WO2009088045A1 - プラズマジェット点火プラグの点火制御 - Google Patents

プラズマジェット点火プラグの点火制御 Download PDF

Info

Publication number
WO2009088045A1
WO2009088045A1 PCT/JP2009/050153 JP2009050153W WO2009088045A1 WO 2009088045 A1 WO2009088045 A1 WO 2009088045A1 JP 2009050153 W JP2009050153 W JP 2009050153W WO 2009088045 A1 WO2009088045 A1 WO 2009088045A1
Authority
WO
WIPO (PCT)
Prior art keywords
ignition
plasma jet
control system
ignition plug
plug
Prior art date
Application number
PCT/JP2009/050153
Other languages
English (en)
French (fr)
Inventor
Yoshikuni Sato
Daisuke Nakano
Yuichi Yamada
Toru Nakamura
Original Assignee
Ngk Spark Plug Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Spark Plug Co., Ltd. filed Critical Ngk Spark Plug Co., Ltd.
Priority to JP2009523888A priority Critical patent/JPWO2009088045A1/ja
Priority to EP09700927A priority patent/EP2187044A1/en
Priority to US12/452,068 priority patent/US8316823B2/en
Priority to CN2009801015590A priority patent/CN101910615A/zh
Publication of WO2009088045A1 publication Critical patent/WO2009088045A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/50Sparking plugs having means for ionisation of gap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression
    • F02P9/007Control of spark intensity, intensifying, lengthening, suppression by supplementary electrical discharge in the pre-ionised electrode interspace of the sparking plug, e.g. plasma jet ignition

Definitions

  • the present invention relates to a technique for controlling a plasma jet ignition plug for an internal combustion engine that forms plasma and ignites an air-fuel mixture.
  • the plasma jet spark plug has a structure in which a small volume discharge space (cavity) is formed by surrounding the spark discharge gap between the center electrode and the ground electrode with an insulator such as ceramics.
  • An example of the ignition method of the plasma jet ignition plug will be described.
  • a high voltage is applied between the center electrode and the ground electrode to perform spark discharge. Due to the dielectric breakdown that occurs at this time, a current can flow at a relatively low voltage between the center electrode and the ground electrode. Therefore, by further supplying electric power between the center electrode and the ground electrode, the discharge state is changed to form plasma in the cavity.
  • the plasma thus formed is ejected through a communication hole (so-called orifice), the air-fuel mixture is ignited.
  • the present invention is to provide a control technique that improves the durability and ignitability of a plasma jet ignition plug in consideration of the above-described problems.
  • a control system for controlling ignition of a plasma jet ignition plug provided in an internal combustion engine, the detection unit detecting an operation state of the internal combustion engine, and the detected operation state.
  • a determination unit for determining an ignition mode of the plasma jet ignition plug; and applying a first electric power to the plasma jet ignition plug to break down a spark discharge gap of the plasma jet ignition plug, and
  • a control system including an ignition unit that performs ignition control for generating plasma in the vicinity of the spark discharge gap by applying second power to the broken spark discharge gap in the determined ignition mode.
  • the ignition mode can be determined based on the operating state of the internal combustion engine provided with the plasma jet ignition plug, each time, rather than performing the ignition in the same mode In addition, it is possible to perform control capable of improving durability and ignitability of the plasma jet ignition plug.
  • the control system according to the first feature, wherein the deciding unit includes, as the ignition mode, ignition timing of the plasma jet ignition plug and ignition per one combustion stroke.
  • the ignition unit performs the ignition control for the determined number of ignition times per combustion stroke at the determined timing.
  • the ignition timing and the number of ignitions per combustion stroke can be adjusted based on the operating state of the internal combustion engine provided with the plasma jet ignition plug. That is, since ignition can be performed a plurality of times at a timing suitable for the operating state of the internal combustion engine, the chance of ignition can be increased. Thereby, the ignition performance of the plasma jet ignition plug can be improved.
  • the determining unit determines a power amount of the second power based on the detected driving situation.
  • a system is provided.
  • the amount of electric power for generating plasma can be adjusted according to the operating condition of the internal combustion engine. Therefore, since it is not necessary to apply more power than necessary to the plasma jet ignition plug, it is possible to improve the durability of the plasma jet ignition plug.
  • the determination unit adjusts a current value to be supplied to the dielectric discharge spark discharge gap based on the detected operating state.
  • a control system for determining the amount of electric power is provided.
  • control system it is possible to supply the plasma jet ignition plug with the amount of electric power according to the operating condition of the internal combustion engine by adjusting the current value, not the current application time.
  • the determination unit sets a time period for energizing a current to the breakdown spark discharge gap based on the detected operating condition. By adjusting, a control system for determining the amount of electric power is provided.
  • the amount of electric power can be supplied to the plasma jet ignition plug according to the operating state of the internal combustion engine by adjusting the current application time instead of the current value. .
  • the ignition unit is connected to the plasma jet ignition plug and supplies the first power. 1 power supply unit and a second power supply unit connected to the plasma jet ignition plug to supply the second power, wherein the ignition unit is supplied from the second power supply unit
  • a control system is provided that performs the ignition control in the determined ignition mode by variably controlling the amount of electric power.
  • the electric power according to the operating condition of the internal combustion engine can be accurately adjusted and supplied to the plasma jet spark plug.
  • the second power supply unit of the ignition unit is connected to the plasma jet ignition plug, and the second power is supplied to the plasma.
  • a power supply unit that supplies power to the jet ignition plug; and a switch that switches a conduction state between the power supply unit and the plasma jet ignition plug, and the ignition unit is determined by controlling switching of the switch.
  • the ignition mode such as the ignition timing and the number of ignitions is adjusted by a relatively simple circuit in which a switch is provided between the power supply unit and the plasma jet ignition plug. Is possible.
  • the second power supply unit of the ignition unit includes: the power supply unit connected to the plasma jet ignition plug; and the switch.
  • a control system is provided that includes a plurality of sets in parallel, and the ignition unit controls the switching of the plurality of switches, thereby performing the ignition control in the determined ignition mode.
  • the adjustment range of the amount of electric power applied to the plasma jet ignition plug can be increased by using a plurality of power supply units.
  • the second power supply unit of the ignition unit is connected to the plasma jet ignition plug, and the second power is supplied to the plasma.
  • a power supply unit for supplying to the jet ignition plug; a connection portion between the plasma jet ignition plug and the power supply unit; and a switch for switching a conduction state between the ground and the ignition unit, the switching of the switch being controlled thus, a control system for performing the ignition control in the determined ignition mode is provided.
  • control system it is possible to easily adjust the application end timing of the second power by controlling the switching of the switch.
  • the second power supply unit of the ignition unit is connected to the plasma jet ignition plug via a transformer, and the second power supply unit is connected to the plasma jet ignition plug.
  • a power supply unit that supplies power to the plasma jet ignition plug; and a switch that switches a conduction state between a primary side of the transformer and the ground, and the ignition unit controls the switching of the switch,
  • a control system is provided that performs the ignition control in a determined manner of ignition.
  • the ignition mode such as the timing of ignition and the number of times of ignition can be controlled by a relatively simple circuit in which a switch is provided in the grounding part of the transformer connecting the power supply unit and the plasma jet ignition plug. It becomes possible to adjust.
  • the second power supply unit of the ignition unit is connected to the plasma jet ignition plug, and the second power is supplied to the plasma.
  • a control system is provided that includes a power supply unit that supplies a jet ignition plug, and the ignition unit variably controls output power of the power supply unit, thereby performing the ignition control in the determined ignition mode.
  • the amount of power applied to the plasma jet ignition plug can be easily adjusted by relatively simple control of variably controlling the output power of the power supply unit.
  • FIG. 2 is a partial cross-sectional view showing a structure of a plasma jet ignition plug 100.
  • FIG. 2 is an enlarged cross-sectional view of a tip portion of a plasma jet ignition plug 100.
  • FIG. 3 is a flowchart of a control process of the internal combustion engine 300.
  • 3 is an explanatory diagram showing a first mode of an ignition device 320.
  • FIG. 6 is an explanatory view showing a second mode of the ignition device 320.
  • FIG. 6 is an explanatory view showing a third mode of the ignition device 320.
  • FIG. It is explanatory drawing which shows the 4th aspect of the ignition device. It is explanatory drawing which shows the 5th aspect of the ignition device.
  • 3 is a graph showing a relationship between energy applied to the plasma jet ignition plug 100 and durability of the plasma jet ignition plug 100.
  • 3 is a graph showing an ignition timing at which the output of the internal combustion engine 300 becomes maximum. It is a graph which shows the minimum frequency
  • FIG. 1 is an explanatory diagram showing a schematic configuration of a control system that controls ignition of a plasma jet ignition plug.
  • the control system 1 includes an internal combustion engine 300 having a plasma jet ignition plug 100, an ignition device 320 for igniting the plasma jet ignition plug 100, various sensors for detecting the operating status of the internal combustion engine 300, and these It is comprised by ECU (Engine Control Unit) 310 to which this sensor was connected.
  • ECU Engine Control Unit
  • the internal combustion engine 300 is a general 4-stroke type gasoline engine.
  • the internal combustion engine 300 includes an A / F sensor 301 that detects an air-fuel ratio, a knock sensor 302 that detects the occurrence of knocking, a water temperature sensor 303 that detects the temperature of cooling water, a crank angle sensor 304 that detects a crank angle, a throttle A throttle sensor 305 for detecting the opening degree of the EGR valve and an EGR valve sensor 306 for detecting the opening degree of the EGR valve are attached.
  • ECU 310 determines the ignition mode, such as the ignition timing and the number of ignitions of plasma jet spark plug 100, and the amount of energy applied, from the operating status of internal combustion engine 300 detected by these sensors. Based on the determined ignition mode, an ignition signal or a variable energy signal is output to the ignition device 320 of the plasma jet ignition plug 100.
  • the ignition signal is a trigger signal that causes the plasma jet ignition plug 100 to perform a spark discharge.
  • the energy variable signal is a signal for adjusting the amount of energy applied to the plasma jet spark plug 100 for plasma generation after the spark discharge.
  • the ignition device 320 performs ignition control of the plasma jet ignition plug 100 based on the ignition signal received from the ECU 310 and the variable energy signal. Specifically, in response to receiving an ignition signal from the ECU 310, a high voltage (first electric power) is applied to the plasma jet spark plug 100 to generate a spark discharge, and the gap between the spark discharges is broken down. Then, electric power (second electric power) adjusted based on the energy variable signal received from ECU 310 is applied to the spark discharge gap after dielectric breakdown. By doing so, plasma is ejected from the plasma jet ignition plug 100 and the mixture is ignited.
  • first electric power is applied to the plasma jet spark plug 100 to generate a spark discharge, and the gap between the spark discharges is broken down.
  • electric power (second electric power) adjusted based on the energy variable signal received from ECU 310 is applied to the spark discharge gap after dielectric breakdown.
  • the various sensors in the present embodiment correspond to the “detection unit” of the present application
  • the ECU 310 corresponds to the “determination unit”
  • the ignition device 320 corresponds to the “ignition unit”.
  • FIG. 2 is a partial cross-sectional view showing the structure of the plasma jet ignition plug 100.
  • FIG. 3 is an enlarged cross-sectional view of the tip portion of the plasma jet ignition plug 100. 2
  • the axis O direction of the plasma jet ignition plug 100 is the vertical direction in the drawing, the lower side is the front end side of the plasma jet ignition plug 100, and the upper side is the rear end side.
  • the plasma jet ignition plug 100 includes an insulator 10, a metal shell 50 that holds the insulator 10, a central electrode 20 that is held in the insulator 10 in the direction of the axis O, and a metal shell.
  • the ground electrode 30 is welded to the front end portion 59 of the 50 and the terminal fitting 40 provided at the rear end portion of the insulator 10.
  • the insulator 10 is a cylindrical insulating member that is formed by firing alumina or the like and has an axial hole 12 in the direction of the axis O as is well known.
  • a flange portion 19 having the largest outer diameter is formed substantially at the center in the direction of the axis O, and a rear end side body portion 18 is formed on the rear end side.
  • a small leg length 13 is formed. Between the leg long part 13 and the front end side body part 17, it is formed in a step shape.
  • the portion of the shaft hole 12 corresponding to the inner periphery of the long leg portion 13 is smaller in diameter than the portions corresponding to the inner periphery of the front end side body portion 17, the flange portion 19 and the rear end side body portion 18. It is formed as a housing part 15.
  • a center electrode 20 is held inside the electrode housing portion 15.
  • the inner diameter of the shaft hole 12 is further reduced on the distal end side of the electrode housing portion 15, and is formed as a distal end small diameter portion 61.
  • the inner periphery of the tip small-diameter portion 61 is continuous with the tip surface 16 of the insulator 10 and forms the opening 14 of the shaft hole 12.
  • the center electrode 20 is a cylindrical electrode bar formed of Ni-based alloy such as Inconel (trade name) 600 or 601 and has a metal core 23 made of copper or the like having excellent thermal conductivity.
  • a disc-shaped electrode tip 25 made of an alloy containing precious metal or tungsten as a main component is welded to the distal end portion 21 so as to be integrated with the center electrode 20.
  • the electrode tip 25 integrated with the center electrode 20 is also referred to as “center electrode”.
  • the rear end side of the center electrode 20 is enlarged in a bowl shape, and this bowl-shaped portion is in contact with a stepped portion that is the starting point of the electrode housing portion 15 in the shaft hole 12.
  • the center electrode 20 is positioned.
  • the peripheral edge of the distal end surface 26 of the distal end portion 21 of the center electrode 20 (more specifically, the distal end surface 26 of the electrode tip 25 joined integrally with the central electrode 20 at the distal end portion 21 of the central electrode 20) has a diameter. Are in contact with the step portion between the electrode housing portion 15 and the tip small-diameter portion 61.
  • a discharge space having a small volume surrounded by the inner peripheral surface of the tip small diameter portion 61 of the shaft hole 12 and the tip surface 26 of the center electrode 20 is formed.
  • This discharge space is referred to as a cavity 60.
  • the spark discharge performed in the spark discharge gap between the ground electrode 30 and the center electrode 20 passes through the space and the wall surface in the cavity 60.
  • plasma is formed in the cavity 60 by the energy applied after dielectric breakdown by this spark discharge. This plasma is ejected from the opening end 11 of the opening 14.
  • the center electrode 20 is electrically connected to the terminal fitting 40 on the rear end side via a conductive seal body 4 made of a mixture of metal and glass provided in the shaft hole 12. It is connected. With this seal body 4, the center electrode 20 and the terminal fitting 40 are fixed and conducted in the shaft hole 12.
  • a high voltage cable (not shown) is connected to the terminal fitting 40 via a plug cap (not shown). Electric power is applied to the terminal fitting 40 from the ignition device 320 shown in FIG.
  • the main metal fitting 50 is a cylindrical metal fitting for fixing the plasma jet ignition plug 100 to the engine head of the internal combustion engine 300 and holds the insulator 10 so as to surround it.
  • the metal shell 50 is made of an iron-based material, and includes a tool engaging portion 51 into which a plug wrench (not shown) is fitted, and a screw portion 52 that is screwed into an engine head provided on the internal combustion engine 300. Yes.
  • a crimping portion 53 is provided on the rear end side of the metal fitting 50 from the tool engagement portion 51.
  • Annular ring members 6, 7 are interposed between the metal shell 50 from the tool engaging portion 51 to the caulking portion 53 and the rear end side body portion 18 of the insulator 10, and both ring members Between 6 and 7, talc (talc) 9 powder is filled. Then, by crimping the crimping portion 53, the insulator 10 is pressed toward the distal end side in the metal shell 50 via the ring members 6, 7 and the talc 9. As a result, as shown in FIG.
  • the stepped portion between the long leg portion 13 and the distal end side body portion 17 is formed in an annular shape with the locking portion 56 formed in a step shape on the inner peripheral surface of the metal shell 50.
  • the metal shell 50 and the insulator 10 are united by being supported via the packing 80. By this packing 80, airtightness between the metal shell 50 and the insulator 10 is maintained, and the outflow of combustion gas is prevented.
  • a flange portion 54 is formed between the tool engaging portion 51 and the screw portion 52, and is near the rear end side of the screw portion 52, that is, on the seating surface 55 of the flange portion 54. Is fitted with a gasket 5.
  • a ground electrode 30 is provided at the tip 59 of the metal shell 50.
  • the ground electrode 30 is made of a metal excellent in spark wear resistance, and an Ni-based alloy such as Inconel (trade name) 600 or 601 is used as an example.
  • the ground electrode 30 is formed in a disk shape having a communication hole 31 in the center, and its thickness direction is aligned with the direction of the axis O, and in contact with the tip surface 16 of the insulator 10,
  • the metal shell 50 is engaged with an engagement portion 58 formed on the inner peripheral surface of the tip portion 59.
  • the outer peripheral edge is laser welded to the engaging portion 58 over the entire circumference with the front end surface 32 aligned with the front end surface 57 of the metal shell 50, and the ground electrode 30 is joined integrally with the metal shell 50.
  • the communication hole 31 of the ground electrode 30 is formed so that the minimum inner diameter thereof is at least larger than the inner diameter of the opening 14 (opening end 11) of the insulator 10, and the cavity is formed through the communication hole 31.
  • the interior of 60 is communicated with the outside air.
  • FIG. 4 is a flowchart of a control process of the internal combustion engine 300 repeatedly executed by the ECU 310.
  • the ECU 310 first takes in the temperature W of the cooling water using the water temperature sensor 303 (step S10), and determines whether the warming up of the internal combustion engine 300 is completed (step S10). Step S20). If it is determined that the temperature W of the cooling water is equal to or higher than a predetermined temperature (for example, 70 ° C.) and the warming is finished (step S20: Yes), the ECU 310 detects the rotational speed R using the crank angle sensor 304. At the same time (step S30), the throttle opening T is detected using the throttle sensor 305 (step S40). Further, the knocking strength K is detected using the knock sensor 302 (step S50).
  • a predetermined temperature for example, 70 ° C.
  • the ECU 310 determines the ignition timing D and the number of ignition times N of the plasma jet ignition plug 100 based on these values. (Steps S60 and S70).
  • the ignition timing D and the number of ignitions N are determined by, for example, the following multidimensional function.
  • step S80 ECU 310 performs a warm-up correction (step S80).
  • the warm-up correction is a process for improving the ignitability when the internal combustion engine 300 is started. That is, ECU 310 detects rotation speed R using crank angle sensor 304 (step S90), and detects throttle opening T using throttle sensor 305 (step S100). Further, the knocking strength K is detected using the knock sensor 302 (step S110). When these values are detected, ECU 310 determines ignition timing D 'of plasma jet ignition plug 100 and the number of times of ignition N' based on these values (steps S120 and S130). When not warming up, the ignition timing D is advanced from the normal time, and the ignition frequency N is increased from the normal time, whereby the ignitability can be improved.
  • the ECU 310 When the ignition timing D and the number of ignition times N are determined by the above processing, the ECU 310 further detects the air-fuel ratio A using the A / F sensor 301 (step S140) and also uses the EGR valve sensor 306 to detect the EGR valve. Is detected (step S150). Finally, ECU 310 determines the amount of energy J (peak current value and energization time) to be applied to plasma jet spark plug 100 after the dielectric breakdown of the spark discharge gap using the various values described above (step S160). The energy amount J is determined by, for example, the following multidimensional function.
  • the ECU 310 repeatedly determines the ignition timing D, the number N of ignitions, and the energy amount J to be applied according to the operating conditions of the internal combustion engine 300 by repeatedly executing the control process described above. it can.
  • the ECU 310 controls the ignition device 320 based on the ignition timing D, the number N of ignitions, and the energy amount J thus determined, and causes the plasma jet ignition plug 100 to be ignited.
  • the ignition timing D, the number of times of ignition N, and the amount of energy J to be applied are determined in advance by defining the various functions and control map based on the experimental results obtained by various embodiments described later. By using the map, the ignition timing D and the number N of times of ignition are determined so that the amount of energy J to be applied is small and the certainty of ignition is increased.
  • the ignition device 320 shown in FIG. 1 can be realized with various circuit configurations. Therefore, in the following, four types of aspects of the ignition device 320 will be described. Needless to say, the mode of the ignition device 320 is not limited to the mode described below, and various modes can be adopted.
  • FIG. 5 is an explanatory view showing a first mode of the ignition device 320.
  • the ignition device of the first aspect is referred to as “ignition device 320a”.
  • the ignition device 320a includes a trigger discharge circuit 340a for causing dielectric breakdown in the plasma jet ignition plug 100 and a plasma discharge circuit 350b for applying energy to the plasma jet ignition plug 100 after dielectric breakdown. I have.
  • the trigger discharge circuit 340a includes a battery 321 having a voltage of 12 V, a step-up transformer 323 that boosts the voltage of the battery 321 to a voltage of tens of thousands V, a diode 324 for preventing a reverse current flow, a resistor 325, , And a switch 326.
  • the battery 321, the step-up transformer 323, the diode 324, and the resistor 325 are connected in series to the center electrode 20 of the plasma jet ignition plug 100.
  • the diode 324 has an anode connected to the secondary high-voltage part of the step-up transformer 323 and a cathode connected to one end of the resistor 325.
  • the switch 326 is provided at the primary side ground portion of the step-up transformer 323.
  • the switch 326 can be constituted by, for example, a semiconductor switch made of an N-channel MOS-FET.
  • the ignition device 320a controls the opening and closing of the switch 326 based on the ignition signal received from the ECU 310, thereby adjusting the ignition timing and the number of ignitions of the plasma jet ignition plug 100.
  • the plasma discharge circuit 350b includes a high voltage power source 322 having a voltage of 500 to 1000 V, a switch 327, a coil 328, a diode 329 for preventing a reverse current flow, and a capacitor 330.
  • the high voltage power source 322, the switch 327, the coil 328, and the diode 329 are connected in series to the center electrode 20 of the plasma jet ignition plug 100.
  • the diode 329 has an anode connected to one end of the coil 328 and a cathode connected to the center electrode 20 of the plasma jet ignition plug 100.
  • the capacitor 330 corresponds to a “power supply unit” of the present application, and is connected between the high voltage power supply 322 and the switch 327 in a state where one end is grounded.
  • the switch 327 can be constituted by, for example, a semiconductor switch made of a P-channel MOS-FET. Note that a power source other than the capacitor 330 can be employed as long as the power source has a small internal resistance and can extract a large amount of energy in a short time.
  • the capacitor 330 is charged by the high voltage power source 322.
  • the energy charged in the capacitor 330 is applied to the center electrode 20 of the plasma jet spark plug 100 when the spark discharge gap of the plasma jet spark plug 100 breaks down and the switch 327 is turned on by the ECU 310.
  • plasma is formed in the plasma jet ignition plug 100.
  • the ignition device 320a adjusts the amount of energy applied to the plasma jet ignition plug 100 by duty-controlling the switching of the switch 327 based on the variable energy signal received from the ECU 310.
  • the ignition timing and the number of ignitions can be adjusted by a relatively simple circuit in which a switch is provided between the power supply unit and the plasma jet ignition plug. become.
  • FIG. 6 is an explanatory view showing a second mode of the ignition device 320.
  • the ignition device of the second aspect is referred to as “ignition device 320b”.
  • the configuration of the trigger discharge circuit 340b of the ignition device 320b is the same as that of the trigger discharge circuit 340a shown in FIG.
  • the configuration of the plasma discharge circuit 350b is a configuration in which a capacitor 330, a switch 327, a coil 328, and a diode 329 are connected between the high voltage power source 322 and the plasma jet ignition plug 100. Yes. That is, energy output from a maximum of N capacitors 330 can be input in parallel to the plasma jet ignition plug 100 after dielectric breakdown.
  • the N switches 327 are controlled based on the energy variable signal received from the ECU 310, so that the application can be performed in a larger adjustment range than that of the first aspect.
  • the amount of energy to be adjusted can be adjusted.
  • one end of the capacitor 330 is connected to the connection point between the high voltage power source 322 and the switch 327, but one end of the capacitor 330 is connected to the connection point between the switch 327 and the coil 328 and the other end is connected. It may be grounded.
  • FIG. 7 is an explanatory view showing a third mode of the ignition device 320.
  • the ignition device of the third aspect is referred to as “ignition device 320c”.
  • the configuration of the trigger discharge circuit 340c of the ignition device 320c is the same as that of the trigger discharge circuit 340a shown in FIG.
  • the switch 327 is omitted from the configuration of the plasma discharge circuit 350a shown in FIG. 5, and a switch 331 having one end grounded is newly provided between the coil 328 and the diode 329. It has a provided structure.
  • the ignition device 320c adjusts the energy applied to the plasma jet ignition plug 100 by opening and closing the switch 331 based on the variable energy signal received from the ECU 310. Specifically, the electric charge charged in the capacitor 330 can be applied to the plasma jet ignition plug 100 by turning off the switch. On the other hand, when the switch is turned on, electric charge flows from the capacitor 330 to the ground, so that application of energy to the plasma jet ignition plug 100 can be stopped.
  • the ignition device 320 of the third aspect as described above it is possible to easily adjust especially the timing of stopping the energy applied to the plasma jet ignition plug 100 by controlling the switching of the switch 331.
  • FIG. 8 is an explanatory view showing a fourth mode of the ignition device 320.
  • the ignition device of the fourth aspect is referred to as “ignition device 320d”.
  • the configuration of the trigger discharge circuit 340d of the ignition device 320d is the same as that of the trigger discharge circuit 340a shown in FIG.
  • the plasma discharge circuit 350d includes a battery 332 having a voltage of 12V, a large current transformer 333, a coil 328, a diode 329, and a switch 334.
  • the large current transformer 333 is connected between the coil 328 and the battery 332, and the switch 334 is provided at the primary side ground portion of the large current transformer 333.
  • the ratio of the number of turns on the primary side and the number of turns on the secondary side of the large current transformer can be, for example, 1: 1.
  • the ignition device 320d can adjust the amount of energy applied to the plasma jet ignition plug 100 by opening and closing a switch 334 provided in the grounding portion of the large current transformer 333 based on the energy variable signal received from the ECU 310. it can.
  • the ignition timing and the number of ignitions are adjusted by a relatively simple circuit in which a switch is provided in the grounding portion of the transformer connecting the power source and the plasma jet ignition plug. Is possible.
  • FIG. 9 is an explanatory view showing a fifth mode of the ignition device 320.
  • the ignition device of the fifth aspect is referred to as “ignition device 320e”.
  • the configuration of the trigger discharge circuit 340e of the ignition device 320e is the same as that of the trigger discharge circuit 340a shown in FIG.
  • the plasma discharge circuit 350e omits the switch 327 from the configuration of the plasma discharge circuit 350a shown in FIG. 5, and is provided with a high voltage power source 342 capable of variably controlling the output power instead of the high voltage power source 322. It has a structure.
  • the ignition device 320e can adjust the amount of energy applied to the plasma jet ignition plug 100 by variably controlling the output power of the high voltage power source 342 based on the energy variable signal received from the ECU 310.
  • the amount of power applied to the plasma jet ignition plug can be easily adjusted by a relatively simple control of variably controlling the output power of the power supply unit.
  • FIG. 10 is an explanatory view showing a sixth mode of the ignition device 320.
  • the ignition device of the sixth aspect is referred to as “ignition device 320f”.
  • the configuration of the trigger discharge circuit 340f of the ignition device 320f is the same as that of the trigger discharge circuit 340a shown in FIG.
  • the configuration of the plasma discharge circuit 350f includes a high voltage power source 322, a resistor 349, a diode 348, a switch 347, a capacitor 346, a diode 345, a transformer 344, a coil 328, and a diode 343. It is constituted by.
  • the diode 343 has an anode connected to the center electrode 20 of the plasma jet ignition plug 100 and a cathode connected to one end of the coil 328.
  • the other end of the coil 328 is connected to the secondary high voltage section of the transformer 344.
  • the diode 345 has an anode connected to a connection point between the primary high-voltage portion of the transformer and one end of the capacitor 346, and a cathode grounded.
  • the other end of the capacitor 346 is grounded via a switch 347.
  • the diode 348 has a cathode connected to the connection point between the other end of the capacitor 346 and the switch 347, and an anode connected to one end of the resistor 349.
  • the other end of the resistor 349 is connected to the high voltage power source 322.
  • the plasma discharge circuit 350f of the ignition device of the sixth aspect has a configuration in which the transformer 344, the diode 345, the capacitor 346, the switch 347, and the diode 348 are connected in N sets, and the coil 328 and the resistor 349 are connected. ing.
  • the amount of energy to be applied can be adjusted by controlling the N switches 347 based on the energy variable signal received from the ECU 310. Further, even when applying negative discharge in which a negative high voltage is applied to the center electrode 20 of the plasma jet ignition plug 100 for discharge, the voltage charged in the capacitor 346 can be easily monitored. Further, by including the transformer 344, a power supply having a low output voltage can be applied as the high-voltage power supply 322. Accordingly, an inexpensive component having a low withstand voltage can be used as a circuit component. .
  • the trigger discharge circuits 340a, 340b, 340c, 340d, 340e, and 340f correspond to the “first power supply unit” of the present application
  • the plasma discharge circuits 350a, 350b, 350c, 350d, 350e, and 350f correspond to the “second power supply unit” of the present application. It corresponds to a “power supply unit”.
  • Example 1 In Example 1, the grounds for reducing the amount of energy applied to the plasma jet ignition plug 100 in order to improve the durability of the plasma jet ignition plug 100 will be described.
  • FIG. 11 is a graph showing the relationship between the energy applied to the plasma jet ignition plug 100 and the durability of the plasma jet ignition plug 100.
  • the vertical axis indicates the amount of energy applied to the plasma jet ignition plug 100 by the plasma discharge circuit 350 per ignition.
  • the horizontal axis indicates the time when the average value of the discharge voltage exceeded 30 kV when ignition was performed 100 times. That is, it shows the time when the spark discharge gap widens due to electrode consumption and the discharge voltage becomes higher than the standard accordingly.
  • This experiment is performed by repeatedly igniting the plasma jet spark plug 100 at a cycle of 100 Hz in air pressurized to 0.4 MPa. Under this environment, by repeating the ignition for 200 hours, an experimental result corresponding to traveling of an actual vehicle of about 20,000 km can be obtained.
  • Example 2 shows how to determine the ignition timing of the plasma jet spark plug 100.
  • the air-fuel ratio is 16
  • the EGR rate is 0%
  • the energy applied to the plasma jet spark plug 100 is 50 mJ
  • the number of ignitions is one cycle (one combustion stroke). The ignition timing at which the output of the internal combustion engine 300 is maximized under the condition of once was determined by experiment.
  • FIG. 12 is a graph showing the ignition timing at which the output of the internal combustion engine 300 is maximized, obtained by the above experiment.
  • the x-axis indicates the engine speed
  • the y-axis indicates the throttle opening
  • the z-axis indicates the ignition timing (BTDC °).
  • the ECU 310 stores the graph shown in FIG. 12 in advance as a map, and refers to this map based on the throttle opening detected by the throttle sensor 305 and the rotation speed detected by the crank angle sensor 304.
  • the ignition timing at which the output becomes highest can be determined.
  • Example 3 In Example 3, at the ignition timing determined from the graph of Example 2, the number of ignitions per cycle (per combustion stroke) that can be reliably ignited was obtained by experiments. In this experiment, in the internal combustion engine 300 with a displacement of 2.0 L, the minimum number of times that the misfire probability is 0.1% or less is determined with the energy applied to the plasma jet ignition plug 100 being 25 mJ.
  • FIG. 13 is a graph showing the minimum number of ignitions at which the misfire probability is 0.1% or less under the above conditions.
  • the horizontal axis indicates the rotation speed
  • the vertical axis indicates the throttle opening.
  • the misfire probability can be reduced to 0.1% or less by setting the number of ignitions to three. Further, under conditions where the rotation speed exceeded 3000 rotations, the misfire probability could be reduced to 0.1% or less even if the number of ignitions was one.
  • the ECU 310 stores the graph shown in FIG. 13 in advance as a map, and refers to this map based on the throttle opening detected by the throttle sensor 305 and the rotation speed detected by the crank angle sensor 304.
  • the number of ignitions with a high ignition rate can be obtained.
  • a normal spark plug has a spark discharge time of about 3 msec.
  • the plasma jet ignition plug 100 takes only about 20 ⁇ s for one ignition including plasma ejection. Therefore, the ECU 310 can perform ignition multiple times during one combustion stroke by performing ignition every 20 ⁇ s from the ignition timing determined based on FIG. 11 by the number of times determined based on FIG. 13. .
  • Example 4 In Example 4, an experiment was performed in which the operating condition of the internal combustion engine 300 was changed by one and the minimum applied energy at which the misfire probability was 0.1% or less was obtained. In this experiment, basically, the operating conditions of the internal combustion engine 300 are as follows: rotational speed 700 rpm, air-fuel ratio 16, ignition frequency 1 time (/ 1 cycle), throttle opening 0.25, ignition timing BTDC 5 °, EGR rate 10%.
  • FIG. 14 is a graph showing experimental results obtained by determining the minimum applied energy at which the misfire probability is 0.1% or less while changing the rotational speed of the internal combustion engine 300.
  • the horizontal axis indicates the rotation speed
  • the vertical axis indicates the energy applied to the plasma jet ignition plug 100. As shown in the figure, it is understood that the energy applied to the plasma jet ignition plug 100 can be reduced as the rotational speed of the internal combustion engine 300 is increased.
  • FIG. 15 is a graph showing experimental results obtained by determining the minimum applied energy at which the misfire probability is 0.1% or less while changing the throttle opening.
  • the horizontal axis indicates the throttle opening, and the vertical axis indicates the energy applied to the plasma jet ignition plug 100. As shown in the figure, it is understood that the energy applied to the plasma jet ignition plug 100 can be reduced as the throttle opening of the internal combustion engine 300 is increased.
  • FIG. 16 is a graph showing experimental results obtained by determining the minimum applied energy at which the misfire probability is 0.1% or less while changing the air-fuel ratio.
  • the horizontal axis indicates the air-fuel ratio
  • the vertical axis indicates the energy applied to the plasma jet ignition plug 100. As shown in the figure, it is understood that the energy applied to the plasma jet ignition plug 100 can be reduced as the air-fuel ratio of the internal combustion engine 300 is lowered, that is, as the fuel ratio is increased.
  • FIG. 17 is a graph showing experimental results obtained by determining the minimum applied energy at which the misfire probability is 0.1% or less while changing the ignition timing.
  • the horizontal axis indicates the ignition timing, and the vertical axis indicates the energy applied to the plasma jet ignition plug 100. As shown in the figure, it is understood that the energy applied to the plasma jet ignition plug 100 can be reduced under the above conditions when the ignition timing BTDC is in the range of 0 ° to 20 °.
  • FIG. 18 is a graph showing experimental results obtained by determining the minimum applied energy at which the misfire probability is 0.1% or less while changing the number of ignitions.
  • the horizontal axis indicates the number of ignitions, and the vertical axis indicates the energy applied to the plasma jet ignition plug 100. As shown in the figure, it is understood that the energy applied to the plasma jet spark plug 100 can be reduced as the number of ignitions is increased.
  • FIG. 19 is a graph showing experimental results obtained by determining the minimum applied energy at which the misfire probability is 0.1% or less while changing the EGR rate.
  • the horizontal axis represents the EGR rate
  • the vertical axis represents the energy applied to the plasma jet ignition plug 100. As shown in the figure, it is understood that the energy applied to the plasma jet ignition plug 100 can be reduced as the EGR rate is reduced to reduce the circulation amount of the exhaust gas.
  • the number of revolutions of the internal combustion engine 300 is increased, the throttle opening is increased, the air-fuel ratio is decreased, and the ignition timing BTDC is adjusted to a range of 0 ° to 20 ° to It can be seen that the energy applied to the plasma jet ignition plug 100 can be reduced by performing at least part of the control of increasing the number of times and further reducing the EGR rate. By performing such control, it is possible to improve the durability of the plasma jet ignition plug 100.
  • Example 5 In the fifth embodiment, an experiment was performed in which the maximum current to be passed through the plasma jet ignition plug 100 and the duration of energization were changed to determine the minimum energy at which the misfire probability was 0.1% or less.
  • the operating conditions of the internal combustion engine 300 were set to a rotation speed of 700 rpm, an air-fuel ratio of 16, an ignition frequency of once (/ 1 cycle), a throttle opening of 0.25, an ignition timing BTDC of 5 °, and an EGR rate of 0%.
  • FIG. 20 is a graph showing experimental results obtained by determining the minimum energy at which the misfire probability is 0.1% or less by changing the current maximum value.
  • the horizontal axis indicates the maximum current value of the energized current, and the vertical axis indicates the minimum energy at which the misfire probability is 0.1% or less. As shown in the figure, it can be seen that the required energy gradually decreases as the maximum value of the current supplied to the plasma jet ignition plug 100 is increased.
  • FIG. 21 is a graph showing the experimental results obtained by determining the minimum energy at which the misfire probability is 0.1% or less by changing the current application time.
  • the horizontal axis represents the current application time, and the vertical axis represents the minimum energy at which the misfire probability is 0.1% or less.
  • the required energy gradually increases as the time for applying current to the plasma jet ignition plug 100 is increased.
  • Example 5 when energy is applied to the plasma jet ignition plug 100 by the plasma discharge circuit 350, the current maximum value is increased or the current application time is increased. This shows that the amount of energy to be applied can be reduced. Therefore, it is possible to improve the durability of the plasma jet ignition plug 100 by performing these controls. However, since the time during which current can be supplied varies depending on the ignition timing, the number of ignitions, and the number of revolutions, it is preferable to reduce the amount of energy to be applied by adjusting the maximum current value rather than the current supply time.
  • Example 6 In the sixth embodiment, the misfire is changed by changing the time for starting application of energy to the plasma jet ignition plug 100 (hereinafter referred to as “application start time”) and the time for stopping (hereinafter referred to as “application stop time”).
  • application start time the time for starting application of energy to the plasma jet ignition plug 100
  • application stop time the time for stopping
  • An experiment was conducted to find the minimum energy with a probability of 0.1% or less.
  • the operating conditions of the internal combustion engine 300 were set to a rotation speed of 700 rpm, an air-fuel ratio of 16, an ignition frequency of once (/ 1 cycle), a throttle opening of 0.25, an ignition timing BTDC of 5 °, and an EGR rate of 0%.
  • 22 and 23 are explanatory diagrams showing the concept of the application start time and the application stop time.
  • the timing indicated by “t0” indicates the timing at which the spark discharge gap of the plasma jet spark plug 100 is broken down due to the discharge by the trigger discharge circuit 340.
  • “T1” indicates a time (application start time) at which application of energy (current) is started from the plasma discharge circuit 350 to the plasma jet ignition plug 100 after the timing t0.
  • “t2” indicates a time from when the application of energy is started until the application is stopped (application stop time).
  • FIG. 24 is a graph showing the experimental results of determining the minimum energy at which the misfire probability is 0.1% while changing the application start time t1 and the application stop time t2.
  • the horizontal axis indicates the application start time t1
  • the vertical axis indicates the application stop time t2.
  • the present invention is not limited to these forms and examples, and it goes without saying that various configurations can be adopted without departing from the spirit of the present invention.
  • the plasma jet ignition plug 100 is used as an ignition device for a gasoline engine.
  • it can also be used as a start assist device (glow plug) for a diesel engine or the like.
  • the ignition timing, the number of ignition times, and the energy amount are all determined based on each detection value, but at least one of these is determined as the detection value. It is also possible to make a decision based on the above and set the rest to a fixed value.

Abstract

内燃機関に備えられたプラズマジェット点火プラグの点火を制御する制御システムは、内燃機関の運転状況を検出し、こうして検出された運転状況に基づき、プラズマジェット点火プラグの点火の態様を決定する。制御システムは、プラズマジェット点火プラグに第1の電力を印加して火花放電間隙を絶縁破壊させるとともに、絶縁破壊された火花放電間隙に第2の電力を印加することで火花放電間隙付近にプラズマを発生させる点火制御を行う。制御システムは、この点火制御を、前述のように決定された点火の態様で行う。

Description

プラズマジェット点火プラグの点火制御
 本発明は、プラズマを形成して混合気への点火を行う内燃機関用のプラズマジェット点火プラグを制御する技術に関する。
発明の背景
 従来、自動車用の内燃機関であるエンジンの点火プラグには、火花放電により混合気への着火を行うスパークプラグが使用されている。近年では、内燃機関の一層の高出力化や低燃費化が求められている。そのため、燃焼の広がりが速く、着火限界空燃比のより高い希薄混合気に対して着火可能なプラズマジェット点火プラグの開発が進められている(例えば特許文献1参照)。
特開2007-287666号公報
 プラズマジェット点火プラグは、中心電極と接地電極との間の火花放電間隙の周囲をセラミックス等の絶縁碍子でとりかこみ、小さな容積の放電空間(キャビティ)を形成した構造を有している。プラズマジェット点火プラグの点火方式の一例を説明すると、混合気への点火の際に、まず、中心電極と接地電極との間に高電圧を印加し、火花放電を行う。このときに生じた絶縁破壊によって、中心電極と接地電極との間には比較的低電圧で電流を流すことができるようになる。そこで更に、中心電極と接地電極との間に電力を供給することで放電状態を遷移させ、キャビティ内でプラズマを形成する。こうして形成されたプラズマが連通孔(いわゆるオリフィス)を通じて噴出されると、混合気への着火が行われる。
 しかし、プラズマジェット点火プラグにプラズマを生じさせるためには、大きな電力の印加が必要であるため、プラズマジェット点火プラグの耐久性は、従来のスパークプラグよりも劣るという問題があった。また、キャビティからプラズマが噴出される時間が短時間であるため、着火の確実性が低い場合があった。
発明の概要
 本発明は、上述した問題を考慮し、プラズマジェット点火プラグの耐久性や着火性を向上させる制御技術を提供することにある。
 本発明の第1の特徴により、内燃機関に備えられたプラズマジェット点火プラグの点火を制御する制御システムであって、前記内燃機関の運転状況を検出する検出部と、前記検出された運転状況に基づき、前記プラズマジェット点火プラグの点火の態様を決定する決定部と、前記プラズマジェット点火プラグに第1の電力を印加して該プラズマジェット点火プラグの火花放電間隙を絶縁破壊させた後に、前記絶縁破壊された火花放電間隙に第2の電力を印加することで前記火花放電間隙付近にプラズマを発生させる点火制御を、前記決定された点火の態様で行う点火部とを備える制御システムが提供される。
 上記第1の特徴による制御システムであれば、プラズマジェット点火プラグが備えられた内燃機関の運転状況に基づいて、点火の態様を決定することができるので、毎回、同じ態様で点火を行うよりも、プラズマジェット点火プラグの耐久性や着火性を向上可能な制御を行うことが可能になる。
本願発明の第2の特徴により、前記第1の特徴の制御システムであって、前記決定部は、前記点火の態様として、前記プラズマジェット点火プラグの点火のタイミングと、燃焼行程1回当たりの点火回数とを決定し、前記点火部は、前記点火制御を、前記決定されたタイミングで、燃焼行程1回につき前記決定された点火回数分行う制御システムが提供される。
 上記の第2の特徴による制御システムであれば、プラズマジェット点火プラグが備えられた内燃機関の運転状況に基づいて、点火のタイミングと燃焼行程1回当たりの点火回数とを調整することができる。つまり、内燃機関の運転状況に適したタイミングで、複数回の点火を行うことができるので、着火の機会を増加させることができる。これにより、プラズマジェット点火プラグの着火性能を向上させることが可能になる。
本願発明の第3の特徴により、上記第1または第2の特徴の制御システムであって、前記決定部は、前記検出された運転状況に基づき、前記第2の電力の電力量を決定する制御システムが提供される。
 上記第3の特徴による制御システムであれば、プラズマ生成のための電力量を、内燃機関の運転状況に応じて調整することができる。そのため、必要以上の電力をプラズマジェット点火プラグに印加する必要がないので、プラズマジェット点火プラグの耐久性を向上させることが可能になる。
本願発明の第4の特徴により、上記第3の特徴の制御システムであって、前記決定部は、前記検出された運転状況に基づき、前記絶縁破壊された火花放電間隙に通電する電流値を調整することで、前記電力量を決定する制御システムが提供される。
 上記第4の特徴による制御システムであれば、電流の通電時間ではなく、電流値を調整することで、内燃機関の運転状況に応じた電力量をプラズマジェット点火プラグに供給することができる。
本願発明の第5の特徴により、上記第3の特徴の制御システムであって、前記決定部は、前記検出された運転状況に基づき、前記絶縁破壊された火花放電間隙に電流を通電する時間を調整することで、前記電力量を決定する制御システムが提供される。
 上記第5の特徴による制御システムであれば、電流の電流値ではなく、電流の通電時間を調整することで、内燃機関の運転状況に応じて電力量をプラズマジェット点火プラグに供給することができる。
 本願発明の第6の特徴により、上記第1乃至第5の特徴のいずれかの制御システムであって、前記点火部は、前記プラズマジェット点火プラグに接続されて前記第1の電力を供給する第1電力供給部と、前記プラズマジェット点火プラグに接続されて前記第2の電力を供給する第2電力供給部とを備え、前記点火部は、前記第2電力供給部から供給される前記第2の電力の電力量を可変制御することで、前記決定された点火の態様で前記点火制御を行う制御システムが提供される。
 上記第6の特徴による制御システムであれば、プラズマを発生させるために第2電力供給部から供給される第2の電力の電力量を直接可変制御するので、内燃機関の運転状況に応じた電力量を精度良く調整してプラズマジェット点火プラグに供給することができる。
本願発明の第7の特徴により、上記第6の特徴の制御システムであって、前記点火部の前記第2電力供給部は、前記プラズマジェット点火プラグに接続され、前記第2の電力を前記プラズマジェット点火プラグに供給する電源部と、該電源部と前記プラズマジェット点火プラグとの間の導通状態を切り換えるスイッチとを備え、前記点火部は、前記スイッチの切り換えを制御することにより、前記決定された点火の態様で前記点火制御を行う制御システムが提供される。
 上記第7の特徴による制御システムであれば、電源部とプラズマジェット点火プラグとの間にスイッチを設けるという、比較的単純な回路によって、点火のタイミングや点火回数などの点火の態様を調整することが可能になる。
本願発明の第8の特徴により、上記第7の特徴の制御システムであって、前記点火部の前記第2電力供給部は、前記プラズマジェット点火プラグに接続された前記電源部と前記スイッチとの組を並列的に複数備え、前記点火部は、前記複数のスイッチの切り換えを制御することにより、前記決定された点火の態様で前記点火制御を行う制御システムが提供される。
 上記第8の特徴による制御システムであれば、複数の電源部を用いることで、プラズマジェット点火プラグに印加する電力量の調整範囲を大きく採ることができる。
本願発明の第9の特徴により、上記第6の特徴の制御システムであって、前記点火部の前記第2電力供給部は、 前記プラズマジェット点火プラグに接続され、前記第2の電力を前記プラズマジェット点火プラグに供給する電源部と、前記プラズマジェット点火プラグと前記電源部との接続部分と、アースとの間の導通状態を切り換えるスイッチとを備え、前記点火部は、前記スイッチの切り換えを制御することにより、前記決定された点火の態様で前記点火制御を行う制御システムが提供される。
 上記第9の特徴による制御システムであれば、上記スイッチの切り換えを制御することで、第2の電力の印加終了タイミングを容易に調整することができる。
本願発明の第10の特徴により、上記第6の特徴の制御システムであって、前記点火部の前記第2電力供給部は、前記プラズマジェット点火プラグにトランスを介して接続され、前記第2の電力を前記プラズマジェット点火プラグに供給する電源部と、前記トランスの一次側とアースとの間の導通状態を切り換えるスイッチとを備え、前記点火部は、前記スイッチの切り換えを制御することにより、前記決定された点火の態様で前記点火制御を行う制御システムが提供される。
 上記第10の特徴による制御システムであれば、電源部とプラズマジェット点火プラグとを結ぶトランスの接地部にスイッチを設けるという比較的単純な回路によって、点火のタイミングや点火回数などの点火の態様を調整することが可能になる。
本願発明の第11の特徴により、上記第6の特徴の制御システムであって、前記点火部の前記第2電力供給部は、前記プラズマジェット点火プラグに接続され、前記第2の電力を前記プラズマジェット点火プラグに供給する電源部を備え、前記点火部は、前記電源部の出力電力を可変制御することで、前記決定された点火の態様で前記点火制御を行う制御システムが提供される。
 上記第11の特徴による制御システムであれば、電源部の出力電力を可変制御するという比較的簡単な制御によって、プラズマジェット点火プラグに印加する電力量を容易に調整することができる。
プラズマジェット点火プラグの点火を制御する制御システムの概略構成を示す説明図である。 プラズマジェット点火プラグ100の構造を示す部分断面図である。 プラズマジェット点火プラグ100の先端部分を拡大した断面図である。 内燃機関300の制御処理のフローチャートである。 点火装置320の第1の態様を示す説明図である。 点火装置320の第2の態様を示す説明図である。 点火装置320の第3の態様を示す説明図である。 点火装置320の第4の態様を示す説明図である。 点火装置320の第5の態様を示す説明図である。 点火装置320の第6の態様を示す説明図である。 プラズマジェット点火プラグ100に印加するエネルギとプラズマジェット点火プラグ100の耐久性との関係を示すグラフである。 内燃機関300の出力が最大となる点火時期を示すグラフである。 失火確率が0.1%以下となる点火回数の最小回数を示すグラフである。 内燃機関300の回転数を変化させつつ失火確率が0.1%以下となる最小の印加エネルギを求めた実験結果を示すグラフである。 スロットル開度を変化させつつ失火確率が0.1%以下となる最小の印加エネルギを求めた実験結果を示すグラフである。 空燃比を変化させつつ失火確率が0.1%以下となる最小の印加エネルギを求めた実験結果を示すグラフである。 点火時期を変化させつつ失火確率が0.1%以下となる最小の印加エネルギを求めた実験結果を示すグラフである。 点火回数を変化させつつ失火確率が0.1%以下となる最小の印加エネルギを求めた実験結果を示すグラフである。 EGR率を変化させつつ失火確率が0.1%以下となる最小の印加エネルギを求めた実験結果を示すグラフである。 電流最大値を変化させて失火確率が0.1%以下となる最小エネルギを求めた実験結果を示すグラフである。 電流の通電時間を変化させて失火確率が0.1%以下となる最小エネルギを求めた実験結果を示すグラフである。 印加開始時間と印加停止時間の概念を示す説明図である。 印加開始時間と印加停止時間の概念を示す説明図である。 印加開始時間t1と印加停止時間t2とを変化させつつ失火確率が0.1%となる最小エネルギを求めた実験結果を示すグラフである。
詳細な説明
 以下、本発明の実施の形態を、図面を参照しつつ次の順序で説明する。
  A.制御システムの概略構成:
  B.プラズマジェット点火プラグの構造:
  C.内燃機関の運転制御:
  D.点火装置の各種態様:
  E.実施例:
  A.制御システムの概略構成:
 図1は、プラズマジェット点火プラグの点火を制御する制御システムの概略構成を示す説明図である。図示するように、制御システム1は、プラズマジェット点火プラグ100を備える内燃機関300と、プラズマジェット点火プラグ100の点火を行う点火装置320と、内燃機関300の運転状況を検出する各種センサと、これらのセンサが接続されたECU(Engine Control Unit)310とによって構成されている。
 内燃機関300は、一般的な4ストロークタイプのガソリンエンジンである。内燃機関300には、空燃比を検出するA/Fセンサ301や、ノッキングの発生を検出するノックセンサ302、冷却水の温度を検出する水温センサ303、クランク角を検出するクランク角センサ304、スロットルの開度を検出するスロットルセンサ305、EGRバルブの開度を検出するEGRバルブセンサ306、が取り付けられている。
 これらのセンサは、ECU310に電気的に接続されている。ECU310は、これらのセンサによって検出した内燃機関300の運転状況から、プラズマジェット点火プラグ100の点火時期や点火回数、印加するエネルギ量などの点火の態様を決定する。そして、決定された点火の態様に基づいて、プラズマジェット点火プラグ100の点火装置320に、点火信号やエネルギ可変信号を出力する。点火信号とは、プラズマジェット点火プラグ100を火花放電させるトリガ信号である。エネルギ可変信号とは、前記火花放電後に、プラズマ生成のために、プラズマジェット点火プラグ100に印加するエネルギ量を調整する信号である。
 点火装置320は、ECU310から受信した点火信号とエネルギ可変信号とに基づいて、プラズマジェット点火プラグ100の点火制御を行う。具体的には、ECU310からの点火信号の受信に応じて、プラズマジェット点火プラグ100に高電圧(第1の電力)を印加して火花放電を発生させ、火花放電間隙間を絶縁破壊する。そして、ECU310から受信したエネルギ可変信号に基づいて調整された電力(第2の電力)を、絶縁破壊後の火花放電間隙に印加する。こうすることで、プラズマジェット点火プラグ100からプラズマが噴出されて混合気への着火が行われる。
 なお、本実施形態における各種センサは本願の「検出部」に、ECU310は「決定部」に、点火装置320は「点火部」に相当する。
  B.プラズマジェット点火プラグの構造:
 図2は、プラズマジェット点火プラグ100の構造を示す部分断面図である。また、図3は、プラズマジェット点火プラグ100の先端部分を拡大した断面図である。なお、図2において、プラズマジェット点火プラグ100の軸線O方向を図面における上下方向とし、下側をプラズマジェット点火プラグ100の先端側、上側を後端側として説明する。
 図2に示すように、プラズマジェット点火プラグ100は、絶縁碍子10と、この絶縁碍子10を保持する主体金具50と、絶縁碍子10内に軸線O方向に保持された中心電極20と、主体金具50の先端部59に溶接された接地電極30と、絶縁碍子10の後端部に設けられた端子金具40とから構成されている。
 絶縁碍子10は、周知のようにアルミナ等を焼成して形成され、軸線O方向に軸孔12を有する筒状の絶縁部材である。軸線O方向の略中央には外径の最も大きな鍔部19が形成されており、これより後端側には後端側胴部18が形成されている。また、鍔部19より先端側には後端側胴部18より外径の小さな先端側胴部17と、その先端側胴部17よりも先端側で先端側胴部17よりも更に外径の小さな脚長部13とが形成されている。この脚長部13と先端側胴部17との間は段状に形成されている。
 図3に示すように、軸孔12のうち脚長部13の内周にあたる部分は、先端側胴部17、鍔部19および後端側胴部18の内周にあたる部分よりも縮径された電極収容部15として形成されている。この電極収容部15の内部には中心電極20が保持される。また、軸孔12は電極収容部15の先端側において内周が更に縮径されており、先端小径部61として形成されている。そして、先端小径部61の内周は絶縁碍子10の先端面16に連続し、軸孔12の開口部14を形成している。
 中心電極20は、インコネル(商標名)600または601等のNi系合金等で形成された円柱状の電極棒で、内部に熱伝導性に優れる銅等からなる金属芯23を有している。そして先端部21には、貴金属やタングステンを主成分とする合金からなる円盤状の電極チップ25が、中心電極20と一体となるように溶接されている。なお、本実施の形態では、中心電極20と一体になった電極チップ25も含め「中心電極」と称する。
 中心電極20の後端側は鍔状に拡径され、この鍔状の部分が軸孔12内において電極収容部15の起点となる段状の部位に当接されており、電極収容部15内で中心電極20が位置決めされている。また、中心電極20の先端部21の先端面26(より具体的には中心電極20の先端部21にて中心電極20と一体に接合された電極チップ25の先端面26)の周縁が、径の異なる電極収容部15と先端小径部61との間の段部に当接された状態となっている。この構成により、軸孔12の先端小径部61の内周面と、中心電極20の先端面26とで包囲された容積の小さな放電空間が形成されている。この放電空間はキャビティ60と称される。接地電極30と中心電極20との間の火花放電間隙において行われる火花放電は、このキャビティ60内の空間や壁面を通過する。そして、この火花放電によって絶縁破壊された後に印加されるエネルギによって、キャビティ60内でプラズマが形成される。このプラズマは、開口部14の開口端11から噴出される。
 図2に示すように、中心電極20は、軸孔12の内部に設けられた金属とガラスの混合物からなる導電性のシール体4を経由して、後端側の端子金具40に電気的に接続されている。このシール体4により、中心電極20および端子金具40は、軸孔12内で固定されると共に導通される。端子金具40にはプラグキャップ(図示外)を介して高圧ケーブル(図示外)が接続される。この高圧ケーブルを介して、図1に示した点火装置320から電力が端子金具40に印加される。
 主体金具50は、内燃機関300のエンジンヘッドにプラズマジェット点火プラグ100を固定するための円筒状の金具であり、絶縁碍子10を取り囲むようにして保持している。主体金具50は鉄系の材料より形成され、図示外のプラグレンチが嵌合する工具係合部51と、内燃機関300の上部に設けられたエンジンヘッドに螺合するねじ部52とを備えている。
 主体金具50の工具係合部51より後端側には加締部53が設けられている。工具係合部51から加締部53にかけての主体金具50と、絶縁碍子10の後端側胴部18との間には円環状のリング部材6,7が介在されており、更に両リング部材6,7の間にタルク(滑石)9の粉末が充填されている。そして、加締部53を加締めることにより、リング部材6,7およびタルク9を介して絶縁碍子10が主体金具50内で先端側に向け押圧される。これにより、図3に示すように、脚長部13と先端側胴部17との間の段状の部位が、主体金具50の内周面に段状に形成された係止部56に環状のパッキン80を介して支持されて、主体金具50と絶縁碍子10とが一体にされる。このパッキン80によって、主体金具50と絶縁碍子10との間の気密は保持され、燃焼ガスの流出が防止される。また、図2に示すように、工具係合部51とねじ部52との間には鍔部54が形成されており、ねじ部52の後端側近傍、すなわち鍔部54の座面55にはガスケット5が嵌挿されている。
 主体金具50の先端部59には接地電極30が設けられている。接地電極30は耐火花消耗性に優れた金属から構成されており、一例としてインコネル(商標名)600または601等のNi系合金が用いられる。図3に示すように、接地電極30は中央に連通孔31を有する円盤状に形成されており、その厚み方向を軸線O方向に揃え、絶縁碍子10の先端面16に当接した状態で、主体金具50の先端部59の内周面に形成された係合部58に係合されている。そして先端面32を主体金具50の先端面57に揃えた状態で、外周縁が一周にわたって係合部58とレーザ溶接され、接地電極30は主体金具50と一体に接合されている。接地電極30の連通孔31は、その最小内径が、少なくとも絶縁碍子10の開口部14(開口端11)の内径以上の大きさを有するように形成されており、この連通孔31を介し、キャビティ60の内部と外気とが連通されるように構成されている。
  C.内燃機関の運転制御:
 上述した構造のプラズマジェット点火プラグ100が装着された内燃機関300における点火は、ECU310が点火装置320を制御することで行われる。そこで、ECU310が実行する制御について以下に説明する。
 図4は、ECU310が繰り返し実行する内燃機関300の制御処理のフローチャートである。図示するように、この制御処理が実行されると、まず、ECU310は、水温センサ303を用いて冷却水の温度Wを取り込み(ステップS10)、内燃機関300の暖気が完了したかを判断する(ステップS20)。冷却水の温度Wが所定の温度(例えば、70℃)以上あり、暖気が終了したと判断すれば(ステップS20:Yes)、ECU310は、クランク角センサ304を用いて、回転数Rを検出すると共に(ステップS30)、スロットルセンサ305を用いてスロットル開度Tを検出する(ステップS40)。また、更に、ノックセンサ302を用いてノッキングの強度Kを検出する(ステップS50)。
 以上の処理によって、回転数R、スロットル開度T、ノック強度Kといった運転状況を検出すると、これらの値に基づき、ECU310は、プラズマジェット点火プラグ100の点火時期Dと点火回数Nとを決定する(ステップS60,S70)。点火時期Dと点火回数Nとは、例えば、以下のような多次元関数によって決定される。
D=f(R,T,K)
N=g(R,T)
 上述したステップS20において、暖気が完了していないと判断されれば(ステップS20:No)、ECU310は、暖気補正を行う(ステップS80)。暖気補正とは、内燃機関300の始動時等に、着火性を向上させるための処理である。すなわち、ECU310は、クランク角センサ304を用いて、回転数Rを検出すると共に(ステップS90)、スロットルセンサ305を用いてスロットル開度Tを検出する(ステップS100)。そして、更に、ノックセンサ302を用いてノッキングの強度Kを検出する(ステップS110)。これらの値を検出すると、ECU310は、これらの値に基づいて、未暖気時におけるプラズマジェット点火プラグ100の点火時期D’と、点火回数N’とを決定する(ステップS120,S130)。未暖気時においては、点火時期Dを通常時よりも進角させ、点火回数Nを通常時よりも増加させることで、着火性を向上させることができる。
 以上の処理によって、点火時期Dおよび点火回数Nを決定すると、更に、ECU310は、A/Fセンサ301を用いて空燃比Aを検出するとともに(ステップS140)、EGRバルブセンサ306を用いてEGRバルブの開度Eを検出する(ステップS150)。最後に、ECU310は、上述した種々の値を用いて、火花放電間隙の絶縁破壊後にプラズマジェット点火プラグ100に印加するエネルギ量J(ピーク電流値および通電時間)を決定する(ステップS160)。エネルギ量Jは、例えば、以下のような多次元関数によって決定される。
 J=h(R,T,A,E,D,N)
 ECU310は、以上で説明した制御処理を繰り返し実行することで、内燃機関300の運転条件に応じて、プラズマジェット点火プラグ100の点火時期Dや点火回数N、印加するエネルギ量Jを決定することができる。ECU310は、こうして決定された点火時期Dや点火回数N、エネルギ量Jに基づいて、点火装置320を制御し、プラズマジェット点火プラグ100の点火を行わせる。点火時期Dや点火回数N、印加するエネルギ量Jの決定は、後述する種々の実施例によって得られた実験結果に基づいて予め上記各種関数や制御マップを定義しておき、これらの関数や制御マップを用いることで、印加するエネルギ量Jが少なく、かつ、着火の確実性が高まるように点火時期Dや点火回数Nを決定する。
  D.点火装置の各種態様:
 図1に示した点火装置320は、種々の回路構成で実現可能である。そこで、以下では、点火装置320の4種類の態様について説明する。なお、点火装置320の態様は、以下に説明する態様に限らず、種々の態様を採り得ることが可能なことは言うまでもない。
  (D1)第1の態様:
 図5は、点火装置320の第1の態様を示す説明図である。以下では、第1の態様の点火装置を、「点火装置320a」と称する。図示するように、点火装置320aは、プラズマジェット点火プラグ100に絶縁破壊を起こさせるためのトリガ放電回路340aと、絶縁破壊後にプラズマジェット点火プラグ100にエネルギを印加するためのプラズマ放電回路350bとを備えている。
 トリガ放電回路340aは、12Vの電圧を有するバッテリ321と、当該バッテリ321の電圧を数万Vの電圧に昇圧する昇圧トランス323と、電流の逆流を防止するためのダイオード324と、抵抗器325と、スイッチ326とによって構成されている。バッテリ321と、昇圧トランス323と、ダイオード324と、抵抗器325とは、プラズマジェット点火プラグ100の中心電極20に直列的に接続されている。ダイオード324は、そのアノードが昇圧トランス323の二次側高圧部に接続され、カソードが抵抗器325の一端に接続されている。スイッチ326は、昇圧トランス323の一次側接地部に設けられている。このスイッチ326は、例えば、NチャネルのMOS-FETからなる半導体スイッチによって構成することができる。点火装置320aは、ECU310から受信した点火信号に基づいてスイッチ326の開閉を制御することで、プラズマジェット点火プラグ100の点火時期と点火回数とを調整する。
 プラズマ放電回路350bは、500~1000Vの電圧を有する高電圧電源322と、スイッチ327と、コイル328と、電流の逆流を防止するダイオード329と、コンデンサ330とによって構成されている。高電圧電源322と、スイッチ327と、コイル328と、ダイオード329とは、プラズマジェット点火プラグ100の中心電極20に直列的に接続されている。ダイオード329は、そのアノードがコイル328の一端に接続され、カソードがプラズマジェット点火プラグ100の中心電極20に接続されている。コンデンサ330は、本願の「電源部」に相当するものであり、高電圧電源322とスイッチ327との間に、一端が接地された状態で接続されている。スイッチ327は、例えば、PチャネルのMOS-FETからなる半導体スイッチによって構成することができる。なお、内部抵抗が小さく、短時間に大きなエネルギを取り出せる電源であれば、コンデンサ330以外の電源を採用することも可能である。
 コンデンサ330は、高電圧電源322によって充電される。コンデンサ330に充電されたエネルギは、プラズマジェット点火プラグ100の火花放電間隙が絶縁破壊し、かつ、ECU310によってスイッチ327がオンされた場合に、プラズマジェット点火プラグ100の中心電極20に印加される。これにより、プラズマジェット点火プラグ100にプラズマが形成されることになる。点火装置320aは、ECU310から受信したエネルギ可変信号に基づき、スイッチ327の切り換えをデューティ制御することで、プラズマジェット点火プラグ100に印加するエネルギ量を調整する。
 このような第1の態様の点火装置320であれば、電源部とプラズマジェット点火プラグとの間にスイッチを設けるという、比較的単純な回路によって、点火のタイミングや点火回数を調整することが可能になる。
  (D2)第2の態様:
 図6は、点火装置320の第2の態様を示す説明図である。以下では、第2の態様の点火装置を、「点火装置320b」と称する。図6に示すように、点火装置320bのトリガ放電回路340bの構成は、図5に示したトリガ放電回路340aと同様である。これに対して、プラズマ放電回路350bの構成は、コンデンサ330とスイッチ327とコイル328とダイオード329とがN組、高電圧電源322とプラズマジェット点火プラグ100との間に接続される構成となっている。すなわち、プラズマジェット点火プラグ100には、絶縁破壊後に、最大N個のコンデンサ330から出力されたエネルギが並列的に入力可能となる。
 このような第2の態様の点火装置320であれば、ECU310から受信したエネルギ可変信号に基づいて、N個のスイッチ327をそれぞれ制御することで、第1の態様よりも大きな調整範囲で、印加するエネルギ量を調整することができる。
 なお、図6では、高電圧電源322とスイッチ327との接続点にコンデンサ330の一端が接続されているが、スイッチ327とコイル328との接続点にコンデンサ330の一端を接続し、他端を接地するようにしてもよい。
  (D3)第3の態様:
 図7は、点火装置320の第3の態様を示す説明図である。以下では、第3の態様の点火装置を、「点火装置320c」と称する。図7に示すように、点火装置320cのトリガ放電回路340cの構成は、図5に示したトリガ放電回路340aと同様である。これに対して、プラズマ放電回路350cの構成は、図5に示したプラズマ放電回路350aの構成からスイッチ327を省き、コイル328とダイオード329との間に、新たに、一端を接地したスイッチ331を設けた構造となっている。点火装置320cは、ECU310から受信したエネルギ可変信号に基づいて、このスイッチ331を開閉することで、プラズマジェット点火プラグ100に印加するエネルギを調整する。具体的には、スイッチをオフにすることで、コンデンサ330に充電された電荷を、プラズマジェット点火プラグ100に印加することができる。一方、スイッチをオンにすれば、コンデンサ330からアースに電荷が流れるので、プラズマジェット点火プラグ100に対するエネルギの印加を停止することができる。
 このような第3の態様の点火装置320であれば、スイッチ331の切り換えを制御することで、特に、プラズマジェット点火プラグ100に印加するエネルギの停止タイミングを容易に調整することが可能になる。
  (D4)第4の態様:
 図8は、点火装置320の第4の態様を示す説明図である。以下では、第4の態様の点火装置を、「点火装置320d」と称する。図8に示すように、点火装置320dのトリガ放電回路340dの構成は、図5に示したトリガ放電回路340aと同様である。これに対して、プラズマ放電回路350dは、12Vの電圧を有するバッテリ332と大電流トランス333とコイル328とダイオード329と、スイッチ334と、から構成されている。大電流トランス333は、コイル328とバッテリ332との間に接続されており、スイッチ334は、大電流トランス333の1次側接地部に設けられている。大電流トランスの1次側の巻数と2次側の巻数との比は、例えば、1:1とすることができる。点火装置320dは、ECU310から受信したエネルギ可変信号に基づいて、大電流トランス333の接地部に設けられたスイッチ334を開閉することで、プラズマジェット点火プラグ100に印加するエネルギ量を調整することができる。
 このような第4の態様の点火装置320であれば、電源とプラズマジェット点火プラグとを結ぶトランスの接地部にスイッチを設けるという比較的単純な回路によって、点火のタイミングや点火回数を調整することが可能になる。
  (D5)第5の態様:
 図9は、点火装置320の第5の態様を示す説明図である。以下では、第5の態様の点火装置を、「点火装置320e」と称する。図9に示すように、点火装置320eのトリガ放電回路340eの構成は、図5に示したトリガ放電回路340aと同様である。これに対して、プラズマ放電回路350eは、図5に示したプラズマ放電回路350aの構成からスイッチ327を省くとともに、高電圧電源322の替わりに出力電力が可変制御可能な高電圧電源342を設けた構造となっている。点火装置320eは、ECU310から受信したエネルギ可変信号に基づいて、高電圧電源342の出力電力を可変制御することで、プラズマジェット点火プラグ100に印加するエネルギ量を調整することができる。
 このような第5の態様の点火装置320であれば、電源部の出力電力を可変制御するという比較的簡単な制御によって、プラズマジェット点火プラグに印加する電力量を容易に調整することができる。
(D6)第6の態様:   
図10は、点火装置320の第6の態様を示す説明図である。以下では、第6の態様の点火装置を、「点火装置320f」と称する。図10に示すように、点火装置320fのトリガ放電回路340fの構成は、図5に示したトリガ放電回路340aと同様である。これに対して、プラズマ放電回路350fの構成は、高電圧電源322と、抵抗349と、ダイオード348と、スイッチ347と、コンデンサ346と、ダイオード345と、トランス344と、コイル328と、ダイオード343とによって構成されている。ダイオード343は、アノードがプラズマジェット点火プラグ100の中心電極20に接続され、カソードがコイル328の一端に接続されている。コイル328の他端は、トランス344の二次側高圧部に接続されている。ダイオード345は、そのアノードがトランスの一次側高圧部とコンデンサ346の一端との接続点に接続され、カソードが接地されている。コンデンサ346の他端はスイッチ347を介して接地されている。ダイオード348は、そのカソードがコンデンサ346の他端とスイッチ347との接続点に接続され、アノードが抵抗349の一端に接続されている。抵抗349の他端は高電圧電源322に接続されている。そして、第6の態様の点火装置のプラズマ放電回路350fは、トランス344とダイオード345とコンデンサ346とスイッチ347とダイオード348とがN組、コイル328と抵抗349との間に接続される構成となっている。
 このような第6の態様の点火装置であれば、ECU310から受信したエネルギ可変信号に基づいて、N個のスイッチ347をそれぞれ制御することで、印加するエネルギ量を調整することができる。また、プラズマジェット点火プラグ100の中心電極20に負の高電圧を印加して放電させる負極放電を適用させる場合においても、コンデンサ346に充電する電圧を容易にモニターすることが可能となる。さらに、トランス344を備えていることで、高電圧電源322として出力電圧が小さい電源でも適用することができ、それに伴い、回路構成部品として耐圧の低い安価な部品を使用することができるようになる。
 なお、トリガ放電回路340a、340b、340c、340d、340e、340fが本願の「第1電力供給部」に相当し、プラズマ放電回路350a、350b、350c、350d、350e、350fが本願の「第2電力供給部」に相当する。
  E.実施例:
 上記のような種々の態様を採る点火装置320によって、プラズマジェット点火プラグ100の点火を制御することで、プラズマジェット点火プラグ100に印加するエネルギ量を抑えつつ、着火の確実性を向上させることが可能であることを確認するため、種々の評価実験を行った。以下、かかる評価実験の結果を実施例として示す。
  (E1)実施例1:
 実施例1では、プラズマジェット点火プラグ100の耐久性向上のために、プラズマジェット点火プラグ100に印加するエネルギ量を低減させる必要がある根拠を示す。
 図11は、プラズマジェット点火プラグ100に印加するエネルギとプラズマジェット点火プラグ100の耐久性との関係を示すグラフである。縦軸は、1回の点火につき、プラズマ放電回路350によってプラズマジェット点火プラグ100に印加するエネルギ量を示している。一方、横軸は、点火を100回行った際に、その放電電圧の平均値が30kVを超えた時間を示している。つまり、電極の消耗によって火花放電間隙が広がり、それに伴い、放電電圧が標準よりも高くなるに至った時間を示している。この実験は、0.4MPaに加圧した空気中で、プラズマジェット点火プラグ100を、100Hzの周期で繰り返し点火することで行われている。この環境下では、200時間、点火を繰り返すことで、およそ2万Kmの実車の走行に相当する実験結果が得られる。
 図11に示すように、この実験では、プラズマジェット点火プラグ100の耐久性を向上させるには(換言すれば、プラズマジェット点火プラグ100の寿命を延ばすには)、プラズマジェット点火プラグ100に印加するエネルギをできるだけ低減させる必要があることがわかる。
  (E2)実施例2:
 実施例2では、プラズマジェット点火プラグ100の点火時期を如何に決定するかを示す。この実施例2では、排気量2.0Lの内燃機関300において、空燃比を16、EGR率を0%、プラズマジェット点火プラグ100に印加するエネルギを50mJ、点火回数を1サイクル当たり(1燃焼行程当たり)1回とした条件で、内燃機関300の出力が最大となる点火時期を実験により求めた。
 図12は、上記実験によって得られた、内燃機関300の出力が最大となる点火時期を示すグラフである。x軸はエンジン回転数、y軸はスロットル開度、z軸は、点火時期(BTDC°)を示している。このグラフによれば、回転数とスロットル開度とが検出できれば、出力が最高となる点火時期を何度に設定すればよいかがわかる。ECU310は、予め、図12に示すグラフをマップとして記憶しておき、スロットルセンサ305によって検出したスロットル開度と、クランク角センサ304によって検出した回転数に基づいて、このマップを参照することにより、最も出力が高くなる点火時期を決定することができる。
  (E3)実施例3:
 実施例3では、実施例2のグラフから定まる点火時期において、確実に着火可能な1サイクル当たり(1燃焼行程当たり)の点火回数を実験によって求めた。この実験では、排気量2.0Lの内燃機関300において、プラズマジェット点火プラグ100に印加するエネルギを25mJとして、失火確率が0.1%以下となる最小回数を求めた。
 図13は、上記条件において失火確率が0.1%以下となる点火回数の最小回数を示すグラフである。横軸は、回転数を示し、縦軸はスロットル開度を示す。図示するように、スロットル開度が低く、回転数も低いときは、点火回数を3回に設定することで、失火確率を0.1%以下とすることができた。また、回転数が3000回転を超えるような条件では、概ね、点火回数は1回でも、失火確率を0.1%以下とすることができた。
 ECU310は、図13に示したグラフをマップとして予め記憶しておき、スロットルセンサ305によって検出したスロットル開度と、クランク角センサ304によって検出した回転数に基づいて、このマップを参照することで、着火率の高い点火回数を求めることができる。なお、通常のスパークプラグでは、火花放電に3msec程度の時間を有する。ところが、プラズマジェット点火プラグ100は、プラズマの噴出も含めて、1回の点火に、20μ秒程度の時間しかかからない。そのため、ECU310は、図11に基づいて決定した点火時期から、図13に基づいて求めた回数だけ、20μ秒おきに点火を行うことで、1燃焼行程中に複数回の点火を行うことができる。
  (E4)実施例4:
 実施例4では、内燃機関300の運転状況を1つだけ変化させて、失火確率が0.1%以下となる最小の印加エネルギを求める実験を行った。なお、この実験では、基本的に、内燃機関300の運転条件を、回転数700rpm、空燃比16、点火回数1回(/1サイクル)、スロットル開度0.25、点火時期BTDC5°、EGR率10%とした。
 図14は、内燃機関300の回転数を変化させつつ、失火確率が0.1%以下となる最小の印加エネルギを求めた実験結果を示すグラフである。横軸が回転数を示し、縦軸がプラズマジェット点火プラグ100に印加するエネルギを示す。図示するように、内燃機関300の回転数を増加させるほど、プラズマジェット点火プラグ100に印加するエネルギを低減することが可能であることがわかる。
 図15は、スロットル開度を変化させつつ、失火確率が0.1%以下となる最小の印加エネルギを求めた実験結果を示すグラフである。横軸がスロットル開度を示し、縦軸がプラズマジェット点火プラグ100に印加するエネルギを示す。図示するように、内燃機関300のスロットル開度を大きくするほど、プラズマジェット点火プラグ100に印加するエネルギを低減することが可能であることがわかる。
 図16は、空燃比を変化させつつ、失火確率が0.1%以下となる最小の印加エネルギを求めた実験結果を示すグラフである。横軸が空燃比を示し、縦軸がプラズマジェット点火プラグ100に印加するエネルギを示す。図示するように、内燃機関300の空燃比を低くするほど、すなわち、燃料の比率を上げるほど、プラズマジェット点火プラグ100に印加するエネルギを低減することが可能であることがわかる。
 図17は、点火時期を変化させつつ、失火確率が0.1%以下となる最小の印加エネルギを求めた実験結果を示すグラフである。横軸が点火時期を示し、縦軸がプラズマジェット点火プラグ100に印加するエネルギを示す。図示するように、上記の条件では、点火時期BTDCが0°ないし20°の範囲で、プラズマジェット点火プラグ100に印加するエネルギを低減することが可能であることがわかる。
 図18は、点火回数を変化させつつ、失火確率が0.1%以下となる最小の印加エネルギを求めた実験結果を示すグラフである。横軸が点火回数を示し、縦軸がプラズマジェット点火プラグ100に印加するエネルギを示す。図示するように、点火回数を増加させるほど、プラズマジェット点火プラグ100に印加するエネルギを低減することが可能であることがわかる。
 図19は、EGR率を変化させつつ、失火確率が0.1%以下となる最小の印加エネルギを求めた実験結果を示すグラフである。横軸がEGR率を示し、縦軸がプラズマジェット点火プラグ100に印加するエネルギを示す。図示するように、EGR率を低下させて排ガスの循環量を低減するほど、プラズマジェット点火プラグ100に印加するエネルギを低減することが可能であることがわかる。
 以上で説明した実施例4によれば、内燃機関300の回転数を高め、スロットル開度を大きくし、空燃比を低くし、点火時期BTDCを0°~20°の範囲に調整して、点火回数を増加させ、更に、EGR率を低下させる、という制御の少なくとも一部を行うことで、プラズマジェット点火プラグ100に印加するエネルギを低減することが可能となることがわかる。このような制御を行うことで、プラズマジェット点火プラグ100の耐久性を向上させることが可能になる。
  (E5)実施例5:
 実施例5では、プラズマジェット点火プラグ100に通電する電流最大値と通電時間とをそれぞれ変化させ、失火確率が0.1%以下となる最小エネルギを求める実験を行った。この実験では、内燃機関300の運転条件を、回転数700rpm、空燃比16、点火回数1回(/1サイクル)、スロットル開度0.25、点火時期BTDC5°、EGR率0%とした。
 図20は、電流最大値を変化させて失火確率が0.1%以下となる最小エネルギを求めた実験結果を示すグラフである。横軸は、通電した電流の電流最大値を示し、縦軸は、失火確率が0.1%以下となる最小エネルギを示す。図示するように、プラズマジェット点火プラグ100に通電する電流最大値を上げていくほど、必要なエネルギが漸減していることがわかる。
 一方、図21は、電流の通電時間を変化させて失火確率が0.1%以下となる最小エネルギを求めた実験結果を示すグラフである。横軸は、電流の通電時間を示し、縦軸は、失火確率が0.1%以下となる最小エネルギを示す。図示するように、プラズマジェット点火プラグ100に電流を通電する時間を長くするほど、必要なエネルギが漸増していることがわかる。
 以上に示した実施例5の実験結果によれば、プラズマ放電回路350によってプラズマジェット点火プラグ100にエネルギを印加する際には、電流最大値を大きくするか、もしくは、電流の通電時間を長くすることで、印加するエネルギ量を低減させることができることがわかる。そのため、これらの制御を行うことによっても、プラズマジェット点火プラグ100の耐久性を向上させることが可能になる。ただし、電流の通電可能な時間は、点火時期や点火回数、回転数に応じて変動するため、通電時間よりも電流最大値を調整することで、印加するエネルギ量を低減することが好ましい。
  (E6)実施例6:
 実施例6では、プラズマジェット点火プラグ100にエネルギの印加を開始する時間(以下、「印加開始時間」という)と、停止する時間(以下、「印加停止時間」という)を変化させることで、失火確率が0.1%以下となる最小エネルギを求める実験を行った。この実験では、内燃機関300の運転条件を、回転数700rpm、空燃比16、点火回数1回(/1サイクル)、スロットル開度0.25、点火時期BTDC5°、EGR率0%とした。
 図22および図23は、印加開始時間と印加停止時間の概念を示す説明図である。図22および図23に、「t0」と示したタイミングは、トリガ放電回路340による放電によって、プラズマジェット点火プラグ100の火花放電間隙が絶縁破壊されたタイミングを示している。「t1」は、タイミングt0の後、プラズマ放電回路350からプラズマジェット点火プラグ100にエネルギ(電流)の印加が開始される時間(印加開始時間)を示している。また、「t2」は、エネルギの印加が開始されてから、印加が停止されるまでの時間(印加停止時間)を示している。
 本実験では、印加開始時間t1と印加停止時間t2の調整を容易に行うため、図5に示したプラズマ放電回路350と、図7に示したプラズマ放電回路350とを組み合わせた回路によって実験を行った。図5に示したプラズマ放電回路350のスイッチ327をオフからオンにすることで、印加開始時間t1を容易に調整することができ、また、図7に示したプラズマ放電回路350のスイッチ331をオフからオンにすることで、図23に示すにように、即座にエネルギの印加を停止させることができるからである。
 図24は、印加開始時間t1と印加停止時間t2とを変化させつつ、失火確率が0.1%となる最小エネルギを求めた実験結果を示すグラフである。横軸は、印加開始時間t1を示し、縦軸は印加停止時間t2を示している。図示するように、本実験では、印加開始時間t1を早め、更に、印加停止時間t2を早めるほど、必要なエネルギを低減することができることになる。この実験結果は、図21に示した実験結果とも整合する。つまり、本実施例と、実施例5の実験結果とを総合的に考慮すると、プラズマ放電回路350からプラズマジェット点火プラグ100に印加するエネルギは、短時間で大きな電流を流すほど、そのエネルギ量を低減することが可能になることがわかる。
 以上、本発明の種々の実施形態及び実施例について説明した。しかし、本発明はこれらの形態や実施例に限定されず、その趣旨を逸脱しない範囲で種々の構成を採ることができることはいうまでもない。例えば、上記実施形態では、ガソリンエンジンの点火装置として、プラズマジェット点火プラグ100を用いる例を示したが、ディーゼルエンジン等の始動補助装置(グロープラグ)として利用することも可能である。また、図4に示した制御処理のフローチャートでは、点火時期と点火回数とエネルギ量とを全て、各検出値に基づいて決定することとしたが、これらのうち少なくともいずれか一つを、検出値に基づいて決定し、残りを、固定的な値とすることも可能である。

Claims (11)

  1.  内燃機関に備えられたプラズマジェット点火プラグの点火を制御する制御システムであって、
     前記内燃機関の運転状況を検出する検出部と、
     前記検出された運転状況に基づき、前記プラズマジェット点火プラグの点火の態様を決定する決定部と、
     前記プラズマジェット点火プラグに第1の電力を印加して該プラズマジェット点火プラグの火花放電間隙を絶縁破壊させた後に、前記絶縁破壊された火花放電間隙に第2の電力を印加することで前記火花放電間隙付近にプラズマを発生させる点火制御を、前記決定された点火の態様で行う点火部と
    を備える制御システム。
  2.  請求項1に記載の制御システムであって、
     前記決定部は、前記点火の態様として、前記プラズマジェット点火プラグの点火のタイミングと、燃焼行程1回当たりの点火回数とを決定し、
     前記点火部は、前記点火制御を、前記決定されたタイミングで、燃焼行程1回につき前記決定された点火回数分行う制御システム。
  3.  請求項1または請求項2に記載の制御システムであって、
     前記決定部は、前記検出された運転状況に基づき、前記第2の電力の電力量を決定する制御システム。
  4.  請求項3に記載の制御システムであって、
     前記決定部は、前記検出された運転状況に基づき、前記絶縁破壊された火花放電間隙に通電する電流値を調整することで、前記電力量を決定する制御システム。
  5.  請求項3に記載の制御システムであって、
     前記決定部は、前記検出された運転状況に基づき、前記絶縁破壊された火花放電間隙に電流を通電する時間を調整することで、前記電力量を決定する制御システム。
  6.  請求項1ないし請求項5のいずれかに記載の制御システムであって、
     前記点火部は、
      前記プラズマジェット点火プラグに接続されて前記第1の電力を供給する第1電力供給部と、前記プラズマジェット点火プラグに接続されて前記第2の電力の電力量を供給する第2電力供給部とを備え、
     前記点火部は、前記第2電力供給部から供給される前記第2の電力を可変制御することで、前記決定された点火の態様で前記点火制御を行う制御システム。
  7.  請求項6に記載の制御システムであって、
     前記点火部の前記第2電力供給部は、前記プラズマジェット点火プラグに接続され、前記第2の電力を前記プラズマジェット点火プラグに供給する電源部と、該電源部と前記プラズマジェット点火プラグとの間の導通状態を切り換えるスイッチとを備え、
     前記点火部は、前記スイッチの切り換えを制御することで、前記決定された点火の態様で前記点火制御を行う制御システム。
  8.  請求項7に記載の制御システムであって、
     前記点火部の前記第2電力供給部は、前記プラズマジェット点火プラグに接続された前記電源部と前記スイッチとの組を並列的に複数備え、
     前記点火部は、前記複数のスイッチの切り換えを制御することで、前記決定された点火の態様で前記点火制御を行う制御システム。
  9.  請求項6に記載の制御システムであって、
     前記点火部の前記第2電力供給部は、前記プラズマジェット点火プラグに接続され、前記第2の電力を前記プラズマジェット点火プラグに供給する電源部と、前記プラズマジェット点火プラグと前記電源部との接続部と、アースとの間の導通状態を切り換えるスイッチとを備え、
     前記点火部は、前記スイッチの切り換えを制御することにより、前記決定された点火の態様で前記点火制御を行う制御システム。
  10.  請求項6に記載の制御システムであって、
     前記点火部の前記第2電力供給部は、前記プラズマジェット点火プラグにトランスを介して接続され、前記第2の電力を前記プラズマジェット点火プラグに供給する電源部と、前記トランスの一次側とアースとの間の導通状態を切り換えるスイッチとを備え、
     前記点火部は、前記スイッチの切り換えを制御することで、前記決定された点火の態様で前記点火制御を行う制御システム。
  11.  請求項6に記載の制御システムであって、
     前記点火部の前記第2電力供給部は、前記プラズマジェット点火プラグに接続され、前記第2の電力を前記プラズマジェット点火プラグに供給する電源部を備え、
     前記点火部は、前記電源部の出力電力を可変制御することで、前記決定された点火の態様で前記点火制御を行う制御システム。
PCT/JP2009/050153 2008-01-08 2009-01-08 プラズマジェット点火プラグの点火制御 WO2009088045A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009523888A JPWO2009088045A1 (ja) 2008-01-08 2009-01-08 プラズマ点火プラグの点火制御システム及び点火制御方法
EP09700927A EP2187044A1 (en) 2008-01-08 2009-01-08 Plasma jet ignition plug ignition control
US12/452,068 US8316823B2 (en) 2008-01-08 2009-01-08 Plasma jet ignition plug ignition control
CN2009801015590A CN101910615A (zh) 2008-01-08 2009-01-08 等离子流火花塞点火控制

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008001591 2008-01-08
JP2008-001591 2008-01-08

Publications (1)

Publication Number Publication Date
WO2009088045A1 true WO2009088045A1 (ja) 2009-07-16

Family

ID=40853157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050153 WO2009088045A1 (ja) 2008-01-08 2009-01-08 プラズマジェット点火プラグの点火制御

Country Status (6)

Country Link
US (1) US8316823B2 (ja)
EP (1) EP2187044A1 (ja)
JP (1) JPWO2009088045A1 (ja)
KR (1) KR20100098494A (ja)
CN (1) CN101910615A (ja)
WO (1) WO2009088045A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010015344A1 (de) * 2010-04-17 2011-10-20 Borgwarner Beru Systems Gmbh Verfahren zum Zünden eines Brennstoff-Luft-Gemisches einer Verbrennungskammer, insbesondere in einem Verbrennungsmotor durch Erzeugen einer Korona-Entladung
JP2011214556A (ja) * 2010-04-02 2011-10-27 Mitsubishi Electric Corp プラズマ式点火装置
JP2012021446A (ja) * 2010-07-14 2012-02-02 Ngk Spark Plug Co Ltd プラズマジェット点火プラグの点火装置、及び、点火システム
JP2012067708A (ja) * 2010-09-27 2012-04-05 Daihatsu Motor Co Ltd 内燃機関の火花点火方法
WO2012102217A1 (ja) * 2011-01-25 2012-08-02 ダイハツ工業株式会社 火花点火式内燃機関の火花点火制御方法
KR101170926B1 (ko) 2010-09-01 2012-08-03 (주) 엔피홀딩스 플라즈마 방전을 위한 점화 장치가 장착된 플라즈마 반응기
JP2013002427A (ja) * 2011-06-21 2013-01-07 Diamond Electric Mfg Co Ltd 高周波点火装置
JP2013019301A (ja) * 2011-07-11 2013-01-31 Diamond Electric Mfg Co Ltd 高周波点火装置の動作状態判定方法
JP2013040582A (ja) * 2011-08-17 2013-02-28 Ngk Spark Plug Co Ltd 点火システム及びその制御方法
US8387580B2 (en) 2009-10-29 2013-03-05 Mitsubishi Electric Corporation Plasma ignition device for internal combustion engine
JP2014175252A (ja) * 2013-03-12 2014-09-22 Mitsubishi Electric Corp 火花点火式内燃機関の点火装置
JP2015535043A (ja) * 2012-10-19 2015-12-07 エルドル コーポレイション エセ.ペー.アー. 内燃機関用プラズマ点火装置
US9246313B2 (en) 2012-11-29 2016-01-26 Ngk Spark Plug Co., Ltd. Ignition system
JP2016180353A (ja) * 2015-03-24 2016-10-13 ダイヤモンド電機株式会社 内燃機関の点火装置及び点火方法
KR101826303B1 (ko) 2010-08-31 2018-02-06 페더럴-모굴 이그니션 컴퍼니 하이브리드 점화 장치의 전기 배치
JP2023051338A (ja) * 2021-09-30 2023-04-11 本田技研工業株式会社 内燃機関の制御装置および内燃機関の制御方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8074620B2 (en) 2007-07-25 2011-12-13 Gerald Filipek Spark to flame conversion unit, such as employed with an existing spark plug or heat source supplied glow plug for accomplishing more efficient piston combustion
US8528531B2 (en) * 2009-02-18 2013-09-10 Ngk Spark Plug Co., Ltd. Ignition apparatus of plasma jet ignition plug
JP5158055B2 (ja) * 2009-02-19 2013-03-06 株式会社デンソー プラズマ式点火装置
WO2011100516A2 (en) * 2010-02-12 2011-08-18 Federal-Mogul Ignition Company Intentional arcing of a corona igniter
JP2012067707A (ja) * 2010-09-27 2012-04-05 Daihatsu Motor Co Ltd 内燃機関の火花点火方法
CN102454529B (zh) * 2010-10-20 2013-09-11 黄志民 能够检测电离的高能单模等离子点火系统
EP2642114A4 (en) * 2010-11-16 2018-03-28 NGK Spark Plug Co., Ltd. Plasma ignition device and plasma ignition method
WO2012093461A1 (ja) * 2011-01-04 2012-07-12 日本特殊陶業株式会社 点火装置及び点火システム
WO2012102070A1 (ja) * 2011-01-28 2012-08-02 イマジニアリング株式会社 内燃機関の制御装置
JP6002893B2 (ja) * 2011-02-15 2016-10-05 イマジニアリング株式会社 内燃機関
US8760067B2 (en) * 2011-04-04 2014-06-24 Federal-Mogul Ignition Company System and method for controlling arc formation in a corona discharge ignition system
EP2719889B1 (en) * 2011-06-07 2021-11-17 Ngk Spark Plug Co., Ltd. Connection device, igniter and ignition system
DE202012004602U1 (de) * 2012-05-08 2013-08-12 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Hochfrequenz-Plasmazündvorrichtung
JP5943090B2 (ja) * 2012-11-01 2016-06-29 トヨタ自動車株式会社 車両用直噴エンジンの始動制御装置
DE102012110657B3 (de) * 2012-11-07 2014-02-06 Borgwarner Beru Systems Gmbh Koronazündeinrichtung
EP2977592B1 (en) * 2013-03-21 2017-10-25 Nissan Motor Co., Ltd Ignition control system for internal combustion engine and ignition control method
JP6506131B2 (ja) * 2015-07-29 2019-04-24 本田技研工業株式会社 内燃機関の制御方法及び制御装置
JP6038265B1 (ja) 2015-11-05 2016-12-07 三菱電機株式会社 点火装置および点火制御方法
WO2021109130A1 (zh) 2019-12-06 2021-06-10 株洲湘火炬火花塞有限责任公司 一种基于火花放电电流瞬态控制的火花塞加热方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666236A (ja) * 1992-08-20 1994-03-08 Honda Motor Co Ltd プラズマジェット点火装置
WO2003010428A1 (fr) * 2001-07-02 2003-02-06 Hitachi, Ltd. Moteur a combustion interne du type a injection directe dans le cylindre
JP2007170371A (ja) * 2005-11-22 2007-07-05 Ngk Spark Plug Co Ltd プラズマジェット点火プラグの点火制御方法およびその方法を用いた点火装置
JP2007287666A (ja) * 2006-03-22 2007-11-01 Ngk Spark Plug Co Ltd プラズマジェット点火プラグおよびその点火システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56146068A (en) * 1980-04-11 1981-11-13 Nissan Motor Co Ltd Ignition energy control apparatus
JPS5799272A (en) * 1980-12-11 1982-06-19 Nissan Motor Co Ltd Plasma ignition device
JPS57193977A (en) 1981-05-22 1982-11-29 Hitachi Ltd Electric power converting device
JPS57200672A (en) * 1981-06-02 1982-12-08 Nippon Soken Inc Laser igniting apparatus for internal-combustion engine
JPS57193977U (ja) * 1981-06-05 1982-12-08
US4996967A (en) * 1989-11-21 1991-03-05 Cummins Engine Company, Inc. Apparatus and method for generating a highly conductive channel for the flow of plasma current
JP3565100B2 (ja) * 1999-08-10 2004-09-15 日産自動車株式会社 エンジンの電磁動弁制御装置
JP2002327672A (ja) * 2001-04-27 2002-11-15 Denso Corp 内燃機関の点火装置
WO2002095220A1 (en) * 2001-05-24 2002-11-28 Southwest Research Institute Methods and apparatuses for laser ignited engines
DE102004015090A1 (de) * 2004-03-25 2005-11-03 Hüttinger Elektronik Gmbh + Co. Kg Bogenentladungserkennungseinrichtung
DE102006000205B4 (de) * 2005-04-28 2012-11-08 Denso Corporation Laser-Maschinenzündvorrichtung
US7383816B2 (en) * 2006-01-09 2008-06-10 Dresser, Inc. Virtual fuel quality sensor
JP4674219B2 (ja) * 2006-03-22 2011-04-20 日本特殊陶業株式会社 プラズマジェット点火プラグの点火システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666236A (ja) * 1992-08-20 1994-03-08 Honda Motor Co Ltd プラズマジェット点火装置
WO2003010428A1 (fr) * 2001-07-02 2003-02-06 Hitachi, Ltd. Moteur a combustion interne du type a injection directe dans le cylindre
JP2007170371A (ja) * 2005-11-22 2007-07-05 Ngk Spark Plug Co Ltd プラズマジェット点火プラグの点火制御方法およびその方法を用いた点火装置
JP2007287666A (ja) * 2006-03-22 2007-11-01 Ngk Spark Plug Co Ltd プラズマジェット点火プラグおよびその点火システム

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8387580B2 (en) 2009-10-29 2013-03-05 Mitsubishi Electric Corporation Plasma ignition device for internal combustion engine
JP2011214556A (ja) * 2010-04-02 2011-10-27 Mitsubishi Electric Corp プラズマ式点火装置
US8096276B2 (en) 2010-04-02 2012-01-17 Mitsubishi Electronic Corporation Plasma ignition device
DE102010015344A1 (de) * 2010-04-17 2011-10-20 Borgwarner Beru Systems Gmbh Verfahren zum Zünden eines Brennstoff-Luft-Gemisches einer Verbrennungskammer, insbesondere in einem Verbrennungsmotor durch Erzeugen einer Korona-Entladung
DE102010015344B4 (de) * 2010-04-17 2013-07-25 Borgwarner Beru Systems Gmbh Verfahren zum Zünden eines Brennstoff-Luft-Gemisches einer Verbrennungskammer, insbesondere in einem Verbrennungsmotor durch Erzeugen einer Korona-Entladung
JP2012021446A (ja) * 2010-07-14 2012-02-02 Ngk Spark Plug Co Ltd プラズマジェット点火プラグの点火装置、及び、点火システム
KR101826303B1 (ko) 2010-08-31 2018-02-06 페더럴-모굴 이그니션 컴퍼니 하이브리드 점화 장치의 전기 배치
KR101170926B1 (ko) 2010-09-01 2012-08-03 (주) 엔피홀딩스 플라즈마 방전을 위한 점화 장치가 장착된 플라즈마 반응기
JP2012067708A (ja) * 2010-09-27 2012-04-05 Daihatsu Motor Co Ltd 内燃機関の火花点火方法
JP2012154218A (ja) * 2011-01-25 2012-08-16 Daihatsu Motor Co Ltd 火花点火式内燃機関の火花点火制御方法
WO2012102217A1 (ja) * 2011-01-25 2012-08-02 ダイハツ工業株式会社 火花点火式内燃機関の火花点火制御方法
JP2013002427A (ja) * 2011-06-21 2013-01-07 Diamond Electric Mfg Co Ltd 高周波点火装置
JP2013019301A (ja) * 2011-07-11 2013-01-31 Diamond Electric Mfg Co Ltd 高周波点火装置の動作状態判定方法
JP2013040582A (ja) * 2011-08-17 2013-02-28 Ngk Spark Plug Co Ltd 点火システム及びその制御方法
JP2015535043A (ja) * 2012-10-19 2015-12-07 エルドル コーポレイション エセ.ペー.アー. 内燃機関用プラズマ点火装置
US9246313B2 (en) 2012-11-29 2016-01-26 Ngk Spark Plug Co., Ltd. Ignition system
JP2014175252A (ja) * 2013-03-12 2014-09-22 Mitsubishi Electric Corp 火花点火式内燃機関の点火装置
JP2016180353A (ja) * 2015-03-24 2016-10-13 ダイヤモンド電機株式会社 内燃機関の点火装置及び点火方法
JP2023051338A (ja) * 2021-09-30 2023-04-11 本田技研工業株式会社 内燃機関の制御装置および内燃機関の制御方法

Also Published As

Publication number Publication date
US8316823B2 (en) 2012-11-27
KR20100098494A (ko) 2010-09-07
US20100132666A1 (en) 2010-06-03
CN101910615A (zh) 2010-12-08
JPWO2009088045A1 (ja) 2011-05-26
EP2187044A1 (en) 2010-05-19

Similar Documents

Publication Publication Date Title
WO2009088045A1 (ja) プラズマジェット点火プラグの点火制御
JP4674193B2 (ja) プラズマジェット点火プラグの点火制御方法およびその方法を用いた点火装置
JP4669486B2 (ja) プラズマジェット点火プラグおよびその点火システム
JP4674219B2 (ja) プラズマジェット点火プラグの点火システム
JP4778301B2 (ja) プラズマジェット点火プラグおよびその点火装置
US8082897B2 (en) Plasma jet ignition plug and ignition device for the same
JPH07167024A (ja) 内燃機関の点火およびエンジン制御装置
JPH07166947A (ja) 火花放電点火内燃機関の燃焼シリンダにおける自己点火を検出する方法
US20160341170A1 (en) Ignition apparatus
JPH07167027A (ja) 火花放電点火内燃機関の点火プラグを放電させる点火トランス
JP5072947B2 (ja) 点火プラグおよび点火システム
JPH07167029A (ja) 火花放電点火内燃機関の燃焼シリンダにおける失火を検出する方法
US8558442B2 (en) Plasma jet ignition plug
JP5210361B2 (ja) プラズマジェット点火プラグの点火装置、及び、点火システム
JP2010218768A (ja) プラズマ式点火プラグ
JPH07198545A (ja) 火花放電点火内燃機関の燃焼シリンダにおける負荷を決定する方法
US9133812B2 (en) Ignition apparatus and ignition system
US20230327407A1 (en) Ignition device
JP5140134B2 (ja) 点火システム及び点火方法
JP2010174691A (ja) プラズマ式点火装置の点火制御方法およびその方法を用いたプラズマ式点火装置
JP2010209837A (ja) プラズマ点火装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980101559.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2009523888

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09700927

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12452068

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009700927

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107008853

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE