WO2009090938A1 - 方向性結合回路基板、方向性結合器、及びプラズマ発生装置 - Google Patents

方向性結合回路基板、方向性結合器、及びプラズマ発生装置 Download PDF

Info

Publication number
WO2009090938A1
WO2009090938A1 PCT/JP2009/050310 JP2009050310W WO2009090938A1 WO 2009090938 A1 WO2009090938 A1 WO 2009090938A1 JP 2009050310 W JP2009050310 W JP 2009050310W WO 2009090938 A1 WO2009090938 A1 WO 2009090938A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
path
waveguide
tip
conductor
Prior art date
Application number
PCT/JP2009/050310
Other languages
English (en)
French (fr)
Inventor
Hidetaka Matsuuchi
Shigeru Masuda
Ryuichi Iwasaki
Original Assignee
Noritsu Koki Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritsu Koki Co., Ltd. filed Critical Noritsu Koki Co., Ltd.
Priority to JP2009550015A priority Critical patent/JPWO2009090938A1/ja
Publication of WO2009090938A1 publication Critical patent/WO2009090938A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32229Waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32311Circuits specially adapted for controlling the microwave discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers

Definitions

  • the present invention relates to a directional coupling circuit board used in a microwave circuit, a directional coupler using the directional coupling circuit board, and a plasma generator provided with the directional coupler.
  • a plasma generating apparatus that irradiates a workpiece with plasma and removes organic contaminants on the surface, surface modification, etching, thin film formation, or thin film removal.
  • a plasma generator is capable of generating plasma at normal temperature and pressure, and microwaves are used to generate the plasma.
  • the power of the microwave generated by the microwave generator is appropriately detected, and the output of the detection is fed back to the microwave generator to stabilize the output of the microwave power. Is planned.
  • Patent Document 1 discloses a directional coupler that has been downsized.
  • a printed circuit board having a microstrip line is arranged on a waveguide so that two probes connected to the microstrip line protrude into the waveguide. It is configured. Microwaves flowing in the waveguide from these two probes are taken into the microstrip line on the substrate, and a part of the microwave power traveling in one direction in the waveguide is branched.
  • one microwave is selected from the incident microwave guided from the microwave generating means to the waveguide and the reflected microwave returning to the waveguide without contributing to plasma generation. Only (for example, incident microwave) is branched through the directional coupler, and power detection of one of the microwaves is performed. Therefore, in the directional coupler disclosed in Patent Document 1, the amplitudes of the two microwaves taken out from the waveguide through the two probes are adjusted by the length protruding into the waveguides of the two probes. Therefore, only one of the microwaves can be branched by adjusting the amplitude.
  • an object of the present invention is to reduce the size of a directional coupling circuit board capable of accurately branching a microwave propagating in a waveguide, a directional coupler using the same, and Another object is to provide a plasma generator.
  • a directional coupling circuit board that achieves such an object, A substrate section; A first transmission path disposed on the substrate portion and having a first end and a second end; A second transmission path disposed on the substrate portion and having a third end and a fourth end connected to the second end; A first proximal end portion and a first distal end portion, wherein the first proximal end portion is connected to a first end portion of the first transmission path, and the first distal end portion is a waveguide through which microwaves propagate; A first conductor protruding into the space; A second proximal end portion and a second distal end portion, wherein the second proximal end portion is connected to a third end portion of the second transmission path, and the second distal end portion is in the waveguide space, A second conductor projecting away from the first tip by a predetermined distance along the propagation direction of the microwave; It is interposed in at least one of the first and second transmission paths, and propagates on each of the first and second transmission
  • An amplitude attenuating means for attenuating the microwave so that the amplitudes of the microwaves substantially match The sum L1 + L2 of the distance L1 between the first tip and the second tip and the path length L2 of the first transmission path including the length of the first conductor, and the second conductor
  • the difference from the path length L3 of the second transmission path including the length of is equal to (2n-1) ⁇ / 2 (where n is an integer, ⁇ is the wavelength of the microwave),
  • the difference between the sum L1 + L3 of the distance L1 and the path length L3 and the path length L2 does not coincide with (2n ⁇ 1) ⁇ / 2.
  • the amplitudes of the microwaves propagating on the first and second transmission paths substantially coincide with each other at the connection points of the first and second transmission paths. Therefore, when two microwaves propagate in the waveguide space in directions facing each other, the amplitude of any one of the microwaves can be reliably made zero at the connection point of the first and second transmission paths. . For this reason, only the other microwave can be branched reliably.
  • FIG. 1 is a partially transparent side view showing the entire configuration of a plasma generating apparatus incorporating a directional coupler according to an embodiment of the present invention.
  • the plasma generator PU according to the present embodiment is a device that generates plasma to irradiate a workpiece or the like to be processed with plasma, and can generate plasma at normal temperature and normal pressure using a microwave.
  • the plasma generator PU according to the present embodiment includes first, second, and third waveguides 11, 12, and 13, a microwave generator 20, and a plasma generator 30.
  • the sliding short 40, the circulator 50, the dummy load 60, the stub tuner 70, the directional coupler 10, and the detector 86 are provided.
  • the first, second, and third waveguides 11, 12, and 13 are made of a nonmagnetic metal such as aluminum, have an elongated tubular shape with a rectangular cross section, and are generated by the microwave generator 20. A wave is propagated in the longitudinal direction toward the plasma generation unit 30.
  • Each of the first, second, and third waveguides 11, 12, and 13 is connected to each other through the flange portions, and the microwave generator 20 is mounted on the first waveguide 11. .
  • a stub tuner 70 is assembled in the second waveguide 12, and a plasma generator 30 is provided in the third waveguide 13.
  • a circulator 50 and a directional coupler 10 are interposed between the first waveguide 11 and the second waveguide 12, and one end of the third waveguide 13 is disposed.
  • a sliding short 40 is connected to the side.
  • Each of the first waveguide 11, the second waveguide 12, and the third waveguide 13 is assembled into a rectangular tube shape using an upper plate, a lower plate, and two side plates made of a metal flat plate.
  • the flange plate is attached to both ends thereof.
  • the waveguide is not limited to a rectangular cross section, and for example, a waveguide having an elliptical cross section can be used.
  • a waveguide can be comprised with the various members which have a waveguide effect
  • the microwave generator 20 includes, for example, an apparatus main body 21 including a magnetron microwave generation source that generates a microwave of 2.45 GHz, and the microwave generated by the apparatus main body 21 is introduced into the waveguide 10. And a microwave transmitting antenna 22 that emits light.
  • a continuously variable microwave generator capable of outputting, for example, 1 to 3000 W of microwave energy is preferably used as the microwave generator 20.
  • the microwave generator 20 has a configuration in which a microwave transmission antenna 22 protrudes from the apparatus main body 21 and is fixed in a manner of being placed on the first waveguide 11. Specifically, the apparatus main body 21 is placed on the upper surface plate 11U of the first waveguide 11, and the microwave transmission antenna 22 is inside the first waveguide 11 through the through hole 111 formed in the upper surface plate 11U. The waveguide space 110 is fixed so as to protrude. With this configuration, the microwaves emitted from the microwave transmission antenna 22 are propagated in the first, second, and third waveguides 11, 12, and 13 toward the plasma generation unit 30.
  • the microwaves emitted from the microwave transmission antenna 22 are propagated in the first, second, and third waveguides 11, 12, and 13 toward the plasma generation unit 30.
  • the plasma generation unit 30 includes eight plasma generation nozzles 31 that are arranged in a row in the left-right direction on the lower surface plate 13B of the third waveguide 13.
  • the width of the plasma generating unit 30, that is, the arrangement width of the eight plasma generating nozzles 31 in the left-right direction substantially matches the maximum size in the width direction orthogonal to the conveyance direction of the workpiece to be processed by the plasma from the plasma generating unit 30. It is said to be wide. Thereby, plasma processing can be performed on the entire surface of the workpiece (the surface facing the lower surface plate 13B) while conveying the workpiece to be processed.
  • the arrangement interval of the eight plasma generation nozzles 31 is preferably determined according to the wavelength ⁇ of the microwave to be propagated.
  • the plasma generating nozzles 31 may be arranged at 1 ⁇ 2 pitch and 1 ⁇ 4 pitch of the wavelength ⁇ , and the cross-sectional size of the rectangular waveguides 11, 12, 13 is 2 using microwaves of 2.45 GHz.
  • the plasma generating nozzles 31 may be arranged at a pitch of 115 mm ( ⁇ / 2) or 57.5 mm ( ⁇ / 4).
  • the plasma generating nozzle 31 has a conductor 32 that penetrates the lower surface plate 13B of the third waveguide 13 and projects into the waveguide space 130 by a predetermined length.
  • the plasma generating nozzle 31 can receive the microwave propagating in the third waveguide 13 through the conductor 32 and can generate plasma using the microwave energy (microwave power).
  • the sliding short 40 is provided in order to optimize the coupling state between the conductor 32 provided in each plasma generation nozzle 31 and the microwave propagated inside the third waveguide 13. Therefore, it is connected to one end side of the third waveguide 13 so that the standing wave pattern portion can be adjusted by changing the reflection position of the microwave. In addition, when not using a standing wave, it replaces with the sliding short 40 and the dummy load which has an electromagnetic wave absorption effect
  • the sliding short 40 includes a casing structure having a rectangular cross section similar to that of the third waveguide 13, and houses a cylindrical reflection block 42 therein.
  • the standing wave pattern portion is optimized by the movement of the reflection block 42.
  • the circulator 50 is composed of, for example, a waveguide-type three-port circulator with a built-in ferrite column. Of the microwaves once propagated toward the plasma generator 30, the circulator 50 returns without being consumed by the plasma generator 30. The incoming reflected microwave is directed to the dummy load 60 without returning to the microwave generator 20. By arranging such a circulator 50, the microwave generator 20 is prevented from being overheated by the reflected microwave.
  • the dummy load 60 is a water-cooled (or air-cooled) wave absorber that absorbs the reflected microwave and converts it into heat.
  • the dummy load 60 is provided with a cooling water circulation port for circulating cooling water therein, and heat generated by heat-converting the reflected microwave is exchanged with the cooling water. .
  • the stub tuner 70 is for impedance matching between the second waveguide 12 and the plasma generating nozzle 31, and is arranged in series on the upper surface plate 12 U of the second waveguide 12 at a predetermined interval.
  • Two stub tuner units 70A to 70C are provided.
  • the three stub tuner units 70A to 70C have the same structure, and have a stub 71 protruding into the waveguide space 120 of the second waveguide 12.
  • the stub 71 provided in each of the stub tuner units 70A to 70C can be adjusted in its protruding length into the waveguide space 120.
  • the protruding lengths of the stubs 71 are determined by searching for a point where the power consumption by the conductor 32 is maximized (a point where the reflected microwave is minimized) while monitoring the microwave power. Such impedance matching is executed in conjunction with the sliding short 40 as necessary.
  • FIG. 1 is an exploded perspective view showing the configuration of the directional coupler 10 according to the present embodiment.
  • the directional coupler 10 includes a directional coupler waveguide 80 and a directional coupling circuit board 81 (substrate part). Similar to the first, second, and third waveguides 11, 12, and 13, the directional coupler waveguide 80 is made of a nonmagnetic metal such as aluminum and has a long tubular shape with a rectangular cross section. Then, the microwave generated by the microwave generator 20 is propagated in the longitudinal direction toward the plasma generator 30. Further, the directional coupler waveguide 80 is a reflection that returns to the microwave generator 20 side without being consumed in the plasma generator 30 among the microwaves once propagated toward the plasma generator 30. Microwaves are similarly propagated.
  • the directional coupler waveguide 80 of the present embodiment has two coupling holes 84A and 84B (first and second coupling holes) as shown in FIG.
  • Each of the two coupling holes 84A and 84B has a one-to-one correspondence with each of the two probes 83A and 83B (first and second conductors) of the directional coupling circuit board 81.
  • Needles 83A and 83B can be inserted.
  • the directional coupling circuit board 81 projects the probes 83A and 84B of the directional coupling circuit board 81 into the waveguide space inside the directional coupler waveguide 80 through the coupling holes 84A and 84B. It is placed on the waveguide 80.
  • the directional coupling circuit board 81 has a microstrip line 82 having a predetermined path.
  • the microstrip line 82 is connected to the two probes 83A and 83B, and a part of each of the incident microwave and the reflected microwave propagating in the directional coupler waveguide 80 is the probe 83A. It is transmitted to the microstrip line 82 through 83B.
  • FIG. 3 is a view for explaining the coupling holes 84A and 84B of the waveguide 80 for the directional coupler and the microstrip line 82 of the directional coupling circuit board 81.
  • the coupling holes 84A and 84B of the directional coupler waveguide 80 are separated by a predetermined distance L1 along the longitudinal direction of the directional coupler waveguide 80.
  • the probes 83A and 83B (between the first tip portion and the second tip portion) of the directional coupling circuit board 81 are separated by the distance L1 described above. It protrudes into the waveguide space inside the waveguide 80 for directional coupler through the holes 84A and 84B.
  • the probes 83A and 83B transmit a part of each of the incident microwave and the reflected microwave propagating in the directional coupler waveguide 80 to the microstrip line 82.
  • the detector 86 capable of detecting the microwave power is connected to the coupling point X of the microstrip line 82 (the connection portion between the second end portion and the fourth end portion, or the first base end portion and the second end portion).
  • the microwave power output via the coupling point X of the microstrip line 82 can be detected.
  • the microstrip line 82 has a first transmission path (first conductor path) from the tip P1 of the probe 83A to the coupling point X, and a second transmission from the tip P3 of the probe 83B to the coupling point X.
  • Path second conductor path
  • attenuators 85A and 85B which are amplitude attenuating means, are interposed on the first and second transmission paths.
  • Each of the attenuators 85A and 85B can set the attenuation amount independently of each other, and the amplitudes of incident microwaves and reflected microwaves transmitted on the first and second transmission paths on which the respective attenuators are disposed. Is attenuated according to the set attenuation amount.
  • the shape of the microstrip line 82 is formed such that the first transmission path of the microstrip line 82 has a predetermined distance L2 and the second transmission path has a predetermined distance L3.
  • the attenuators 85A and 85B may be composed of, for example, three chip resistors. As shown in FIG. 3, the attenuator 85A has three chip resistors R11, R12, and R13 connected in a ⁇ -type, and the attenuator 85B has three chip resistors R21, R22, and R23 connected in a ⁇ -type. It is configured.
  • the attenuators 85A and 85B can realize a desired attenuation amount by changing the resistance values of the chip resistors R11, R12, R13, R21, R22, and R23 constituting each of the attenuators 85A and 85B. The conditions required between the attenuation amounts of the attenuators 85A and 85B will be described later.
  • the incident microwave transmitted through the probe 83A to the microstrip line 82 out of the incident microwave propagating in the directional coupler waveguide 80 is transmitted from the tip P1 (first tip) of the probe 83A. Take the first path to the junction point X via the position P2. The path length of the first path is L2. Further, the incident microwave transmitted to the microstrip line 82 through the probe 83B propagates through the directional coupler waveguide 80 from the tip P1 of the probe 83A when the tip P1 of the probe 83A is used as a reference. A second path is reached which reaches the tip P3 (second tip) of the probe 83B and reaches the coupling point X via the tip P3. The path length of the second path is L1 + L3.
  • the reflected microwaves transmitted to the microstrip line 82 through the probe 83B are the third from the tip P3 of the probe 83B to the coupling point X. Take the journey.
  • the path length of the third path is L3.
  • the reflected microwave transmitted to the microstrip line 82 through the probe 83A propagates through the directional coupler waveguide 80 from the tip P3 of the probe 83B when the tip P3 of the probe 83B is used as a reference.
  • a fourth path is reached which reaches the tip P1 of the probe 83A and reaches the coupling point X via the tip P1 and the position P2.
  • the path length of the fourth path is L1 + L2.
  • the conditions required between the distances L1, L2, and L3 and the conditions required between the attenuation amounts of the attenuators 85A and 85B will be described.
  • the distance L1 described above is used.
  • L2, L3 and the attenuations of the attenuators 85A, 85B satisfy the conditions described below.
  • the wavelengths of the incident microwave and the reflected microwave propagating in the directional coupler waveguide 80 are both ⁇ .
  • the path to the coupling point X of the microstrip line 82 in the reflected microwave includes the third path and the fourth path.
  • the path length of the third path is L3, and the path length of the fourth path is L1 + L2.
  • the path length difference between the third path and the fourth path is (2n ⁇ 1) ⁇ / 2, and the reflected microwaves transmitted through the third path and the fourth path are respectively If the amplitudes are equal, the reflected microwaves transmitted through each other cancel each other, and no reflected microwave is output at the coupling point X. That is, the following two conditions are required for the reflected microwave.
  • the path length difference between the path length L3 of the third path and the path length L1 + L2 of the fourth path is (2n ⁇ 1) ⁇ / 2 (n is an integer), that is, the third path,
  • the reflected microwaves transmitted on each of the four paths are out of phase.
  • the amplitudes of the reflected microwaves transmitted through the third path and the fourth path are equal.
  • the above condition (2) can be satisfied by separately adjusting the attenuation amounts of the attenuators 85A and 85B.
  • the first path and the second path described above can be cited.
  • the path length of the first path is L2, and the path length of the second path is L1 + L3.
  • the incident microwaves transmitted through the first path and the second path do not cancel each other and are coupled.
  • the incident microwave is output. That is, the conditions required for incident microwaves are as follows. (3)
  • the path length difference between the path length L2 of the first path and the path length L1 + L3 of the second path is not (2n ⁇ 1) ⁇ / 2 (n is an integer).
  • the path length difference between the path length L2 of the first path and the path length L1 + L3 of the second path may be n ⁇ (n is an integer).
  • the incident microwaves transmitted through the first path and the second path are in phase, and the amplitude of the incident microwave output at the coupling point X propagates through the directional coupler waveguide 80.
  • the coupling degree of the directional coupler 10 is improved.
  • the distance L1 between the coupling holes 84A and 84B of the waveguide 80 for directional coupler is ⁇ / 4
  • the difference between the distance L2 of the first transmission path and the distance L3 of the second transmission path of the microstrip line 82 Is ⁇ / 4
  • the path length difference between the path length L3 of the third path and the fourth path L1 + L2 is ⁇ / 2
  • Microwaves are out of phase.
  • the path length of the path length L2 of the first path and the path length L1 + L3 of the second path is equal, and the incident microwaves transmitted through the first path and the second path are in phase. Become.
  • the detector 86 detects the incident microwave power output via the coupling point X of the microstrip line 82 and outputs the detection result to the device main body 21 of the microwave generator 20.
  • the apparatus main body 21 controls the microwave generation source based on the detection result, and stabilizes the output of the microwave generated from the microwave generation source.
  • FIG. 4 is a plan view showing a schematic configuration of the directional coupling circuit board 81.
  • the microstrip line 82 is branched at the coupling point X, the probe 83A is connected to the tip of one branch path (first transmission path), and the other A probe 83B is connected to the tip of the second branch path (second transmission path).
  • the microstrip line 82 includes first, second, and third microstrip lines 82A, 82B, and 82C (first, second, and third pattern portions).
  • the first microstrip line 82A which is the first transmission path, is a line pattern extending in the left-right direction (second direction) in the drawing, and a first end 82A1 located at the left edge of the substrate 81; It has a second end opposite to this.
  • the first end portion 82A1 is connected to the proximal end portion of the lead reaching the probe 83A (the first proximal end portion of the first conductor).
  • the second microstrip line 82B as the second transmission path is a line pattern extending in the left-right direction in the drawing, and a third end 82B1 located at the right edge of the substrate 81, and And an opposite fourth end.
  • a base end portion (second base end portion of the second conductor) of the lead reaching the probe 83B is connected to the third end portion 82B1.
  • the third microstrip line 82C which is the third transmission path, is a line pattern extending in the vertical direction (first direction) in the drawing, and a fifth end 82C1 located at the upper edge portion of the substrate 81; It has a sixth end opposite to this.
  • a detector 86 is connected to the fifth end 82C1.
  • the second end, the fourth end, and the sixth end of the first, second, and third microstrip lines 82A, 82B, and 82C are coupled at a coupling point X on the substrate 81.
  • the first microstrip line 82A transmits the microwave captured through the probe 83A to the coupling point X.
  • the second microstrip line 82B transmits the microwave captured through the probe 83B to the coupling point X.
  • the microwaves transmitted through each of the first and second microstrip lines 82A and 82B are synthesized at the connection point X.
  • the synthesized microwave is transmitted on the third microstrip line 82C and finally output to the detector 86.
  • a line dividing section is provided on each path of the first and second microstrip lines 82A and 82B, and the attenuator 85A attenuates the microwave transmitted on each path by a preset attenuation amount. , 85B are interposed.
  • the attenuator 85A is configured by connecting three chip resistors R11, R12, and R13 in a ⁇ type
  • the attenuator 85B is configured by connecting three chip resistors R21, R22, and R23 in a ⁇ type.
  • a ground line 87 is disposed in the vicinity of the microstrip lines 82A and 82B, and chip resistors R12, R13, R22, and R23 constituting the attenuators 85A and 85B are grounded through the ground line 87.
  • the attenuators 85A and 85B have the effect of attenuating the amplitude of the microwave power transmitted from the probes 83A and 83B, but also have the following effects.
  • the characteristic impedance of the transmission path changes. This is also because the extending directions of the first and second microstrip lines 82A and 82B and the third microstrip line 82C are different.
  • part of the microwaves transmitted from the probe 83A and the probe 83B on the first and second microstrip lines 82A and 82B are reflected at the coupling point X, and again, the first and second It is transmitted on the microstrip lines 82A and 82B and returns to the probe 83A and probe 83B side. Furthermore, a part of the microwaves returned to the probe 83A, 83B side is reflected by the first end portion 82A1 and the third end portion 82B1 of the first and second microstrip lines 82A, 82B, and again the coupling point. It is transmitted to the X side.
  • the attenuators 85A and 85B are not present.
  • the reflected wave due to the reflection as described above is added to the microwave that should be transmitted on the microstrip lines 82A and 82B, and the microwave taken in from the probes 83A and 83B is changed. It becomes difficult to detect accurately.
  • Attenuators 85A and 85B are interposed on the respective paths of the first and second microstrip lines 82A and 82B, and the attenuators 85A and 85B are caused by such reflection.
  • the reflected wave can be attenuated. Therefore, the influence of the reflected wave as described above on the output of the microwave power at the coupling point X detected by the detector 86 can be suppressed at the same time.
  • the attenuators 85A and 85B are interposed in the first transmission path and the second transmission path of the microstrip line 82, respectively.
  • An attenuator may be interposed only in one of the path and the second transmission path.
  • a directional coupling circuit board includes a board part, a first transmission path disposed on the board part, having a first end and a second end, and on the board part. And a second transmission path having a third end and a fourth end connected to the second end, a first base end and a first tip, and the first end.
  • a proximal end is connected to the first end of the first transmission path, the first distal end protrudes into a waveguide space in which microwaves propagate, a second proximal end and a second
  • a second end portion is connected to a third end portion of the second transmission path, and the second end portion is connected to the waveguide space with respect to the first end portion.
  • the sum L1 + L2 of the distance L1 between the tip portion and the second tip portion and the path length L2 of the first transmission path including the length of the first conductor, and the length of the second conductor Is different from the path length L3 of the second transmission path including (2n-1) ⁇ / 2 (where n is an integer, ⁇ is the wavelength of the microwave), and the distance L1 and the path
  • the difference between the sum L1 + L3 with the length L3 and the path length L2 is not equal to (2n ⁇ 1) ⁇ / 2.
  • the amplitudes of the microwaves propagating on the first and second transmission paths substantially coincide with each other at the connection points of the first and second transmission paths. Therefore, when two microwaves propagate in the waveguide space in directions facing each other, the amplitude of any one of the microwaves can be reliably made zero at the connection point of the first and second transmission paths. . For this reason, only the other microwave can be branched reliably.
  • the first tip portion and the second tip portion are configured by tip portions of first and second probes arranged so as to extend in a direction perpendicular to the propagation direction of the microwave. desirable. According to this configuration, the first tip portion and the second tip portion can be easily installed and positioned.
  • the circuit pattern further includes a circuit pattern disposed on the surface of the substrate unit, and the circuit pattern includes a first pattern unit constituting the first transmission path and a second pattern configuring the second transmission path.
  • the characteristic impedance of the transmission path changes in the connection portion where the first, second and third pattern portions are connected, and the microwave transmitted through the first and second pattern portions is connected to the connection portion.
  • the amplitude attenuating means interposed in each of the first and second pattern portions can attenuate the reflected wave by the connecting portion. For this reason, it is possible to accurately detect the microwave that should be output at the connection portion.
  • the circuit board further includes a third transmission path disposed on the board portion, having a fifth end portion and a sixth end portion, and extending in a predetermined first direction, wherein the first transmission path is the board.
  • the second transmission path extends in a second direction different from the first direction on the part, and extends in the third direction different from the second direction or the first and second directions on the substrate part.
  • the first, third and fifth end portions are located at the edge of the substrate portion, the second, fourth and sixth end portions are connected at predetermined positions on the substrate portion, and the attenuation amplitude means is It can be set as the structure interposed in each of the 1st and 2nd transmission path.
  • the microwave is reflected at the point where the second, fourth, and sixth end portions of the first, second, and third transmission paths are connected. Is attenuated, so that only the microwave to be output is extracted.
  • the attenuation amplitude means uses the first transmission path and the ground line, and the second transmission path.
  • an attenuator configured by forming a ⁇ connection with three resistance chips using the ground line. According to this configuration, the attenuation amplitude means can be easily configured on the substrate portion.
  • a directional coupler includes a waveguide for propagating microwaves, a first conductor path having a first tip portion and a first base end portion, a second tip portion, A second conductor path having a second base end connected to the first base end and at least one of the first and second conductor paths, and the first base end And an amplitude attenuating means for attenuating the microwave so that the amplitude of the microwave propagating through each of the first and second conductor paths substantially matches at a connection point between the first base end and the second base end,
  • the first tip protrudes into the waveguide space in the waveguide, and the second tip extends into the waveguide space by a predetermined distance along the propagation direction of the microwave with respect to the first tip.
  • the difference between the sum L1 + L2 of the length L2 and the path length L3 of the second conductor path is equal to (2n ⁇ 1) ⁇ / 2 (where n is an integer, ⁇ is the wavelength of the microwave), and
  • the difference between the sum L1 + L3 of the distance L1 and the path length L3 and the path length L2 is not equal to (2n ⁇ 1) ⁇ / 2.
  • the amplitude of the microwave propagating on each of the first and second conductor paths can be substantially matched at the connection point of the first and second conductor paths. Therefore, it is ensured that the amplitude of one of the two microwaves propagating in the opposite directions along the longitudinal direction of the waveguide is zero at the connection point of the first and second conductor paths. It can be. For this reason, only the other microwave can be branched reliably.
  • first tip portion and the second tip portion are constituted by tip portions of first and second probes arranged so as to extend in a direction perpendicular to the propagation direction of the microwave, and the waveguide It is preferable that the first and second probes have side portions formed with first and second coupling holes for projecting into the waveguide. According to this configuration, the first tip portion and the second tip portion can be easily installed and positioned.
  • the circuit pattern further includes a circuit pattern disposed on the surface of the substrate part, and the circuit pattern includes a first pattern part constituting at least a part of the first conductor path, and a second conductor path.
  • a second pattern portion constituting at least a part, a connection portion to which portions corresponding to the first and second base end portions of the first and second pattern portions are connected, and from the connection portion to the micro It is preferable that the attenuation amplitude means is interposed in each of the first and second pattern portions.
  • a microwave generator for generating a microwave and the microwave generated by the microwave generator are received, and plasma is generated using the energy of the microwave.
  • Plasma generating means to be generated, and the waveguide is disposed in a waveguide path between the microwave generating means and the plasma generating means, and a part of the microwave power that propagates through the waveguide is extracted.
  • the amplitude of the reflected microwave of the incident microwave and the reflected microwave propagating in the direction facing each other along the longitudinal direction of the waveguide is set to the connection point of the first and second conductor paths. Therefore, only the incident microwave can be reliably branched. For this reason, since the power of the incident microwave can be detected without being affected by the reflected microwave, the output of the microwave can be controlled based on the detection result, and the output can be stabilized.
  • a microwave that propagates through a waveguide can be accurately branched, a directional coupling circuit board that can be miniaturized, a directional coupler using the same, and plasma generation
  • An apparatus can be provided.
  • a directional coupling circuit board according to the present invention, a directional coupler using the same, and a plasma generator include an etching processing apparatus and a film forming apparatus for a semiconductor substrate such as a semiconductor wafer, a glass substrate such as a plasma display panel, and a print.
  • the present invention can be preferably applied to a substrate cleaning apparatus, a sterilization apparatus for medical equipment, a protein decomposition apparatus, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)

Abstract

 各々先端部が導波管内に突出し、基端部が結合点Xで互いに接続された第1及び第2の伝送経路を含む。第1及び第2の伝送経路の少なくとも一方に振幅減衰手段が介在されることで、第1及び第2の伝送経路上の各々を伝搬するマイクロ波の振幅が結合点Xで略一致する。第1及び第2の伝送経路の先端部間の距離L1と第1の伝送経路の経路長L2との和L1+L2と、第2の伝送経路の経路長L3との差は、(2n-1)λ/2(n:整数、λ:マイクロ波の波長)に一致し、前記距離L1と前記経路長L3との和L1+L3と前記経路長L2との差は、(2n-1)λ/2に一致しない。

Description

方向性結合回路基板、方向性結合器、及びプラズマ発生装置
 本発明は、マイクロ波回路で用いられる方向性結合回路基板、その方向性結合回路基板を用いた方向性結合器、並びに、その方向性結合器が設けられたプラズマ発生装置に関する。
 被処理物に対してプラズマを照射し、その表面の有機汚染物の除去、表面改質、エッチング、薄膜形成または薄膜除去等を行うプラズマ発生装置が知られている。このようなプラズマ発生装置は常温常圧下でのプラズマ発生が可能であり、そのプラズマ発生にはマイクロ波が利用される。通常、上記のようなプラズマ発生装置においては、マイクロ波発生手段が発生させるマイクロ波の電力が適宜検出されており、その検出結果をマイクロ波発生手段にフィードバックすることによりマイクロ波電力の出力安定化が図られている。
 ところで、マイクロ波電力を検出する際には、マイクロ波発生手段から導波管に導かれるマイクロ波電力の一部を導波管から取り出すことが必要となるが、その取り出しの手段として方向性結合器が利用されることが一般的である。プラズマ発生装置への組み込みの観点から方向性結合器には小型化が要請されており、例えば、特許文献1に小型化が実現された方向性結合器が開示されている。
 特許文献1に開示された方向性結合器においては、マイクロストリップラインを有するプリント基板を導波管上に配置し、マイクロストリップラインと接続された2つの探針が導波管内に突出するように構成されている。この2つの探針から導波管内を流れるマイクロ波を基板上のマイクロストリップラインに取り込み、導波管内の一方向に進行するマイクロ波電力の一部を分岐させるものである。
 上述したようなプラズマ発生装置においては、マイクロ波発生手段から導波管に導かれる入射マイクロ波と、プラズマ発生に寄与することなく導波管に戻って来る反射マイクロ波のうちから一方のマイクロ波(例えば、入射マイクロ波)だけを方向性結合器を介して分岐し、その一方のマイクロ波の電力検出が行われる。そこで、特許文献1に開示された方向性結合器においては、2つの探針の導波管内に突出した長さにより導波管内から2つの探針を通して取り出される2つのマイクロ波の振幅を調節しており、その振幅調節により一方のマイクロ波だけを分岐させることを可能としている。
 しかしながら、上述したマイクロ波の振幅調節には非常に高精度なものが要求されており、特許文献1に開示された探針の長さを変えることによっては、要求される振幅調節の精度を完全に満たすことができないという問題点がある。
特開平6-132710号公報
 上記問題点に鑑み、本発明の目的は、導波管を伝搬するマイクロ波を精度よく分岐させることができる、小型化が可能な方向性結合回路基板及びそれを用いた方向性結合器、並びに、プラズマ発生装置を提供することにある。
 かかる目的を達成する、本発明の一局面に係る方向性結合回路基板は、
 基板部と、
 前記基板部上に配置され、第1端部と第2端部とを有する第1の伝送経路と、
 前記基板部上に配置され、第3端部と、前記第2端部と接続される第4端部とを有する第2の伝送経路と、
 第1基端部と第1先端部とを有し、前記第1基端部が前記第1の伝送経路の第1端部に接続され、前記第1先端部がマイクロ波の伝搬する導波空間に突出する第1の導体と、
 第2基端部と第2先端部とを有し、前記第2基端部が前記第2の伝送経路の第3端部に接続され、前記第2先端部が前記導波空間に、前記第1先端部に対してマイクロ波の伝搬方向に沿って所定の距離だけ離間して突出する第2の導体と、
 前記第1及び第2の伝送経路上のうちの少なくとも一方に介在され、前記第2端部と第4端部との接続点において、前記第1及び第2の伝送経路上の各々を伝搬するマイクロ波の振幅が略一致するようにマイクロ波を減衰させる振幅減衰手段と、を備え、
 前記第1先端部と前記第2先端部との間の距離L1と前記第1の導体の長さを含めた前記第1の伝送経路の経路長L2との和L1+L2と、前記第2の導体の長さを含めた前記第2の伝送経路の経路長L3との差が、(2n-1)λ/2(但し、n:整数、λ:マイクロ波の波長)に一致し、
 前記距離L1と前記経路長L3との和L1+L3と、前記経路長L2との差は、(2n-1)λ/2に一致しないことを特徴とする。
 この構成によれば、第1及び第2の伝送経路上の各々を伝搬するマイクロ波の振幅が、第1及び第2の伝送経路の接続点において略一致するようになる。従って、導波空間に互いに対向する向きで2つのマイクロ波が伝搬する場合に、いずれか一方のマイクロ波の振幅を第1及び第2の伝送経路の接続点において確実にゼロとすることができる。このため、他方のマイクロ波だけを確実に分岐させることができる。
 本発明の目的、特徴及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。
本発明の実施の形態に係るプラズマ発生装置の全体構成を示す一部透視側面図である。 本実施の形態に係る方向性結合器の構成を示す分解斜視図である。 方向性結合器用導波管及び方向性結合回路基板を説明するための図である。 方向性結合回路基板の概略構成を示す平面図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下の図面の記載において、同じ要素または類似する要素には、同じまたは類似の符号を付しており、説明を省略する場合がある。
 図1は、本発明の実施の形態に係る方向性結合器が組み込まれたプラズマ発生装置の全体構成を示す一部透視側面図である。本実施の形態に係るプラズマ発生装置PUは、プラズマを発生して被処理物となるワーク等にプラズマを照射する装置であり、マイクロ波を利用し、常温常圧でのプラズマ発生が可能である。本実施の形態に係るプラズマ発生装置PUは、図1に示すように、第1、第2、第3の導波管11、12、13と、マイクロ波発生装置20と、プラズマ発生部30と、スライディングショート40と、サーキュレータ50と、ダミーロード60と、スタブチューナ70と、方向性結合器10と、検出器86と、を備えている。
 第1、第2、第3の導波管11、12、13は、例えばアルミニウム等の非磁性金属からなり、断面矩形の長尺管状を呈しており、マイクロ波発生装置20により発生されたマイクロ波をプラズマ発生部30へ向けて、その長手方向に伝搬させるものである。第1、第2、第3の導波管11、12、13の各々は、互いのフランジ部同士で連結されており、マイクロ波発生装置20が第1の導波管11に搭載されている。また、第2の導波管12にはスタブチューナ70が組付けられ、第3の導波管13にはプラズマ発生部30が設けられている。さらに、図1に示すように、第1の導波管11と第2の導波管12との間にはサーキュレータ50及び方向性結合器10が介在され、第3の導波管13の一端側にはスライディングショート40が連結されている。
 第1の導波管11、第2の導波管12及び第3の導波管13の各々は、金属平板からなる上面板、下面板および2枚の側面板を用いて角筒状に組立てられ、その両端にフランジ板が取付けられて構成されている。なお、このような平板の組み立てによらず、押出し成形や板状部材の折り曲げ加工等により形成された矩形導波管もしくは非分割型の導波管を用いるようにしてもよい。また、断面矩形の導波管に限らず、例えば断面楕円の導波管を用いることも可能である。さらに、非磁性金属に限らず、導波作用を有する各種の部材で導波管を構成することができる。
 マイクロ波発生装置20は、例えば2.45GHzのマイクロ波を発生するマグネトロンのマイクロ波発生源を具備する装置本体部21と、装置本体部21で発生されたマイクロ波を導波管10の内部へ放出するマイクロ波送信アンテナ22と、を有している。本実施の形態に係るプラズマ発生装置PUにおいては、マイクロ波発生装置20として例えば1~3000Wのマイクロ波エネルギーを出力可能な連続可変型のマイクロ波発生装置が好適に用いられる。
 マイクロ波発生装置20は、装置本体部21からマイクロ波送信アンテナ22が突設された形態のものであり、第1の導波管11に載置される態様で固定されている。詳しくは、装置本体部21が第1の導波管11の上面板11Uに載置され、マイクロ波送信アンテナ22が上面板11Uに穿設された貫通孔111を通して第1の導波管11内部の導波空間110に突出する態様で固定されている。このように構成されることで、マイクロ波送信アンテナ22から放出されたマイクロ波は、第1、第2、第3の導波管11、12、13内をプラズマ発生部30に向けて伝搬される。
 プラズマ発生部30は、第3の導波管13の下面板13Bに左右方向へ一列に整列して突設された8個のプラズマ発生ノズル31を有している。プラズマ発生部30の幅員、つまり8個のプラズマ発生ノズル31の左右方向の配列幅は、プラズマ発生部30からのプラズマによる処理対象のワーク等の搬送方向と直交する幅方向の最大サイズと略合致する幅員とされている。これにより、処理対象のワークを搬送しながらワークの全表面(下面板13Bと対向する面)に対してプラズマ処理が行えるようになっている。なお、8個のプラズマ発生ノズル31の配列間隔は、伝搬させるマイクロ波の波長λに応じて定めることが望ましい。たとえば、波長λの1/2ピッチ、1/4ピッチでプラズマ発生ノズル31を配列することが望ましく、2.45GHzのマイクロ波を用い、矩形の導波管11、12、13の断面サイズが2.84インチ×1.38インチの場合、λ=230mmであるので、115mm(λ/2)ピッチ、或いは57.5mm(λ/4)ピッチでプラズマ発生ノズル31を配列すればよい。
 プラズマ発生ノズル31は、第3の導波管13の下面板13Bを貫通して導波空間130に所定長さだけ突出する導電体32を有している。プラズマ発生ノズル31は、導電体32を介して第3の導波管13内を伝搬するマイクロ波を受信し、そのマイクロ波エネルギー(マイクロ波電力)を用いてプラズマを発生させることができる。
 スライディングショート40は、各々のプラズマ発生ノズル31に備えられている導電体32と、第3の導波管13の内部を伝搬されるマイクロ波との結合状態を最適化するために備えられているもので、マイクロ波の反射位置を変化させて定在波パターン部を調整可能とするべく第3の導波管13の一端側に連結されている。なお、定在波を利用しない場合は、スライディングショート40に代えて、電波吸収作用を有するダミーロードが取付けられる。
 スライディングショート40は、第3の導波管13と同様な断面矩形の筐体構造を備えており、その内部に円柱状の反射ブロック42を収納している。反射ブロック42の移動によって定在波パターン部が最適化される。
 サーキュレータ50は、例えばフェライト柱を内蔵する導波管型の3ポートサーキュレータからなり、一旦はプラズマ発生部30へ向けて伝搬されたマイクロ波のうち、プラズマ発生部30で電力消費されずに戻って来る反射マイクロ波を、マイクロ波発生装置20に戻さずダミーロード60へ向かわせるものである。このようなサーキュレータ50を配置することで、マイクロ波発生装置20が反射マイクロ波によって過熱状態となることが防止される。
 ダミーロード60は、上記の反射マイクロ波を吸収して熱に変換する水冷型(空冷型でも良い)の電波吸収体である。ダミーロード60には、冷却水を内部に流通させるための冷却水流通口が設けられており、反射マイクロ波を熱変換することにより発生した熱が冷却水に熱交換されるようになっている。
 スタブチューナ70は、第2の導波管12とプラズマ発生ノズル31とのインピーダンス整合を図るためのもので、第2の導波管12の上面板12Uに所定間隔を置いて直列配置された3つのスタブチューナユニット70A~70Cを備えている。3つのスタブチューナユニット70A~70Cは同一構造を備えており、第2の導波管12の導波空間120に突出するスタブ71を有している。
 スタブチューナユニット70A~70Cに各々備えられているスタブ71は、その導波空間120への突出長が調整可能とされている。これらスタブ71の突出長は、例えばマイクロ波電力パワーをモニタしつつ、導電体32による消費電力が最大となるポイント(反射マイクロ波が最小になるポイント)を探索することで決定される。なお、このようなインピーダンス整合は、必要に応じてスライディングショート40と連動させて実行される。
 次に、本実施の形態に係る方向性結合器10について説明する。本実施の形態に係る方向性結合器10は、図1に示したように、サーキュレータ50と第2の導波管12との間に配置されており、マイクロ発生装置20からプラズマ発生部30に向けて第1、第2、第3の導波管11、12、13を介して伝搬する入射マイクロ波電力の一部を分岐させるものである。図2は、本実施の形態に係る方向性結合器10の構成を示す分解斜視図である。
 本実施の形態に係る方向性結合器10は、方向性結合器用導波管80と、方向性結合回路基板81(基板部)と、を有している。方向性結合器用導波管80は、第1、第2、第3の導波管11、12、13と同様、例えばアルミニウム等の非磁性金属からなり、断面矩形の長尺管状を呈しており、マイクロ波発生装置20により発生されたマイクロ波をプラズマ発生部30へ向けて、その長手方向に伝搬させる。さらに、方向性結合器用導波管80は、一旦はプラズマ発生部30へ向けて伝搬されたマイクロ波のうち、プラズマ発生部30で電力消費されずにマイクロ波発生装置20側に戻って来る反射マイクロ波も同様に伝搬させる。
 本実施の形態の方向性結合器用導波管80は、図2に示すように、2つの結合穴84A、84B(第1、第2の結合穴)を有している。2つの結合穴84A、84Bの各々は、方向性結合回路基板81の2つの探針83A、83B(第1、第2の導体)の各々に一対一で対応しており、それぞれに対応する探針83A、83Bが挿入可能となっている。方向性結合回路基板81は、方向性結合回路基板81の探針83A、84Bを結合穴84A、84Bを通して方向性結合器用導波管80内部の導波空間に突出させる態様で、方向性結合器用導波管80に載置される。
 方向性結合回路基板81は、図2に示すように、所定の経路を持つマイクロストリップライン82を有している。マイクロストリップライン82は、上記の2つの探針83A、83Bと接続されており、方向性結合器用導波管80内を伝搬する入射マイクロ波及び反射マイクロ波の各々の一部は探針83A、83Bを通してマイクロストリップライン82に伝送される。
 次に、方向性結合器用導波管80の結合穴84A、84B及び方向性結合回路基板81のマイクロストリップライン82についてさらに詳しく説明する。図3は、方向性結合器用導波管80の結合穴84A、84B及び方向性結合回路基板81のマイクロストリップライン82を説明するための図である。
 図3に示すように、方向性結合器用導波管80の結合穴84A、84Bは、方向性結合器用導波管80の長手方向に沿って所定の距離L1で離間されている。方向性結合回路基板81の探針83A、83B間(第1先端部と第2先端部との間)も同様、上記の距離L1で離間されており、方向性結合器用導波管80の結合穴84A、84Bを通して方向性結合器用導波管80内部の導波空間に突出している。これら探針83A、83Bは、方向性結合器用導波管80内を伝搬する入射マイクロ波及び反射マイクロ波の各々の一部を、マイクロストリップライン82に伝送する。本実施の形態においては、マイクロ波電力を検出可能な検出器86がマイクロストリップライン82の結合点X(第2端部と第4端部との接続部、若しくは第1基端部と第2基端部との接続部)に接続されており、マイクロストリップライン82の結合点Xを介して出力されるマイクロ波電力を検出可能となっている。
 マイクロストリップライン82は、探針83Aの先端P1から結合点Xまでに至る第1の伝送経路(第1の導体経路)と、探針83Bの先端P3から結合点Xまでに至る第2の伝送経路(第2の導体経路)と、を有しており、第1、第2の伝送経路上の各々には、振幅減衰手段である減衰器85A、85Bが介在されている。減衰器85A、85Bの各々は、お互いに独立して減衰量を設定することができ、それぞれが配置された第1、第2の伝送経路上を伝送される入射マイクロ波や反射マイクロ波の振幅を設定された減衰量に従って減衰させるものである。さらに、マイクロストリップライン82の形状は、マイクロストリップライン82の第1の伝送経路が所定の距離L2を有し、第2の伝送経路が所定の距離L3を有するように形成されている。
 減衰器85A、85Bとしては、例えば、3つのチップ抵抗から構成すれば良い。図3に示すように、減衰器85Aは3つのチップ抵抗R11、R12、R13がπ型に接続され構成されており、減衰器85Bは3つのチップ抵抗R21、R22、R23がπ型に接続され構成されている。減衰器85A、85Bは、各々を構成するチップ抵抗R11、R12、R13、R21、R22、R23の抵抗値を変化させることにより所望の減衰量を実現することができる。なお、減衰器85A、85Bの減衰量間に必要とされる条件については後述する。
 ここで、方向性結合器用導波管80内を伝搬する入射マイクロ波のうち探針83Aを通してマイクロストリップライン82に伝送される入射マイクロ波は、探針83Aの先端P1(第1先端部)から位置P2を経由して結合点Xに至る第1の行路を取る。そして、その第1の行路の行路長はL2である。また、探針83Bを通してマイクロストリップライン82に伝送される入射マイクロ波は、探針83Aの先端P1を基準とした場合、探針83Aの先端P1から方向性結合器用導波路80内部を伝搬して探針83Bの先端P3(第2先端部)に到達し、先端P3を経由して結合点Xに至る第2の行路を取る。そして、その第2の行路の行路長はL1+L3である。
 一方、方向性結合器用導波管80内を伝搬する反射マイクロ波のうち探針83Bを通してマイクロストリップライン82に伝送される反射マイクロ波は、探針83Bの先端P3から結合点Xに至る第3の行路を取る。そして、その第3の行路の行路長はL3である。また、探針83Aを通してマイクロストリップライン82に伝送される反射マイクロ波は、探針83Bの先端P3を基準とした場合、探針83Bの先端P3から方向性結合器用導波路80内部を伝搬して探針83Aの先端P1に到達し、先端P1、位置P2を経由して結合点Xに至る第4の行路を取る。そして、その第4の行路の行路長はL1+L2である。
 次に、上記の距離L1、L2、L3間に必要とされる条件及び減衰器85A、85Bの減衰量間に必要とされる条件ついて説明する。本実施の形態に係る方向性結合器10においては、方向性結合器用導波管80を伝搬する反射マイクロ波の電力を検出すること無く、入射マイクロ波の電力を検出するため、上記の距離L1、L2、L3及び減衰器85A、85Bの減衰量は、以下に述べる条件を満足する。なお、方向性結合器用導波管80を伝搬する入射マイクロ波及び反射マイクロ波の波長は共にλとする。
 まず、反射マイクロ波におけるマイクロストリップライン82の結合点Xに至る行路としては、上述したように、上記の第3の行路、第4の行路が挙げられる。そして、第3の行路の行路長がL3、第4の行路の行路長がL1+L2である。ここで、第3の行路、第4の行路の行路長差が(2n-1)λ/2であり、且つ、第3の行路、第4の行路上の各々を伝送される反射マイクロ波の振幅が等しければ、各々を伝送される反射マイクロ波が互いに打ち消し合い、結合点Xにおいて反射マイクロ波が出力されない。すなわち、反射マイクロ波において必要とされる条件としては次の2つである。
(1)第3の行路の行路長L3と第4の行路の行路長L1+L2との行路長差は(2n-1)λ/2(nは整数)である、すなわち、第3の行路、第4の行路上の各々を伝送される反射マイクロ波は逆相である。
(2)第3の行路、第4の行路上の各々を伝送される反射マイクロ波の振幅は等しい。
 上記の(2)の条件は、減衰器85A、85Bの減衰量を別途独立に調節することにより満足させることができる。
 次に、入射マイクロ波におけるマイクロストリップライン82の結合点Xに至る行路としては、上述したように、上記の第1の行路、第2の行路が挙げられる。そして、第1の行路の行路長がL2、第2の行路の行路長がL1+L3である。ここで、第1の行路、第2の行路の行路長差が少なくとも(2n-1)λ/2を満足しなければ、各々を伝送される入射マイクロ波同士が互いに打ち消しあうことは無く、結合点Xにおいて入射マイクロ波は出力される。すなわち、入射マイクロ波において必要とされる条件としては次の通りである。
(3)第1の行路の行路長L2と第2の行路の行路長L1+L3との行路長差は(2n-1)λ/2(nは整数)ではない。
 上記の(3)の条件としては、例えば、第1の行路の行路長L2と第2の行路の行路長L1+L3との行路長差をnλ(nは整数)とすれば良い。この場合、第1の行路、第2の行路上の各々を伝送される入射マイクロ波は同相となり、結合点Xにおいて出力される入射マイクロ波の振幅は方向性結合器用導波管80を伝搬する入射マイクロ波よりも大きくなり、その結果、方向性結合器10の結合度は向上する。
 例えば、方向性結合器用導波管80の結合穴84A、84B間の距離L1がλ/4、マイクロストリップライン82の第1の伝送経路の距離L2と第2の伝送経路の距離L3との差がλ/4である場合、第3の行路の行路長L3と第4の行路L1+L2との行路長差はλ/2となり、第3の行路、第4の行路上の各々を伝送される反射マイクロ波は逆相となる。一方、第1の行路の行路長L2と第2の行路の行路長L1+L3との行路長とは等しくなり、第1の行路、第2の行路上の各々を伝送される入射マイクロ波は同相となる。
 検出器86は、マイクロストリップライン82の結合点Xを介して出力される入射マイクロ波電力を検出し、その検出結果をマイクロ波発生装置20の装置本体部21に出力する。装置本体部21は、その検出結果に基づいてマイクロ波発生源を制御し、マイクロ波発生源から発生されるマイクロ波の出力を安定化させる。
 次に、方向性結合回路基板81の具体的構造について説明する。図4は、方向性結合回路基板81の概略構成を示す平面図である。図4に示す方向性結合回路基板81においては、マイクロストリップライン82が結合点Xにおいて分岐されており、一方の分岐経路(第1の伝送経路)の先には探針83Aが接続され、他方の分岐経路(第2の伝送経路)の先には探針83Bが接続されている。
 具体的には、マイクロストリップライン82は、第1、第2、第3のマイクロストリップライン82A、82B、82C(第1、第2、第3のパターン部)を含む。第1の伝送経路である第1のマイクロストリップライン82Aは、図中の左右方向(第2方向)に延びるラインパターンであって、基板81の左側エッジ部に位置する第1端部82A1と、これと反対側の第2端部とを有する。第1端部82A1には、探針83Aへ至るリードの基端部(第1の導体の第1基端部)が接続されている。
 同様に、第2の伝送経路である第2のマイクロストリップライン82Bは、図中の左右方向に延びるラインパターンであって、基板81の右側エッジ部に位置する第3端部82B1と、これと反対側の第4端部とを有する。第3端部82B1には、探針83Bへ至るリードの基端部(第2の導体の第2基端部)が接続されている。
 第3の伝送経路である第3のマイクロストリップライン82Cは、図中の上下方向(第1方向)に延びるラインパターンであって、基板81の上側エッジ部に位置する第5端部82C1と、これと反対側の第6端部とを有する。第5端部82C1には、検出器86が接続されている。
 第1、第2、第3のマイクロストリップライン82A、82B、82Cの第2端部、第4端部、第6端部は、基板81上の結合点Xにおいて結合されている。第1のマイクロストリップライン82Aは、探針83Aを通して取り込まれるマイクロ波を結合点Xに伝送する。第2のマイクロストリップライン82Bは、探針83Bを通して取り込まれるマイクロ波を結合点Xに伝送する。第1及び第2のマイクロストリップライン82A、82Bの各々を伝送されるマイクロ波は、結合点Xにおいて合成される。その合成されたマイクロ波は、第3のマイクロストリップライン82C上を伝送され、最終的に検出器86に出力される。
 第1及び第2のマイクロストリップライン82A、82Bの各々の経路上にはラインの分断部が設けられ、各々の経路上を伝送されるマイクロ波をあらかじめ設定された減衰量だけ減衰させる減衰器85A、85Bが介在されている。減衰器85Aは、3つのチップ抵抗R11、R12、R13がπ型に接続され構成されており、減衰器85Bは3つのチップ抵抗R21、R22、R23がπ型に接続され構成されている。マイクロストリップライン82A、82Bの近傍にはグランドライン87が配置されており、減衰器85A、85Bを構成するチップ抵抗R12、R13、R22、R23がグランドライン87を通して接地されている。
 上述したように、減衰器85A、85Bは探針83A、83Bから伝送されるマイクロ波電力の振幅を減衰させる効果を有しているが、さらに次のような効果も有している。図4に示す第1、第2、第3のマイクロストリップライン82A、82B、82Cが結合する結合点Xにおいては、伝送経路の特性インピーダンスが変化する。これは、第1及び第2のマイクロストリップライン82A、82Bと、第3のマイクロストリップライン82Cとの延在方向が異なることも要因である。
 このため、探針83A、探針83Bから第1及び第2のマイクロストリップライン82A、82B上を伝送されるマイクロ波の一部は、結合点Xにおいて反射し、再び、第1及び第2のマイクロストリップライン82A、82B上を伝送されて探針83A、探針83B側に戻ってしまう。さらに、探針83A、83B側に戻されたマイクロ波の一部は第1及び第2のマイクロストリップライン82A、82Bの第1端部82A1、第3端部82B1で反射し、再び、結合点X側に伝送されることになる。ここで、仮に、減衰器85A、85Bが存在しない場合を考えてみる。上記のように反射が繰り返されると、本来マイクロストリップライン82A、82B上を伝送されるべきマイクロ波に上記のような反射による反射波が加わってしまい、探針83A、83Bから取り込まれるマイクロ波を正確に検出することが困難となる。
 一方、本実施の形態においては、第1及び第2のマイクロストリップライン82A、82Bの各々の経路上に減衰器85A、85Bが介在されており、減衰器85A、85Bは、このような反射による反射波を減衰させることができる。したがって、検出器86により検出される結合点Xにおけるマイクロ波電力の出力に上記のような反射波による影響が及ぶことも同時に抑制することができる。
 以上、本発明の実施の形態について説明したが、本発明はこれに限定されるものではなく、例えば、下記の実施の形態を取ることができる。
 上記の実施の形態に係る方向性結合回路基板81においては、マイクロストリップライン82の第1の伝送経路、第2の伝送経路の各々に減衰器85A、85Bを介在させたが、第1の伝送経路、第2の伝送経路のいずれか一方だけに減衰器を介在させるようにしても良い。
 なお、上述した具体的実施形態には以下の構成を有する発明が主に含まれている。
 本発明の一局面に係る方向性結合回路基板は、基板部と、前記基板部上に配置され、第1端部と第2端部とを有する第1の伝送経路と、前記基板部上に配置され、第3端部と、前記第2端部と接続される第4端部とを有する第2の伝送経路と、第1基端部と第1先端部とを有し、前記第1基端部が前記第1の伝送経路の第1端部に接続され、前記第1先端部がマイクロ波の伝搬する導波空間に突出する第1の導体と、第2基端部と第2先端部とを有し、前記第2基端部が前記第2の伝送経路の第3端部に接続され、前記第2先端部が前記導波空間に、前記第1先端部に対してマイクロ波の伝搬方向に沿って所定の距離だけ離間して突出する第2の導体と、前記第1及び第2の伝送経路上のうちの少なくとも一方に介在され、前記第2端部と第4端部との接続点において、前記第1及び第2の伝送経路上の各々を伝搬するマイクロ波の振幅が略一致するようにマイクロ波を減衰させる振幅減衰手段と、を備え、前記第1先端部と前記第2先端部との間の距離L1と前記第1の導体の長さを含めた前記第1の伝送経路の経路長L2との和L1+L2と、前記第2の導体の長さを含めた前記第2の伝送経路の経路長L3との差が、(2n-1)λ/2(但し、n:整数、λ:マイクロ波の波長)に一致し、前記距離L1と前記経路長L3との和L1+L3と、前記経路長L2との差は、(2n-1)λ/2に一致しないことを特徴とする。
 この構成によれば、第1及び第2の伝送経路上の各々を伝搬するマイクロ波の振幅が、第1及び第2の伝送経路の接続点において略一致するようになる。従って、導波空間に互いに対向する向きで2つのマイクロ波が伝搬する場合に、いずれか一方のマイクロ波の振幅を第1及び第2の伝送経路の接続点において確実にゼロとすることができる。このため、他方のマイクロ波だけを確実に分岐させることができる。
 上記構成において、前記第1先端部及び第2先端部は、前記マイクロ波の伝搬方向と直交する方向に延びるように配置される第1及び第2の探針の先端部で構成されることが望ましい。この構成によれば、第1先端部及び第2先端部の据え付けや位置決めが容易に行えるようになる。
 上記構成において、前記基板部の表面に配置された回路パターンをさらに備え、前記回路パターンは、前記第1の伝送経路を構成する第1のパターン部と、前記第2の伝送経路を構成する第2のパターン部と、前記第1のパターン部及び第2のパターン部の前記第2端部及び第4端部に相当する部分が接続された接続部と、該接続部からマイクロ波電力の検出端へ延びる第3のパターン部と、を含み、前記減衰振幅手段は、前記第1及び第2のパターン部の各々に介在されていることが望ましい。
 この構成によれば、第1、第2及び第3のパターン部が接続された接続部において伝送経路の特性インピーダンスが変化し、第1及び第2のパターン部を伝送されるマイクロ波が接続部において反射される場合でも、第1及び第2のパターン部の各々に介在された振幅減衰手段が接続部による反射波を減衰させることができる。このため、本来接続部において出力されるべきマイクロ波を正確に検出することが可能となる。
 また、前記基板部上に配置され、第5端部と第6端部とを有し、所定の第1方向に延びる第3の伝送経路をさらに備え、前記第1の伝送経路は、前記基板部上において前記第1方向と異なる第2方向に延び、前記第2の伝送経路は、前記基板部上において前記第2方向若しくは前記第1及び第2方向と異なる第3方向に延び、前記第1、第3及び第5端部が前記基板部のエッジに位置し、前記第2、第4及び第6端部が、前記基板部上の所定位置で接続され、前記減衰振幅手段は、前記第1及び第2の伝送経路の各々に介在されている構成とすることができる。
 かかる構成によれば、第1、第2及び第3の伝送経路の前記第2、第4及び第6端部が接続されるポイントでマイクロ波の反射が生じるが、この反射波を振幅減衰手段が減衰させるので、出力されるべきマイクロ波のみが抽出されるようになる。
 この場合、前記基板部上に配置され、接地電位とされるグランドラインをさらに備え、前記減衰振幅手段は、前記第1の伝送経路と前記グランドラインとを用いて、及び前記第2の伝送経路と前記グランドラインとを用いて、それぞれ3つの抵抗チップでπ接続を形成して構成された減衰器からなることが望ましい。この構成によれば、減衰振幅手段を基板部上に簡易に構成することができる。
 本発明の他の一局面に従う方向性結合器は、マイクロ波を伝搬させる導波管と、第1先端部と第1基端部とを有する第1の導体経路と、第2先端部と、前記第1基端部と接続される第2基端部とを有する第2の導体経路と、前記第1及び第2の導体経路上のうちの少なくとも一方に介在され、前記第1基端部と第2基端部との接続点において、前記第1及び第2の導体経路の各々を伝搬するマイクロ波の振幅が略一致するようにマイクロ波を減衰させる振幅減衰手段と、を備え、前記第1先端部が、前記導波管内の導波空間に突出し、前記第2先端部が、前記導波空間に、前記第1先端部に対してマイクロ波の伝搬方向に沿って所定の距離だけ離間して突出し、前記第1先端部と前記第2先端部との間の距離L1と前記第1の導体経路の経路長L2との和L1+L2と、前記第2の導体経路の経路長L3との差が、(2n-1)λ/2(但し、n:整数、λ:マイクロ波の波長)に一致し、前記距離L1と前記経路長L3との和L1+L3と、前記経路長L2との差は、(2n-1)λ/2に一致しないことを特徴とする。
 この構成によれば、第1及び第2の導体経路上の各々を伝搬するマイクロ波の振幅を、第1及び第2の導体経路の接続点において略一致させることができる。従って、導波管の長手方向に沿って互いに対向する向きで伝搬する2つのマイクロ波のうちのいずれか一方のマイクロ波の振幅を、第1及び第2の導体経路の接続点において確実にゼロとすることができる。このため、他方のマイクロ波だけを確実に分岐させることができる。
 上記構成において、少なくとも前記第1及び第2の導体経路の前記第1及び前記第2基端部と、前記振幅減衰手段とを保持する基板部をさらに備えることが望ましい。
 また、前記第1先端部及び第2先端部は、前記マイクロ波の伝搬方向と直交する方向に延びるように配置された第1及び第2の探針の先端部で構成され、前記導波管は、前記第1及び第2の探針を前記導波管内に突出させる第1及び第2の結合穴が形成された側面部を有することが望ましい。この構成によれば、第1先端部及び第2先端部の据え付けや位置決めが容易に行えるようになる。
 この場合、前記基板部の表面に配置された回路パターンをさらに備え、前記回路パターンは、前記第1の導体経路の少なくとも一部を構成する第1のパターン部と、前記第2の導体経路の少なくとも一部を構成する第2のパターン部と、前記第1及び第2のパターン部の前記第1及び前記第2基端部に相当する部分が接続された接続部と、該接続部からマイクロ波電力の検出端へ延びる第3のパターン部と、を含み、前記減衰振幅手段は、前記第1及び第2のパターン部の各々に介在されていることが望ましい。
 本発明のさらに他の一局面に従うプラズマ発生装置では、マイクロ波を発生させるマイクロ波発生手段と、前記マイクロ波発生手段が発生させる前記マイクロ波を受信し、当該マイクロ波のエネルギーを用いてプラズマを発生させるプラズマ発生手段と、前記マイクロ波発生手段と前記プラズマ発生手段との間の導波経路に前記導波管が配置され、当該導波管を伝搬するマイクロ波の一部の電力を取り出す、上記の方向性結合器と、前記方向性結合器により取り出された電力を検出し、当該検出結果を前記マイクロ波発生手段に出力する検出器と、を備え、前記マイクロ波発生手段は、前記検出器から出力された前記検出結果に基づき、自身が発生させるマイクロ波の出力を制御することを特徴とする。
 上記のプラズマ発生装置では、導波管の長手方向に沿って互いに対向する向きで伝搬する入射マイクロ波及び反射マイクロ波のうちの反射マイクロ波の振幅を第1及び第2の導体経路の接続点において確実にゼロとすることができるので、入射マイクロ波だけを確実に分岐させることができる。このため、反射マイクロ波の影響を受けることなく入射マイクロ波の電力を検出することができるので、その検出結果に基づいてマイクロ波の出力を制御し、その出力の安定化を図ることができる。
 以上説明した本発明によれば、導波管を伝搬するマイクロ波を精度よく分岐させることができる、小型化が可能な方向性結合回路基板及びそれを用いた方向性結合器、並びに、プラズマ発生装置を提供することができる。
 本発明に係る方向性結合回路基板及びそれを用いた方向性結合器、並びに、プラズマ発生装置は、半導体ウェハ等の半導体基板に対するエッチング処理装置や成膜装置、プラズマディスプレイパネル等のガラス基板やプリント基板の清浄化処理装置、医療機器等に対する滅菌処理装置、タンパク質の分解装置等に好適に適用することができる。

Claims (10)

  1.  基板部と、
     前記基板部上に配置され、第1端部と第2端部とを有する第1の伝送経路と、
     前記基板部上に配置され、第3端部と、前記第2端部と接続される第4端部とを有する第2の伝送経路と、
     第1基端部と第1先端部とを有し、前記第1基端部が前記第1の伝送経路の第1端部に接続され、前記第1先端部がマイクロ波の伝搬する導波空間に突出する第1の導体と、
     第2基端部と第2先端部とを有し、前記第2基端部が前記第2の伝送経路の第3端部に接続され、前記第2先端部が前記導波空間に、前記第1先端部に対してマイクロ波の伝搬方向に沿って所定の距離だけ離間して突出する第2の導体と、
     前記第1及び第2の伝送経路上のうちの少なくとも一方に介在され、前記第2端部と第4端部との接続点において、前記第1及び第2の伝送経路上の各々を伝搬するマイクロ波の振幅が略一致するようにマイクロ波を減衰させる振幅減衰手段と、を備え、
     前記第1先端部と前記第2先端部との間の距離L1と前記第1の導体の長さを含めた前記第1の伝送経路の経路長L2との和L1+L2と、前記第2の導体の長さを含めた前記第2の伝送経路の経路長L3との差が、(2n-1)λ/2(但し、n:整数、λ:マイクロ波の波長)に一致し、
     前記距離L1と前記経路長L3との和L1+L3と、前記経路長L2との差は、(2n-1)λ/2に一致しないことを特徴とする方向性結合回路基板。
  2.  請求項1に記載の方向性結合回路基板において、
     前記第1先端部及び第2先端部は、前記マイクロ波の伝搬方向と直交する方向に延びるように配置される第1及び第2の探針の先端部で構成されることを特徴とする方向性結合回路基板。
  3.  請求項1又は2に記載の方向性結合回路基板において、
     前記基板部の表面に配置された回路パターンをさらに備え、
     前記回路パターンは、前記第1の伝送経路を構成する第1のパターン部と、前記第2の伝送経路を構成する第2のパターン部と、前記第1のパターン部及び第2のパターン部の前記第2端部及び第4端部に相当する部分が接続された接続部と、該接続部からマイクロ波電力の検出端へ延びる第3のパターン部と、を含み、
     前記減衰振幅手段は、前記第1及び第2のパターン部の各々に介在されていることを特徴とする方向性結合回路基板。
  4.  請求項1又は2に記載の方向性結合回路基板において、
     前記基板部上に配置され、第5端部と第6端部とを有し、所定の第1方向に延びる第3の伝送経路をさらに備え、
     前記第1の伝送経路は、前記基板部上において前記第1方向と異なる第2方向に延び、
     前記第2の伝送経路は、前記基板部上において前記第2方向若しくは前記第1及び第2方向と異なる第3方向に延び、
     前記第1、第3及び第5端部が前記基板部のエッジに位置し、
     前記第2、第4及び第6端部が、前記基板部上の所定位置で接続され、
     前記減衰振幅手段は、前記第1及び第2の伝送経路の各々に介在されていることを特徴とする方向性結合回路基板。
  5.  請求項4に記載の方向性結合回路基板において、
     前記基板部上に配置され、接地電位とされるグランドラインをさらに備え、
     前記減衰振幅手段は、前記第1の伝送経路と前記グランドラインとを用いて、及び前記第2の伝送経路と前記グランドラインとを用いて、それぞれ3つの抵抗チップでπ接続を形成して構成された減衰器からなることを特徴とする方向性結合回路基板。
  6.  マイクロ波を伝搬させる導波管と、
     第1先端部と第1基端部とを有する第1の導体経路と、
     第2先端部と、前記第1基端部と接続される第2基端部とを有する第2の導体経路と、
     前記第1及び第2の導体経路上のうちの少なくとも一方に介在され、前記第1基端部と第2基端部との接続点において、前記第1及び第2の導体経路の各々を伝搬するマイクロ波の振幅が略一致するようにマイクロ波を減衰させる振幅減衰手段と、を備え、
     前記第1先端部が、前記導波管内の導波空間に突出し、
     前記第2先端部が、前記導波空間に、前記第1先端部に対してマイクロ波の伝搬方向に沿って所定の距離だけ離間して突出し、
     前記第1先端部と前記第2先端部との間の距離L1と前記第1の導体経路の経路長L2との和L1+L2と、前記第2の導体経路の経路長L3との差が、(2n-1)λ/2(但し、n:整数、λ:マイクロ波の波長)に一致し、
     前記距離L1と前記経路長L3との和L1+L3と、前記経路長L2との差は、(2n-1)λ/2に一致しないことを特徴とする方向性結合器。
  7.  請求項6に記載の方向性結合器において、
     少なくとも前記第1及び第2の導体経路の前記第1及び前記第2基端部と、前記振幅減衰手段とを保持する基板部をさらに備えることを特徴とする方向性結合器。
  8.  請求項7に記載の方向性結合器において、
     前記第1先端部及び第2先端部は、前記マイクロ波の伝搬方向と直交する方向に延びるように配置された第1及び第2の探針の先端部で構成され、
     前記導波管は、前記第1及び第2の探針を前記導波管内に突出させる第1及び第2の結合穴が形成された側面部を有することを特徴とする方向性結合器。
  9.  請求項7又は8に記載の方向性結合器において、
     前記基板部の表面に配置された回路パターンをさらに備え、
     前記回路パターンは、前記第1の導体経路の少なくとも一部を構成する第1のパターン部と、前記第2の導体経路の少なくとも一部を構成する第2のパターン部と、前記第1及び第2のパターン部の前記第1及び前記第2基端部に相当する部分が接続された接続部と、該接続部からマイクロ波電力の検出端へ延びる第3のパターン部と、を含み、
     前記減衰振幅手段は、前記第1及び第2のパターン部の各々に介在されていることを特徴とする方向性結合器。
  10.  マイクロ波を発生させるマイクロ波発生手段と、
     前記マイクロ波発生手段が発生させる前記マイクロ波を受信し、当該マイクロ波のエネルギーを用いてプラズマを発生させるプラズマ発生手段と、
     前記マイクロ波発生手段と前記プラズマ発生手段との間の導波経路に前記導波管が配置され、当該導波管を伝搬するマイクロ波の一部の電力を取り出す、請求項6~9のいずれかに記載の方向性結合器と、
     前記方向性結合器により取り出された電力を検出し、当該検出結果を前記マイクロ波発生手段に出力する検出器と、を備え、
     前記マイクロ波発生手段は、前記検出器から出力された前記検出結果に基づき、自身が発生させるマイクロ波の出力を制御することを特徴とするプラズマ発生装置。
     
PCT/JP2009/050310 2008-01-15 2009-01-13 方向性結合回路基板、方向性結合器、及びプラズマ発生装置 WO2009090938A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009550015A JPWO2009090938A1 (ja) 2008-01-15 2009-01-13 方向性結合回路基板、方向性結合器、及びプラズマ発生装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008005453 2008-01-15
JP2008-005453 2008-01-15

Publications (1)

Publication Number Publication Date
WO2009090938A1 true WO2009090938A1 (ja) 2009-07-23

Family

ID=40885327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050310 WO2009090938A1 (ja) 2008-01-15 2009-01-13 方向性結合回路基板、方向性結合器、及びプラズマ発生装置

Country Status (3)

Country Link
JP (1) JPWO2009090938A1 (ja)
TW (1) TW200947800A (ja)
WO (1) WO2009090938A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2566020A (en) * 1945-01-04 1951-08-28 Willard H Fenn High-frequency detecting device
US3721921A (en) * 1970-10-13 1973-03-20 Thomson Csf Waveguide directional coupler
JPS5588405A (en) * 1978-12-26 1980-07-04 Tdk Corp Directional coupler
DE3715318A1 (de) * 1987-05-08 1988-11-24 Licentia Gmbh Hohlleiter-auskoppelelement
JPH10126113A (ja) * 1996-10-22 1998-05-15 Nisshin:Kk マイクロ波回路の自動チューニング方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2986166B2 (ja) * 1989-01-30 1999-12-06 株式会社ダイヘン マイクロ波回路のインピーダンス自動調整装置及びインピーダンス自動調整方法
JPH06132710A (ja) * 1992-10-15 1994-05-13 Micro Denshi Kk 方向性結合器
JP2005184751A (ja) * 2003-12-24 2005-07-07 Nec Tokin Corp 方向性結合器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2566020A (en) * 1945-01-04 1951-08-28 Willard H Fenn High-frequency detecting device
US3721921A (en) * 1970-10-13 1973-03-20 Thomson Csf Waveguide directional coupler
JPS5588405A (en) * 1978-12-26 1980-07-04 Tdk Corp Directional coupler
DE3715318A1 (de) * 1987-05-08 1988-11-24 Licentia Gmbh Hohlleiter-auskoppelelement
JPH10126113A (ja) * 1996-10-22 1998-05-15 Nisshin:Kk マイクロ波回路の自動チューニング方法

Also Published As

Publication number Publication date
TW200947800A (en) 2009-11-16
JPWO2009090938A1 (ja) 2011-05-26

Similar Documents

Publication Publication Date Title
JP6731107B2 (ja) 表面波によって励起する寄生素子を有するレーダアンテナアレイ
JP5123154B2 (ja) 誘電体導波管‐マイクロストリップ変換構造
KR102307953B1 (ko) 단일 층 pcb 상의 광대역 도파로 론칭 설계
JP7212638B2 (ja) 導波遷移に対して絞り整合されたpcb
JP5486382B2 (ja) 2次元スロットアレイアンテナ、給電用導波管、及びレーダ装置
JP5580648B2 (ja) 導波管変換器及びレーダ装置
JP6279190B1 (ja) 導波管回路
JP4943328B2 (ja) 広帯域漏れ波アンテナ
JP2012213146A (ja) 高周波変換回路
JP4820828B2 (ja) 方向性結合器及びそれを用いたプラズマ発生装置
JP4820829B2 (ja) 方向性結合器及びそれを用いたプラズマ発生装置
WO2009090938A1 (ja) 方向性結合回路基板、方向性結合器、及びプラズマ発生装置
JP2006101286A (ja) マイクロストリップ線路結合器
JP2007228036A (ja) 導波管/マイクロストリップ線路変換器
US10680307B2 (en) Waveguide to strip line transducer including a waveguide wall forming substrate having an end surface bonded to a second conductor, and a power feed circuit formed therefrom
JP6703442B2 (ja) 電力変換器及びこれを備えたアンテナ装置
JP7329736B2 (ja) 高周波加熱装置
JP2009139274A (ja) 高周波センサ
JP2010074792A (ja) 通信体及びカプラ
JP2010074791A (ja) 通信体及びカプラ
KR20010108549A (ko) 도파관용 방향성 결합기
JP2013254609A (ja) 進行波型加熱装置
JP2016208076A (ja) 高周波回路基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09701634

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009550015

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09701634

Country of ref document: EP

Kind code of ref document: A1