WO2009084585A1 - 芳香族ジアミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子 - Google Patents

芳香族ジアミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2009084585A1
WO2009084585A1 PCT/JP2008/073593 JP2008073593W WO2009084585A1 WO 2009084585 A1 WO2009084585 A1 WO 2009084585A1 JP 2008073593 W JP2008073593 W JP 2008073593W WO 2009084585 A1 WO2009084585 A1 WO 2009084585A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
carbon atoms
unsubstituted
aromatic diamine
Prior art date
Application number
PCT/JP2008/073593
Other languages
English (en)
French (fr)
Inventor
Yumiko Mizuki
Masakazu Funahashi
Masahiro Kawamura
Mitsunori Ito
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to JP2009548063A priority Critical patent/JPWO2009084585A1/ja
Priority to US12/810,709 priority patent/US8647754B2/en
Publication of WO2009084585A1 publication Critical patent/WO2009084585A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B3/00Dyes with an anthracene nucleus condensed with one or more carbocyclic rings
    • C09B3/78Other dyes in which the anthracene nucleus is condensed with one or more carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B1/00Dyes with anthracene nucleus not condensed with any other ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B3/00Dyes with an anthracene nucleus condensed with one or more carbocyclic rings
    • C09B3/14Perylene derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/001Pyrene dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/008Dyes containing a substituent, which contains a silicium atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B

Definitions

  • the present invention relates to an aromatic diamine derivative and an organic electroluminescence device using the same, and more particularly to an organic electroluminescence device having a long lifetime and high luminous efficiency, and an aromatic diamine derivative that realizes the organic luminescence device.
  • an organic electroluminescence (EL) element using an organic substance is expected to be used as an inexpensive large-area full-color display element of a solid light emitting type and has been developed in many ways.
  • an organic EL element is composed of a light emitting layer and a pair of counter electrodes sandwiching the layer. In light emission, when an electric field is applied between both electrodes, electrons are injected from the cathode side and holes are injected from the anode side. Furthermore, this is a phenomenon in which electrons recombine with holes in the light emitting layer to generate an excited state, and energy is emitted as light when the excited state returns to the ground state.
  • Patent Document 4 a technique using a mono- or bisanthracene compound and a distyryl compound as an organic light-emitting medium layer is disclosed (see Patent Document 4). Furthermore, a blue light-emitting element using a diaminochrysene derivative is disclosed (see Patent Document 5).
  • an invention using an aromatic amine derivative having an arylene group at the center as a hole transporting material (see Patent Document 6), a dibenzofuran ring, a dibenzothiophene ring, a benzofuran ring, a benzothiophene ring, and the like are attached to a nitrogen atom via an arylene group
  • An invention using a bonded aromatic amine derivative as a hole transporting material (see Patent Document 7) is also disclosed.
  • an invention is disclosed in which an aromatic diamine derivative in which a phenyl group having a substituted or unsubstituted silyl group is substituted with a nitrogen atom is used as a light emitting layer material.
  • the organic light-emitting material described in Patent Document 1 for example, at a current density of 165 mA / cm 2 , only a luminance of 1650 cd / m 2 is obtained, and the efficiency is 1 cd / A, which is extremely low and not practical. Also, the organic light emitting material described in Patent Document 2 has a low efficiency of about 1 to 3 cd / A, and further improvement for practical use is necessary. Even with the method described in Patent Document 3, there is room for further improvement rather than a long life that can withstand practical use.
  • the technique described in Patent Document 4 has a problem that the emission spectrum becomes longer due to the conjugated structure of the styryl compound and the color purity is poor.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide an organic EL device having a long lifetime and high luminous efficiency and a compound for realizing the organic EL device.
  • an aromatic diamine derivative having a chrysene structure has a phenyl group having a substituted or unsubstituted silyl group as a substituent of an amino group. It has been found that when the aromatic amine derivative is used as a light emitting material, it has high luminous efficiency and long life. The present invention has been completed based on such findings.
  • the present invention is an aromatic diamine derivative represented by the following general formula (I).
  • R 1 to R 10 each independently represents a hydrogen atom, an alkyl group having 1 to 50 carbon atoms, a cycloalkyl group having 3 to 50 carbon atoms, an aralkyl group having 7 to 50 carbon atoms, or 6 carbon atoms
  • R 11 represents a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms, a substituted or unsubstituted carbon group having 7 to 50 carbon atoms
  • 50 represents an aralkyl group, a substituted or unsubstituted alkyloxy group having 1 to 50 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 carbon atoms, and at least one of A, B, and C is substituted.
  • an unsubstituted silyl group the remainder being a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms, a substituted or unsubstituted carbon number 7-5
  • B and C are trimethylsilyl groups and b and c are 1 and both are para-substituted, and A and R 11 are methyl groups, a and d are both 1 and both are para-substituted. except for.
  • A is a trimethylsilyl group and a is 1 and is para-substituted
  • R 11 is a methyl group and d is 2 and two R 11 are both meta-substituted
  • B is a trimethylsilyl group and b is 1 and para-substituted
  • a structure in which C is a methyl group, c is 2 and two C are both meta-substituted.
  • the present invention provides an organic EL device in which an organic thin film layer comprising at least one light emitting layer or a plurality of light emitting layers is sandwiched between a cathode and an anode, and at least one of the organic thin film layers contains the aromatic diamine derivative.
  • the organic EL element contained alone or as a component of a mixture is provided.
  • an organic EL device using the aromatic diamine derivative has high luminous efficiency, maintains blue purity, hardly deteriorates even when used for a long time, and has a long life.
  • the aromatic amine derivative of the present invention is an aromatic diamine derivative represented by the following general formula (I).
  • R 1 to R 10 are each independently a hydrogen atom, an alkyl group having 1 to 50 carbon atoms, a cycloalkyl group having 3 to 50 carbon atoms, an aralkyl group having 7 to 50 carbon atoms, Represents an aryl group having 6 to 50 carbon atoms.
  • the number of carbon atoms of each group in the general formula is a number that does not include the carbon number of the substituent.
  • alkyl group having 1 to 50 carbon atoms examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, various pentyl groups (“various "Represents any of straight chain, branched chain, and cyclic. The same shall apply hereinafter.), And an alkyl group having 1 to 10 carbon atoms is preferred.
  • Examples of the cycloalkyl group having 3 to 50 carbon atoms include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a 4-methylcyclohexyl group, and a cyclooctyl group, and a cyclohexyl group having 5 to 8 carbon atoms is preferable.
  • Examples of the aralkyl group having 7 to 50 carbon atoms include benzyl group, ⁇ , ⁇ -phenylmethylbenzyl group, ⁇ , ⁇ -dimethylbenzyl group, ⁇ -phenoxybenzyl group, ⁇ , ⁇ -methylphenylbenzyl group, ⁇ , ⁇ -ditrifluoromethylbenzyl group, triphenylmethyl group, ⁇ -benzyloxybenzyl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenylisopropyl group, 2-phenylisopropyl group, phenyl-t-butyl group , ⁇ -naphthylmethyl group, 1- ⁇ -naphthylethyl group, 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, 2- ⁇ -naphthylisopropyl group, ⁇ -naphthy
  • aryl group having 6 to 50 carbon atoms examples include phenyl group, tolyl group, naphthyl group, acenaphthylenyl group, anthryl group, phenanthryl group, phenalenyl group, fluorenyl group, a-indacenyl group, and as-indacenyl group.
  • An aryl group having a number of 6 to 14 is preferred.
  • At least one of A, B, and C represents a substituted or unsubstituted silyl group, and the remainder is a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted group.
  • An unsubstituted cycloalkyl group having 3 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, a substituted or unsubstituted alkyloxy group having 1 to 50 carbon atoms, or a substituted or unsubstituted carbon number 6 Represents up to 50 aryl groups.
  • Examples of the substituent for the silyl group include an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 14 carbon atoms, and an alkoxyl group having 1 to 20 carbon atoms.
  • Examples of the alkyl group having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, and various pentyl groups.
  • an alkyl group having 1 to 5 carbon atoms is preferred.
  • Examples of the aryl group having 6 to 14 carbon atoms include a phenyl group, a tolyl group, a naphthyl group, and an anthryl group, and an aryl group having 6 to 10 carbon atoms is preferable.
  • Examples of the alkoxyl group having 1 to 20 carbon atoms include a methoxy group, an ethoxy group, various propoxy groups, and various butoxy groups, and an alkoxyl group having 1 to 5 carbon atoms is preferable.
  • the silyl group is more preferably a trialkylsilyl group, a dialkyl-monoarylsilyl group, a monoalkyl-diarylsilyl group, or a triarylsilyl group.
  • Examples of the substituted or unsubstituted alkyl group having 1 to 50 carbon atoms represented by the remaining group other than silyl group among A, B and C include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n -Butyl group, isobutyl group, s-butyl group, t-butyl group and various pentyl groups are exemplified, and an alkyl group having 1 to 10 carbon atoms is preferable.
  • Examples of the substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a 4-methylcyclohexyl group, and a cyclooctyl group.
  • a cyclohexyl group having 5 to 8 carbon atoms is exemplified. preferable.
  • Examples of the substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms include benzyl group, ⁇ , ⁇ -phenylmethylbenzyl group, ⁇ , ⁇ -dimethylbenzyl group, ⁇ -phenoxybenzyl group, ⁇ , ⁇ -methylphenylbenzyl.
  • the substituted or unsubstituted alkyloxy group having 1 to 50 carbon atoms is a group represented by —OY, and the Y is a group other than the above-mentioned “A, B, C, which is not a silyl group. And the same as the alkyl group represented by the “substituted or unsubstituted alkyl group having 1 to 50 carbon atoms”. Among these, an alkyl group having 1 to 10 carbon atoms is preferable, an alkyl group having 1 to 5 carbon atoms is more preferable, and a methyl group is further preferable.
  • Examples of the substituted or unsubstituted aryl group having 6 to 50 carbon atoms include phenyl group, tolyl group, methoxyphenyl group, ethoxyphenyl group, butoxyphenyl group, naphthyl group, acenaphthylenyl group, anthryl group, phenanthryl group, phenalenyl group, Examples include a fluorenyl group, an a-indacenyl group, and an as-indacenyl group.
  • R 11 is a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, substituted or unsubstituted
  • a substituted alkyloxy group having 1 to 50 carbon atoms or a substituted or unsubstituted aryl group having 6 to 50 carbon atoms is represented.
  • Examples of the substituted or unsubstituted alkyl group having 1 to 50 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, a t-butyl group, Examples thereof include various pentyl groups, and alkyl groups having 1 to 10 carbon atoms are preferable.
  • Examples of the substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a 4-methylcyclohexyl group, and a cyclooctyl group.
  • a cyclohexyl group having 5 to 8 carbon atoms is exemplified. preferable.
  • Examples of the substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms include benzyl group, ⁇ , ⁇ -phenylmethylbenzyl group, ⁇ , ⁇ -dimethylbenzyl group, ⁇ -phenoxybenzyl group, ⁇ , ⁇ -methylphenyl Benzyl group, ⁇ , ⁇ -ditrifluoromethylbenzyl group, triphenylmethyl group, ⁇ -benzyloxybenzyl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenylisopropyl group, 2-phenylisopropyl group, phenyl -T-butyl group, ⁇ -naphthylmethyl group, 1- ⁇ -naphthylethyl group, 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, 2- ⁇ -naphthylisopropyl group
  • the substituted or unsubstituted alkyloxy group having 1 to 50 carbon atoms is a group represented by —OY ′, and as Y ′, among the above “A, B, and C, the remaining silyl group is not a silyl group.
  • an alkyl group having 1 to 10 carbon atoms is preferable, an alkyl group having 1 to 5 carbon atoms is more preferable, and a methyl group is further preferable.
  • Examples of the substituted or unsubstituted aryl group having 6 to 50 carbon atoms include phenyl group, tolyl group, naphthyl group, acenaphthylenyl group, anthryl group, phenanthryl group, phenalenyl group, fluorenyl group, a-indacenyl group, as-indacenyl group An aryl group having 6 to 14 carbon atoms is preferable.
  • A is a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms or a substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms.
  • An aromatic diamine derivative which is a 7 to 50 aralkyl group, a substituted or unsubstituted alkyloxy group having 1 to 50 carbon atoms or a substituted or unsubstituted aryl group having 6 to 50 carbon atoms is preferred. Arbitrariness. As the aromatic diamine derivative represented by the general formula (I), an aromatic diamine derivative in
  • Examples of the aromatic diamine derivative represented by the general formula (I) include the following. Note that —SiMe 3 represents a trimethylsilyl group.
  • A is a trimethylsilyl group and a is 1 and para-substituted
  • R 11 is a methyl group and d is 2 and both are meta-substituted
  • B is a trimethylsilyl group
  • b is 1 and para-substituted
  • C is a methyl group
  • c is 2 and both are meta-substituted structures, that is, the following compounds are excluded.
  • the method for producing the aromatic diamine derivative represented by the general formula (I) of the present invention is not particularly limited and may be produced by a known method.
  • the aromatic diamine derivative of the present invention is suitable as a material for an organic EL device, particularly preferably a light emitting material, and suitably used as a blue light emitting material or a green light emitting material. Moreover, the aromatic diamine derivative of the present invention is more suitable as a doping material for organic EL devices.
  • the organic EL device of the present invention is a device in which one or more organic thin film layers are formed between an anode and a cathode.
  • a light emitting layer is provided between the anode and the cathode.
  • the light emitting layer contains a light emitting material, and may further contain a hole injecting material or an electron injecting material in order to transport holes injected from the anode or electrons injected from the cathode to the light emitting material.
  • the aromatic diamine derivative of the present invention has high light emission characteristics and has excellent hole injection properties, hole transport properties and electron injection properties, and electron transport properties. Can be used.
  • the light emitting layer preferably contains the aromatic diamine derivative of the present invention, and the content is usually preferably 0.1 to 20% by mass, more preferably 1 to 10% by mass, 3 to 7% by mass is more preferable.
  • the aromatic diamine derivative of the present invention has extremely high fluorescence quantum efficiency, high hole transport ability and electron transport ability, and can form a uniform thin film. Therefore, the light emitting layer can be formed only with this aromatic diamine derivative. It is also possible to form.
  • the organic EL device of the present invention is an organic EL device in which an organic thin film layer composed of at least two layers including at least a light emitting layer is sandwiched between a cathode and an anode. It is also preferable to have an organic layer mainly composed of an aromatic diamine derivative. Examples of the organic layer include a hole injection layer and a hole transport layer.
  • aromatic diamine derivative of the present invention when used as a doping material, a known compound can be used as the host material, and there is no particular limitation.
  • an anthracene derivative of the following general formula (i) and / or the following general formula (ii) It is more preferable to use a pyrene derivative of
  • R 12 to R 19 each independently represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 carbon atoms, a substituted or unsubstituted heteroaryl group having 4 to 50 carbon atoms, substituted or unsubstituted, An unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms, a substituted or unsubstituted alkoxyl group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group (aryl)
  • the moiety is 6 to 50 carbon atoms, the alkyl moiety is 1 to 50 carbon atoms), a substituted or unsubstituted aryloxy group having 5 to 50 carbon atoms, a substituted or unsubstituted arylthio group having 5 to 50 carbon atoms, substituted or unsubstituted
  • Examples of the substituted or unsubstituted aryl group having 6 to 50 carbon atoms of R 12 to R 19 in the general formula (i) include, for example, a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, and a 2-anthryl group.
  • Examples of the substituted or unsubstituted heteroaryl group having 4 to 50 carbon atoms of R 12 to R 19 in the general formula (i) include, for example, 1-pyrrolyl group, 2-pyrrolyl group, 3-pyrrolyl group, pyrazinyl group, 2- Pyridinyl group, 3-pyridinyl group, 4-pyridinyl group, 1-indolyl group, 2-indolyl group, 3-indolyl group, 4-indolyl group, 5-indolyl group, 6-indolyl group, 7-indolyl group, 1- Isoindolyl group, 2-isoindolyl group, 3-isoindolyl group, 4-isoindolyl group, 5-isoindolyl group, 6-isoindolyl group, 7-isoindolyl group, 2-furyl group, 3-furyl group, 2-benzofuranyl group, 3- Benzofuranyl group, 4-
  • Examples of the substituted or unsubstituted alkyl group having 1 to 50 carbon atoms of R 12 to R 19 in the general formula (i) include, for example, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, and s-butyl group.
  • Examples of the substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms of R 12 to R 19 in the general formula (i) include, for example, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a 4-methylcyclohexyl group, 1 -Adamantyl group, 2-adamantyl group, 1-norbornyl group, 2-norbornyl group.
  • the alkyl group part of the substituted or unsubstituted alkoxyl group having 1 to 50 carbon atoms of R 12 to R 19 in the general formula (i) is the substituted or unsubstituted alkyl group having 1 to 50 carbon atoms of R 12 to R 19. Selected from the group.
  • Examples of the substituted or unsubstituted aralkyl group (the aryl part has 6 to 50 carbon atoms and the alkyl part has 1 to 50 carbon atoms) as a substituent of R 12 to R 19 in the general formula (i) include, for example, a benzyl group, 1- Phenylethyl group, 2-phenylethyl group, 1-phenylisopropyl group, 2-phenylisopropyl group, phenyl-t-butyl group, ⁇ -naphthylmethyl group, 1- ⁇ -naphthylethyl group, 2- ⁇ -naphthylethyl group 1- ⁇ -naphthylisopropyl group, 2- ⁇ -naphthylisopropyl group, ⁇ -naphthylmethyl group, 1- ⁇ -naphthylethyl group, 2- ⁇ -naphthylethyl group, 1- ⁇ -n
  • R 12 aryl group moiety of the substituted or unsubstituted aryloxy group and arylthio group having 6 to 50 carbon atoms ⁇ R 19 are carbon atoms each substituted or unsubstituted wherein R 12 ⁇ R 19 in the general formula (i) Selected from 6 to 50 aryl groups.
  • Examples of the substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms of R 12 to R 19 in the general formula (i) include a methoxycarbonyl group, an ethoxycarbonyl group, various propoxycarbonyl groups, and various butoxycarbonyl groups.
  • An alkoxycarbonyl group having 1 to 20 carbon atoms is preferable.
  • Examples of the substituted silyl group of R 12 to R 19 in the general formula (i) include a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, and a triphenylsilyl group. It is done.
  • Examples of the halogen atom represented by R 12 to R 19 in the general formula (i) include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Examples of the substituent on the aromatic ring represented by R 12 to R 19 include a halogen atom, a hydroxyl group, a nitro group, a cyano group, an alkyl group having 1 to 10 carbon atoms, an aryl group having 1 to 30 carbon atoms, and 3 to 3 carbon atoms.
  • cycloalkyl groups C1-C10 alkoxyl groups, C5-C30 aromatic heterocyclic groups, C7-C30 aralkyl groups, C6-C30 aryloxy groups, C6-C6 It may be further substituted with a 30 arylthio group, an alkoxycarbonyl group having 2 to 10 carbon atoms, or a carboxyl group.
  • D and E are each independently a group derived from a substituted or unsubstituted aromatic ring having 6 to 20 carbon atoms.
  • the aromatic ring may be substituted with one or more substituents.
  • substituents of the aromatic ring include a substituted or unsubstituted aryl group having 6 to 50 carbon atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, and a substituted or unsubstituted cyclohexane having 3 to 50 carbon atoms.
  • the substituents may be the same or different, and adjacent substituents are bonded to each other to form a saturated or unsaturated cyclic structure. It may be formed.
  • at least one of D and E is preferably a substituent having a substituted or unsubstituted condensed ring group having 10 to 30 carbon atoms, more preferably a substituent having a substituted or unsubstituted naphthyl group. preferable. Note that D and E are preferably different.
  • Examples of the group derived from a substituted or unsubstituted aromatic ring having 6 to 20 carbon atoms of D and E include, for example, a phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 1-naphthacenyl group, 2-naphthacenyl group, 9-naphthacenyl group, 1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group, 2-biphenylyl group, 3-biphenylyl group, 4-biphenylyl group, p-terphenyl-4-yl group, p-terphenyl-3-yl group, p- Terphenyl-2-yl, m-terphenyl-4-y
  • a 1-naphthyl group, a 2-naphthyl group, and a 9-phenanthryl group are preferable.
  • the substituent on the aromatic ring of D and E include a halogen atom, hydroxyl group, nitro group, cyano group, alkyl group having 1 to 10 carbon atoms, aryl group having 1 to 30 carbon atoms, and 3 to 20 carbon atoms.
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group having 6 to 50 carbon atoms.
  • L 1 and L 2 are each independently a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthalenylene group, a substituted or unsubstituted fluorenylene group, or a substituted or unsubstituted dibenzosilolylene group.
  • s is an integer from 0 to 2
  • p is an integer from 1 to 4
  • q is an integer from 0 to 2
  • r is an integer from 0 to 4.
  • L 1 or Ar 1 is bonded to any one of 1 to 5 positions of pyrene, and L 2 or Ar 2 is bonded to any of 6 to 10 positions of pyrene.
  • Ar 1 , Ar 2 , L 1 and L 2 satisfy the following (1) or (2).
  • Ar 1 ⁇ Ar 2 and / or L 1 ⁇ L 2 (where ⁇ indicates a group having a different structure)
  • Examples of the aryl group having 6 to 50 carbon atoms represented by Ar 1 and Ar 2 include a phenyl group, a 2-methylphenyl group, a 3-methylphenyl group, a 4-methylphenyl group, a 4-ethylphenyl group, a biphenyl group, 4-methylbiphenyl group, 4-ethylbiphenyl group, 4-cyclohexylbiphenyl group, 3,5-dichlorophenyl group, naphthyl group, 5-methylnaphthyl group, acenaphthylenyl group, anthryl group, phenanthryl group, phenenyl group, fluorenyl group, a -Indacenyl group, as-indacenyl group. Particularly preferred is an aryl group having 6 to 30 carbon atoms.
  • Examples of the substituent which the phenylene group, naphthalenylene group, fluorenylene group and dibenzosilolylene group represented by L 1 and L 2 may have include, for example, an alkyl group having 1 to 50 carbon atoms and a cycloalkyl group having 3 to 50 carbon atoms.
  • aralkyl group having 7 to 50 carbon atoms, alkoxyl group having 1 to 50 carbon atoms, aryl group having 6 to 50 carbon atoms, aryloxy group having 6 to 50 carbon atoms, arylthio group having 6 to 50 carbon atoms, carbon number 1 to 50 alkoxycarbonyl groups, amino groups, halogen atoms, nitro groups, hydroxyl groups, carboxyl groups or cyano groups are represented.
  • alkyl group having 1 to 50 carbon atoms examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, and various pentyl groups.
  • An alkyl group having 1 to 10 carbon atoms is preferable.
  • Examples of the cycloalkyl group having 3 to 50 carbon atoms include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a 4-methylcyclohexyl group, and a cyclooctyl group, and a cyclohexyl group having 5 to 8 carbon atoms is preferable.
  • Examples of the aralkyl group having 7 to 50 carbon atoms include benzyl group, ⁇ , ⁇ -phenylmethylbenzyl group, ⁇ , ⁇ -dimethylbenzyl group, ⁇ -phenoxybenzyl group, ⁇ , ⁇ -methylphenylbenzyl group, ⁇ , ⁇ -ditrifluoromethylbenzyl group, triphenylmethyl group, ⁇ -benzyloxybenzyl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenylisopropyl group, 2-phenylisopropyl group, phenyl-t-butyl group , ⁇ -naphthylmethyl group, 1- ⁇ -naphthylethyl group, 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, 2- ⁇ -naphthylisopropyl group, ⁇ -naphthy
  • alkoxyl group having 1 to 50 carbon atoms examples include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, s-butoxy group, and t-butoxy group. 1 to 10 alkoxyl groups are preferred.
  • aryl group having 6 to 50 carbon atoms include a phenyl group, a naphthyl group, an acenaphthylenyl group, an anthryl group, a phenanthryl group, a phenalenyl group, a fluorenyl group, an a-indacenyl group, and an as-indacenyl group.
  • aryl groups are preferred.
  • the aryloxy group having 6 to 50 carbon atoms include a phenoxy group and a naphthyloxy group, and an aryloxy group having 6 to 20 carbon atoms is preferable.
  • the arylthio group having 6 to 50 carbon atoms include a phenylthio group and a naphthylthio group, and an arylthio group having 6 to 20 carbon atoms is preferable.
  • Examples of the alkoxycarbonyl group having 1 to 50 carbon atoms include a methoxycarbonyl group, an ethoxycarbonyl group, various propoxycarbonyl groups, and various butoxycarbonyl groups, and an alkoxycarbonyl group having 1 to 20 carbon atoms is preferable.
  • Examples of the amino group include an amino group substituted with an alkyl group having 1 to 50 carbon atoms such as a dimethylamino group, a diethylamino group, a diphenylamino group, and a dinaphthylamino group or an aryl group having 6 to 50 carbon atoms.
  • Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • anthracene derivative represented by the general formula (i) used in the organic EL device of the present invention include those in the molecule shown in paragraphs [0043] to [0063] of JP-A No. 2004-356033.
  • Examples include various anthracene derivatives known in the art such as those having two anthracene skeletons and compounds having one anthracene skeleton shown in pages 27 to 28 of WO 2005/061656. Typical specific examples are shown below, but are not particularly limited thereto.
  • organic EL elements having a plurality of organic thin film layers are, for example, (anode / hole injection layer / light emitting layer / cathode), (anode / light emitting layer / electron injection layer / cathode), (anode / positive). And a layer laminated with a structure such as hole injection layer / light emitting layer / electron injection layer / cathode).
  • the organic EL element can prevent the brightness
  • a known light emitting material, doping material, hole injecting material, and electron injecting material can also be used for the plurality of layers as necessary.
  • the hole injection layer, the light emitting layer, and the electron injection layer may each be formed of two or more layers.
  • the layer that injects holes from the electrode is a hole injection layer
  • the layer that receives holes from the hole injection layer and transports holes to the light emitting layer is a hole transport layer.
  • an electron injection layer a layer that injects electrons from an electrode
  • a layer that receives electrons from the electron injection layer and transports electrons to a light emitting layer is referred to as an electron transport layer.
  • Each of these layers is selected and used depending on factors such as the energy level of the material, heat resistance, and adhesion to the organic layer or metal electrode.
  • Examples of host materials or doping materials other than the above general formulas (i) and (ii) that can be used in the light emitting layer together with the aromatic diamine derivative of the present invention include known materials such as naphthalene, phenanthrene, rubrene, anthracene, Tetracene, pyrene, perylene, chrysene, decacyclene, coronene, tetraphenylcyclopentadiene, pentaphenylcyclopentadiene, fluorene, spirofluorene, 9,10-diphenylanthracene, 9,10-bis (phenylethynyl) anthracene, 1,4-bis Condensed polycyclic aromatic compounds such as (9′-ethynylanthracenyl) benzene and their derivatives, tris (8-quinolinolato) aluminum, bis- (2-methyl-8-quinolinolato) -4- (phenylphenolinate) )
  • the hole injection material has the ability to transport holes, has a hole injection effect from the anode, an excellent hole injection effect for the light emitting layer or the light emitting material, and excitons generated in the light emitting layer.
  • a compound that prevents movement to the electron injection layer or the electron injection material and has an excellent thin film forming ability is preferable.
  • phthalocyanine derivatives naphthalocyanine derivatives, porphyrin derivatives, oxazole, oxadiazole, triazole, imidazole, imidazolone, imidazolethione, pyrazoline, pyrazolone, tetrahydroimidazole, oxazole, oxadiazole, hydrazone, acylhydrazone, polyaryl Examples include alkane, stilbene, butadiene, benzidine type triphenylamine, styrylamine type triphenylamine, diamine type triphenylamine, and derivatives thereof, and polymer materials such as polyvinylcarbazole, polysilane, and conductive polymers. However, it is not limited to these.
  • more effective hole injection materials are aromatic tertiary amine derivatives and phthalocyanine derivatives.
  • aromatic tertiary amine derivatives include triphenylamine, tolylamine, tolyldiphenylamine, N, N′-diphenyl-N, N ′-(3-methylphenyl) -1,1′-biphenyl-4, 4′-diamine, N, N, N ′, N ′-(4-methylphenyl) -1,1′-phenyl-4,4′-diamine, N, N, N ′, N ′-(4-methyl Phenyl) -1,1'-biphenyl-4,4'-diamine, N, N'-diphenyl-N, N'-dinaphthyl-1,1'-biphenyl-4,4'-diamine, N, N'- (Methylpheny
  • phthalocyanine (Pc) derivative examples include H 2 Pc, CuPc, CoPc, NiPc, ZnPc, PdPc, FePc, MnPc, ClAlPc, ClGaPc, ClInPc, ClSnPc, Cl 2 SiPc, (HO) AlPc, (HO) GaPc, Examples include, but are not limited to, phthalocyanine derivatives and naphthalocyanine derivatives such as VOPc, TiOPc, MoOPc, and GaPc—O—GaPc.
  • the organic EL device of the present invention is a layer containing these aromatic tertiary amine derivatives and / or phthalocyanine derivatives, for example, the hole transport layer or the hole injection layer, between the light emitting layer and the anode. Is preferably formed.
  • an electron injection material it has the ability to transport electrons, has an electron injection effect from the cathode, an excellent electron injection effect for the light emitting layer or light emitting material, and a hole injection layer of excitons generated in the light emitting layer
  • the compound which prevents the movement to and is excellent in thin film forming ability is preferable.
  • it is not limited to these.
  • it can be sensitized by adding an electron accepting substance to the hole injecting material and an electron donating substance to the electron injecting material.
  • more effective electron injection materials are metal complex compounds and nitrogen-containing five-membered ring derivatives.
  • the metal complex compound include 8-hydroxyquinolinate lithium, bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinato) copper, bis (8-hydroxyquinolinato) manganese, and tris.
  • nitrogen-containing five-membered derivative for example, oxazole, thiazole, oxadiazole, thiadiazole, and triazole derivatives are preferable.
  • the organic EL device of the present invention in the light emitting layer, in addition to the aromatic diamine derivative represented by the general formula (I), at least a known light emitting material, doping material, hole injecting material, and electron injecting material. One kind may be contained in the same layer.
  • a protective layer is provided on the surface of the device, or the entire device is protected by silicon oil, resin, etc. Is also possible.
  • a material having a work function larger than 4 eV is suitable, and carbon, aluminum, vanadium, iron, cobalt, nickel, tungsten, silver, gold, platinum Palladium, etc. and their alloys, metal oxides such as tin oxide and indium oxide used for ITO substrates and NESA substrates, and organic conductive resins such as polythiophene and polypyrrole are used.
  • Suitable conductive materials for the cathode are those having a work function smaller than 4 eV, such as magnesium, calcium, tin, lead, titanium, yttrium, lithium, ruthenium, manganese, aluminum, lithium fluoride, and the like.
  • alloys include magnesium / silver, magnesium / indium, lithium / aluminum, and the like, but are not limited thereto.
  • the ratio of the alloy is controlled by the temperature of the vapor deposition source, the atmosphere, the degree of vacuum, etc., and is selected to an appropriate ratio. If necessary, the anode and the cathode may be formed of two or more layers.
  • the organic EL device of the present invention in order to emit light efficiently, it is desirable that at least one surface be sufficiently transparent in the light emission wavelength region of the device.
  • the substrate is also preferably transparent.
  • the transparent electrode is set using the above-described conductive material so as to ensure a predetermined translucency by a method such as vapor deposition or sputtering.
  • the electrode on the light emitting surface preferably has a light transmittance of 10% or more.
  • the substrate is not limited as long as it has mechanical and thermal strength and has transparency, and includes a glass substrate and a transparent resin film.
  • Transparent resin films include polyethylene, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, polypropylene, polystyrene, polymethyl methacrylate, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, nylon, polyether ether ketone.
  • each layer of the organic EL device For the formation of each layer of the organic EL device according to the present invention, any of dry film forming methods such as vacuum deposition, sputtering, plasma, ion plating, etc. and wet film forming methods such as spin coating, dipping, and flow coating is applied. be able to.
  • the film thickness is not particularly limited, but must be set to an appropriate film thickness. If the film thickness is too thick, a large applied voltage is required to obtain a constant light output, resulting in poor efficiency. If the film thickness is too thin, pinholes and the like are generated, and sufficient light emission luminance cannot be obtained even when an electric field is applied.
  • the normal film thickness is suitably in the range of 5 nm to 10 ⁇ m, but more preferably in the range of 10 nm to 0.2 ⁇ m.
  • the material for forming each layer is dissolved or dispersed in an appropriate solvent such as ethanol, chloroform, tetrahydrofuran, dioxane, or the like to form a thin film, and any solvent may be used.
  • an appropriate resin or additive may be used for improving film formability and preventing pinholes in the film.
  • Usable resins include polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyurethane, polysulfone, polymethyl methacrylate, polymethyl acrylate, cellulose and other insulating resins and copolymers thereof, poly-N-vinyl.
  • Examples thereof include photoconductive resins such as carbazole and polysilane, and conductive resins such as polythiophene and polypyrrole.
  • the additive include an antioxidant, an ultraviolet absorber, and a plasticizer.
  • the organic EL device of the present invention can be used for a flat light emitter such as a flat panel display of a wall-mounted television, a copying machine, a printer, a light source such as a backlight of a liquid crystal display or instruments, a display board, a marker lamp, and the like.
  • the material of the present invention can be used not only in an organic EL device but also in fields such as an electrophotographic photosensitive member, a photoelectric conversion device, a solar cell, and an image sensor.
  • Synthesis Example 4 Synthesis of Compound (D-4)
  • Synthesis Example 7 Synthesis of Compound (D-7)
  • Synthesis Example 15 Synthesis of Compound (D-15)
  • N- [4- (trimethylsilyl) phenyl)]-Np-tolylamine N- [4- (trimethylsilyl) phenyl)] Synthesis was performed in the same manner as in Synthesis Example 1 except that -N-5- (2,3-dihydro-1H-indenyl) amine was used.
  • Example 1 A transparent electrode made of indium tin oxide having a thickness of 120 nm was provided on a glass substrate having a size of 25 ⁇ 75 ⁇ 1.1 mm. After cleaning the glass substrate by irradiating with ultraviolet rays and ozone, the substrate was placed in a vacuum deposition apparatus.
  • N ′, N ′′ -bis [4- (diphenylamino) phenyl] -N ′, N ′′ -diphenylbiphenyl-4,4′-diamine was deposited to a thickness of 60 nm
  • N, N, N ′, N′-tetrakis (4-biphenyl) -4,4′-benzidine was deposited to a thickness of 20 nm as a hole transport layer.
  • Example 2 An organic EL device was produced in the same manner as in Example 1 except that the compound (D-2) was used instead of the compound (D-1) as a doping material.
  • the obtained organic EL element was subjected to a current test, pure blue light emission (emission wavelength: 457 nm) of 500 cd / m 2 was obtained at a voltage of 6.5 V and a current density of 10 mA / m 2 .
  • the continuous electricity test was done like Example 1, the half life was 2200 hours.
  • Example 3 an organic EL device was produced in the same manner as in Example 1 except that the compound (D-3) was used instead of the compound (D-1) as a doping material.
  • the obtained organic EL element was subjected to a current test, pure blue light emission (emission wavelength: 457 nm) of 500 cd / m 2 was obtained at a voltage of 6.5 V and a current density of 10 mA / m 2 .
  • the continuous electricity test was done like Example 1, the half life was 2300 hours.
  • Example 1 ⁇ Comparative Example 1> In Example 1, except that 6,12-N, N ′-[tetrakis (4-trimethylsilylphenyl)] diaminochrysene was used as the doping material instead of the compound (D-1), Similarly, an organic EL device was produced. When the obtained organic EL element was subjected to an energization test, 300 cd / m 2 of pure blue light emission (emission wavelength: 452 nm) was obtained at a voltage of 6.5 V and a current density of 10 mA / m 2 . Moreover, when the continuous electricity test was done like Example 1, the half life was 1500 hours.
  • the organic EL device using the aromatic diamine derivative of the present invention has high luminous efficiency, is hardly deteriorated even when used for a long time, and has a long life. For this reason, it is useful as a light source such as a flat light emitter of a wall-mounted television and a backlight of a display.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 下記一般式(I)で表わされる置換又は無置換のシリル基を有するフェニル基をアミノ基の置換基としたクリセン構造を有する芳香族ジアミン誘導体、並びに陰極と陽極間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、該有機薄膜層の少なくとも一層が、前記芳香族ジアミン誘導体を単独又は混合物の成分として含有する、寿命が長くて高発光効率な有機エレクトロルミネッセンス素子。 (式中、R1~R10 は、それぞれ独立して、水素原子、炭素数1~50のアルキル基などを表す。R11 は、置換もしくは無置換の炭素数1~50のアルキル基などを表す。 また、A、B、Cは、少なくとも1つが置換又は無置換のシリル基を表し、残りは水素原子、置換もしくは無置換の炭素数1~50のアルキル基などを表し、a、b、c、dはそれぞれ独立して1~5の整数を表す。)

Description

芳香族ジアミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
 本発明は芳香族ジアミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子に関し、特に、寿命が長く、高発光効率の有機エレクトロルミネッセンス素子及びそれを実現する芳香族ジアミン誘導体に関するものである。
 有機物質を使用した有機エレクトロルミネッセンス(EL)素子は、固体発光型の安価な大面積フルカラー表示素子としての用途が有望視され、多くの開発が行われている。一般に有機EL素子は、発光層及び該層をはさんだ一対の対向電極から構成されている。発光は、両電極間に電界が印加されると、陰極側から電子が注入され、陽極側から正孔が注入される。さらに、この電子が発光層において正孔と再結合し、励起状態を生成し、励起状態が基底状態に戻る際にエネルギーを光として放出する現象である。
 従来の有機EL素子は、無機発光ダイオードに比べて駆動電圧が高く、発光輝度や発光効率も低かった。また、特性劣化も著しく実用化には至っていなかった。最近の有機EL素子は徐々に改良されているものの、引き続き、さらなる高発光効率、長寿命が要求されているのが実情である。
 従来の有機発光材料としては、例えば、単一のモノアントラセン化合物(特許文献1参照)や単一のビスアントラセン化合物(特許文献2参照)が開示されている。また、有機発光材料としてジスチリル化合物を用い、これにスチリルアミンなどを添加したものを用いることによる、有機EL素子の長寿命化も提案されている(特許文献3参照)。
 他に、モノ又はビスアントラセン化合物とジスチリル化合物を有機発光媒体層として用いた技術が開示されている(特許文献4参照)。
 さらに、ジアミノクリセン誘導体を用いた青色発光素子が開示されている(特許文献5参照)。また、中心にアリーレン基を有する芳香族アミン誘導体を正孔輸送材料として用いる発明(特許文献6参照)、ジベンゾフラン環、ジベンゾチオフェン環、ベンゾフラン環、ベンゾチオフェン環等がアリーレン基を介して窒素原子に結合した芳香族アミン誘導体を正孔輸送材料として用いる発明(特許文献7参照)なども開示されている。また、置換又は無置換のシリル基を有するフェニル基が窒素原子に置換した芳香族ジアミン誘導体を発光層材料として用いる発明(特許文献8参照)が開示されている。
特開平11-3782号公報 特開平8-12600号公報 国際公開第94/006157号パンフレット 特開2001-284050号公報 国際公開第04/044088号パンフレット 特許第3508984号明細書 国際公開第07/125714号パンフレット 国際公開第07/108666号パンフレット
 特許文献1に記載の有機発光材料では、例えば電流密度165mA/cm2において、1650cd/m2の輝度しか得られておらず、効率は1cd/Aであって極めて低く、実用的ではない。また、特許文献2に記載の有機発光材料でも、効率が1~3cd/A程度で低く、実用化のためのさらなる改良が必要である。特許文献3に記載の方法によっても、実用化に耐え得る長さの寿命ではなく、さらなる改良の余地がある。特許文献4に記載の技術では、スチリル化合物の共役構造により発光スペクトルが長波長化し、色純度が悪いという問題があった。特許文献5に記載の素子は発光効率に優れるものの、寿命が未だ十分でなく、さらなる改良が求められている。また、特許文献6~8に記載の素子でも、さらなる寿命及び発高効率の向上が求められている。
 本発明は、かかる課題を解決するためになされたもので、寿命が長く、高発光効率な有機EL素子及びそれを実現する化合物を提供することを目的とするものである。
 本発明者らは、前記目的を達成すべく鋭意研究を重ねた結果、クリセン構造を有する芳香族ジアミン誘導体において、置換又は無置換のシリル基を有するフェニル基をアミノ基の置換基とした特殊構造の芳香族アミン誘導体を発光材料として用いると、高発光効率であり、且つ長寿命となることを見出した。本発明は、かかる知見に基づいて完成したものである。
 すなわち、本発明は、下記一般式(I)で表わされる芳香族ジアミン誘導体。
Figure JPOXMLDOC01-appb-C000006
(式中、R1~R10は、それぞれ独立して、水素原子、炭素数1~50のアルキル基、炭素数3~50のシクロアルキル基、炭素数7~50のアラルキル基、炭素数6~50のアリール基を表す。R11は、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の炭素数1~50のアルキルオキシ基、又は置換もしくは無置換の炭素数6~50のアリール基を表す。また、A、B、Cは、少なくとも1つが置換又は無置換のシリル基を表し、残りは水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の炭素数1~50のアルキルオキシ基又は置換もしくは無置換の炭素数6~50のアリール基を表し、a、b、c、dはそれぞれ独立して1~5の整数を表す。なお、a、b、c、dが2~5の整数の場合、各A、B、C、R11は、それぞれ同一ベンゼン環上で同じ基でも異なる基となっていてもよい。
 但し、B及びCがトリメチルシリル基且つbとcが1であり、いずれもパラ置換である場合、A及びR11がメチル基ならば、aとdが同時に1で、いずれもパラ置換となる構造を除く。また、Aがトリメチルシリル基及びaが1且つパラ置換である場合、R11がメチル基及びdが2且つ2つのR11がいずれもメタ置換ならば、Bがトリメチルシリル基及びbが1且つパラ置換並びにCがメチル基及びcが2且つ2つのCがいずれもメタ置換となる構造を除く。)
 また、本発明は、陰極と陽極間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟持されている有機EL素子において、該有機薄膜層の少なくとも一層が、前記芳香族ジアミン誘導体を単独又は混合物の一成分として含有する有機EL素子を提供するものである。
 本発明の芳香族ジアミン誘導体を有機エレクトロルミネッセンス素子用材料として使用することにより、有機エレクトロルミネッセンス素子膜の性質が安定し、成膜性が向上する。さらに前記長所に加え、該芳香族ジアミン誘導体を用いた有機EL素子は、発光効率が高く、青色純度を保ちつつ、長時間使用しても劣化し難く、寿命が長い。
 本発明の芳香族アミン誘導体は、下記一般式(I)で表わされる芳香族ジアミン誘導体である。
Figure JPOXMLDOC01-appb-C000007
 一般式(I)において、R1~R10は、それぞれ独立して、水素原子、炭素数1~50のアルキル基、炭素数3~50のシクロアルキル基、炭素数7~50のアラルキル基、炭素数6~50のアリール基を表す。なお、本明細書において、一般式中の各基の炭素数の表示は、置換基の炭素数を含まない数である。
 炭素数1~50のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、各種ペンチル基(「各種」とは、直鎖、分岐鎖、環状のいずれをも含むことを示す。以下同様。)が挙げられ、炭素数1~10のアルキル基が好ましい。
 炭素数3~50のシクロアルキル基としては、例えばシクロプロピル基、シクロペンチル基、シクロヘキシル基、4-メチルシクロヘキシル基、シクロオクチル基が挙げられ、炭素数5~8のシクロヘキシル基が好ましい。
 炭素数7~50のアラルキル基としては、例えば、ベンジル基、α,α-フェニルメチルベンジル基、α,α-ジメチルベンジル基、α-フェノキシベンジル基、α,α-メチルフェニルベンジル基、α,α-ジトリフルオロメチルベンジル基、トリフェニルメチル基、α-ベンジルオキシベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルイソプロピル基、2-フェニルイソプロピル基、フェニル-t-ブチル基、α-ナフチルメチル基、1-α-ナフチルエチル基、2-α-ナフチルエチル基、1-α-ナフチルイソプロピル基、2-α-ナフチルイソプロピル基、β-ナフチルメチル基、1-β-ナフチルエチル基、2-β-ナフチルエチル基、1-β-ナフチルイソプロピル基、2-β-ナフチルイソプロピル基、1-ピロリルメチル基、2-(1-ピロリル)エチル基、p-メチルベンジル基、m-メチルベンジル基、o-メチルベンジル基、p-クロロベンジル基、m-クロロベンジル基、o-クロロベンジル基、p-ブロモベンジル基、m-ブロモベンジル基、o-ブロモベンジル基、p-ヨードベンジル基、m-ヨードベンジル基、o-ヨードベンジル基、p-ヒドロキシベンジル基、m-ヒドロキシベンジル基、o-ヒドロキシベンジル基、p-アミノベンジル基、m-アミノベンジル基、o-アミノベンジル基、p-ニトロベンジル基、m-ニトロベンジル基、o-ニトロベンジル基、p-シアノベンジル基、m-シアノベンジル基、o-シアノベンジル基、1-ヒドロキシ-2-フェニルイソプロピル基、1-クロロ-2-フェニルイソプロピル基が挙げられ、炭素数7~20のアラルキル基が好ましい。
 炭素数6~50のアリール基としては、例えばフェニル基、トリル基、ナフチル基、アセナフチレニル基、アントリル基、フェナントリル基、フェナレニル基、フルオレニル基、a-インダセニル基、as-インダセニル基が挙げられ、炭素数6~14のアリール基が好ましい。
 また、一般式(I)において、A、B、Cは、少なくとも1つが置換又は無置換のシリル基を表し、残りは水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の炭素数1~50のアルキルオキシ基又は置換もしくは無置換の炭素数6~50のアリール基を表す。
 シリル基の置換基としては、例えば炭素数1~20のアルキル基、炭素数6~14のアリール基、炭素数1~20のアルコキシル基が挙げられる。かかる炭素数1~20のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、各種ペンチル基が挙げられ、炭素数1~5のアルキル基が好ましい。炭素数6~14のアリール基としては、例えばフェニル基、トリル基、ナフチル基、アントリル基が挙げられ、炭素数6~10のアリール基が好ましい。炭素数1~20のアルコキシル基としては、例えばメトキシ基、エトキシ基、各種プロポキシ基、各種ブトキシ基が挙げられ、炭素数1~5のアルコキシル基が好ましい。
 特にシリル基としては、トリアルキルシリル基、ジアルキル-モノアリールシリル基、モノアルキル-ジアリールシリル基、トリアリールシリル基がより好ましい。
 A、B、Cの内、シリル基ではない残りの基が表す、置換もしくは無置換の炭素数1~50のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、各種ペンチル基が挙げられ、炭素数1~10のアルキル基が好ましい。
 置換もしくは無置換の炭素数3~50のシクロアルキル基としては、例えばシクロプロピル基、シクロペンチル基、シクロヘキシル基、4-メチルシクロヘキシル基、シクロオクチル基が挙げられ、炭素数5~8のシクロヘキシル基が好ましい。
 置換もしくは無置換の炭素数7~50のアラルキル基としては、例えばベンジル基、α,α-フェニルメチルベンジル基、α,α-ジメチルベンジル基、α-フェノキシベンジル基、α,α-メチルフェニルベンジル基、α,α-ジトリフルオロメチルベンジル基、トリフェニルメチル基、α-ベンジルオキシベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルイソプロピル基、2-フェニルイソプロピル基、フェニル-t-ブチル基、α-ナフチルメチル基、1-α-ナフチルエチル基、2-α-ナフチルエチル基、1-α-ナフチルイソプロピル基、2-α-ナフチルイソプロピル基、β-ナフチルメチル基、1-β-ナフチルエチル基、2-β-ナフチルエチル基、1-β-ナフチルイソプロピル基、2-β-ナフチルイソプロピル基、1-ピロリルメチル基、2-(1-ピロリル)エチル基、p-メチルベンジル基、m-メチルベンジル基、o-メチルベンジル基、p-クロロベンジル基、m-クロロベンジル基、o-クロロベンジル基、p-ブロモベンジル基、m-ブロモベンジル基、o-ブロモベンジル基、p-ヨードベンジル基、m-ヨードベンジル基、o-ヨードベンジル基、p-ヒドロキシベンジル基、m-ヒドロキシベンジル基、o-ヒドロキシベンジル基、p-アミノベンジル基、m-アミノベンジル基、o-アミノベンジル基、p-ニトロベンジル基、m-ニトロベンジル基、o-ニトロベンジル基、p-シアノベンジル基、m-シアノベンジル基、o-シアノベンジル基、1-ヒドロキシ-2-フェニルイソプロピル基、1-クロロ-2-フェニルイソプロピル基が挙げられ、炭素数7~20のアラルキル基が好ましい。
 置換もしくは無置換の炭素数1~50のアルキルオキシ基としては、-OYで表される基であり、該Yとしては、上記「A、B、Cの内、シリル基ではない残りの基が表す、置換もしくは無置換の炭素数1~50のアルキル基」で示したアルキル基と同様のものが挙げられる。それらの中でも、炭素数1~10のアルキル基が好ましく、炭素数1~5のアルキル基がより好ましく、メチル基がさらに好ましい。
 置換もしくは無置換の炭素数6~50のアリール基としては、例えばフェニル基、トリル基、メトキシフェニル基、エトキシフェニル基、ブトキシフェニル基、ナフチル基、アセナフチレニル基、アントリル基、フェナントリル基、フェナレニル基、フルオレニル基、a-インダセニル基、as-インダセニル基が挙げられる。
 R11は、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の炭素数1~50のアルキルオキシ基又は置換もしくは無置換の炭素数6~50のアリール基を表す。
 かかる置換もしくは無置換の炭素数1~50のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、各種ペンチル基が挙げられ、炭素数1~10のアルキル基が好ましい。
 置換もしくは無置換の炭素数3~50のシクロアルキル基としては、例えばシクロプロピル基、シクロペンチル基、シクロヘキシル基、4-メチルシクロヘキシル基、シクロオクチル基が挙げられ、炭素数5~8のシクロヘキシル基が好ましい。
 置換もしくは無置換の炭素数7~50のアラルキル基としては、例えば、ベンジル基、α,α-フェニルメチルベンジル基、α,α-ジメチルベンジル基、α-フェノキシベンジル基、α,α-メチルフェニルベンジル基、α,α-ジトリフルオロメチルベンジル基、トリフェニルメチル基、α-ベンジルオキシベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルイソプロピル基、2-フェニルイソプロピル基、フェニル-t-ブチル基、α-ナフチルメチル基、1-α-ナフチルエチル基、2-α-ナフチルエチル基、1-α-ナフチルイソプロピル基、2-α-ナフチルイソプロピル基、β-ナフチルメチル基、1-β-ナフチルエチル基、2-β-ナフチルエチル基、1-β-ナフチルイソプロピル基、2-β-ナフチルイソプロピル基、1-ピロリルメチル基、2-(1-ピロリル)エチル基、p-メチルベンジル基、m-メチルベンジル基、o-メチルベンジル基、p-クロロベンジル基、m-クロロベンジル基、o-クロロベンジル基、p-ブロモベンジル基、m-ブロモベンジル基、o-ブロモベンジル基、p-ヨードベンジル基、m-ヨードベンジル基、o-ヨードベンジル基、p-ヒドロキシベンジル基、m-ヒドロキシベンジル基、o-ヒドロキシベンジル基、p-アミノベンジル基、m-アミノベンジル基、o-アミノベンジル基、p-ニトロベンジル基、m-ニトロベンジル基、o-ニトロベンジル基、p-シアノベンジル基、m-シアノベンジル基、o-シアノベンジル基、1-ヒドロキシ-2-フェニルイソプロピル基、1-クロロ-2-フェニルイソプロピル基が挙げられ、炭素数7~20のアラルキル基が好ましい。
 置換もしくは無置換の炭素数1~50のアルキルオキシ基としては、-OY'で表される基であり、該Y'としては、上記「A、B、Cの内、シリル基ではない残りの基が表す、置換もしくは無置換の炭素数1~50のアルキル基」で示したアルキル基と同様のものが挙げられる。それらの中でも、炭素数1~10のアルキル基が好ましく、炭素数1~5のアルキル基がより好ましく、メチル基がさらに好ましい。
 置換もしくは無置換の炭素数6~50のアリール基としては、例えばフェニル基、トリル基、ナフチル基、アセナフチレニル基、アントリル基、フェナントリル基、フェナレニル基、フルオレニル基、a-インダセニル基、as-インダセニル基が挙げられ、炭素数6~14のアリール基が好ましい。
 一般式(I)で表わされる芳香族ジアミン誘導体としては、aが1のとき、Aが置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の炭素数1~50のアルキルオキシ基又は置換もしくは無置換の炭素数6~50のアリール基であり、aが2~5のとき、複数のAの内、少なくとも一つが置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の炭素数1~50のアルキルオキシ基又は置換もしくは無置換の炭素数6~50のアリール基である芳香族ジアミン誘導体が好ましい。
 また、一般式(I)で表わされる芳香族ジアミン誘導体としては、A及びCのみが置換又は無置換のシリル基である芳香族ジアミン誘導体が好ましい。
 前記一般式(I)で表わされる芳香族ジアミン誘導体としては、例えば以下のものが挙げられる。なお、-SiMe3は、トリメチルシリル基を表す。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 本発明の芳香族ジアミン誘導体は、B及びCがトリメチルシリル基且つbとcが1であり、いずれもパラ置換である場合、A及びR11がメチル基ならば、aとdが同時に1で、いずれもパラ置換となる構造、つまり下記化合物を除く。
Figure JPOXMLDOC01-appb-C000010
 また、Aがトリメチルシリル基及びaが1且つパラ置換である場合、R11がメチル基及びdが2且ついずれもメタ置換ならば、Bがトリメチルシリル基及びbが1且つパラ置換並びにCがメチル基及びcが2且ついずれもメタ置換となる構造、つまり下記化合物を除く。
Figure JPOXMLDOC01-appb-C000011
 本発明の一般式(I)で表される芳香族ジアミン誘導体の製造方法は、特に限定されず公知の方法で製造すればよく、例えばRev.Roum.Chim.,34,p.1907(1989)(M.D.Banciaら)に記載された方法で得られる6,12-ジブロモクリセンを、ジアリールアミン化合物によりアミノ化して芳香族ジアミン誘導体を製造する。
 本発明の芳香族ジアミン誘導体は、有機EL素子用材料として好適であり、特に、発光材料であると好ましく、青色発系発光材料又は緑色系発光材料として好適に用いられる。
 また、本発明の芳香族ジアミン誘導体は、有機EL素子用ドーピング材料として、より好適である。
 本発明の有機EL素子は、陽極と陰極間に一層又は複数層の有機薄膜層を形成した素子である。一層型の場合、陽極と陰極との間に発光層を設けている。発光層は、発光材料を含有し、それに加えて陽極から注入した正孔、又は陰極から注入した電子を発光材料まで輸送させるために、正孔注入材料又は電子注入材料を含有してもよい。本発明の芳香族ジアミン誘導体は、高い発光特性を持ち、優れた正孔注入性、正孔輸送特性及び電子注入性、電子輸送特性を有しているので、発光材料又はドーピング材料として発光層に使用することができる。
 本発明の有機EL素子においては、発光層が、本発明の芳香族ジアミン誘導体を含有すると好ましく、含有量としては、通常0.1~20質量%が好ましく、1~10質量%がより好ましく、3~7質量%がさらに好ましい。また、本発明の芳香族ジアミン誘導体は、極めて高い蛍光量子効率、高い正孔輸送能力及び電子輸送能力を併せ持ち、均一な薄膜を形成することができるので、この芳香族ジアミン誘導体のみで発光層を形成することも可能である。
 また、本発明の有機EL素子は、陰極と陽極間に少なくとも発光層を含む二層以上からなる有機薄膜層が挟持されている有機EL素子において、陽極と発光層との間に本発明の芳香族ジアミン誘導体を主成分とする有機層を有しても好ましい。該有機層としては、正孔注入層、正孔輸送層等が挙げられる。
 さらに、本発明の芳香族ジアミン誘導体をドーピング材料として使用する場合、ホスト材料としては公知の化合物が使用でき特に制限は無いが、下記一般式(i)のアントラセン誘導体及び/又は下記一般式(ii)のピレン誘導体を使用することがより好ましい。
Figure JPOXMLDOC01-appb-C000012
[式中、R12~R19は、それぞれ独立して、水素原子、置換もしくは無置換の炭素数6~50のアリール基、置換もしくは無置換の炭素数4~50のヘテロアリール基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシル基、置換もしくは無置換のアラルキル基(アリール部分は炭素数6~50、アルキル部分は炭素数1~50)、置換もしくは無置換の炭素数5~50のアリールオキシ基、置換もしくは無置換の炭素数5~50のアリールチオ基、置換もしくは無置換の炭素数1~50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシル基、ハロゲン原子、シアノ基、ニトロ基及びヒドロキシル基から選ばれる基である。また、D及びEは、それぞれ独立して、置換もしくは無置換の炭素数6~20の芳香族環から誘導される基である。]
 一般式(i)におけるR12~R19の置換もしくは無置換の炭素数6~50のアリール基としては、例えばフェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、1-ナフタセニル基、2-ナフタセニル基、9-ナフタセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-ビフェニルイル基、3-ビフェニルイル基、4-ビフェニルイル基、p-ターフェニル-4-イル基、p-ターフェニル-3-イル基、p-ターフェニル-2-イル基、m-ターフェニル-4-イル基、m-ターフェニル-3-イル基、m-ターフェニル-2-イル基、o-トリル基、m-トリル基、p-トリル基、p-t-ブチルフェニル基、p-(2-フェニルプロピル)フェニル基、3-メチル-2-ナフチル基、4-メチル-1-ナフチル基、4-メチル-1-アントリル基、4’-メチルビフェニルイル基、4”-t-ブチル-p-ターフェニル-4-イル基が挙げられる。
 一般式(i)におけるR12~R19の置換もしくは無置換の炭素数4~50のヘテロアリール基としては、例えば1-ピロリル基、2-ピロリル基、3-ピロリル基、ピラジニル基、2-ピリジニル基、3-ピリジニル基、4-ピリジニル基、1-インドリル基、2-インドリル基、3-インドリル基、4-インドリル基、5-インドリル基、6-インドリル基、7-インドリル基、1-イソインドリル基、2-イソインドリル基、3-イソインドリル基、4-イソインドリル基、5-イソインドリル基、6-イソインドリル基、7-イソインドリル基、2-フリル基、3-フリル基、2-ベンゾフラニル基、3-ベンゾフラニル基、4-ベンゾフラニル基、5-ベンゾフラニル基、6-ベンゾフラニル基、7-ベンゾフラニル基、1-イソベンゾフラニル基、3-イソベンゾフラニル基、4-イソベンゾフラニル基、5-イソベンゾフラニル基、6-イソベンゾフラニル基、7-イソベンゾフラニル基、キノリル基、3-キノリル基、4-キノリル基、5-キノリル基、6-キノリル基、7-キノリル基、8-キノリル基、1-イソキノリル基、3-イソキノリル基、4-イソキノリル基、5-イソキノリル基、6-イソキノリル基、7-イソキノリル基、8-イソキノリル基、2-キノキサリニル基、5-キノキサリニル基、6-キノキサリニル基、1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、9-カルバゾリル基、1-フェナントリジニル基、2-フェナントリジニル基、3-フェナントリジニル基、4-フェナントリジニル基、6-フェナントリジニル基、7-フェナントリジニル基、8-フェナントリジニル基、9-フェナントリジニル基、10-フェナントリジニル基、1-アクリジニル基、2-アクリジニル基、3-アクリジニル基、4-アクリジニル基、9-アクリジニル基、1,7-フェナントロリン-2-イル基、1,7-フェナントロリン-3-イル基、1,7-フェナントロリン-4-イル基、1,7-フェナントロリン-5-イル基、1,7-フェナントロリン-6-イル基、1,7-フェナントロリン-8-イル基、1,7-フェナントロリン-9-イル基、1,7-フェナントロリン-10-イル基、1,8-フェナントロリン-2-イル基、1,8-フェナントロリン-3-イル基、1,8-フェナントロリン-4-イル基、1,8-フェナントロリン-5-イル基、1,8-フェナントロリン-6-イル基、1,8-フェナントロリン-7-イル基、1,8-フェナントロリン-9-イル基、1,8-フェナントロリン-10-イル基、1,9-フェナントロリン-2-イル基、1,9-フェナントロリン-3-イル基、1,9-フェナントロリン-4-イル基、1,9-フェナントロリン-5-イル基、1,9-フェナントロリン-6-イル基、1,9-フェナントロリン-7-イル基、1,9-フェナントロリン-8-イル基、1,9-フェナントロリン-10-イル基、1,10-フェナントロリン-2-イル基、1,10-フェナントロリン-3-イル基、1,10-フェナントロリン-4-イル基、1,10-フェナントロリン-5-イル基、2,9-フェナントロリン-1-イル基、2,9-フェナントロリン-3-イル基、2,9-フェナントロリン-4-イル基、2,9-フェナントロリン-5-イル基、2,9-フェナントロリン-6-イル基、2,9-フェナントロリン-7-イル基、2,9-フェナントロリン-8-イル基、2,9-フェナントロリン-10-イル基、2,8-フェナントロリン-1-イル基、2,8-フェナントロリン-3-イル基、2,8-フェナントロリン-4-イル基、2,8-フェナントロリン-5-イル基、2,8-フェナントロリン-6-イル基、2,8-フェナントロリン-7-イル基、2,8-フェナントロリン-9-イル基、2,8-フェナントロリン-10-イル基、2,7-フェナントロリン-1-イル基、2,7-フェナントロリン-3-イル基、2,7-フェナントロリン-4-イル基、2,7-フェナントロリン-5-イル基、2,7-フェナントロリン-6-イル基、2,7-フェナントロリン-8-イル基、2,7-フェナントロリン-9-イル基、2,7-フェナントロリン-10-イル基、1-フェナジニル基、2-フェナジニル基、1-フェノチアジニル基、2-フェノチアジニル基、3-フェノチアジニル基、4-フェノチアジニル基、10-フェノチアジニル基、1-フェノキサジニル基、2-フェノキサジニル基、3-フェノキサジニル基、4-フェノキサジニル基、10-フェノキサジニル基、2-オキサゾリル基、4-オキサゾリル基、5-オキサゾリル基、2-オキサジアゾリル基、5-オキサジアゾリル基、3-フラザニル基、2-チエニル基、3-チエニル基、2-メチルピロール-1-イル基、2-メチルピロール-3-イル基、2-メチルピロール-4-イル基、2-メチルピロール-5-イル基、3-メチルピロール-1-イル基、3-メチルピロール-2-イル基、3-メチルピロール-4-イル基、3-メチルピロール-5-イル基、2-t-ブチルピロール-4-イル基、3-(2-フェニルプロピル)ピロール-1-イル基、2-メチル-1-インドリル基、4-メチル-1-インドリル基、2-メチル-3-インドリル基、4-メチル-3-インドリル基、2-t-ブチル1-インドリル基、4-t-ブチル1-インドリル基、2-t-ブチル3-インドリル基、4-t-ブチル3-インドリル基が挙げられる。
 一般式(i)におけるR12~R19の置換もしくは無置換の炭素数1~50のアルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、2-ヒドロキシイソブチル基、1,2-ジヒドロキシエチル基、1,3-ジヒドロキシイソプロピル基、2,3-ジヒドロキシ-t-ブチル基、1,2,3-トリヒドロキシプロピル基、クロロメチル基、1-クロロエチル基、2-クロロエチル基、2-クロロイソブチル基、1,2-ジクロロエチル基、1,3-ジクロロイソプロピル基、2,3-ジクロロ-t-ブチル基、1,2,3-トリクロロプロピル基、ブロモメチル基、1-ブロモエチル基、2-ブロモエチル基、2-ブロモイソブチル基、1,2-ジブロモエチル基、1,3-ジブロモイソプロピル基、2,3-ジブロモ-t-ブチル基、1,2,3-トリブロモプロピル基、ヨードメチル基、1-ヨードエチル基、2-ヨードエチル基、2-ヨードイソブチル基、1,2-ジヨードエチル基、1,3-ジヨードイソプロピル基、2,3-ジヨード-t-ブチル基、1,2,3-トリヨードプロピル基、アミノメチル基、1-アミノエチル基、2-アミノエチル基、2-アミノイソブチル基、1,2-ジアミノエチル基、1,3-ジアミノイソプロピル基、2,3-ジアミノ-t-ブチル基、1,2,3-トリアミノプロピル基、シアノメチル基、1-シアノエチル基、2-シアノエチル基、2-シアノイソブチル基、1,2-ジシアノエチル基、1,3-ジシアノイソプロピル基、2,3-ジシアノ-t-ブチル基、1,2,3-トリシアノプロピル基、ニトロメチル基、1-ニトロエチル基、2-ニトロエチル基、2-ニトロイソブチル基、1,2-ジニトロエチル基、1,3-ジニトロイソプロピル基、2,3-ジニトロ-t-ブチル基、1,2,3-トリニトロプロピル基が挙げられる。
 一般式(i)におけるR12~R19の置換もしくは無置換の炭素数3~50のシクロアルキル基としては、例えばシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、4-メチルシクロヘキシル基、1-アダマンチル基、2-アダマンチル基、1-ノルボルニル基、2-ノルボルニル基が挙げられる。
 一般式(i)におけるR12~R19の置換もしくは無置換の炭素数1~50のアルコキシル基のアルキル基部位は、前記R12~R19の置換もしくは無置換の炭素数1~50のアルキル基から選択される。
 一般式(i)におけるR12~R19の置換基の置換もしくは無置換のアラルキル基(アリール部分は炭素数6~50、アルキル部分は炭素数1~50)としては、例えばベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルイソプロピル基、2-フェニルイソプロピル基、フェニル-t-ブチル基、α-ナフチルメチル基、1-α-ナフチルエチル基、2-α-ナフチルエチル基、1-α-ナフチルイソプロピル基、2-α-ナフチルイソプロピル基、β-ナフチルメチル基、1-β-ナフチルエチル基、2-β-ナフチルエチル基、1-β-ナフチルイソプロピル基、2-β-ナフチルイソプロピル基、1-ピロリルメチル基、2-(1-ピロリル)エチル基、p-メチルベンジル基、m-メチルベンジル基、o-メチルベンジル基、p-クロロベンジル基、m-クロロベンジル基、o-クロロベンジル基、p-ブロモベンジル基、m-ブロモベンジル基、o-ブロモベンジル基、p-ヨードベンジル基、m-ヨードベンジル基、o-ヨードベンジル基、p-ヒドロキシベンジル基、m-ヒドロキシベンジル基、o-ヒドロキシベンジル基、p-アミノベンジル基、m-アミノベンジル基、o-アミノベンジル基、p-ニトロベンジル基、m-ニトロベンジル基、o-ニトロベンジル基、p-シアノベンジル基、m-シアノベンジル基、o-シアノベンジル基、1-ヒドロキシ-2-フェニルイソプロピル基、1-クロロ-2-フェニルイソプロピル基が挙げられる。
 一般式(i)におけるR12~R19の置換もしくは無置換の炭素数6~50のアリールオキシ基及びアリールチオ基のアリール基部位は、それぞれ前記R12~R19の置換もしくは無置換の炭素数6~50のアリール基から選ばれる。
 一般式(i)におけるR12~R19の置換もしくは無置換の炭素数1~50のアルコキシカルボニル基としては、例えばメトキシカルボニル基、エトキシカルボニル基、各種プロポキシカルボニル基、各種ブトキシカルボニル基が挙げられ、炭素数1~20のアルコキシカルボニル基が好ましい。
 一般式(i)におけるR12~R19の置換シリル基としては、例えばトリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、ビニルジメチルシリル基、プロピルジメチルシリル基、トリフェニルシリル基等が挙げられる。
 一般式(i)におけるR12~R19のハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 前記R12~R19の芳香族環の置換基は、例えばハロゲン原子、ヒドロキシル基、ニトロ基、シアノ基、炭素数1~10のアルキル基、炭素数1~30のアリール基、炭素数3~20のシクロアルキル基、炭素数1~10のアルコキシル基、炭素数5~30の芳香族複素環基、炭素数7~30のアラルキル基、炭素数6~30のアリールオキシ基、炭素数6~30のアリールチオ基、炭素数2~10のアルコキシカルボニル基、カルボキシル基でさらに置換されていてもよい。
 D及びEは、それぞれ独立に、置換もしくは無置換の炭素数6~20の芳香族環から誘導される基である。該芳香族環は、1つ以上の置換基で置換されていてもよい。かかる芳香族環の置換基としては、置換もしくは無置換の炭素数6~50のアリール基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシル基、置換もしくは無置換のアラルキル基(アリール部分は炭素数6~50、アルキル部分は炭素数1~5)、置換もしくは無置換の炭素数6~50のアリールオキシ基、置換もしくは無置換の炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数1~50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシル基、ハロゲン原子、シアノ基、ニトロ基及びヒドロキシル基から選ばれ、これらはR12~R19の具体例として前記した基から選択される。該芳香族環が2つ以上の置換基で置換されている場合、置換基は同一であっても異なっていてもよく、隣接する置換基同士は互いに結合して飽和又は不飽和の環状構造を形成していてもよい。
 また、DとEの少なくとも一方は、置換もしくは無置換の炭素数10~30の縮合環基を有する置換基であることが好ましく、置換もしくは無置換のナフチル基を有する置換基であることがより好ましい。
 なお、DとEは異なることが好ましい。
 D及びEの置換もしくは無置換の炭素数6~20の芳香族環から誘導される基としては、例えばフェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、1-ナフタセニル基、2-ナフタセニル基、9-ナフタセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-ビフェニルイル基、3-ビフェニルイル基、4-ビフェニルイル基、p-ターフェニル-4-イル基、p-ターフェニル-3-イル基、p-ターフェニル-2-イル基、m-ターフェニル-4-イル基、m-ターフェニル-3-イル基、m-ターフェニル-2-イル基、o-トリル基、m-トリル基、p-トリル基、p-t-ブチルフェニル基、p-(2-フェニルプロピル)フェニル基、3-メチル-2-ナフチル基、4-メチル-1-ナフチル基、4-メチル-1-アントリル基、4’-メチルビフェニルイル基、4”-t-ブチル-p-ターフェニル-4-イル基が挙げられる。好ましくは、置換もしくは無置換の核炭素数10~14の芳香族環から誘導される基であり、特に1-ナフチル基、2-ナフチル基、9-フェナントリル基が好ましい。
 かかるD及びEの芳香族環の置換基は、例えばハロゲン原子、ヒドロキシル基、ニトロ基、シアノ基、炭素数1~10のアルキル基、炭素数1~30のアリール基、炭素数3~20のシクロアルキル基、炭素数1~10のアルコキシル基、炭素数5~30の芳香族複素環基、炭素数7~30のアラルキル基、炭素数6~30のアリールオキシ基、炭素数6~30のアリールチオ基、炭素数2~10のアルコキシカルボニル基、カルボキシル基でさらに置換されていてもよい。
Figure JPOXMLDOC01-appb-C000013
 式中、Ar1及びAr2は、それぞれ独立して、置換もしくは無置換の炭素数6~50のアリール基である。
 L1及びL2は、それぞれ独立して、置換もしくは無置換のフェニレン基、置換もしくは無置換のナフタレニレン基、置換もしくは無置換のフルオレニレン基又は置換もしくは無置換のジベンゾシロリレン基である。
 sは0~2の整数、pは1~4の整数、qは0~2の整数、rは0~4の整数である。
 また、L1又はAr1は、ピレンの1~5位のいずれかに結合し、L2又はAr2は、ピレンの6~10位のいずれかに結合する。
 ただし、p+rが偶数の時、Ar1、Ar2、L1、L2は下記(1)又は(2) を満たす。
(1)Ar1≠Ar2及び/又はL1≠L2(ここで≠は、異なる構造の基であることを示す。)
(2)Ar1=Ar2かつL1=L2の時
 (2-1) s≠q及び/又はp≠r、又は
 (2-2) s=qかつp=rの時、
   (2-2-1) L1及びL2、又はピレンが、それぞれAr1及びAr2上の異なる結合位置に結合しているか、(2-2-2) L1及びL2、又はピレンが、Ar1及びAr2上の同じ結合位置で結合している場合、L1及びL2又はAr1及びAr2のピレンにおける置換位置が1位と6位、又は2位と7位である場合はない。
 Ar1及びAr2が表す炭素数6~50のアリール基としては、例えば、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-エチルフェニル基、ビフェニル基、4-メチルビフェニル基、4-エチルビフェニル基、4-シクロヘキシルビフェニル基、3,5-ジクロロフェニル基、ナフチル基、5-メチルナフチル基、アセナフチレニル基、アントリル基、フェナントリル基、フェナレニル基、フルオレニル基、a-インダセニル基、as-インダセニル基が挙げられる。特に炭素数6~30のアリール基が好ましい。
 L1及びL2が表すフェニレン基、ナフタレニレン基、フルオレニレン基、ジベンゾシロリレン基が有していてもよい置換基としては、例えば炭素数1~50のアルキル基、炭素数3~50のシクロアルキル基、炭素数7~50のアラルキル基、炭素数1~50のアルコキシル基、炭素数6~50のアリール基、炭素数6~50のアリールオキシ基、炭素数6~50のアリールチオ基、炭素数1~50のアルコキシカルボニル基、アミノ基、ハロゲン原子、ニトロ基、ヒドロキシル基、カルボキシル基又はシアノ基を表す。
 炭素数1~50のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、各種ペンチル基が挙げられ、炭素数1~10のアルキル基が好ましい。
 炭素数3~50のシクロアルキル基としては、例えばシクロプロピル基、シクロペンチル基、シクロヘキシル基、4-メチルシクロヘキシル基、シクロオクチル基が挙げられ、炭素数5~8のシクロヘキシル基が好ましい。
 炭素数7~50のアラルキル基としては、例えば、ベンジル基、α,α-フェニルメチルベンジル基、α,α-ジメチルベンジル基、α-フェノキシベンジル基、α,α-メチルフェニルベンジル基、α,α-ジトリフルオロメチルベンジル基、トリフェニルメチル基、α-ベンジルオキシベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルイソプロピル基、2-フェニルイソプロピル基、フェニル-t-ブチル基、α-ナフチルメチル基、1-α-ナフチルエチル基、2-α-ナフチルエチル基、1-α-ナフチルイソプロピル基、2-α-ナフチルイソプロピル基、β-ナフチルメチル基、1-β-ナフチルエチル基、2-β-ナフチルエチル基、1-β-ナフチルイソプロピル基、2-β-ナフチルイソプロピル基、1-ピロリルメチル基、2-(1-ピロリル)エチル基、p-メチルベンジル基、m-メチルベンジル基、o-メチルベンジル基、p-クロロベンジル基、m-クロロベンジル基、o-クロロベンジル基、p-ブロモベンジル基、m-ブロモベンジル基、o-ブロモベンジル基、p-ヨードベンジル基、m-ヨードベンジル基、o-ヨードベンジル基、p-ヒドロキシベンジル基、m-ヒドロキシベンジル基、o-ヒドロキシベンジル基、p-アミノベンジル基、m-アミノベンジル基、o-アミノベンジル基、p-ニトロベンジル基、m-ニトロベンジル基、o-ニトロベンジル基、p-シアノベンジル基、m-シアノベンジル基、o-シアノベンジル基、1-ヒドロキシ-2-フェニルイソプロピル基、1-クロロ-2-フェニルイソプロピル基が挙げられ、炭素数7~20のアラルキル基が好ましい。
 炭素数1~50のアルコキシル基としては、例えばメトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、s-ブトキシ基、t-ブトキシ基が挙げられ、炭素数1~10のアルコキシル基が好ましい。
 炭素数6~50のアリール基としては、例えばフェニル基、ナフチル基、アセナフチレニル基、アントリル基、フェナントリル基、フェナレニル基、フルオレニル基、a-インダセニル基、as-インダセニル基が挙げられ、炭素数6~14のアリール基が好ましい。
 炭素数6~50のアリールオキシ基としては、例えばフェノキシ基、ナフチルオキシ基が挙げられ、炭素数6~20のアリールオキシ基が好ましい。
 炭素数6~50のアリールチオ基としては、例えば、フェニルチオ基、ナフチルチオ基が挙げられ、炭素数6~20のアリールチオ基が好ましい。
 炭素数1~50のアルコキシカルボニル基としては、例えばメトキシカルボニル基、エトキシカルボニル基、各種プロポキシカルボニル基、各種ブトキシカルボニル基が挙げられ、炭素数1~20のアルコキシカルボニル基が好ましい。
 アミノ基としては、例えばジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基、ジナフチルアミノ基などの炭素数1~50のアルキル基や炭素数6~50のアリール基が置換したアミノ基が挙げられる。
 ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 本発明の有機EL素子に用いられる前記一般式(i)で表されるアントラセン誘導体の具体例としては、特開2004-356033号公報の段落[0043]~[0063]に示されている分子中にアントラセン骨格を2個有するものや、国際公開第2005/061656号パンフレットの27~28頁に示されているアントラセン骨格を1個有する化合物など公知の各種アントラセン誘導体を挙げることができる。代表的な具体例を下記に示すが、特にこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 本発明の有機EL素子に用いる前記一般式(ii)のピレン誘導体の具体例を以下に示すが、特にこれら例示化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 本発明において、有機薄膜層が複数層型の有機EL素子としては、例えば(陽極/正孔注入層/発光層/陰極)、(陽極/発光層/電子注入層/陰極)、(陽極/正孔注入層/発光層/電子注入層/陰極)等の構成で積層したものが挙げられる。有機EL素子は、有機薄膜層を複数層構造にすることにより、クエンチングによる輝度や寿命の低下を防ぐことができる。前記複数層には、必要に応じて、本発明の芳香族ジアミン誘導体以外に、公知の発光材料、ドーピング材料、正孔注入材料や電子注入材料を併せて使用することもできる。ドーピング材料を併せて使用すると、発光輝度や発光効率の向上、赤色や青色の発光を得ることもできる。
 また、正孔注入層、発光層、電子注入層は、それぞれ二層以上の層構成により形成されてもよい。その際には、正孔注入層の場合、電極から正孔を注入する層を正孔注入層、正孔注入層から正孔を受け取り発光層まで正孔を輸送する層を正孔輸送層と呼ぶ。同様に、電子注入層の場合、電極から電子を注入する層を電子注入層、電子注入層から電子を受け取り発光層まで電子を輸送する層を電子輸送層と呼ぶ。これらの各層は、材料のエネルギー準位、耐熱性、有機層又は金属電極との密着性等の各要因により選択されて使用される。
 本発明の芳香族ジアミン誘導体と共に発光層に使用できる上記一般式(i)及び(ii)以外のホスト材料又はドーピング材料としては、公知の材料が挙げられ、例えば、ナフタレン、フェナントレン、ルブレン、アントラセン、テトラセン、ピレン、ペリレン、クリセン、デカシクレン、コロネン、テトラフェニルシクロペンタジエン、ペンタフェニルシクロペンタジエン、フルオレン、スピロフルオレン、9,10-ジフェニルアントラセン、9,10-ビス(フェニルエチニル)アントラセン、1,4-ビス(9’-エチニルアントラセニル)ベンゼン等の縮合多環芳香族化合物及びそれらの誘導体、トリス(8-キノリノラート)アルミニウム、ビス-(2-メチル-8-キノリノラート)-4-(フェニルフェノリナート)アルミニウム等の有機金属錯体、トリアリールアミン誘導体、スチリルアミン誘導体、スチルベン誘導体、クマリン誘導体、ピラン誘導体、オキサゾン誘導体、ベンゾチアゾール誘導体、ベンゾオキサゾール誘導体、ベンゾイミダゾール誘導体、ピラジン誘導体、ケイ皮酸エステル誘導体、ジケトピロロピロール誘導体、アクリドン誘導体、キナクリドン誘導体等が挙げられるが、これらに限定されるものではない。
 正孔注入材料としては、正孔を輸送する能力を持ち、陽極からの正孔注入効果、発光層又は発光材料に対して優れた正孔注入効果を有し、発光層で生成した励起子の電子注入層又は電子注入材料への移動を防止し、かつ薄膜形成能力の優れた化合物が好ましい。具体的には、フタロシアニン誘導体、ナフタロシアニン誘導体、ポルフィリン誘導体、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、イミダゾロン、イミダゾールチオン、ピラゾリン、ピラゾロン、テトラヒドロイミダゾール、オキサゾール、オキサジアゾール、ヒドラゾン、アシルヒドラゾン、ポリアリールアルカン、スチルベン、ブタジエン、ベンジジン型トリフェニルアミン、スチリルアミン型トリフェニルアミン、ジアミン型トリフェニルアミン等と、それらの誘導体、及びポリビニルカルバゾール、ポリシラン、導電性高分子等の高分子材料が挙げられるが、これらに限定されるものではない。
 本発明の有機EL素子において使用できる正孔注入材料の中で、さらに効果的な正孔注入材料は、芳香族第三級アミン誘導体及びフタロシアニン誘導体である。
 芳香族第三級アミン誘導体としては、例えば、トリフェニルアミン、トリトリルアミン、トリルジフェニルアミン、N,N’-ジフェニル-N,N’-(3-メチルフェニル)-1,1’-ビフェニル-4,4’-ジアミン、N,N,N’,N’-(4-メチルフェニル)-1,1’-フェニル-4,4’-ジアミン、N,N,N’,N’-(4-メチルフェニル)-1,1’-ビフェニル-4,4’-ジアミン、N,N’-ジフェニル-N,N’-ジナフチル-1,1’-ビフェニル-4,4’-ジアミン、N,N’-(メチルフェニル)-N,N’-(4-n-ブチルフェニル)-フェナントレン-9,10-ジアミン、N,N-ビス(4-ジ-4-トリルアミノフェニル)-4-フェニル-シクロヘキサン等、又はこれらの芳香族第三級アミン骨格を有したオリゴマーもしくはポリマーが挙げられるが、これらに限定されるものではない。
 フタロシアニン(Pc)誘導体としては、例えば、H2Pc、CuPc、CoPc、NiPc、ZnPc、PdPc、FePc、MnPc、ClAlPc、ClGaPc、ClInPc、ClSnPc、Cl2SiPc、(HO)AlPc、(HO)GaPc、VOPc、TiOPc、MoOPc、GaPc-O-GaPc等のフタロシアニン誘導体及びナフタロシアニン誘導体があるが、これらに限定されるものではない。
 また、本発明の有機EL素子は、発光層と陽極との間に、これらの芳香族第三級アミン誘導体及び/又はフタロシアニン誘導体を含有する層、例えば、前記正孔輸送層又は正孔注入層を形成してなると好ましい。
 電子注入材料としては、電子を輸送する能力を持ち、陰極からの電子注入効果、発光層又は発光材料に対して優れた電子注入効果を有し、発光層で生成した励起子の正孔注入層への移動を防止し、かつ薄膜形成能力の優れた化合物が好ましい。具体的には、フルオレノン、アントラキノジメタン、ジフェノキノン、チオピランジオキシド、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、ペリレンテトラカルボン酸、フレオレニリデンメタン、アントラキノジメタン、アントロン等とそれらの誘導体が挙げられるが、これらに限定されるものではない。また、正孔注入材料に電子受容物質を、電子注入材料に電子供与性物質を添加することにより増感させることもできる。
 本発明の有機EL素子において、さらに効果的な電子注入材料は、金属錯体化合物及び含窒素五員環誘導体である。
 前記金属錯体化合物としては、例えば、8-ヒドロキシキノリナートリチウム、ビス(8-ヒドロキシキノリナート)亜鉛、ビス(8-ヒドロキシキノリナート)銅、ビス(8-ヒドロキシキノリナート)マンガン、トリス(8-ヒドロキシキノリナート)アルミニウム、トリス(2-メチル-8-ヒドロキシキノリナート)アルミニウム、トリス(8-ヒドロキシキノリナート)ガリウム、ビス(10-ヒドロキシベンゾ[h]キノリナート)ベリリウム、ビス(10-ヒドロキシベンゾ[h]キノリナート)亜鉛、ビス(2-メチル-8-キノリナート)クロロガリウム、ビス(2-メチル-8-キノリナート)(o-クレゾラート)ガリウム、ビス(2-メチル-8-キノリナート)(1-ナフトラート)アルミニウム、ビス(2-メチル-8-キノリナート)(2-ナフトラート)ガリウム等が挙げられるが、これらに限定されるものではない。
 前記含窒素五員誘導体としては、例えば、オキサゾール、チアゾール、オキサジアゾール、チアジアゾール、トリアゾール誘導体が好ましい。具体的には、2,5-ビス(1-フェニル)-1,3,4-オキサゾール、ジメチルPOPOP、2,5-ビス(1-フェニル)-1,3,4-チアゾール、2,5-ビス(1-フェニル)-1,3,4-オキサジアゾール、2-(4’-t-ブチルフェニル)-5-(4”-ビフェニル)-1,3,4-オキサジアゾール、2,5-ビス(1-ナフチル)-1,3,4-オキサジアゾール、1,4-ビス[2-(5-フェニルオキサジアゾリル)]ベンゼン、1,4-ビス[2-(5-フェニルオキサジアゾリル)-4-t-ブチルベンゼン]、2-(4’-t-ブチルフェニル)-5-(4”-ビフェニル)-1,3,4-チアジアゾール、2,5-ビス(1-ナフチル)-1,3,4-チアジアゾール、1,4-ビス[2-(5-フェニルチアジアゾリル)]ベンゼン、2-(4’-t-ブチルフェニル)-5-(4”-ビフェニル)-1,3,4-トリアゾール、2,5-ビス(1-ナフチル)-1,3,4-トリアゾール、1,4-ビス[2-(5-フェニルトリアゾリル)]ベンゼン等が挙げられるが、これらに限定されるものではない。
 本発明の有機EL素子においては、発光層中に、前記一般式(I)で表される芳香族ジアミン誘導体の他に、公知の発光材料、ドーピング材料、正孔注入材料及び電子注入材料の少なくとも1種を同一層に含有させてもよい。また、本発明により得られた有機EL素子の、温度、湿度、雰囲気等に対する安定性の向上のために、素子の表面に保護層を設けたり、シリコンオイル、樹脂等により素子全体を保護することも可能である。
 本発明の有機EL素子の陽極に使用される導電性材料としては、4eVより大きな仕事関数を持つものが適しており、炭素、アルミニウム、バナジウム、鉄、コバルト、ニッケル、タングステン、銀、金、白金、パラジウム等及びそれらの合金、ITO基板、NESA基板に使用される酸化スズ、酸化インジウム等の酸化金属、さらにはポリチオフェンやポリピロール等の有機導電性樹脂が用いられる。陰極に使用される導電性物質としては、4eVより小さな仕事関数を持つものが適しており、マグネシウム、カルシウム、錫、鉛、チタニウム、イットリウム、リチウム、ルテニウム、マンガン、アルミニウム、フッ化リチウム等及びそれらの合金が用いられるが、これらに限定されるものではない。合金としては、マグネシウム/銀、マグネシウム/インジウム、リチウム/アルミニウム等が代表例として挙げられるが、これらに限定されるものではない。合金の比率は、蒸着源の温度、雰囲気、真空度等により制御され、適切な比率に選択される。陽極及び陰極は、必要があれば二層以上の層構成により形成されていてもよい。
 本発明の有機EL素子では、効率良く発光させるために、少なくとも一方の面は素子の発光波長領域において充分透明にすることが望ましい。また、基板も透明であることが望ましい。透明電極は、上記の導電性材料を使用して、蒸着やスパッタリング等の方法で所定の透光性が確保するように設定する。発光面の電極は、光透過率を10%以上にすることが望ましい。基板は、機械的、熱的強度を有し、透明性を有するものであれば限定されるものではないが、ガラス基板及び透明性樹脂フィルムがある。透明性樹脂フィルムとしては、ポリエチレン、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、ポリプロピレン、ポリスチレン、ポリメチルメタアクリレート、ポリ塩化ビニル、ポリビニルアルコール、ポリビニルブチラール、ナイロン、ポリエーテルエーテルケトン、ポリサルホン、ポリエーテルサルフォン、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、ポリビニルフルオライド、テトラフルオロエチレン-エチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、ポリクロロトリフルオロエチレン、ポリビニリデンフルオライド、ポリエステル、ポリカーボネート、ポリウレタン、ポリイミド、ポリエーテルイミド、ポリイミド、ポリプロピレン等が挙げられるが、これらに制限されない。
 本発明に係わる有機EL素子の各層の形成は、真空蒸着、スパッタリング、プラズマ、イオンプレーティング等の乾式成膜法やスピンコーティング、ディッピング、フローコーティング等の湿式成膜法のいずれの方法を適用することができる。膜厚は特に限定されるものではないが、適切な膜厚に設定する必要がある。膜厚が厚すぎると、一定の光出力を得るために大きな印加電圧が必要になり効率が悪くなる。膜厚が薄すぎるとピンホール等が発生して、電界を印加しても充分な発光輝度が得られない。通常の膜厚は5nm~10μmの範囲が適しているが、10nm~0.2μmの範囲がさらに好ましい。
 湿式成膜法の場合、各層を形成する材料を、エタノール、クロロホルム、テトラヒドロフラン、ジオキサン等の適切な溶媒に溶解又は分散させて薄膜を形成するが、その溶媒はいずれであっても良い。また、いずれの有機薄膜層においても、成膜性向上、膜のピンホール防止等のため適切な樹脂や添加剤を使用しても良い。使用の可能な樹脂としては、ポリスチレン、ポリカーボネート、ポリアリレート、ポリエステル、ポリアミド、ポリウレタン、ポリスルフォン、ポリメチルメタクリレート、ポリメチルアクリレート、セルロース等の絶縁性樹脂及びそれらの共重合体、ポリ-N-ビニルカルバゾール、ポリシラン等の光導電性樹脂、ポリチオフェン、ポリピロール等の導電性樹脂を挙げられる。また、添加剤としては、酸化防止剤、紫外線吸収剤、可塑剤等を挙げられる。
 本発明の有機EL素子は、壁掛けテレビのフラットパネルディスプレイ等の平面発光体、複写機、プリンター、液晶ディスプレイのバックライト又は計器類等の光源、表示板、標識灯等に利用できる。また、本発明の材料は、有機EL素子だけでなく、電子写真感光体、光電変換素子、太陽電池、イメージセンサー等の分野においても使用できる。
 次に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。
<合成例1>化合物(D-1)の合成
 アルゴン気流下、冷却管付き300mL三口フラスコ中に、6,12-ジブロモクリセン3.8g(10mmol)、N-[4-(トリメチルシリル)フェニル)]-N-p-トリルアミン6.4g(25mmol)、酢酸パラジウム0.03g(1.5mol%)、トリ-t-ブチルホスフィン0.06g(3mol%)、ナトリウムt-ブトキシド2.4g(25mmol)及び乾燥トルエン100mLを仕込み、100℃にて一晩加熱撹拌した。反応終了後、析出した結晶を濾取し、トルエン50mL、メタノール100mLにて洗浄し、淡黄色粉末6.0gを得た。得られた粉末は、FD-MS(フィールドディソープションマススペクトル)測定にてm/e=734が確認され、前記化合物(D-1)と同定した。
<合成例2>化合物(D-2)の合成
 合成例1において、N-[4-(トリメチルシリル)フェニル)]-N-p-トリルアミンの代わりに、N-[4-(トリメチルシリル)フェニル)]-N-4-エチルフェニルアミンを用いた以外は、合成例1と同様の方法で合成した。得られた粉末は、FD-MS測定にてm/e=762が確認され、前記化合物(D-2)と同定した。
<合成例3>化合物(D-3)の合成
 合成例1において、N-[4-(トリメチルシリル)フェニル)]-N-p-トリルアミンの代わりに、N-[4-(トリメチルシリル)フェニル)]-N-4-イソプロピルフェニルアミンを用いた以外は、合成例1と同様の方法で合成した。得られた粉末は、FD-MS測定にてm/e=790が確認され、前記化合物(D-3)と同定した。
<合成例4>化合物(D-4)の合成
 合成例1において、N-[4-(トリメチルシリル)フェニル)]-N-p-トリルアミンの代わりに、N-[4-(トリメチルシリル)フェニル)]-N-4-t-ブチルフェニルアミンを用いた以外は、合成例1と同様の方法で合成した。得られた粉末は、FD-MS測定にてm/e=818が確認され、前記化合物(D-4)と同定した。
<合成例5>化合物(D-5)の合成
 合成例1において、N-[4-(トリメチルシリル)フェニル)]-N-p-トリルアミンの代わりに、N-[4-(トリメチルシリル)フェニル)]-N-2,4-ジメチルフェニルアミンを用いた以外は、合成例1と同様の方法で合成した。得られた粉末は、FD-MS測定にてm/e=762が確認され、前記化合物(D-5)と同定した。
<合成例6>化合物(D-6)の合成
 合成例1において、N-[4-(トリメチルシリル)フェニル)]-N-p-トリルアミンの代わりに、N-[4-(トリメチルシリル)フェニル)]-N-3,4-ジメチルフェニルアミンを用いた以外は、合成例1と同様の方法で合成した。得られた粉末は、FD-MS測定にてm/e=762が確認され、前記化合物(D-6)と同定した。
<合成例7>化合物(D-7)の合成
 合成例1において、N-[4-(トリメチルシリル)フェニル)]-N-p-トリルアミンの代わりに、N-[4-(トリメチルシリル)フェニル)]-N-3,5-ジエチルフェニルアミンを用いた以外は、合成例1と同様の方法で合成した。得られた粉末は、FD-MS測定にてm/e=818が確認され、前記化合物(D-7)と同定した。
<合成例8>化合物(D-8)の合成
 合成例1において、N-[4-(トリメチルシリル)フェニル)]-N-p-トリルアミンの代わりに、N-[4-(トリメチルシリル)フェニル)]-N-3,4,5-トリメチルフェニルアミンを用いた以外は、合成例1と同様の方法で合成した。得られた粉末は、FD-MS測定にてm/e=790が確認され、前記化合物(D-8)と同定した。
<合成例9>化合物(D-9)の合成
 合成例1において、N-[4-(トリメチルシリル)フェニル)]-N-p-トリルアミンの代わりに、N-[4-(トリメチルシリル)フェニル)]-N-m-トリルアミンを用いた以外は、合成例1と同様の方法で合成した。得られた粉末は、FD-MS測定にてm/e=734が確認され、前記化合物(D-9)と同定した。
<合成例10>化合物(D-9)の合成
 合成例1において、N-[4-(トリメチルシリル)フェニル)]-N-p-トリルアミンの代わりに、N-[4-(トリメチルシリル)フェニル)]-N-3-t-ブチルフェニルアミンを用いた以外は、合成例1と同様の方法で合成した。得られた粉末は、FD-MS測定にてm/e=818が確認され、前記化合物(D-10)と同定した。
<合成例11>化合物(D-11)の合成
 合成例1において、N-[4-(トリメチルシリル)フェニル)]-N-p-トリルアミンの代わりに、N-[4-(トリメチルシリル)フェニル)]-N-o-トリルアミンを用いた以外は、合成例1と同様の方法で合成した。得られた粉末は、FD-MS測定にてm/e=734が確認され、前記化合物(D-11)と同定した。
<合成例12>化合物(D-12)の合成
 合成例1において、N-[4-(トリメチルシリル)フェニル)]-N-p-トリルアミンの代わりに、N-[4-(トリメチルシリル)フェニル)]-N-4-メトキシフェニルアミンを用いた以外は、合成例1と同様の方法で合成した。得られた粉末は、FD-MS測定にてm/e=766が確認され、前記化合物(D-12)と同定した。
<合成例13>化合物(D-13)の合成
 合成例1において、N-[4-(トリメチルシリル)フェニル)]-N-p-トリルアミンの代わりに、N-[4-(トリメチルシリル)フェニル)]-N-4-シクロヘキシルフェニルアミンを用いた以外は、合成例1と同様の方法で合成した。得られた粉末は、FD-MS測定にてm/e=870が確認され、前記化合物(D-13)と同定した。
<合成例14>化合物(D-14)の合成
 合成例1において、N-[4-(トリメチルシリル)フェニル)]-N-p-トリルアミンの代わりに、N-[4-(トリメチルシリル)フェニル)]-N-4-シクロペンチルフェニルアミンを用いた以外は、合成例1と同様の方法で合成した。得られた粉末は、FD-MS測定にてm/e=842が確認され、前記化合物(D-14)と同定した。
<合成例15>化合物(D-15)の合成
 合成例1において、N-[4-(トリメチルシリル)フェニル)]-N-p-トリルアミンの代わりに、N-[4-(トリメチルシリル)フェニル)]-N-5-(2,3-ジヒドロ-1H-インデニル)アミンを用いた以外は、合成例1と同様の方法で合成した。得られた粉末は、FD-MS測定にてm/e=786が確認され、前記化合物(D-15)と同定した。
<実施例1>
 25×75×1.1mmサイズのガラス基板上に、膜厚120nmのインジウムスズ酸化物からなる透明電極を設けた。このガラス基板に紫外線及びオゾンを照射して洗浄したのち、真空蒸着装置にこの基板を設置した。
 まず、正孔注入層として、N’,N”-ビス[4-(ジフェニルアミノ)フェニル]-N’,N”-ジフェニルビフェニル-4,4’-ジアミンを60nmの厚さに蒸着したのち、その上に正孔輸送層として、N,N,N’,N’-テトラキス(4-ビフェニル)-4,4’-ベンジジンを20nmの厚さに蒸着した。次いで、10-(4-(ナフタレン-1-イル)フェニル)-9-(ナフタレン-2-イル)アントラセンと上記化合物(D-1)とを、質量比40:2で同時蒸着し、厚さ40nmの発光層を形成した。
 次に、電子注入層として、トリス(8-ヒドロキシキノリナト)アルミニウムを20nmの厚さに蒸着した。次に弗化リチウムを1nmの厚さに蒸着し、次いでアルミニウムを150nmの厚さに蒸着した。このアルミニウム/弗化リチウムは陰極として働く。このようにして有機EL素子を作製した。
 次にこの素子に通電試験を行なったところ、電圧6.5V、電流密度10mA/m2にて、発光効率3.0cd/A、490cd/m2の純青色発光(発光極大波長:457nm)が得られた。初期輝度500cd/m2で直流の連続通電試験を行なったところ、半減寿命は2500時間であった。
<実施例2>
 実施例1において、ドーピング材料として化合物(D-1)の代わりに、化合物(D-2)を用いたこと以外は、実施例1と同様にして有機EL素子を作製した。
 得られた有機EL素子に通電試験を行なったところ、電圧6.5V及び電流密度10mA/m2にて、500cd/m2の純青色発光(発光波長:457nm)が得られた。また、実施例1と同様にして連続通電試験を行なったところ、半減寿命は2200時間であった。
<実施例3>
 実施例1において、ドーピング材料として化合物(D-1)の代わりに、化合物(D-3)を用いたこと以外は、実施例1と同様にして有機EL素子を作製した。
 得られた有機EL素子に通電試験を行なったところ、電圧6.5V及び電流密度10mA/m2にて、500cd/m2の純青色発光(発光波長:457nm)が得られた。また、実施例1と同様にして連続通電試験を行なったところ、半減寿命は2300時間であった。
<比較例1>
 実施例1において、ドーピング材料として、化合物(D-1)の代わりに、6,12-N,N’-[テトラキス(4-トリメチルシリルフェニル)]ジアミノクリセンを用いたこと以外は、実施例1と同様にして有機EL素子を作製した。
 得られた有機EL素子に通電試験を行なったところ、電圧6.5V及び電流密度10mA/m2にて300cd/m2の純青色発光(発光波長:452nm)が得られた。また、実施例1と同様にして連続通電試験を行なったところ、半減寿命は1500時間であった。
 以上の結果から、実施例1~3の有機EL素子は、比較例1に比べ、純青色発光を維持しながら発光効率が向上し、且つ半減寿命が向上したことがわかる。
 本発明の芳香族ジアミン誘導体を用いた有機EL素子は、発光効率が高く、長時間使用しても劣化し難く寿命が長い。このため、壁掛テレビの平面発光体やディスプレイのバックライト等の光源として有用である。

Claims (13)

  1.  下記一般式(I)で表わされる芳香族ジアミン誘導体。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1~R10は、それぞれ独立して、水素原子、炭素数1~50のアルキル基、炭素数3~50のシクロアルキル基、炭素数7~50のアラルキル基、炭素数6~50のアリール基を表す。R11は、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の炭素数1~50のアルキルオキシ基又は置換もしくは無置換の炭素数6~50のアリール基を表す。
    また、A、B、Cは、少なくとも1つが置換又は無置換のシリル基を表し、残りは水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の炭素数1~50のアルキルオキシ基又は置換もしくは無置換の炭素数6~50のアリール基を表し、a、b、c、dはそれぞれ独立して1~5の整数を表す。なお、a、b、c、dが2~5の整数の場合、各A、B、C、R11は、それぞれ同一ベンゼン環上で同じ基でも異なる基となっていてもよい。
     但し、B及びCがトリメチルシリル基且つbとcが1であり、いずれもパラ置換である場合、A及びR11がメチル基ならば、aとdが同時に1で、いずれもパラ置換となる構造を除く。また、Aがトリメチルシリル基及びaが1且つパラ置換である場合、R11がメチル基及びdが2且つ2つのR11がいずれもメタ置換ならば、Bがトリメチルシリル基及びbが1且つパラ置換並びにCがメチル基及びcが2且つ2つのCがいずれもメタ置換となる構造を除く。)
  2.  前記式中、aが1のとき、Aが置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の炭素数1~50のアルキルオキシ基、又は置換もしくは無置換の炭素数6~50のアリール基であり、aが2~5のとき、複数のAの内、少なくとも一つが置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の炭素数1~50のアルキルオキシ基又は置換もしくは無置換の炭素数6~50のアリール基である、請求項1に記載の芳香族ジアミン誘導体。
  3.  前記式中、シリル基がトリアルキルシリル基、ジアルキル-モノアリールシリル基、モノアルキル-ジアリールシリル基又はトリアリールシリル基である、請求項1に記載の芳香族ジアミン誘導体。
  4.  前記式中、シリル基がトリメチルシリル基である、請求項1に記載の芳香族ジアミン誘導体。
  5.  下記式で示される化合物のいずれかで表される芳香族ジアミン誘導体。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
  6.  有機エレクトロルミネッセンス素子用発光材料である請求項1に記載の芳香族ジアミン誘導体。
  7.  有機エレクトロルミネッセンス素子用青色系発光材料である請求項1に記載の芳香族ジアミン誘導体。
  8.  有機エレクトロルミネッセンス素子用ドーピング材料である請求項1に記載の芳香族ジアミン誘導体。
  9.  陰極と陽極の間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミレッセンス素子において、該有機薄膜層の少なくとも一層が、請求項1に記載の芳香族ジアミン誘導体を単独もしくは混合物の一成分として含有する有機エレクトロルミネッセンス素子。
  10.  陰極と陽極の間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミレッセンス素子において、発光層と陽極との間の一層が、請求項1に記載の芳香族ジアミン誘導体を単独もしくは混合物の一成分として含有する有機エレクトロルミネッセンス素子。
  11.  陰極と陽極の間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミレッセンス素子において、該発光層が、請求項1に記載の芳香族ジアミン誘導体を単独もしくは混合物の一成分として含有する有機エレクトロルミネッセンス素子。
  12.  前記発光層が、請求項1に記載の芳香族ジアミン誘導体をドーピング材料として含有し、下記一般式(i)で表されるアントラセン誘導体をホスト材料として含有する請求項11に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000004
    [式中、R12~R19は、それぞれ独立して、水素原子、置換もしくは無置換の炭素数6~50のアリール基、置換もしくは無置換の炭素数4~50のヘテロアリール基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシル基、置換もしくは無置換のアラルキル基(アリール部分は炭素数6~50、アルキル部分は炭素数1~50)、置換もしくは無置換の炭素数5~50のアリールオキシ基、置換もしくは無置換の炭素数5~50のアリールチオ基、置換もしくは無置換の炭素数1~50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシル基、ハロゲン原子、シアノ基、ニトロ基及びヒドロキシル基から選ばれる基である。また、D及びEは、それぞれ独立して、置換もしくは無置換の炭素数6~20の芳香族環から誘導される基である。]
  13.  前記発光層が、請求項1~5のいずれかに記載の芳香族ジアミン誘導体をドーピング材料として含有し、下記一般式(ii)で表されるピレン誘導体をホスト材料として含有する請求項11に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000005
    (式中、Ar1及びAr2は、それぞれ独立して、置換もしくは無置換の炭素数6~50のアリール基である。
     L1及びL2は、それぞれ独立して、置換もしくは無置換のフェニレン基、置換もしくは無置換のナフタレニレン基、置換もしくは無置換のフルオレニレン基又は置換もしくは無置換のジベンゾシロリレン基である。
     sは0~2の整数、pは1~4の整数、qは0~2の整数、rは0~4の整数である。
     また、L1又はAr1は、ピレンの1~5位のいずれかに結合し、L2又はAr2は、ピレンの6~10位のいずれかに結合する。
     ただし、p+rが偶数の時、Ar1、Ar2、L1、L2は下記(1)又は(2) を満たす。
    (1)Ar1≠Ar2及び/又はL1≠L2(ここで≠は、異なる構造の基であることを示す。)
    (2)Ar1=Ar2かつL1=L2の時
     (2-1) s≠q及び/又はp≠r、又は
     (2-2) s=qかつp=rの時、
       (2-2-1) L1及びL2、又はピレンが、それぞれAr1及びAr2上の異なる結合位置に結合しているか、(2-2-2) L1及びL2、又はピレンが、Ar1及びAr2上の同じ結合位置で結合している場合、L1及びL2又はAr1及びAr2のピレンにおける置換位置が1位と6位、又は2位と7位である場合はない。)
PCT/JP2008/073593 2007-12-28 2008-12-25 芳香族ジアミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子 WO2009084585A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009548063A JPWO2009084585A1 (ja) 2007-12-28 2008-12-25 芳香族ジアミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
US12/810,709 US8647754B2 (en) 2007-12-28 2008-12-25 Aromatic diamine derivative and organic electroluminescent device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-340952 2007-12-28
JP2007340952 2007-12-28

Publications (1)

Publication Number Publication Date
WO2009084585A1 true WO2009084585A1 (ja) 2009-07-09

Family

ID=40824299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073593 WO2009084585A1 (ja) 2007-12-28 2008-12-25 芳香族ジアミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子

Country Status (4)

Country Link
US (1) US8647754B2 (ja)
JP (1) JPWO2009084585A1 (ja)
KR (1) KR20100097182A (ja)
WO (1) WO2009084585A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013247179A (ja) * 2012-05-24 2013-12-09 Udc Ireland Ltd 有機電界発光素子、並びに該素子を用いた発光装置、表示装置及び照明装置
JP2013251480A (ja) * 2012-06-04 2013-12-12 Udc Ireland Ltd 有機電界発光素子用材料、有機電界発光素子並びに該素子を用いた発光装置、表示装置及び照明装置
JP2015113345A (ja) * 2013-12-12 2015-06-22 三星ディスプレイ株式會社Samsung Display Co.,Ltd. アミン系化合物、及びそれを含む有機発光素子
CN105591033A (zh) * 2014-11-06 2016-05-18 三星显示有限公司 有机发光装置

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101422864B1 (ko) 2006-06-22 2014-07-24 소니 주식회사 복소환 함유 아릴아민 유도체를 이용한 유기 전계발광 소자
TWI478358B (zh) * 2011-08-04 2015-03-21 Univ Nat Central A method of integrated AC - type light - emitting diode module
JP2015051925A (ja) * 2011-11-25 2015-03-19 出光興産株式会社 芳香族アミン誘導体およびそれを用いた有機エレクトロルミネッセンス素子
EP3809482A3 (en) * 2012-06-01 2021-10-27 Idemitsu Kosan Co.,Ltd. Organic electroluminescence element and material for organic electroluminescence element
KR102050484B1 (ko) 2013-03-04 2019-12-02 삼성디스플레이 주식회사 안트라센 유도체 및 이를 포함하는 유기전계발광소자
KR102107106B1 (ko) 2013-05-09 2020-05-07 삼성디스플레이 주식회사 스티릴계 화합물 및 이를 포함한 유기 발광 소자
KR102269131B1 (ko) 2013-07-01 2021-06-25 삼성디스플레이 주식회사 화합물 및 이를 포함한 유기 발광 소자
US10062850B2 (en) 2013-12-12 2018-08-28 Samsung Display Co., Ltd. Amine-based compounds and organic light-emitting devices comprising the same
KR102220425B1 (ko) 2014-03-10 2021-02-26 삼성디스플레이 주식회사 화합물 및 이를 포함한 유기 발광 소자
KR101627689B1 (ko) * 2014-04-03 2016-06-07 (주)피엔에이치테크 유기발광 화합물 및 이를 포함하는 유기전계발광소자
KR20150132795A (ko) 2014-05-16 2015-11-26 삼성디스플레이 주식회사 유기 발광 소자
KR102327086B1 (ko) 2014-06-11 2021-11-17 삼성디스플레이 주식회사 유기 발광 소자
KR102273046B1 (ko) 2014-07-04 2021-07-06 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
KR102031678B1 (ko) 2014-09-19 2019-10-14 이데미쓰 고산 가부시키가이샤 신규의 화합물
KR101725224B1 (ko) 2014-10-06 2017-04-11 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
KR102285382B1 (ko) 2014-10-23 2021-08-04 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
KR102322011B1 (ko) 2014-12-02 2021-11-05 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
KR102322013B1 (ko) 2014-12-12 2021-11-05 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
KR102369299B1 (ko) 2014-12-31 2022-03-03 삼성디스플레이 주식회사 화합물 및 이를 포함한 유기 발광 소자
KR102360091B1 (ko) 2014-12-31 2022-02-09 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
KR102343145B1 (ko) 2015-01-12 2021-12-27 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
KR102370354B1 (ko) 2015-04-29 2022-03-07 삼성디스플레이 주식회사 유기 발광 소자
US10147884B2 (en) 2015-05-06 2018-12-04 Samsung Display Co., Ltd. Organic light-emitting device
US11730053B2 (en) 2015-05-06 2023-08-15 Samsung Display Co., Ltd. Organic light-emitting device
US9887372B2 (en) 2015-06-11 2018-02-06 Samsung Display Co., Ltd. Amine-based compound and organic light-emitting device including the same
CA3002752A1 (en) 2015-10-26 2017-05-04 Oti Lumionics Inc. Method for patterning a coating on a surface and device including a patterned coating
KR102625861B1 (ko) 2016-06-28 2024-01-17 삼성디스플레이 주식회사 헤테로시클릭 화합물 및 이를 포함한 유기 발광 소자
KR102631261B1 (ko) 2016-08-19 2024-01-31 삼성디스플레이 주식회사 화합물 및 이를 포함하는 유기 발광 소자
KR102625862B1 (ko) 2016-10-11 2024-01-17 삼성디스플레이 주식회사 화합물 및 이를 포함하는 유기 발광 소자
KR20180042513A (ko) 2016-10-17 2018-04-26 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
KR20180068375A (ko) 2016-12-13 2018-06-22 삼성디스플레이 주식회사 화합물 및 이를 포함하는 유기 발광 소자
WO2018198052A1 (en) 2017-04-26 2018-11-01 Oti Lumionics Inc. Method for patterning a coating on a surface and device including a patterned coating
CN110832660B (zh) 2017-05-17 2023-07-28 Oti照明公司 在图案化涂层上选择性沉积传导性涂层的方法和包括传导性涂层的装置
KR20180138267A (ko) 2017-06-20 2018-12-31 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
KR102504126B1 (ko) 2017-08-04 2023-02-28 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
KR102512719B1 (ko) 2017-11-07 2023-03-23 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
US11751415B2 (en) 2018-02-02 2023-09-05 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
KR102312485B1 (ko) * 2018-02-08 2021-10-13 주식회사 엘지화학 화합물, 이를 포함하는 코팅 조성물, 이를 이용한 유기 발광 소자 및 이의 제조방법
CN112074966A (zh) 2018-05-07 2020-12-11 Oti照明公司 用于提供辅助电极的方法和包含辅助电极的装置
JP7390739B2 (ja) 2019-03-07 2023-12-04 オーティーアイ ルミオニクス インコーポレーテッド 核生成抑制コーティングを形成するための材料およびそれを組み込んだデバイス
JP7386556B2 (ja) 2019-06-26 2023-11-27 オーティーアイ ルミオニクス インコーポレーテッド 光回折特性に関連する用途を備えた光透過領域を含む光電子デバイス
US11832473B2 (en) 2019-06-26 2023-11-28 Oti Lumionics Inc. Optoelectronic device including light transmissive regions, with light diffraction characteristics
KR20220045202A (ko) 2019-08-09 2022-04-12 오티아이 루미오닉스 인크. 보조 전극 및 파티션을 포함하는 광전자 디바이스
WO2022123431A1 (en) 2020-12-07 2022-06-16 Oti Lumionics Inc. Patterning a conductive deposited layer using a nucleation inhibiting coating and an underlying metallic coating
CN117343078A (zh) 2021-11-25 2024-01-05 北京夏禾科技有限公司 有机电致发光材料和器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007137837A (ja) * 2005-11-21 2007-06-07 Idemitsu Kosan Co Ltd 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007105917A1 (en) * 2006-03-15 2007-09-20 Lg Chem, Ltd. Novel anthracene derivatives, process for preparation thereof, and organic electronic light emitting device using the same
WO2007108666A1 (en) * 2006-03-23 2007-09-27 Lg Chem, Ltd. New diamine derivatives, preparation method thereof and organic electronic device using the same
WO2008016018A1 (fr) * 2006-08-04 2008-02-07 Idemitsu Kosan Co., Ltd. Matériau de composant organique électroluminescent et composant organique électroluminescent utilisant celui-ci
JP2008214332A (ja) * 2007-02-28 2008-09-18 Sfc Co Ltd 青色発光化合物およびこれを利用した有機電界発光素子

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69332819T2 (de) 1992-08-28 2003-11-13 Idemitsu Kosan Co Ladungsinjektionshilfe und sie enhaltende organische elektrolumineszente vorrichtung.
DE69511755T2 (de) 1994-04-26 2000-01-13 Tdk Corp Phenylanthracenderivat und organisches EL-Element
US6517957B1 (en) 1997-05-19 2003-02-11 Canon Kabushiki Kaisha Organic compound and electroluminescent device using the same
JP3588978B2 (ja) 1997-06-12 2004-11-17 凸版印刷株式会社 有機薄膜el素子
JP4094203B2 (ja) 2000-03-30 2008-06-04 出光興産株式会社 有機エレクトロルミネッセンス素子及び有機発光媒体
KR101031719B1 (ko) 2002-11-12 2011-04-29 이데미쓰 고산 가부시키가이샤 유기 전기발광 소자용 재료 및 그것을 이용한 유기전기발광 소자
JP4832304B2 (ja) * 2004-08-31 2011-12-07 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP4263700B2 (ja) * 2005-03-15 2009-05-13 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
EP2639231B1 (en) 2006-04-26 2019-02-06 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescence element using the same
KR101328974B1 (ko) * 2006-10-31 2013-11-13 삼성디스플레이 주식회사 유기 전계 발광 화합물 및 이를 이용한 유기 전계 발광소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007137837A (ja) * 2005-11-21 2007-06-07 Idemitsu Kosan Co Ltd 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007105917A1 (en) * 2006-03-15 2007-09-20 Lg Chem, Ltd. Novel anthracene derivatives, process for preparation thereof, and organic electronic light emitting device using the same
WO2007108666A1 (en) * 2006-03-23 2007-09-27 Lg Chem, Ltd. New diamine derivatives, preparation method thereof and organic electronic device using the same
WO2008016018A1 (fr) * 2006-08-04 2008-02-07 Idemitsu Kosan Co., Ltd. Matériau de composant organique électroluminescent et composant organique électroluminescent utilisant celui-ci
JP2008214332A (ja) * 2007-02-28 2008-09-18 Sfc Co Ltd 青色発光化合物およびこれを利用した有機電界発光素子

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013247179A (ja) * 2012-05-24 2013-12-09 Udc Ireland Ltd 有機電界発光素子、並びに該素子を用いた発光装置、表示装置及び照明装置
JP2013251480A (ja) * 2012-06-04 2013-12-12 Udc Ireland Ltd 有機電界発光素子用材料、有機電界発光素子並びに該素子を用いた発光装置、表示装置及び照明装置
JP2015113345A (ja) * 2013-12-12 2015-06-22 三星ディスプレイ株式會社Samsung Display Co.,Ltd. アミン系化合物、及びそれを含む有機発光素子
KR20150068893A (ko) * 2013-12-12 2015-06-22 삼성디스플레이 주식회사 아민계 화합물 및 이를 포함한 유기 발광 소자
KR102291490B1 (ko) 2013-12-12 2021-08-23 삼성디스플레이 주식회사 아민계 화합물 및 이를 포함한 유기 발광 소자
CN105591033A (zh) * 2014-11-06 2016-05-18 三星显示有限公司 有机发光装置
CN105591033B (zh) * 2014-11-06 2021-05-11 三星显示有限公司 有机发光装置

Also Published As

Publication number Publication date
JPWO2009084585A1 (ja) 2011-05-19
KR20100097182A (ko) 2010-09-02
US8647754B2 (en) 2014-02-11
US20110006289A1 (en) 2011-01-13

Similar Documents

Publication Publication Date Title
US8647754B2 (en) Aromatic diamine derivative and organic electroluminescent device using the same
JP5191496B2 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP5091854B2 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
KR100949214B1 (ko) 방향족 아민 유도체 및 그것을 사용한 유기 전기발광 소자
KR101349457B1 (ko) 방향족 아민 유도체 및 그것을 이용한 유기 전기발광 소자
US7781628B2 (en) Fluorene-based derivative and organic electroluminescence device employing the same
JP2009161470A (ja) 非対称芳香族ジアミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2009107596A1 (ja) 有機発光媒体及び有機el素子
WO2009102054A1 (ja) 有機発光媒体および有機el素子
JPWO2010013676A1 (ja) 有機発光媒体及び有機el素子
WO2010013675A1 (ja) 有機発光媒体及び有機el素子
JPWO2009102026A1 (ja) 有機発光媒体および有機el素子
JPWO2008156089A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP5396397B2 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP4860849B2 (ja) アミノ基を有する新規芳香族化合物及びそれを利用した有機エレクトロルミネッセンス素子
US8829783B2 (en) Trinaphthyl monoamine or derivative thereof, organic electroluminescent device using the same, and organic electroluminescent material-containing solution
JP2010143841A (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2009161469A (ja) 芳香族化合物および有機エレクトロルミネッセンス素子
JP2009161468A (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2009161464A (ja) カルバゾール誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2009161465A (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2009161466A (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08867464

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009548063

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20107014020

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12810709

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 08867464

Country of ref document: EP

Kind code of ref document: A1