of stainless steel or the like are provided so as to surround the substrate stage 262 and the sputter cathode 265 described above.
  • the side shield plate 271 is formed in a cylindrical shape, and is disposed so that the central axis thereof coincides with the rotation axis 262 a of the substrate stage 262.
  • a lower shield plate 272 is provided from the lower end of the side shield plate 271 to the outer periphery of the substrate stage 262.
  • the lower shield plate 272 is formed in parallel with the surface of the substrate W, and is arranged so that the central axis thereof coincides with the rotation axis 262a of the substrate stage 262.
  • a space surrounded by the substrate stage 262, the lower shield plate 272, the side shield plate 271, and the ceiling surface of the chamber 261 is formed as a sputtering treatment chamber 270 (sputter chamber) for performing the sputtering treatment on the substrate W.
  • the sputter processing chamber 270 has an axisymmetric shape, and the axis of symmetry coincides with the rotation axis 262 a of the substrate stage 262. This makes it possible to perform a homogeneous sputtering process on each part of the substrate W, and to reduce variations in film quality distribution and magnetization direction.
  • a plurality of (for example, four) sputter cathodes 265 are arranged at equal intervals around the rotation axis 262a of the substrate stage 262 (circumferential direction of the substrate W) at the peripheral edge near the ceiling surface of the chamber 261. Yes.
  • Each sputter cathode 265 is connected to an external power source (power source) (not shown) and is held at a negative potential.
  • a target 264 is disposed on the surface of each sputter cathode 265.
  • the target 264 has a disk shape, and is composed of a plurality of types of film forming materials that can be stacked on the magnetic multilayer film, such as the film forming material of the magnetic layer 214 and the film forming material of the base film.
  • the material of each target can be changed as appropriate. Further, a configuration in which targets of the same material (for example, a film forming material for the magnetic layer) are arranged on all the sputtering cathodes is also possible.
  • the above-described sputter cathode 265 is disposed so as to be inclined with respect to the normal line of the substrate W placed on the substrate stage 262. That is, the target 264 attached to the sputter cathode 265 has a normal line (center axis) 264a passing through the center point T of the surface thereof inclined with respect to the rotation axis 262a of the substrate W at an angle ⁇ , for example.
  • the normal line 264a of H.264 and the surface of the substrate W are arranged so as to intersect at the peripheral portion of the substrate W.
  • a sputtering gas supply unit (gas supply unit) 273 for supplying a sputtering gas into the sputtering processing chamber 270 is provided outside the sputtering apparatus 222.
  • the sputtering gas supply means 273 supplies a sputtering gas such as argon (Ar) into the sputtering treatment chamber 270.
  • the sputtering gas supply means 273 is connected to the upper part of the side shield plate 271 that forms the sputtering processing chamber 270 and is configured to supply the sputtering gas to the vicinity of the target 264 in the sputtering processing chamber 270.
  • a reaction gas such as O 2 can be supplied from the sputtering gas supply means 273.
  • an exhaust port 269 is provided on a side surface of the chamber 261. The exhaust port 269 is connected to an exhaust pump (exhaust means) (not shown).
  • FIG. 15 is a perspective view of the substrate stage
  • FIG. 16 is a cross-sectional view corresponding to the line CC ′ of FIG.
  • FIG. 17 is an explanatory diagram for explaining lines of magnetic force generated from the magnetic field applying means.
  • the substrate stage 262 described above includes a stage body 230 and elevating pins 232.
  • the stage main body 230 is a disk-shaped member made of SUS or the like, and includes a base portion 233 and a lid portion 234.
  • the base portion 233 is a bottomed cylindrical member in which the cylindrical portion 236 is erected from the outer peripheral edge of the bottom portion 235 having a disk shape, and the region surrounded by the bottom portion 235 and the cylindrical portion 236 is housed in a concave shape in a sectional view.
  • the unit 237 is configured.
  • the first magnetic field applying means 238 is accommodated in the accommodating portion 237.
  • the first magnetic field applying means 238 is made of a permanent magnet or the like, and is formed in a disk shape having an outer diameter equivalent to the inner diameter of the housing portion 237.
  • the first magnetic field applying means 238 is arranged so that its central axis coincides with the rotation axis 262a of the substrate stage 262, that is, the central axis of the first magnetic field applying means 238 and the center O of the substrate W coincide. Yes.
  • the first magnetic field applying means 238 is for applying a magnetic field substantially perpendicular to the surface of the substrate W from the back surface side of the substrate W placed on the stage body 230, and the magnetization direction in the first magnetic field applying means 238 is the substrate. It corresponds to the thickness direction (normal direction) of W.
  • the magnetic field lines B extending from the first magnetic field applying unit 238 cross the surface of the substrate W substantially perpendicularly from the N pole (for example, the upper surface side) of the first magnetic field applying unit 238, and then the substrate It occurs around the outer periphery of W toward the south pole (for example, the lower surface side).
  • the magnetic force lines B generated from the first magnetic field applying unit 238 have a magnetic field component perpendicular (normal direction) to the surface of the substrate W, and are applied perpendicularly to the surface of the substrate W.
  • the outer diameter of the first magnetic field applying means 238 is formed larger than the outer diameter of the substrate W (for example, 300 mm).
  • the first magnetic field applying means is preferably an integral permanent magnet, but a permanent magnet having an outer diameter larger than that of the substrate can be formed using a plurality of permanent magnets.
  • a configuration in which a disk-like permanent magnet is disposed at the center and a plurality of annular permanent magnets are disposed so as to surround the periphery thereof is also possible.
  • the interval between the permanent magnets is preferably 1 mm or less.
  • a first magnetic body 239 is disposed on the upper surface of the first magnetic field applying means 238.
  • the first magnetic body 239 is made of nickel plated Fe, magnetic stainless steel (SUS430), or the like.
  • the first magnetic body 239 has an outer diameter equivalent to that of the first magnetic field application unit 238 and is formed thinner than the first magnetic field application unit 238.
  • a lid 234 is provided on the upper surface of the first magnetic body 239 so as to cover the first magnetic body 239.
  • the lid portion 234 is a disk-shaped member having an outer diameter equal to the inner diameter of the cylindrical portion 236 in the base portion 233, and has a thickness S of about 5 mm, for example.
  • the upper surface of the lid 234 is formed as a flat surface, and is configured as a substrate placement surface 234a on which the substrate W is placed. Note that the end surface of the cylindrical portion 236 protrudes from the upper surface position of the lid portion 234 in the outer peripheral portion of the stage main body 230.
  • a plurality of (for example, three) through holes 240 are formed at equal intervals along the circumferential direction of the stage main body 230 between the rotation shaft 262a of the stage main body 230 and the outer periphery.
  • the through hole 240 is a round hole having an inner diameter D of about 10 mm, for example, and penetrates in the thickness direction (axial direction) of the stage main body 230 including the first magnetic field applying means 238 and the first magnetic body 239.
  • each through hole 240 a plurality of (for example, three) lifting pins 232 (232a to 232c) that can move up and down in the thickness direction of the stage main body 230 are inserted.
  • Each of the lifting pins 232a to 232c has a cylindrical shape standing from a lifting plate 241 provided below the stage main body 230, and has an outer diameter E of, for example, about 8 mm.
  • the lift pins 232a to 232c support the back surface of the substrate W at their upper end surfaces.
  • the lift pins 232a to 232c are raised from the upper surface of the stage main body 230 to protrude into the chamber 261.
  • the substrate W to be loaded is received and the substrate W to be unloaded from the chamber 261 is transferred.
  • the second magnetic field applying means 242 is built in the tip portion of each lifting pin 232.
  • the second magnetic field applying means 242 has a cylindrical shape made of a permanent magnet or the like.
  • the thickness of the second magnetic field applying means 242 is equal to the thickness of the first magnetic field applying means 238 described above, and the internal magnetization direction is the first. This coincides with the magnetization direction inside the magnetic field applying means 238. That is, as shown in FIG. 17, the magnetic field lines B extending from the second magnetic field applying unit 242 also crossed the surface of the substrate W substantially perpendicularly from the N pole (for example, the upper surface side), like the first magnetic field applying unit 238. After that, it is generated so as to go around the outer periphery of the substrate W toward the south pole (for example, the lower surface side).
  • a second magnetic body 243 made of the same material as the first magnetic body 239 described above is disposed on the upper surface of the second magnetic field applying means 242.
  • the second magnetic body 243 has an outer diameter equivalent to that of the second magnetic field applying unit 242 and has a thickness equivalent to the thickness of the first magnetic body 239.
  • the elevating pins 232 can be arranged such that the tip portion is interposed in the through hole 240 when the substrate W is placed on the substrate placement surface 234 a of the stage main body 230. That is, the front end surface of the elevating pins 232 can be arranged with a gap between the back surface of the substrate W. At this time, the upper end surface of the second magnetic field application unit 242 housed in the elevating pin 232 and the upper end surface of the first magnetic field application unit 238 accommodated in the stage main body 230 are positioned on the same plane. It can be placed.
  • the lift pins 232 can be rotated together with the substrate stage 262 by the rotation mechanism of the substrate stage 262 described above.
  • the substrate stage 262 of the sputtering apparatus 222 has the magnetization direction inside the first magnetic field applying unit 238 in the through hole 240 of the stage main body 230 in addition to the first magnetic field applying unit 238 described above.
  • Second magnetic field applying means 242 having the same magnetization direction is interposed. That is, the magnetic field application means 238 and 242 are arranged so that the magnetization direction is the thickness direction of the substrate W over substantially the entire back surface side of the substrate W.
  • the lift pins 232a to 232c are connected to each other by a support member 244 on the lift plate 241 side.
  • the support member 244 is a rod-like member that extends perpendicular to the axial direction of the lift pins 232a to 232c.
  • one end of the support member 244 is coupled to the circumferential surface of one lifting pin 232a among the plurality of lifting pins 232a to 232c, and the other end is coupled to the circumferential surface of the lifting pin 232b adjacent to the lifting pin 232a.
  • the two lifting pins 232a and 232b are spanned at both ends. Accordingly, the elevating pins 232a to 232c are respectively connected by the three support members 244, and the elevating pins 232a to 232c are prevented from falling in the radial direction.
  • the support member is not limited to a rod-shaped member.
  • the substrate W on which an antiferromagnetic layer or the like is formed in the first sputtering apparatus 221 is transferred into the sputtering apparatus 222.
  • the elevating pins 232 are first raised, and the elevating pins 232 protrude from the upper surface of the stage main body 230.
  • the substrate W transferred from the first sputtering apparatus 221 is received by the raised lift pins 232.
  • the lift pins 232 are lowered to place the substrate W on the substrate placement surface 234 a of the stage body 230.
  • the lowering of the elevating pin 232 is stopped at a position where the upper end surfaces of the second magnetic field applying unit 242 housed in the elevating pin 232 and the first magnetic field applying unit 238 housed in the stage body 230 are flush with each other. It is preferable.
  • the elevating pin 232 when the elevating pin 232 is lowered, for example, since the magnetic pole on the upper surface side of the first magnetic field applying means 238 and the magnetic pole on the lower surface side of the second magnetic field applying means 242 are different, the magnetic field applying means 238 and 242 are attracted. There is a risk that force will be generated and the lifting pins 232 will fall. Therefore, by connecting the elevating pins 232a to 232c with the support members 244, it is possible to prevent the elevating pins 232a to 232c from collapsing even when an attractive force is generated between the magnetic field applying units 238 and 242. . Thereby, the movement of the raising / lowering pin 232 is not prevented.
  • the substrate stage 262 is rotated at a predetermined rotational speed together with the lift pins 232 by a rotation mechanism.
  • a sputtering gas such as argon is introduced from the sputtering gas supply means 273 into the sputtering chamber 270.
  • a voltage is applied to the target 264 from an external power source connected to the sputter cathode 265.
  • ions of the sputtering gas excited by plasma in the sputtering treatment chamber 270 collide with the target 264, and particles of the film forming material jump out of the target 264 and adhere to the substrate W.
  • the magnetic layer 214 is formed on the surface of the substrate W (see FIG. 12).
  • the deposition rate can be increased by generating high-density plasma in the vicinity of the target 264.
  • a magnetic field perpendicular to the surface of the substrate W is generated by the first magnetic field applying means 238 and the second magnetic field applying means 242 provided around the substrate W in the step of forming the magnetic layer 214. Then, film formation is performed.
  • the magnetic field is applied by the first magnetic field applying unit 238, the magnetic lines of force B extending from the first magnetic field applying unit 238 enter the surface of the substrate W perpendicularly.
  • the magnetic field lines B extending from the first magnetic field applying unit 238 are generated from the N pole (upper surface side) and cross the surface of the substrate W substantially vertically, and then the S pole (lower surface) of the first magnetic field applying unit 238. Incident on the side).
  • the particles of the film forming material of the magnetic layer 214 jumping out from the target 264 are deposited on the surface of the substrate W while receiving a magnetic field perpendicular to the surface of the substrate W.
  • the magnetic lines of force are arranged along the central axis inside the first magnetic body 239.
  • the perpendicularity of the magnetic field lines B extending from the surface of the substrate W can be improved. That is, the magnetic field component perpendicular to the surface of the substrate W can be increased.
  • the magnetic field applied by each magnetic field applying means 238, 242 is preferably 50 (Oe) or more in each part of the surface of the substrate W. Further, depending on the film forming material to be used, it is preferable to set annealing conditions in order to improve the perpendicularity of the magnetization direction in the plane of the magnetic layer 214.
  • the substrate W is transferred to the third sputtering apparatus 223. Specifically, in a state where the substrate W is supported by the front end surface of the elevating pins 232, the elevating pins 232 are raised to the delivery position of the substrate W, and the substrate W is delivered.
  • the elevating pin 232 is raised, similarly to when the elevating pin 232 is lowered, for example, the magnetic pole on the upper end side of the first magnetic field applying means 238 and the magnetic pole on the lower end side of the second magnetic field applying means 242 are, for example. Because of the difference, there is a possibility that an attraction force is generated between the magnetic field applying means 238 and 242 and the elevating pin 232 falls down.
  • a through-hole 304 is formed through which the elevating pin 302 is inserted into the stage main body 301 and the magnetic field applying means 303 because the elevating pin 302 is provided in the stage main body 301.
  • the magnetic lines of force B ′ generated from the magnetic field applying unit 303 cross the surface of the substrate W substantially perpendicularly, and a magnetic field substantially perpendicular to the surface of the substrate W is applied. .
  • the magnetic lines of force B ′ extending from the magnetic field applying means 303 are curved and extend.
  • the magnetic lines of force B ′ generated from the magnetic field application unit 303 pass through the through hole 304 to the back side of the magnetic field application unit 303. That is, in the region in the vicinity of the through hole 304 on the substrate W, the direction of the magnetic field applied to the surface of the substrate W varies. Furthermore, there is a problem that a magnetic field opposite to that in the region around the through hole 304 may be applied in the central region with the through hole 304. As a result, in the magnetic layers 214 and 216 (see FIG. 12), in-plane variations in the magnetization direction occur, causing a decrease in MR ratio and in-plane variations.
  • the second magnetic field applying means 242 having the same magnetization direction as the inside of the first magnetic field applying means 238 includes the lifting pins 232.
  • the interior is interior. That is, the second magnetic field applying means 242 having the same magnetization direction as the inside of the first magnetic field applying means 238 is interposed in the through hole 240 of the first magnetic field applying means 238.
  • the lines of magnetic force B extending from the second magnetic field applying unit 242 are generated from the N pole (upper surface side) and cross the surface of the substrate W substantially perpendicularly, like the first magnetic field applying unit 238. Incident on the south pole (lower surface side) of the two magnetic field applying means 242.
  • the magnetic field lines B extending from the first magnetic field application means 2308 repel each other with the magnetic field lines extending from the second magnetic field application means 242 interposed in the through hole 240.
  • the surface of W is crossed substantially vertically.
  • the magnetic lines B extending from the second magnetic field applying means 242 cross the surface of the substrate W substantially vertically.
  • the perpendicularity of the magnetic field lines B extending from the second magnetic field applying means 242 to the surface of the substrate W can be improved. That is, the magnetic field component perpendicular to the surface of the substrate W can be increased. As a result, a magnetic field perpendicular to the entire surface of the substrate W can be applied, so that the magnetization direction of the magnetic layer 214 is perpendicular to the surface of the substrate W in the film formation process of the magnetic layer 214. Film formation can be performed.
  • the stage body is provided by providing the second magnetic field application unit 242 having the same magnetization direction as that of the first magnetic field application unit 238 provided in the stage body 230 on the elevating pin 232.
  • the second magnetic field applying means 242 having the same magnetization direction as the inside of the first magnetic field applying means 238 is interposed in the through-hole 240 formed in 230.
  • the magnetic bodies 39 and 43 are arranged on the upper surfaces of the magnetic field applying units 238 and 242, magnetic lines of force are arranged along the central axis inside the magnetic bodies 239 and 243, so that the surface of the substrate W The perpendicularity of the magnetic field applied to can be improved. Further, since the upper end surfaces of the first magnetic field applying unit 238 and the second magnetic field applying unit 242 can be arranged on the same plane during the film forming process, the vertical direction of the magnetic field applied to the surface of the substrate W is increased. Can be improved. That is, since the magnetic field component perpendicular to the surface of the substrate W can be increased, in the film forming process of the magnetic layers 214 and 216 (see FIG. 12), the variation in the magnetization direction of the magnetic layer 214 is further reduced. be able to.
  • the desired MR ratio as described above is not obtained.
  • in-plane variations in the magnetization direction in the magnetic layers 214 and 216 are not sufficiently controlled.
  • the magnetic layers 214 and 216 are manufactured using only the property of perpendicular magnetization without applying a magnetic field in the magnetization direction when forming the perpendicular magnetization film.
  • variations in the plane of the magnetization direction occur.
  • the magnetic layers 214 and 216 have a variation in the magnetization direction in the plane, which causes a decrease in the MR ratio and a variation in the plane.
  • a magnetic field perpendicular to the entire surface of the substrate W can be applied, so that a magnetic field having a magnetic field component perpendicular to the surface of the substrate W is applied.
  • Sputter film formation can be performed while applying with high accuracy. Therefore, for example, in the film formation process of the magnetic layers 214 and 216, film formation can be performed while aligning the magnetization directions of the magnetic layers 214 and 216 with the direction perpendicular to the surface of the substrate W over the entire surface of the substrate W.
  • the perpendicularity of the magnetization direction of the magnetic layers 214 and 216 can be improved, the in-plane variation in the magnetization direction of the magnetic layers 214 and 216 can be suppressed. Therefore, a magnetic multilayer film with improved in-plane uniformity in the magnetization direction of the magnetic layers 214 and 216 can be formed, and a high MR tunnel junction element can be provided over the entire surface of the substrate W.
  • the substrate stage of the present invention is employed in the sputtering apparatus, but it is also possible to employ a substrate stage other than the sputtering apparatus.
  • a substrate stage other than the sputtering apparatus.
  • it can be employed in a magnetic field measuring instrument that applies a magnetic field perpendicular to the surface of the substrate placed on the substrate stage.
  • the sputtering apparatus and the film forming method provided with the substrate stage of the present invention for example, when forming a magnetic layer by sputtering, the magnetic layer is applied by applying a magnetic field perpendicular to the entire surface of the substrate.
  • a high MR ratio can be obtained by suppressing variations in the magnetization direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Magnetic Heads (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

 真空容器内に配置され、基板が載置される基板載置面を有する基板ステージであって、前記基板に対して磁場を印加する第1磁場印加手段を備え、前記第1磁場印加手段の内部の磁化方向と前記基板の厚さ方向とが一致する基板ステージ。

Description

基板ステージ、これを備えたスパッタ装置及び成膜方法
 本発明は、基板ステージ、それを備えたスパッタ装置及び成膜方法に関する。
 本願は、2008年1月15日に日本出願された特願2008-005993号と2008年2月7日に日本出願された特願2008-027719号とを基礎出願とし、それらの内容をここに取り込む。
 従来から、MRAM(Magnetic Random Access Memory)を構成するTMR(Tunneling Magnetic Resistive)素子等の半導体デバイスを構成する被膜の形成に好適な成膜処理装置として、スパッタ装置が広く利用されている。
 このスパッタ装置として、基板が載置される基板ステージと、基板の法線方向に対して傾斜するように配置され、成膜材料のターゲットを備えたスパッタカソードとを、処理チャンバ内に配設して構成されているものがある。このスパッタ装置では、基板ステージを回転させながらスパッタ処理を行うことにより、良好な膜質分布を得られる。また、ターゲット近傍で生成したプラズマを従来のバランスドマグネトロンカソードの様にターゲット近傍に収束させるのではなく、カソードからの磁場のバランスを意図的に崩すことによって基板近傍にまで拡散させている構成が知られている(例えば、特許文献1参照)。
特開2000-282235号公報 特開平06-264235号公報
 図1は、トンネル接合磁気抵抗素子の断面図である。
 図1に示すように、トンネル接合素子10は、磁性層(固定層)14と、トンネルバリア層(絶縁層)15と、および磁性層(フリー層)16等とを積層して構成されている。
 近年のMRAMにおいて、磁性層14,16に垂直磁化膜を用いる垂直磁化方式のトンネル接合素子10の開発が進められている。垂直磁化方式とは、反磁界の影響を受けにくい垂直方向の磁化回転を用いるものである。この方式によれば、より素子の微細化が可能となり、記録密度を上げることができる。そのため、ギガビット級メモリの製造を達成するには採用が不可欠と考えられている。さらに、大きな抵抗変化率(MR比)を得ることができ、書き込み電流を数十分の一まで低減できる方式と期待されている。
 しかしながら、従来における垂直磁化方式のトンネル接合素子10にあっては、上述したような所望のMR比が得られていないのが実情である。この原因として、例えば磁性層14,16の磁化方向のばらつきを充分に制御できていないことが挙げられる。従来は垂直磁化膜を形成する際に磁化方向に磁場を印加することなく、磁性層14,16が垂直磁化する性質のみを利用して製造していたため、成膜された磁性層14,16の磁化方向にばらつきが生じるという問題がある。その結果、磁性層14,16の成膜工程において、磁性層14,16の結晶配向性等の膜特性にばらつきが生じ、膜抵抗値のばらつきが生じてしまう。
 また、磁性層14,16を成膜する処理チャンバ内は、上述した特許文献1のように処理チャンバ内に1台のカソードのみが配置されている場合と異なり、通常、処理チャンバ内に複数のカソードが配置され、各カソードのターゲットに異なる種類の成膜材料が取り付けられている。そのため、各カソードは基板の法線に対して傾斜するように配置されることになる。この場合、各カソードに永久磁石や電磁石等を設けて基板の厚さ方向(法線方向)に磁場を印加する構成は、構成の複雑化等、事実上の困難が伴い現実的ではない。
 また、上述した垂直磁化膜の磁性層14,16を形成するには、基板の表面に垂直な磁場を印加しつつスパッタ処理を行うことが望ましい。
 そこで、基板を載置する基板ステージに永久磁石等からなる磁場印加手段を内装することで、基板の表面に対して垂直な磁場成分を有する磁場を印加しつつ、スパッタ成膜を行うような構成が考えられる。
 例えば、ターゲットと基板間に、基板面に対して垂直方向に磁場が印加されるようにヘルムホルツコイルを真空容器(チャンバー)周囲に配置した磁性膜形成装置が知られている(特許文献2参照)。しかしながら、この磁性膜形成装置では、ヘルムホルツコイルを真空容器の周囲に配置することにより、装置が大型化するという問題がある。
 図18は、磁場印加手段を内装した基板ステージを示す概略構成図である。
 図18に示すように、基板ステージ300は、基板Wが載置されるステージ本体301と、処理チャンバ内で基板Wの受け取り及び基板Wの受け渡しを行う複数(図18では、1本のみ示す)の昇降ピン302とを備えている。ステージ本体301には、永久磁石等からなる磁場印加手段303が内装されている。昇降ピン302は、ステージ本体301の厚さ方向に貫通する貫通孔304内に挿通され、ステージ本体301に対して上下動可能に構成されている。
 しかしながら、この構成にあっては、ステージ本体301に昇降ピン302を設ける関係で、ステージ本体301及び磁場印加手段303に昇降ピン302を挿通させる貫通孔304を形成しなければならない。したがって、貫通孔304内には、磁場印加手段303の存在しないスペースが貫通孔304の外径分だけ形成される。
 この場合、磁場印加手段303から発生する磁力線B’が、貫通孔304を通って磁場印加手段303の裏面側に回り込む。つまり、基板W上における貫通孔304の近傍の領域では、基板Wの表面に印加される磁場方向にばらつきが生じる。さらに、貫通孔304の中央の領域では、貫通孔304の周囲の領域と逆の磁場が印加されるという問題がある。その結果、磁性層214,216(図12参照)において磁化方向の面内におけるばらつきが生じ、MR比の低下、面内でのばらつきを引き起こす原因となる。
 そこで、本発明は、上記の課題を解決するためになされたものであって、例えばスパッタリング法による磁性層の成膜時において、基板の表面の全面に対して垂直な磁場を印加することにより磁性層の磁化方向のばらつきを抑制して、高MR比を得ることができる基板ステージ及びこれを備えたスパッタ装置、成膜方法を提供することを目的とする。
 上記の課題を解決し、上記目的を達成するために、本発明の基板ステージは、真空容器内に配置され、基板が載置される基板載置面を有する基板ステージであって、前記基板に対して磁場を印加する第1磁場印加手段を備え、前記第1磁場印加手段の内部の磁化方向と前記基板の厚さ方向とが一致する。
 前記第1磁場印加手段が、前記基板載置面に載置された基板の周囲を取り囲むように設けられていてもよい。
 上記基板ステージによれば、基板の周囲を取り囲むように磁場印加手段を設け、この磁場印加手段の内部の磁化方向を基板の厚さ方向一致させることで、基板の表面に対して垂直な磁場成分を有する磁場を精度よく印加しつつ、スパッタ成膜を行うことができる。
 前記第1磁場印加手段の中央が、前記基板載置面の法線方向において、前記基板の表面と同じ高さに配置可能であってもよい。
 この場合、基板の厚さ方向における磁場印加手段の中央部に、基板の表面を配置することで、基板の表面に対して垂直に入射する磁場成分を増加させることができる。
 前記基板載置面に載置された基板の裏面側に前記基板の外径以上の大きさを有する前記第1磁場印加手段が設けられてもよい。
 この場合、基板の外径以上の大きさに形成された磁場印加手段を設け、この磁場印加手段内部の磁化方向を基板の厚さ方向に一致させることで、基板の表面に対して垂直な磁場成分を有する磁場を精度よく印加しつつ、スパッタ成膜を行うことができる。
 前記第1磁場印加手段と前記基板との間に位置する第1磁性体をさらに備えてもよい。
 この場合、磁場印加手段と基板との間に、第1磁性体を備えることで、第1磁性体の内部ではその中心軸に沿って磁力線が配置されるため、基板の表面に入射する磁場の垂直性を向上させることができる。
 前記基板の周囲を取り囲むように配置された第2磁性体をさらに備えてもよい。
 この場合、基板の周囲を取り囲むように第2磁性体を設けることで、第2磁性体の内側ではその中心軸に沿って磁力線が配置されるため、基板の表面に入射する磁場の垂直性をより向上させることができる。
 前記基板載置面に対して前記基板を昇降する昇降ピンと;この昇降ピンに設けられた第2磁場印加手段と;をさらに備え、前記第1磁場印加手段は貫通孔を有し、前記昇降ピンは前記貫通孔の内部にスライド可能に挿通され、前記第2磁場印加手段の内部の磁化方向と前記第1磁場印加手段の内部の磁化方向とが一致してもよい。
 この場合、昇降ピンに第1磁場印加手段の内部と同一の磁化方向を有する第2磁場印加手段を設けることで、ステージ本体と第1磁場印加手段とに形成された貫通孔内に第1磁場印加手段の内部と同一の磁化方向を有する第2磁場印加手段が介在することになる。これにより、貫通孔内において磁場印加手段の存在しないスペースを縮小させることができる。したがって、基板の表面の全面に対して垂直な磁場を印加することができる。
 前記基板載置面上に前記基板が載置された状態において、前記第1磁場印加手段の上端面と前記第2磁場印加手段の上端面とが同一平面上に配置可能であってもよい。
 この場合、第1磁場印加手段と第2磁場印加手段とのそれぞれの上端面が、同一平面上に配置可能とされることで、基板の表面に印加される磁場の垂直性を向上させることができる。
 複数の前記昇降ピンと;前記各昇降ピンを互いに連結するサポート部材と;を備え、前記第1磁場印加手段は複数の前記貫通孔を有し、前記各貫通孔には前記各昇降ピンがそれぞれ配置されてもよい。
 この場合、サポート部材によって複数の昇降ピンを連結することで、第1磁場印加手段と第2磁場印加手段との吸引反発による昇降ピンの倒れこみや、昇降ピンの移動の妨げを防止することができる。
 前記第1磁場印加手段および前記基板の間と前記第2磁場印加手段および前記基板の間とに位置する磁性体をさらに備えてもよい。
 この場合、各磁場印加手段と基板との間に、それぞれ磁性体を備えることで、磁性体の内部ではその中心軸に沿って磁力線が配置されるため、基板の表面に印加される磁場の垂直性を向上させることができる。
 本発明のスパッタ装置は、前記基板ステージと;前記基板載置面に載置された基板の法線に対して傾斜するように配置されたスパッタカソードと;前記基板ステージおよび前記スパッタカソードが配置されたスパッタ室と;このスパッタ室内の真空排気を行う真空排気手段と;前記スパッタ室内にスパッタガスを供給するガス供給手段と;前記スパッタカソードに電圧を印加する電源と;を備える。
 この場合、スパッタ室内を真空排気手段により真空引きした後、ガス供給手段からスパッタ室内にスパッタガスを導入し、電源からターゲットに電圧を印加することで、プラズマを発生させる。するとスパッタガスのイオンが、カソードであるターゲットに衝突し、ターゲットから成膜材料の粒子が飛び出して基板に付着する。これにより、基板の表面に対してスパッタ成膜を行うことができる。
 また、上述した本発明の基板ステージを備えているため、基板の表面の全面に対して垂直な磁場を印加することができる。したがって、基板の表面に対して垂直な磁場成分を有する磁場を精度よく印加しつつ、スパッタ成膜を行うことができる。そのため、例えば磁性層の成膜過程において、基板上全面で磁性層の磁化方向を基板の表面に対して垂直な方向に揃えつつ、成膜を行うことができる。これにより、磁性層の面内における磁化方向の垂直性を向上させることができるため、磁性層の面内における磁化方向のばらつきを抑制することができる。したがって、磁性層の磁化方向の面内一様性を向上させた磁性多層膜を成膜することができるため、高MRのトンネル接合素子を提供することができる。
 本発明の成膜方法は、真空容器内に配置され、基板が載置される基板載置面を有する基板ステージに載置された基板に対して、第1磁場印加手段により、この第1磁場印加手段の内部の磁化方向と前記基板の厚さ方向とが一致するように磁場を印加しつつ、前記基板の表面にスパッタ処理を行う。
 前記第1磁場印加手段が前記基板の周囲を取り囲むように設けられてもよい。
 この場合、磁場印加手段により基板の厚さ方向の磁場を印加させることで、基板の表面に対して垂直な磁場成分を有する磁場を精度よく印加しつつ、スパッタ成膜を行うことができる。
 前記第1磁場印加手段が前記基板の裏面側に設けられ、かつ、前記基板の外径以上の大きさを有してもよい。
 この場合、基板の外径以上の大きさに形成された磁場印加手段により基板の厚さ方向の磁場を印加させることで、基板の表面に対して垂直な磁場成分を有する磁場を精度よく印加しつつ、スパッタ成膜を行うことができる。
 前記第1磁場印加手段に設けられた貫通孔の内部にスライド可能に挿通されて、前記基板載置面に対して前記基板を昇降する昇降ピンに設けられた第2磁場印加手段により前記基板に対して磁場を印加し、前記第1磁場印加手段の内部の磁化方向と前記第2磁場印加手段の内部の磁化方向とを一致させ、かつ、前記第1磁場印加手段の上端面と前記第2磁場印加手段の上端面とを同一平面上に配置して前記基板上にスパッタ処理を行ってもよい。
 この場合、昇降ピンに第1磁場印加手段の内部と同一の磁化方向を有する第2磁場印加手段を設け、第1磁場印加手段と第2磁場印加手段とのそれぞれの上端面が、同一平面上に配置されることで、ステージ本体と第1磁場印加手段とに形成された貫通孔内に第1磁場印加手段の内部と同一の磁化方向を有する第2磁場印加手段が介在することになる。これにより、貫通孔内において磁場印加手段の存在しないスペースを縮小させることができる。したがって、基板の表面の全面に対して垂直な磁場を印加した状態でスパッタ処理を行うことができる。
 また本発明の成膜方法は、上記成膜方法を使用して、トンネル接合素子を形成するための垂直磁化膜を形成することを特徴とする。
 この場合、基板の表面に対して垂直な磁場成分を有する磁場を精度よく印加しつつ、スパッタ成膜を行うことができるため、垂直磁化膜の面内の磁化方向を基板の表面に対して垂直方向に揃えつつ、成膜を行うことができる。これにより、垂直磁化膜の面内の磁化方向の垂直性を向上させることができるため、垂直磁化膜の磁化方向の面内におけるばらつきを抑制することができる。したがって、垂直磁化膜の膜特性、結晶配向性、磁化方向の面内一様性を向上させた磁性多層膜を成膜することができるため、高MRのトンネル接合素子を提供することができる。
 本発明によれば、磁場印加手段の内部の磁化方向を基板の厚さ方向一致させることで、基板の表面に対して垂直な磁場成分を有する磁場を精度よく印加しつつ、スパッタ成膜を行うことができる。これにより、例えば垂直磁化膜の成膜過程において、垂直磁化膜の磁化方向を基板の表面に対して垂直に揃えつつ、成膜を行うことができる。これにより、垂直磁化膜の磁化方向の垂直性を向上させることができるため、磁性層の磁化方向のばらつきを抑制することができる。したがって、垂直磁化膜の膜特性や結晶配向性を向上させた磁性多層膜を成膜することができるため、高MRのトンネル接合素子を提供することができる。
 また、本発明によれば、昇降ピンに第1磁場印加手段の内部と同一の磁化方向を有する第2磁場印加手段を設けることで、ステージ本体と第1磁場印加手段とに形成された貫通孔内に第1磁場印加手段の内部と同一の磁化方向を有する第2磁場印加手段が介在することになる。これにより、貫通孔内において磁場印加手段の存在しないスペースを縮小させることができる。したがって、基板の表面の全面に対して垂直な磁場を印加することができる。
図1は、トンネル接合素子の断面図である。 図2は、本発明の第1実施形態におけるトンネル接合素子の製造装置の概略構成図である。 図3Aは、第1実施形態に係るスパッタ装置の斜視図である。 図3Bは、第1実施形態に係るスパッタ装置の側面断面図である。 本発明の第1実施形態における磁場印加手段の要部断面図である。 図5Aは、本発明の第2実施形態における磁場印加手段の要部斜視図である。 図5Bは、本発明の第2実施形態における磁場印加手段の要部断面図である。 図6は、本発明の第3実施形態における磁場印加手段の要部断面図である。 図7は、本発明の第4実施形態における磁場印加手段の要部断面図である。 図8は、平行度の定義を示す説明図である。 図9は、基板の中心からの距離(mm)における平行度(度)の分布を示すグラフである。 図10は、本発明における磁場印加手段の他の構成を示す平面図である。 図11は、本発明における基板の他の構成を示す平面図である。 図12は、トンネル接合素子の断面図である。 図13は、本発明の第5の実施形態におけるトンネル接合素子の製造装置の概略構成図である。 図14Aは、第5の実施形態に係るスパッタ装置の斜視図である。 図14Bは、第5の実施形態に係るスパッタ装置のA-A’線に沿う側面断面図である。 図15は、本発明の第5の実施形態における基板ステージの斜視図である。 図16は、図15のC-C’線に相当する断面図である。 図17は、磁場印加手段から発生する磁力線を説明する説明図である。 図18は、磁場印加手段を内装した基板ステージを示す概略構成図である。
符号の説明
  W 基板
  23 スパッタ装置
  62 テーブル
  64 ターゲット
  65,100,105 永久磁石(磁場印加手段)
  101 磁性体(第1磁性体)
  103 ヨーク(第2磁性体)
  73 スパッタガス供給手段(ガス供給手段)
  222 スパッタ装置
  238 第1磁場印加手段
  239 第1磁性体(磁性体)
  240 貫通孔
  242 第2磁場印加手段
  243 第2磁性体(磁性体)
  244 サポート部材
  262 基板ステージ
  265 スパッタカソード
  273 スパッタガス供給手段(ガス供給手段)
 次に、図面に基づいて、本発明の実施形態に係るスパッタ装置および成膜方法について説明する。なお、以下の説明に用いる各図面では、各部材を認識可能な大きさとするため、各部材の縮尺を適宜変更している。
(第1実施形態)
 (磁性多層膜)
 まず、磁性層を含む多層膜の一例であるMRAMに用いられるトンネル接合素子について説明する。
 図1は、トンネル接合素子の側面断面図である。
 トンネル接合素子10は、基板W上に磁性層(固定層)16および、MgO等からなるトンネルバリア層15、磁性層(フリー層)14、PtMnやIrMn等からなる反強磁性層(不図示)が主として積層された、垂直磁化方式のトンネル接合素子10である。なお、磁性層14,16の構成材料は、例えばFePt,TbFeCo,Co/Pd、Fe/EuO,Co/Pt,Co/Pd,CoPtCr-SiO,CoCrTaPt,CoCrPt等を採用することが可能である。またトンネル接合素子10は、実際には上記以外の機能層も積層されて、15層程度の多層構造になっている。
 磁性層(固定層)14は、その磁化方向が基板Wの表面に対して垂直になるように固定された層であり、具体的には基板Wの表面に対して上方に向かって固定されている。一方、磁性層(フリー層)14は、その磁化方向が外部磁界の向きに応じて変化する層であり、磁性層(固定層)14の磁化方向に対して平行か反平行かに反転できる。これら固定層16およびフリー層14の磁化方向が、平行か反平行かによって、トンネル接合素子10の抵抗値が異なる。このようなトンネル接合素子10をMRAM(不図示)に備えることで、磁性体の磁化方向に「0」,「1」の情報を持たせることができるため、「1」または「0」を読み出したり、書き換えたりすることができる。
 (磁性多層膜の製造装置)
 図2は、本実施形態に係る磁性多層膜の製造装置(以下、製造装置という)の概略構成図である。
 図2に示すように、本実施形態の製造装置20は、基板搬送室26を中心として放射状に複数のスパッタ装置21~24が配置されたものであり、例えば上述したトンネル接合素子を構成する磁性多層膜の前処理・成膜工程を一貫して行うクラスタータイプの製造装置20である。
 具体的に、製造装置20は、成膜前の基板Wが保持される基板カセット室27と、反強磁性層の成膜工程を行う第1スパッタ装置21と、磁性層(固定層)16の成膜工程を行うスパッタ装置(第2スパッタ装置)22と、トンネルバリア層15の成膜工程を行う第3スパッタ装置23と、磁性層(フリー層)16の成膜工程を行うスパッタ装置(第4スパッタ装置)24と、を備えている。また、基板搬送室26を介してスパッタ装置24の搬送側には、基板前処理用装置25を備えている。
 上述した製造装置20では、必要な基板前処理の後、各スパッタ装置21~24において、基板W上に磁性層16、トンネルバリア層15、磁性層14等の磁性多層膜が形成される。このように、クラスタータイプの製造装置20では、製造装置20に供給された基板Wを大気に晒すことなく、基板W上に磁性多層膜を形成することができる。なお、磁性多層膜上にレジストパターンを形成し、エッチングにより磁性多層膜を所定形状にパターニングした後、レジストパターンを除去することで、トンネル接合素子10は形成される。
 ここで、本実施形態に係るスパッタ装置である、磁性多層膜のうち磁性層14,16の成膜工程を行うスパッタ装置22,24について説明する。なお、本実施形態のスパッタ装置22,24は略同一の構成であるため、以下の説明ではスパッタ装置22の説明を行い、スパッタ装置24の説明は省略する。
 図3Aは本実施形態に係るスパッタ装置の斜視図であり、図3Bは図3AのA-A線に沿う側面断面図である。また、図4は、要部断面図である。
 図3A及び図3Bに示すように、スパッタ装置22は、基板Wを載置するテーブル62と、ターゲット64とを、所定位置に配設して構成されている。スパッタ装置22は、上述した第1スパッタ装置21で反強磁性層の成膜工程を経た基板Wが、図示しない搬入口を介して基板搬送室26から搬送される。
 図3Bに示すように、スパッタ装置22は、Al合金やステンレス等の金属材料により箱型に形成されたチャンバ61を備えている。チャンバ61の底面付近の中央部には、基板Wを載置するテーブル62が設けられている。テーブル62は、図示しない回転機構により、その回転軸62aと基板Wの中心Oとを一致させて、任意の回転数で回転可能に構成されている。これにより、テーブル62上に載置された基板Wを、その表面と平行に回転させることができる。なお、本実施形態の基板Wは、基板サイズが例えば外径300mmのシリコンウエハを用いている。
 上述したテーブル62およびターゲット64を取り囲むように、ステンレス等からなるシールド板(側部シールド板71および下部シールド板72)が設けられている。側部シールド板71は円筒状に形成され、その中心軸がテーブル62の回転軸62aと一致するように配設されている。また、側部シールド板71の下端部からテーブル62の外周縁にかけて、下部シールド板72が設けられている。この下部シールド板72は基板Wの表面と平行に形成され、その中心軸がテーブル62の回転軸62aと一致するように配設されている。
 テーブル62、下部シールド板72および側部シールド板71、並びにチャンバ61の天井面によって囲まれた空間は、基板Wに対してスパッタ処理を行うスパッタ処理室70(スパッタ室)として形成されている。このスパッタ処理室70は、軸対称な形状とされ、その対称軸はテーブル62の回転軸62aと一致している。これにより、基板Wの各部に対して均質なスパッタ処理を行うことが可能になり、膜厚分布のばらつきを低減することができる。
 スパッタ処理室70を形成する側部シールド板71の上部には、スパッタガスを供給するスパッタガス供給手段(ガス供給手段)73が接続されている。このスパッタガス供給手段73は、スパッタ処理室70内にアルゴン(Ar)等のスパッタガスを導入するものであり、スパッタ処理室70の外部に設けられたスパッタガスの供給源74からスパッタガスが供給されるように構成されている。なお、スパッタガス供給手段73からは、Oなどの反応ガスを供給することも可能である。また、チャンバ61の側面には、排気口69が設けられている。この排気口69は、図示しない排気ポンプ(真空排気手段)に接続されている。
 チャンバ61の天井面付近の周縁部には、テーブル62の回転軸62aの回り(基板Wの周方向)に沿って等間隔に、複数(例えば、4個)のターゲット64が配置されている。ターゲット64は、図示しない外部電源(電源)に接続され、負電位(カソード)に保持されている。
 各ターゲット64の表面には、上述した磁性層14の成膜材料や下地膜の成膜材料等、磁性多層膜に積層されうる複数種類の成膜材料がそれぞれ配置されている。なお、各ターゲット64に配置する成膜材料は、適宜変更が可能である。また、全てのターゲット64に磁性層14,16の成膜材料を配置するような構成も可能である。
 また、上述したターゲット64は、テーブル62に載置される基板Wの法線に対して傾斜するように配設されている。
 また、ターゲット64は、その表面の中心点Tを通る法線(中心軸)64aが、基板Wの回転軸62aに対して、例えば角度θで傾斜しており、ターゲット64の法線64aと基板Wの表面とが基板Wの周縁部分で交差するように配置されている。
 ここで図4にも示すように、基板Wの径方向外側には基板Wの周囲を取り囲むように、環状の永久磁石(磁場印加手段)65が配置されている。この永久磁石65は、その内径、厚みがともに基板Wより大きく形成されたものであり、永久磁石65の内部の磁化方向は、基板Wの厚さ方向(法線方向)に一致している。永久磁石65の軸方向の中央部に、基板Wが配置されるように構成されている。つまり、基板Wの法線方向における永久磁石65の中央部に、基板Wの表面が配置されることになる。これにより、永久磁石65から延びる磁力線B1は、N極(例えば上面側)から中央孔を通り、基板Wの表面を略垂直によぎった後、S極(例えば下面側)に向かって発生する。したがって、永久磁石65の内側で延びる磁力線B1は、基板Wの表面に対して垂直(法線方向)な磁場成分を有し、基板Wの表面の全面に対して略垂直に入射する。なお、本実施形態では磁場印加手段を環状の永久磁石として説明するが、基板の周囲を取り囲む構成であれば、複数の永久磁石を分割して設けるような構成にしてもよい。
 (成膜方法)
 次に、本実施形態のスパッタ装置による成膜方法について説明する。なお、以下の説明では上述した磁性多層膜のうち、主としてスパッタ装置22で行う磁性層14の成膜方法について説明する。
 まず、図3A及び図3Bに示すように、テーブル62に基板Wを載置し、回転機構によりテーブル62を所定の回転数で回転させる。スパッタ処理室70内を真空ポンプにより真空引きした後、スパッタガス供給手段73からスパッタ処理室70内にアルゴン等のスパッタガスを導入する。ターゲット64に接続された外部電源からターゲット64に電圧を印加することで、プラズマを発生させる。するとスパッタガスのイオンが、カソードであるターゲット64に衝突し、ターゲット64から成膜材料の粒子が飛び出して、基板Wに付着する。以上により、基板Wの表面に磁性層14が成膜される(図1参照)。その際、ターゲット64近傍に高密度プラズマを生成することで、成膜速度を高速化させることができる。
 ところで、上述のように、垂直磁化方式のトンネル接合素子は、反磁界の影響を受けにくい垂直方向の磁化回転を用いる。この方式によれば、より素子の微細化が可能となり、記録密度を上げることができるため、ギガビット級メモリの製造を達成するには採用が不可欠と考えられている。さらに、高MR比を得ることができ、書き込み電流を数十分の一まで低減できる技術とされている。しかしながら、磁性層の成膜工程において、成膜された磁性層14,16の磁化方向にばらつきの影響により、所望のMR比が得られていない。
 そこで、本実施形態では、磁性層14の成膜工程において、基板Wの周囲に設けられた永久磁石65により基板Wの表面に対して垂直な磁場を発生させつつ、成膜を行う。
 図4に示すように、永久磁石65により磁場を印加すると、永久磁石65から延びる磁力線B1は基板Wの表面の全面に対して垂直に入射する。具体的には、永久磁石65の内側に延びる磁力線B1は、N極(上面側)から発生して永久磁石65の内側を通ってS極(下面側)に入射する。ターゲット64から飛び出した磁性層14の成膜材料は、基板Wの表面に対して垂直な磁場を受けながら基板Wの表面に堆積されることになる。なお、永久磁石65により印加する磁場は、基板Wの表面の各部において50(Oe)以上であることが好ましい。
 その結果、磁性層14の成膜過程において、磁性層14の磁化方向が基板Wの表面に対して垂直になるように成膜を行うことができる。この場合、磁性層14の平行度(平行度の定義については後述する)を1度以下に抑えることが可能となる。なお、使用する成膜材料によっては、磁性層14の垂直性を向上させるためにアニール条件を設定することが好ましい。
 このように、本実施形態によれば、基板Wの周囲を取り囲むように永久磁石65を設け、この永久磁石65の内部の磁化方向を基板Wの法線方向に一致させる構成とした。
 この構成によれば、基板Wの法線方向に磁化方向を有する永久磁石65を設けることで、基板Wの表面に対して垂直な磁場成分を有する磁場を精度よく印加しつつ、スパッタ成膜を行うことができる。そのため、磁性層14の成膜過程において、磁性層14の磁化方向を基板Wの表面に対して垂直に揃えつつ、成膜を行うことができる。これにより、磁性層14の磁化方向の垂直性を向上させることができるため、磁性層14の磁化方向のばらつきを抑制することができる。したがって、磁性層14の膜特性や結晶配向性を向上させた磁性多層膜を成膜することができるため、高MRのトンネル接合素子10を提供することができる。
 また、基板Wの法線方向における永久磁石65の中央部に、基板Wの表面を配置することで、基板Wの表面に垂直に入射する磁場成分を増加させることができる。したがって、磁性層14の磁化方向のばらつきをより低減することができる。
 これにより、スパッタ装置22の構成を複雑化することなく、高MRで書き込み電流の低いトンネル接合素子10を提供することができる。
(第2実施形態)
 次に、本発明の第2実施形態を説明する。本実施形態では、磁場印加手段の構成について第1実施形態と相違しており、第1実施形態と同一の構成には同一の符号を付して説明を省略する。図5Aは、第2実施形態における要部斜視図であり、図5Bは断面図である。なお、図5A及び図5Bにおいては説明を分かり易くするため、上述したチャンバ61(図3A及び図3B参照)等の記載を省略する。
 図5A及び図5Bに示すように、基板Wの裏面側には、基板Wの裏面と平行に永久磁石100が配置されている。この永久磁石100は円板状のものであり、その中心軸と基板Wの中心Oとが一致するように配置されている。永久磁石100の内部の磁化方向は、基板Wの厚さ方向(法線方向)に一致している。したがって、永久磁石100から延びる磁力線B2は、永久磁石100のN極(例えば上面側)から、基板Wの表面を略垂直によぎった後、基板Wの外周を回り込んでS極(例えば下面側)に向かって発生する。この時、磁力線B2は、基板Wの表面に対して垂直(法線方向)な磁場成分を有し、基板Wの表面の全面に対して垂直に入射する。
 また、永久磁石100の外径は、基板Wの外径(例えば、300mm)よりも大きく形成されている。なお、永久磁石の外径は、基板の外径以上であれば適宜設計変更が可能である。また、永久磁石は一体であることが好ましいが、複数の永久磁石を用いて基板の外径以上の永久磁石を構成することも可能である。この場合、各永久磁石間の間隔は1mm以下であることが好ましい。
 このように、本実施形態においては、基板Wの裏面側に、基板Wの外径以上の大きさを有する永久磁石100が設けられ、この永久磁石100の内部の磁化方向を基板Wの法線方向に一致させる構成とした。
 この構成によれば、上述した第1実施形態と同様の効果を奏することができる。また、永久磁石100の外径を基板Wの外径以上に形成することで、基板Wに入射する磁力線B2の垂直性、つまり基板Wの表面に対する垂直な磁場成分を増加させることができる。
(第3実施形態)
 次に、本発明の第3実施形態を説明する。本実施形態では、磁場印加手段と基板との間に第1磁性体が設けられている点について第2実施形態と相違しており、第2実施形態と同一の構成には同一の符号を付して説明を省略する。図6は、第3実施形態における要部断面図である。なお、図6においては説明を分かり易くするため、上述したチャンバ61(図3A及び図3B参照)等の記載を省略する。
 図6に示すように、永久磁石100上には、磁性体(第1磁性体)101が設けられている。この磁性体101は、ニッケルメッキが施されたFeや磁性ステンレス(SUS430)等から構成されている。永久磁石100は円板状のものであり、永久磁石100の外径より大きく形成されている。
 本実施形態においては、上述した第2実施形態と同様の効果を奏するとともに、永久磁石100上に磁性体101を形成することで、磁性体101の内部ではその中心軸に沿って磁力線が配置されるため、永久磁石100から延びる磁力線B3の垂直性を向上させることができる。つまり、基板Wの表面に対する垂直な磁場成分を増加させることができるため、磁性層14,16(図1参照)の成膜工程において、磁性層14の磁化方向のばらつきをより低減することができる。
(第4実施形態)
 次に、本発明の第4実施形態を説明する。本実施形態では、基板の周囲を取り囲むように、第2磁性体が設けられている点について第2実施形態と相違しており、第2実施形態と同一の構成には同一の符号を付して説明を省略する。図7は、第4実施形態における要部断面図である。なお、図7においては説明を分かり易くするため、上述したチャンバ61(図3A及び図3B参照)等の記載を省略する。
 図7に示すように、磁性体101上には、ヨーク(第2磁性体)103が設けられている。このヨーク103は、上述した磁性体101と同様にニッケルメッキが施されたFeや磁性ステンレス(SUS430)等から構成されている。ヨーク103は、磁性体101の外周部分において磁性体101の表面から垂直に立ち上がるように形成されており、磁性体101の全周に亘って形成されている。したがって、ヨーク103は基板Wの周囲を取り囲むように配置されている。
 本実施形態においては、上述した第2実施形態と同様の効果を奏するとともに、磁性体101上にヨーク103を配置することで、ヨーク103の内側ではその中心軸に沿って磁力線が配置されるため、永久磁石100から延びる磁力線B4の垂直性をより向上させることができる。つまり、基板Wの表面に対する垂直な磁場成分を増加させることができるため、磁性層14(図1参照)の成膜工程において、磁性層14の磁化方向のばらつきをより低減することができる。
 (平行度測定試験)
 本願の発明者は、上述した各実施形態における磁場印加手段を備えたスパッタ装置を用いて、基板の法線方向に対する磁場の平行度を測定する試験を行った。本試験における平行度の測定は、磁場印加手段から5mm程度離間させた基板の表面位置において、ホール素子を用いて三次元磁場測定器で行った。また、本試験における磁場の測定箇所は、磁場が基板の中心に対して軸対称として考え、基板の表面上の基板の中心から外周(外周縁から2mm程度の位置)に至るまでの区間において、半径方向に沿って測定した。なお、測定は基板上における直交する二方向について行った。
 なお、各条件A~Cにおける測定条件は、以下の通りである。
条件A:永久磁石(外径300mm、厚さ5mm)のみ(図5A及び図5Bに示す第2実施形態と同様の構成)、条件B:永久磁石(外径300mm、厚さ5mm)+磁性体(Fe:外径300mm、厚さ1.5mm)(図6に示す第3実施形態と同様の構成)、条件C:永久磁石(外径300mm、厚さ5mm)+磁性体(Fe:外径300mm、厚さ1.5mm)+ヨーク(Fe:内径330mm、幅20mm、高さ30mm)(図7に示す第4実施形態と同様の構成)
 図8は、平行度の定義を示す説明図である。
 図8に示すように、平行度とは、基板Wの各点で、面に垂直な法線と、磁力線B0の接線方向とのなす角度θである。つまり、角度θが0度ならば基板Wに対して垂直な磁場となる。実際には基板の中心Oから軸対称座標系を想定して、基板Wの表面に対して垂直な磁場成分Bsと平行な磁場成分Bhを測定して、arctan(Bh/Bs)から角度θを求める。
 図9は、基板の中心からの距離(mm)における平行度(度)の分布を示している。
 図9に示すように、条件A~Cのいずれの場合についても、基板の中心(0mm)から外周に向かうにつれ、平行度は増加傾向にあるが、条件Aの場合では基板の最外周(148mm)において平行度を11度程度まで抑えることができた。また、条件Bの場合では、平行度を8度程度にまで抑えることができた。これは、永久磁石上に磁性体を配置することで、磁性体の内部ではその中心軸に沿って磁力線が配置されるため、永久磁石から伸びる磁力線の垂直性が向上するためである考えられる。
 さらに、条件Cの場合では、基板の最外周における平行度を5mm程度にまで抑えることができ、磁化方向のばらつきを大幅に低減することができた。これは、磁性体の外周部分に基板を取り囲むようなヨークを配置することで、ヨークの内側ではその中心軸に沿って磁力線が配置されるため、特に基板の外周部分における磁力線の垂直性が向上するためであると考えられる。
 以上の結果より、上述したように永久磁石により基板の表面に対して垂直な磁場成分を有する磁場を印加させることで、例えば垂直磁化方式の磁性層の成膜過程において、磁性層の磁化方向を基板の表面に対して垂直に揃えつつ、成膜を行うことができる。これにより、磁性層の膜特性や結晶配向性を向上させ、磁性層の磁化方向の垂直性を向上させることができ、磁性層の磁化方向のばらつきを抑制することができるため、高MRを得ることができる。
 以上、添付図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
 例えば、上述した各実施形態では、磁場印加手段として永久磁石を用いた場合について説明したが、永久磁石の代わりに電磁石を用いるような構成も採用することができる。また、上述した各実施形態では、磁性多層膜のうちトンネル接合素子における磁性層を形成する場合について説明したが、磁性層に限らず種々の成膜材料に対して採用することができる。
 図10,11は、磁場印加手段の他の構成を示す平面図である。
 上述の各実施形態においては、円板状または環状の永久磁石を用いた場合について説明したが、図10に示すように、矩形の永久磁石105を用いる等、適宜設計変更が可能である。また、上述の各実施形態においては、円板状の基板W(例えば図3A及び図3B参照)を用いた場合について説明したが、図11に示すように、矩形の基板106を用いる等、適宜設計変更が可能である。なお、図10,11のいずれの構成においても、永久磁石105の外径を基板W,105の外径以上に設定することが、磁場の垂直性を向上させる観点から好ましい。
(第5実施形態)
 次に、本発明の第5の実施形態を図面に基づいて説明する。なお、以下の説明に用いる各図面では、各部材を認識可能な大きさとするため、各部材の縮尺を適宜変更している。
 (磁性多層膜)
 まず、磁性層を含む多層膜の一例であるMRAMに用いられるトンネル接合素子について説明する。
 図12は、トンネル接合素子の側面断面図である。
 トンネル接合素子210は、基板W上に磁性層(固定層)216および、MgO等からなるトンネルバリア層215、磁性層(フリー層)214、PtMnやIrMn等からなる反強磁性層(不図示)が主として積層された、垂直磁化方式のトンネル接合素子210である。なお、磁性層214,216の構成材料は、例えばFePt,TbFeCo,Co/Pd、Fe/EuO,Co/Pt,Co/Pd,CoPtCr-SiO,CoCrTaPt,CoCrPt等を採用することが可能である。またトンネル接合素子210は、実際には上記以外の機能層も積層されて、15層程度の多層構造になっている。
 磁性層(固定層)214は、その磁化方向が基板Wの表面に対して垂直になるように固定された層であり、具体的には基板Wの表面に対して上方に向かって固定されている。一方、磁性層(フリー層)214は、その磁化方向が外部磁界の向きに応じて変化する層であり、磁性層(固定層)214の磁化方向に対して平行か反平行かに反転できる。これら固定層216およびフリー層214の磁化方向が、平行か反平行かによって、トンネル接合素子210の抵抗値が異なる。このようなトンネル接合素子210をMRAM(不図示)に備えることで、磁性体の磁化方向に「0」,「1」の情報を持たせることができるため、「1」または「0」を読み出したり、書き換えたりすることができる。
 (磁性多層膜の製造装置)
 図13は、本実施形態に係る磁性多層膜の製造装置(以下、製造装置という)の概略構成図である。
 図13に示すように、本実施形態の製造装置220は、基板搬送室226を中心として放射状に基板前処理室225及び複数のスパッタ装置221~224が配置されたものであり、例えば上述したトンネル接合素子を構成する磁性多層膜の前処理・成膜工程を一貫して行うクラスタータイプの製造装置220である。
 具体的に、製造装置220は、基板Wの前処理工程を行う基板前処理室225と、成膜前の基板Wが保持される基板カセット室227と、反強磁性層の成膜工程を行う第1スパッタ装置221と、磁性層(固定層)216の成膜工程を行う第2スパッタ装置(スパッタ装置)222と、トンネルバリア層215の成膜工程を行う第3スパッタ装置223と、磁性層(フリー層)216の成膜工程を行う第4スパッタ装置(スパッタ装置)224と、を備えている。
 上述した製造装置220では、基板前処理室225において必要な基板前処理が施された後、各スパッタ装置221~224において基板W上に磁性層216、トンネルバリア層215、磁性層214等の磁性多層膜が形成される。このように、クラスタータイプの製造装置220では、製造装置220に供給された基板Wを大気に晒すことなく、基板W上に磁性多層膜を形成することができる。なお、磁性多層膜上にレジストパターンを形成し、エッチングにより磁性多層膜を所定形状にパターニングした後、レジストパターンを除去することで、トンネル接合素子210は形成される。
 (スパッタ装置)
 ここで、本実施形態に係るスパッタ装置である、磁性多層膜のうち磁性層214,216の成膜工程を行う第2、第4スパッタ装置222,224について説明する。なお、本実施形態の第2、第4スパッタ装置222,224は略同一の構成であるため、以下の説明では第2スパッタ装置222の説明を行い、第4スパッタ装置224の説明は省略する。また、以下の説明では、第2スパッタ装置222をスパッタ装置222として説明する。
 図14Aは本実施形態に係るスパッタ装置の斜視図であり、図14Bは図14AのA-A線に沿う側面断面図である。また、図15は、要部断面図である。
 図14A及び図14Bに示すように、スパッタ装置222は、基板Wを載置する基板ステージ262と、成膜材料のターゲット264を備えたスパッタカソード265とを、所定位置に配設して構成されている。スパッタ装置222には、上述した第1スパッタ装置221で反強磁性層の成膜工程を経た基板Wが、図示しない搬入口を介して基板搬送室226から搬送される。
 図14Bに示すように、スパッタ装置222は、Al合金やステンレス等の金属材料により箱型に形成されたチャンバ261を備えている。チャンバ261の底面付近の中央部には、基板Wを載置する基板ステージ262が設けられている。基板ステージ262は、図示しない回転機構により、その回転軸262aと基板Wの中心Oとを一致させて、任意の回転数で回転可能に構成されている。これにより、基板ステージ262上に載置された基板Wを、その表面と平行に回転させることができる。なお、本実施形態の基板Wは、例えば基板サイズが外径300mmのシリコンウエハを用いている。
 上述した基板ステージ262およびスパッタカソード265を取り囲むように、ステンレス等からなるシールド板(側部シールド板271および下部シールド板272)が設けられている。側部シールド板271は円筒状に形成され、その中心軸が基板ステージ262の回転軸262aと一致するように配設されている。また、側部シールド板271の下端部から基板ステージ262の外周縁にかけて、下部シールド板272が設けられている。この下部シールド板272は基板Wの表面と平行に形成され、その中心軸が基板ステージ262の回転軸262aと一致するように配設されている。
 基板ステージ262、下部シールド板272および側部シールド板271、並びにチャンバ261の天井面によって囲まれた空間は、基板Wに対してスパッタ処理を行うスパッタ処理室270(スパッタ室)として形成されている。このスパッタ処理室270は、軸対称な形状とされ、その対称軸は基板ステージ262の回転軸262aと一致している。これにより、基板Wの各部に対して均質なスパッタ処理を行うことが可能になり、膜質分布と磁化方向のばらつきを低減することができる。
 チャンバ261の天井面付近の周縁部には、基板ステージ262の回転軸262aの回り(基板Wの周方向)に沿って等間隔に、複数(例えば、4個)のスパッタカソード265が配置されている。
 各スパッタカソード265は、図示しない外部電源(電源)に接続され、負電位に保持されている。各スパッタカソード265の表面には、ターゲット264がそれぞれ配置されている。ターゲット264は、円板形状のものであり、上述した磁性層214の成膜材料や下地膜の成膜材料等、磁性多層膜に積層されうる複数種類の成膜材料により構成されている。なお、各ターゲットの材料は、適宜変更が可能である。また、全てのスパッタカソードに同一材料(例えば、磁性層の成膜材料)のターゲットを配置するような構成も可能である。
 また、上述したスパッタカソード265は、基板ステージ262に載置される基板Wの法線に対して傾斜するように配設されている。すなわち、スパッタカソード265に取り付けられたターゲット264は、その表面の中心点Tを通る法線(中心軸)264aが、基板Wの回転軸262aに対して、例えば角度θで傾斜しており、ターゲット264の法線264aと基板Wの表面とが基板Wの周縁部分で交差するように配置されている。
 スパッタ装置222の外方には、スパッタ処理室270内にスパッタガスを供給するスパッタガス供給手段(ガス供給手段)273が設けられている。このスパッタガス供給手段273は、スパッタ処理室270内にアルゴン(Ar)等のスパッタガスを供給する。
スパッタガス供給手段273は、スパッタ処理室270を形成する側部シールド板271の上部に接続され、スパッタ処理室270内のターゲット264の近傍にスパッタガスを供給するように構成されている。なお、スパッタガス供給手段273からは、Oなどの反応ガスを供給することも可能である。また、チャンバ261の側面には、排気口269が設けられている。この排気口269は、図示しない排気ポンプ(排気手段)に接続されている。
 (基板ステージ)
 次に、上述した基板ステージ262について、より詳述に説明する。
 図15は、基板ステージの斜視図であり、図16は図15のC-C’線に相当する断面図である。また、図17は、磁場印加手段から発生する磁力線を説明する説明図である。
 図15,16に示すように、上述した基板ステージ262は、ステージ本体230と昇降ピン232とを備えている。ステージ本体230は、SUS等からなる円板形状の部材であり、ベース部233と蓋部234とで構成されている。ベース部233は、円板形状を有する底部235の外周縁から円筒部236が立設された有底筒状の部材であり、底部235及び円筒部236に囲まれた領域は断面視凹状の収容部237として構成されている。
 収容部237内には、第1磁場印加手段238が収容されている。この第1磁場印加手段238は、永久磁石等からなり、収容部237の内径と同等の外径を有する円板形状に形成されている。第1磁場印加手段238は、その中心軸が基板ステージ262の回転軸262aと一致しており、つまり第1磁場印加手段238の中心軸と基板Wの中心Oとが一致するように配置されている。第1磁場印加手段238は、ステージ本体230上に載置された基板Wの裏面側から基板Wの表面に対して略垂直な磁場を印加するためのものであり、その内部の磁化方向が基板Wの厚さ方向(法線方向)に一致している。
 したがって、図17に示すように、第1磁場印加手段238から延びる磁力線Bは、第1磁場印加手段238のN極(例えば上面側)から、基板Wの表面を略垂直によぎった後、基板Wの外周を回り込んでS極(例えば下面側)に向かって発生する。この時、第1磁場印加手段238から発生する磁力線Bは、基板Wの表面に対して垂直(法線方向)な磁場成分を有し、基板Wの表面に対して垂直に印加される。
 また、図15,16に示すように、第1磁場印加手段238の外径は、基板Wの外径(例えば、300mm)よりも大きく形成されている。これにより、基板Wの表面に対して均一な磁場を印加させることが可能である。なお、第1磁場印加手段の外径は、基板の外径以上であれば適宜設計変更が可能である。また、第1磁場印加手段は一体の永久磁石であることが好ましいが、複数の永久磁石を用いて基板の外径以上の永久磁石を構成することも可能である。例えば、中心に円板状の永久磁石を配置し、その周囲を取り囲むように複数の環状の永久磁石を配置するような構成も可能である。この場合、各永久磁石間の間隔は1mm以下であることが好ましい。
 第1磁場印加手段238の上面には、第1磁性体239が配置されている。この第1磁性体239は、ニッケルメッキが施されたFeや磁性ステンレス(SUS430)等から構成されている。第1磁性体239は、第1磁場印加手段238と同等の外径を有し、第1磁場印加手段238よりも薄く形成されている。
 第1磁性体239の上面には、第1磁性体239を覆うように蓋部234が設けられている。
この蓋部234は、外径がベース部233における円筒部236の内径と同等に形成された円板形状の部材であり、厚さSが例えば5mm程度で形成されている。収容部237内における第1磁性体239の上面に蓋部234が配置されることで、収容部237の開口が閉塞されている。蓋部234の上面は、平坦面として形成されており、基板Wが載置される基板載置面234aとして構成されている。なお、ステージ本体230の外周部分において、蓋部234の上面位置から円筒部236の端面が突出している。
 ステージ本体230の回転軸262aと外周との間には、ステージ本体230の周方向に沿って複数(例えば、3個)の貫通孔240が等間隔に形成されている。この貫通孔240は、例えば内径Dが10mm程度の丸孔であり、第1磁場印加手段238及び第1磁性体239を含むステージ本体230の厚さ方向(軸方向)に貫通している。
 各貫通孔240には、ステージ本体230の厚さ方向に上下動可能な複数(例えば、3本)の昇降ピン232(232a~232c)が挿通されている。各昇降ピン232a~232cは、ステージ本体230の下方に設けられた昇降板241から立設された円柱形状のものであり、外径Eが例えば8mm程度で形成されている。昇降板241を上下移動させることで、各昇降ピン232a~232cが同時に上下移動する。各昇降ピン232a~232cは、その上端面において基板Wの裏面を支持するようになっており、各昇降ピン232a~232cを上昇させてステージ本体230の上面から突出させることで、チャンバ261内に搬入される基板Wの受け取り、チャンバ261内から搬出される基板Wの受け渡しが行われる。
 ここで、各昇降ピン232の先端部分には、第2磁場印加手段242が内装されている。この第2磁場印加手段242は、永久磁石等からなる円柱形状のものであり、厚さが上述した第1磁場印加手段238の厚さと同等に形成されるとともに、その内部の磁化方向が第1磁場印加手段238の内部の磁化方向と一致している。つまり、図17に示すように第2磁場印加手段242から延びる磁力線Bも、第1磁場印加手段238と同様に、そのN極(例えば上面側)から、基板Wの表面を略垂直によぎった後、基板Wの外周を回り込んでS極(例えば下面側)に向かうように発生する。
 図15,16に示すように、第2磁場印加手段242の上面には、上述した第1磁性体239と同様の材質からなる第2磁性体243が配置されている。この第2磁性体243は、第2磁場印加手段242と同等の外径を有し、厚さが第1磁性体239の厚さと同等に形成されている。
 昇降ピン232は、基板Wがステージ本体230の基板載置面234a上に載置された際に、先端部分が貫通孔240内に介在するように配置可能とされている。すなわち、基板Wの裏面との間に隙間を置いて昇降ピン232の先端面が配置可能とされている。この時、昇降ピン232に内装された第2磁場印加手段242の上端面と、ステージ本体230に収容された第1磁場印加手段238とのそれぞれの上端面とが同一平面上に位置するように配置可能とされている。なお、昇降ピン232は、上述した基板ステージ262の回転機構によって基板ステージ262とともに回転しうる。
 このように、本実施形態のスパッタ装置222の基板ステージ262は、上述した第1磁場印加手段238に加えて、ステージ本体230の貫通孔240内に第1磁場印加手段238の内部の磁化方向と同一の磁化方向を有する第2磁場印加手段242が介在している。つまり、基板Wの裏面側の略全面に亘って基板Wの厚さ方向を磁化方向とする磁場印加手段238,242が配置されるように構成されている。
 また、各昇降ピン232a~232cには、その昇降板241側において、サポート部材244によって相互に連結されている。このサポート部材244は、各昇降ピン232a~232cの軸方向に直交して延設された棒状の部材である。サポート部材244は、例えばその一端が複数の昇降ピン232a~232cのうち1本の昇降ピン232aの周面に連結され、他端が昇降ピン232aに隣接する昇降ピン232bの周面に連結されており、その両端で2つの昇降ピン232a,232b間を掛け渡されている。したがって、各昇降ピン232a~232cは、3本のサポート部材244によりそれぞれが連結されており、各昇降ピン232a~232cの径方向への倒れこみ等が防止されている。なお、サポート部材は棒状部材に限られない。
 (成膜方法)
 次に、本実施形態のスパッタ装置による成膜方法について説明する。なお、以下の説明では上述した磁性多層膜のうち、主としてスパッタ装置222で行う磁性層214の成膜方法について説明する。
 まず、図15,16に示すように、第1スパッタ装置221内において反強磁性層等が成膜された基板Wを、スパッタ装置222内に搬送する。具体的には、まず昇降ピン232を上昇させて、ステージ本体230の上面から昇降ピン232を突出させる。上昇させた昇降ピン232により第1スパッタ装置221から搬送された基板Wを受け取る。
 次に、昇降ピン232の先端面で基板Wの裏面を支持した状態で、昇降ピン232を下降させてステージ本体230の基板載置面234a上に基板Wを載置する。この時、昇降ピン232に内装された第2磁場印加手段242と、ステージ本体230に内装された第1磁場印加手段238との上端面が同一平面になる位置で昇降ピン232の下降を停止させることが好ましい。ところで、昇降ピン232を下降させる際、例えば第1磁場印加手段238の上面側の磁極と第2磁場印加手段242の下面側の磁極とが異なるために、各磁場印加手段238,242間で吸引力が発生して昇降ピン232が倒れる虞がある。そこで、各昇降ピン232a~232cをそれぞれサポート部材244によって連結することで、各磁場印加手段238,242間で吸引力が発生した場合でも各昇降ピン232a~232cの倒れこみを防止することができる。
 これにより、昇降ピン232の移動が妨げられることもない。
 基板載置面234a上に基板Wを載置した後、回転機構により昇降ピン232とともに基板ステージ262を所定の回転数で回転させる。次に、スパッタ処理室270内を真空ポンプにより真空引きした後、スパッタガス供給手段273からスパッタ処理室270内にアルゴン等のスパッタガスを導入する。スパッタカソード265に接続された外部電源からターゲット264に電圧を印加する。すると、スパッタ処理室270内でプラズマにより励起されたスパッタガスのイオンが、ターゲット264に衝突し、ターゲット264から成膜材料の粒子が飛び出して、基板Wに付着する。以上により、基板Wの表面に磁性層214が成膜される(図12参照)。その際、ターゲット264近傍に高密度プラズマを生成することで、成膜速度を高速化させることができる。
 本実施形態では、磁性層214の成膜工程において、基板Wの周囲に設けられた第1磁場印加手段238及び第2磁場印加手段242により基板Wの表面に対して垂直な磁場を発生させつつ、成膜を行う。
 第1磁場印加手段238により磁場を印加すると、第1磁場印加手段238から延びる磁力線Bは、基板Wの表面に対して垂直に入射する。具体的には、第1磁場印加手段238から延びる磁力線Bは、N極(上面側)から発生して基板Wの表面を略垂直によぎった後、第1磁場印加手段238のS極(下面側)に入射する。ターゲット264から飛び出した磁性層214の成膜材料の粒子は、基板Wの表面に対して垂直な磁場を受けながら基板Wの表面に堆積されることになる。この時、第1磁場印加手段238の上面に第1磁性体239を配置することで、第1磁性体239の内部ではその中心軸に沿って磁力線が配置されるため、第1磁場印加手段238から延びる磁力線Bの基板Wの表面に対する垂直性を向上させることができる。つまり、基板Wの表面に対する垂直な磁場成分を増加させることができる。なお、各磁場印加手段238,242により印加する磁場は、基板Wの表面の各部において50(Oe)以上であることが好ましい。また、使用する成膜材料によっては、磁性層214の面内における磁化方向の垂直性を向上させるためにアニール条件を設定することが好ましい。
 磁性層214が成膜された後、第3スパッタ装置223に基板Wを搬送する。具体的には、昇降ピン232の先端面で基板Wを支持した状態で、基板Wの受け渡し位置まで昇降ピン232を上昇させ、基板Wを受け渡す。ここで、昇降ピン232を上昇させる際、上述した昇降ピン232を下降させる際と同様に、例えば第1磁場印加手段238の上端側の磁極と第2磁場印加手段242の下端側の磁極とが異なるために、各磁場印加手段238,242間で吸引力が発生して昇降ピン232が倒れる虞がある。そこで、各昇降ピン232a~232cをそれぞれサポート部材244によって連結することで、各磁場印加手段238,242間で吸引力が発生した場合でも各昇降ピン232a~232cの倒れこみを防止することができる。これにより、昇降ピン232の移動が妨げられることもない。
 ところで、上述した従来技術にあっては、図18に示すように、ステージ本体301に昇降ピン302を設ける関係で、ステージ本体301及び磁場印加手段303に昇降ピン302を挿通させる貫通孔304を形成しなければならない。したがって、貫通孔304内には、磁場印加手段303の存在しないスペースが貫通孔304の外径分だけ形成される。
 この場合、磁場印加手段303の外周部分の領域では、磁場印加手段303から発生する磁力線B’が基板Wの表面を略垂直によぎり、基板Wの表面に対して略垂直な磁場が印加される。一方、貫通孔304の近傍の領域では、磁場印加手段303から延びる磁力線B’が湾曲して延びる。貫通孔304により近い領域では、磁場印加手段303から発生する磁力線B’が、貫通孔304を通って磁場印加手段303の裏面側に回り込む。つまり、基板W上における貫通孔304の近傍の領域では、基板Wの表面に印加される磁場方向にばらつきが生じる。さらに、貫通孔304との中央の領域では、貫通孔304の周囲の領域と逆の磁場が印加される虞があるという問題がある。その結果、磁性層214,216(図12参照)において磁化方向の面内におけるばらつきが生じ、MR比の低下、面内でのばらつきを引き起こす原因となる。
 そこで、本実施形態では、ステージ本体230に収容された第1磁場印加手段238の他に、第1磁場印加手段238の内部と同一の磁化方向を有する第2磁場印加手段242が昇降ピン232の内部に内装されている。つまり、第1磁場印加手段238の貫通孔240内に第1磁場印加手段238の内部と同一の磁化方向を有する第2磁場印加手段242が介在することになる。第1磁場印加手段238とともに、第2磁場印加手段242により基板Wの表面に対して磁場を印加すると、第2磁場印加手段242から延びる磁力線Bは、基板Wの表面に対して垂直に入射する。具体的には、第2磁場印加手段242から延びる磁力線Bは、第1磁場印加手段238と同様に、N極(上面側)から発生して基板Wの表面を略垂直によぎった後、第2磁場印加手段242のS極(下面側)に入射する。
 第1磁場印加手段238から延びる磁力線Bのうち、貫通孔240の近傍の領域から延びる磁力線Bは、貫通孔240内に介在する第2磁場印加手段242から延びる磁力線と反発し合うことで、基板Wの表面を略垂直によぎることになる。また、基板W上における貫通孔240の中央の領域においても、第2磁場印加手段242から延びる磁力線Bが基板Wの表面を略垂直によぎることになる。この時、第2磁場印加手段242の上面に第2磁性体243を配置することで、上述した第1磁性体239と同様に第2磁性体243の内部ではその中心軸に沿って磁力線が配置されるため、第2磁場印加手段242から延びる磁力線Bの基板Wの表面に対する垂直性を向上させることができる。つまり、基板Wの表面に対する垂直な磁場成分を増加させることができる。その結果、基板Wの表面の全面に対して垂直な磁場を印加することができるため、磁性層214の成膜過程において、磁性層214の磁化方向が基板Wの表面に対して垂直になるように成膜を行うことができる。
 このように、本実施形態によれば、昇降ピン232にステージ本体230に設けられた第1磁場印加手段238の内部と同一の磁化方向を有する第2磁場印加手段242を設けることで、ステージ本体230に形成された貫通孔240内に第1磁場印加手段238の内部と同一の磁化方向を有する第2磁場印加手段242が介在することになる。これにより、貫通孔240内において磁場印加手段238,242の存在しないスペースを縮小させることができる。したがって、基板Wの表面の全面に対して垂直な磁場を印加することができる。
 また、各磁場印加手段238,242の上面に、それぞれ磁性体39,43を配置することで、磁性体239,243の内部ではその中心軸に沿って磁力線が配置されるため、基板Wの表面に印加される磁場の垂直性を向上させることができる。
 さらに、成膜工程時に第1磁場印加手段238と第2磁場印加手段242とのそれぞれの上端面を、同一平面上に配置可能とされることで、基板Wの表面に印加される磁場の垂直性を向上させることができる。
 つまり、基板Wの表面に対する垂直な磁場成分を増加させることができるため、磁性層214,216(図12参照)の成膜工程において、磁性層214の磁化方向の面内におけるばらつきをより低減することができる。
 ここで、図12に示すように、従来における垂直磁化方式のトンネル接合素子210にあっては、上述したような所望のMR比が得られていないのが実情である。この原因として、例えば磁性層214,216において磁化方向の面内におけるばらつきを充分に制御できていないことが挙げられる。従来は垂直磁化膜を形成する際に磁化方向に磁場を印加することなく、磁性層214,216が垂直磁化する性質のみを利用して製造していたため、成膜された磁性層214,216の磁化方向の面内におけるばらつきが生じるという問題がある。その結果、磁性層214,216の成膜工程において、磁性層214,216において面内で磁化方向のばらつきが生じ、MR比の低下、面内でのばらつきを引き起こす原因となる。
 これに対して、本実施形態のスパッタ装置222よれば、基板Wの表面の全面に対して垂直な磁場を印加することができるため、基板Wの表面に対して垂直な磁場成分を有する磁場を精度よく印加しつつ、スパッタ成膜を行うことができる。そのため、例えば磁性層214,216の成膜過程において、基板W上全面で磁性層214,216の磁化方向を基板Wの表面に対して垂直な方向に揃えつつ、成膜を行うことができる。これにより、磁性層214,216の磁化方向の垂直性を向上させることができるため、磁性層214,216の磁化方向の面内におけるばらつきを抑制することができる。したがって、磁性層214,216の磁化方向の面内一様性を向上させた磁性多層膜を成膜することができるため、基板W上全面にわたり高MRのトンネル接合素子を提供することができる。
 以上、添付図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
 例えば、上述した各実施形態では、各磁場印加手段として永久磁石を用いた場合について説明したが、永久磁石の代わりに電磁石を用いるような構成も採用することができる。
また、上述した各実施形態では、磁性多層膜のうちトンネル接合素子における磁性層を形成する場合について説明したが、磁性層に限らず種々の成膜材料に対して採用することができる。
 さらに、上述した実施形態では、本発明の基板ステージをスパッタ装置に採用する場合について説明したが、スパッタ装置以外に基板ステージを採用することも可能である。例えば、基板ステージに載置された基板の表面に対して垂直に磁場を印加させる磁場測定器等に採用することが可能である。
 本発明の基板ステージ、これを備えたスパッタ装置及び成膜方法によれば、例えばスパッタリング法による磁性層の成膜時において、基板の表面の全面に対して垂直な磁場を印加することにより磁性層の磁化方向のばらつきを抑制して、高MR比を得ることができる。

Claims (16)

  1.  真空容器内に配置され、基板が載置される基板載置面を有する基板ステージであって、
     前記基板に対して磁場を印加する第1磁場印加手段を備え、
     前記第1磁場印加手段の内部の磁化方向と前記基板の厚さ方向とが一致する基板ステージ。
  2.  前記第1磁場印加手段が、前記基板載置面に載置された基板の周囲を取り囲むように設けられている請求項1に記載の基板ステージ。
  3.  前記第1磁場印加手段の中央が、前記基板載置面の法線方向において、前記基板の表面と同じ高さに配置可能である請求項2に記載の基板ステージ。
  4.  前記基板載置面に載置された基板の裏面側に前記基板の外径以上の大きさを有する前記第1磁場印加手段が設けられた請求項1に記載の基板ステージ。
  5.  前記第1磁場印加手段と前記基板との間に位置する第1磁性体をさらに備えた請求項4に記載の基板ステージ。
  6.  前記基板の周囲を取り囲むように配置された第2磁性体をさらに備えた請求項4または請求項5に記載の基板ステージ。
  7.  前記基板載置面に対して前記基板を昇降する昇降ピンと;この昇降ピンに設けられた第2磁場印加手段と;をさらに備え、
     前記第1磁場印加手段は貫通孔を有し、前記昇降ピンは前記貫通孔の内部にスライド可能に挿通され、
     前記第2磁場印加手段の内部の磁化方向と前記第1磁場印加手段の内部の磁化方向とが一致した請求項4に記載の基板ステージ。
  8.  前記基板載置面上に前記基板が載置された状態において、前記第1磁場印加手段の上端面と前記第2磁場印加手段の上端面とが同一平面上に配置可能である請求項7記載に記載の基板ステージ。
  9.  複数の前記昇降ピンと;
     前記各昇降ピンを互いに連結するサポート部材と;
    を備え、
     前記第1磁場印加手段は複数の前記貫通孔を有し、
     前記各貫通孔には前記各昇降ピンがそれぞれ配置されている請求項7に記載の基板ステージ。
  10.  前記第1磁場印加手段および前記基板の間と前記第2磁場印加手段および前記基板の間とに位置する磁性体をさらに備える請求項7に記載の基板ステージ。
  11.  請求項1から10のいずれか1項に記載の基板ステージと;
     前記基板載置面に載置された基板の法線に対して傾斜するように配置されたスパッタカソードと;
     前記基板ステージおよび前記スパッタカソードが配置されたスパッタ室と;
     このスパッタ室内の真空排気を行う真空排気手段と;
     前記スパッタ室内にスパッタガスを供給するガス供給手段と;
     前記スパッタカソードに電圧を印加する電源と;
    を備えたスパッタ装置。
  12.  真空容器内に配置され、基板が載置される基板載置面を有する基板ステージに載置された基板に対して、第1磁場印加手段により、この第1磁場印加手段の内部の磁化方向と前記基板の厚さ方向とが一致するように磁場を印加しつつ、前記基板の表面にスパッタ処理を行う成膜方法。
  13.  前記第1磁場印加手段が前記基板の周囲を取り囲むように設けられた請求項12に記載の成膜方法。
  14.  前記第1磁場印加手段が前記基板の裏面側に設けられ、かつ、前記基板の外径以上の大きさを有する請求項12に記載の成膜方法。
  15.  前記第1磁場印加手段に設けられた貫通孔の内部にスライド可能に挿通されて、前記基板載置面に対して前記基板を昇降する昇降ピンに設けられた第2磁場印加手段により前記基板に対して磁場を印加し、前記第1磁場印加手段の内部の磁化方向と前記第2磁場印加手段の内部の磁化方向とを一致させ、かつ、前記第1磁場印加手段の上端面と前記第2磁場印加手段の上端面とを同一平面上に配置して前記基板上にスパッタ処理を行う請求項14に記載の成膜方法。
  16.  請求項12から15に記載の成膜方法を使用して、トンネル接合素子を形成するための垂直磁化膜を形成する成膜方法。
PCT/JP2009/050464 2008-01-15 2009-01-15 基板ステージ、これを備えたスパッタ装置及び成膜方法 WO2009090994A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/808,045 US20100270143A1 (en) 2008-01-15 2009-01-15 Substrate stage, sputtering apparatus provided with same, and film forming method
JP2009550040A JPWO2009090994A1 (ja) 2008-01-15 2009-01-15 基板ステージ、これを備えたスパッタ装置及び成膜方法
DE112009000123T DE112009000123T5 (de) 2008-01-15 2009-01-15 Substratauflage, mit dieser versehene Zerstäubungsvorrichtung, und Dünnschichtbildungsverfahren
CN200980102039.1A CN101910455B (zh) 2008-01-15 2009-01-15 基板台、包括该基板台的溅射装置以及成膜方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008005993 2008-01-15
JP2008-005993 2008-01-15
JP2008027719 2008-02-07
JP2008-027719 2008-02-07

Publications (1)

Publication Number Publication Date
WO2009090994A1 true WO2009090994A1 (ja) 2009-07-23

Family

ID=40885380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050464 WO2009090994A1 (ja) 2008-01-15 2009-01-15 基板ステージ、これを備えたスパッタ装置及び成膜方法

Country Status (7)

Country Link
US (1) US20100270143A1 (ja)
JP (1) JPWO2009090994A1 (ja)
KR (1) KR20100102150A (ja)
CN (1) CN101910455B (ja)
DE (1) DE112009000123T5 (ja)
TW (1) TWI381472B (ja)
WO (1) WO2009090994A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012103255A (ja) * 2010-11-10 2012-05-31 F. Hoffmann-La Roche Ag 微孔質電解質層および部分的に開放されたカバーメンブレンを有する酸素センサー
JP2012218989A (ja) * 2011-04-11 2012-11-12 Canon Inc 光学素子成形用型の製造方法および光学素子成形用型
CN115981101A (zh) * 2023-03-17 2023-04-18 湖北江城芯片中试服务有限公司 半导体结构的制造方法及半导体结构

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5192549B2 (ja) * 2008-09-30 2013-05-08 キヤノンアネルバ株式会社 スパッタリング装置及びスパッタリング方法
GB201102447D0 (en) * 2011-02-11 2011-03-30 Spp Process Technology Systems Uk Ltd Composite shielding
CN103814153B (zh) 2011-09-22 2015-11-25 学校法人芝浦工业大学 薄膜形成方法、薄膜形成装置、形成有覆膜的被处理物、模具以及工具
JP5946337B2 (ja) * 2012-06-20 2016-07-06 株式会社神戸製鋼所 アーク式蒸発源
TWI618272B (zh) * 2013-08-19 2018-03-11 應用材料股份有限公司 用於金屬導電性強化的磁場導引式晶體方向系統
JP6523666B2 (ja) 2014-12-02 2019-06-05 東芝メモリ株式会社 磁気記憶素子および磁気メモリ
TWI767971B (zh) * 2017-01-03 2022-06-21 日商東京威力科創股份有限公司 工作件磁化系統及其操作方法
GB201706284D0 (en) * 2017-04-20 2017-06-07 Spts Technologies Ltd A method and apparatus for controlling stress variation in a material layer formed via pulsed DC physical vapour deposition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61158032A (ja) * 1984-12-28 1986-07-17 Fujitsu Ltd 垂直磁気記録媒体の製造方法
JPS62188775A (ja) * 1986-01-14 1987-08-18 Sumitomo Electric Ind Ltd 対向タ−ゲツト式スパツタ装置
JPH0973630A (ja) * 1995-09-04 1997-03-18 Toshiba Corp 磁気記録媒体の製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4422896A (en) * 1982-01-26 1983-12-27 Materials Research Corporation Magnetically enhanced plasma process and apparatus
US4581118A (en) * 1983-01-26 1986-04-08 Materials Research Corporation Shaped field magnetron electrode
US5630916A (en) * 1993-03-02 1997-05-20 Cvc Products, Inc. Magnetic orienting device for thin film deposition and method of use
JP3211458B2 (ja) 1993-03-10 2001-09-25 株式会社日立製作所 磁性膜形成装置
US5589039A (en) * 1995-07-28 1996-12-31 Sony Corporation In-plane parallel bias magnetic field generator for sputter coating magnetic materials onto substrates
JP4355036B2 (ja) * 1997-03-18 2009-10-28 キヤノンアネルバ株式会社 イオン化スパッタリング装置
US6210539B1 (en) * 1997-05-14 2001-04-03 Applied Materials, Inc. Method and apparatus for producing a uniform density plasma above a substrate
JPH111770A (ja) * 1997-06-06 1999-01-06 Anelva Corp スパッタリング装置及びスパッタリング方法
US5902461A (en) * 1997-09-03 1999-05-11 Applied Materials, Inc. Apparatus and method for enhancing uniformity of a metal film formed on a substrate with the aid of an inductively coupled plasma
US7294242B1 (en) * 1998-08-24 2007-11-13 Applied Materials, Inc. Collimated and long throw magnetron sputtering of nickel/iron films for magnetic recording head applications
JP3766762B2 (ja) 1999-03-30 2006-04-19 株式会社神戸製鋼所 マグネトロンスパッタリング方法および装置
US6143140A (en) * 1999-08-16 2000-11-07 Applied Materials, Inc. Method and apparatus to improve the side wall and bottom coverage in IMP process by using magnetic field
TWI229138B (en) * 2001-06-12 2005-03-11 Unaxis Balzers Ag Magnetron-sputtering source
US6743340B2 (en) * 2002-02-05 2004-06-01 Applied Materials, Inc. Sputtering of aligned magnetic materials and magnetic dipole ring used therefor
JP2004124171A (ja) * 2002-10-02 2004-04-22 Matsushita Electric Ind Co Ltd プラズマ処理装置及び方法
US7403089B2 (en) * 2003-12-23 2008-07-22 Aviza Technology Limited Magnet assemblies
JP4494047B2 (ja) * 2004-03-12 2010-06-30 キヤノンアネルバ株式会社 多元スパッタ成膜装置の二重シャッタ制御方法
US7556718B2 (en) * 2004-06-22 2009-07-07 Tokyo Electron Limited Highly ionized PVD with moving magnetic field envelope for uniform coverage of feature structure and wafer
JP4673858B2 (ja) * 2005-01-19 2011-04-20 株式会社アルバック スパッタ装置および成膜方法
JP4959240B2 (ja) 2006-06-28 2012-06-20 ライオン株式会社 ブラシの製造方法及び製造装置
JP2008027719A (ja) 2006-07-20 2008-02-07 Katsutoshi Tabuse マイクロ波照射部材
US8092605B2 (en) * 2006-11-28 2012-01-10 Applied Materials, Inc. Magnetic confinement of a plasma

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61158032A (ja) * 1984-12-28 1986-07-17 Fujitsu Ltd 垂直磁気記録媒体の製造方法
JPS62188775A (ja) * 1986-01-14 1987-08-18 Sumitomo Electric Ind Ltd 対向タ−ゲツト式スパツタ装置
JPH0973630A (ja) * 1995-09-04 1997-03-18 Toshiba Corp 磁気記録媒体の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012103255A (ja) * 2010-11-10 2012-05-31 F. Hoffmann-La Roche Ag 微孔質電解質層および部分的に開放されたカバーメンブレンを有する酸素センサー
JP2012218989A (ja) * 2011-04-11 2012-11-12 Canon Inc 光学素子成形用型の製造方法および光学素子成形用型
CN115981101A (zh) * 2023-03-17 2023-04-18 湖北江城芯片中试服务有限公司 半导体结构的制造方法及半导体结构

Also Published As

Publication number Publication date
JPWO2009090994A1 (ja) 2011-05-26
DE112009000123T5 (de) 2011-02-17
CN101910455B (zh) 2013-04-17
KR20100102150A (ko) 2010-09-20
TWI381472B (zh) 2013-01-01
US20100270143A1 (en) 2010-10-28
TW200949975A (en) 2009-12-01
CN101910455A (zh) 2010-12-08

Similar Documents

Publication Publication Date Title
WO2009090994A1 (ja) 基板ステージ、これを備えたスパッタ装置及び成膜方法
US8246798B2 (en) Substrate processing apparatus and apparatus and method of manufacturing magnetic device
US8119018B2 (en) Magnetoresistive effect element manufacturing method and multi-chamber apparatus for manufacturing magnetoresistive effect element
JP4673858B2 (ja) スパッタ装置および成膜方法
JP4727764B2 (ja) プラズマ処理装置、磁気抵抗素子の製造装置、磁性薄膜の成膜方法及び成膜制御プログラム
KR101706192B1 (ko) 스퍼터 장치 및 성막방법
US20100213047A1 (en) High-frequency sputtering device
JP6095806B2 (ja) トンネル磁気抵抗効果素子の製造方法、およびスパッタリング装置
WO2014097520A1 (ja) 酸化処理装置、酸化方法、および電子デバイスの製造方法
US7731825B2 (en) Manufacturing apparatus of magnetoresistance elements
JP4885769B2 (ja) 磁気抵抗素子の製造方法、磁気デバイスの製造方法、磁気抵抗素子の製造装置および磁気デバイスの製造装置
US6610373B2 (en) Magnetic film-forming device and method
WO2010038593A1 (ja) ハードバイアス積層体の成膜装置および成膜方法、並びに磁気センサ積層体の製造装置および製造方法
KR20220121185A (ko) 스퍼터링 처리를 행하는 장치 및 방법
JP2009147351A (ja) 磁気抵抗デバイスの製造方法及び製造装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980102039.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09702196

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009550040

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12808045

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107015423

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09702196

Country of ref document: EP

Kind code of ref document: A1

RET De translation (de og part 6b)

Ref document number: 112009000123

Country of ref document: DE

Date of ref document: 20110217

Kind code of ref document: P