WO2009084475A1 - フッ素化気体化合物の製造方法及び装置 - Google Patents

フッ素化気体化合物の製造方法及び装置 Download PDF

Info

Publication number
WO2009084475A1
WO2009084475A1 PCT/JP2008/073178 JP2008073178W WO2009084475A1 WO 2009084475 A1 WO2009084475 A1 WO 2009084475A1 JP 2008073178 W JP2008073178 W JP 2008073178W WO 2009084475 A1 WO2009084475 A1 WO 2009084475A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
raw material
gas
liquid
region
Prior art date
Application number
PCT/JP2008/073178
Other languages
English (en)
French (fr)
Inventor
Hisao Tanaka
Isamu Mori
Kenji Tanaka
Original Assignee
Central Glass Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co., Ltd. filed Critical Central Glass Co., Ltd.
Priority to KR1020107015397A priority Critical patent/KR101163894B1/ko
Priority to CN2008801206339A priority patent/CN101896423B/zh
Priority to EP08868239.8A priority patent/EP2246296B1/en
Priority to US12/740,386 priority patent/US20100239485A1/en
Priority to JP2009548014A priority patent/JP5413201B2/ja
Publication of WO2009084475A1 publication Critical patent/WO2009084475A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/24Inter-halogen compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/083Compounds containing nitrogen and non-metals and optionally metals containing one or more halogen atoms
    • C01B21/0832Binary compounds of nitrogen with halogens
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/083Compounds containing nitrogen and non-metals and optionally metals containing one or more halogen atoms
    • C01B21/0832Binary compounds of nitrogen with halogens
    • C01B21/0835Nitrogen trifluoride

Definitions

  • Fluorinated gaseous compounds such as NF 3 , IF 5 , IF 7 , ClF 3 , and WF 6 are used as internal cleaning agents for semiconductor manufacturing apparatuses such as CVD apparatuses and PVD apparatuses. Various methods for efficiently producing these gaseous compounds have been studied.
  • the NF 3 , IF 5 , IF 7 , ClF 3 , and WF 6 are mentioned as examples in which the fluorination reaction has completely progressed in the present invention.
  • the present applicant reacts a liquid ammonium complex compound with a gaseous interhalide such as ClF 3 to give the formula NF x L 3-x (L is a halogen other than F, 1 ⁇ x ⁇ 3).
  • a gaseous interhalide such as ClF 3
  • the nitrogen halide is further fluorinated in a later step and converted to NF 3 .
  • continuous means that the raw material is continuously introduced during the operation of the technical means to cause a reaction to generate a functional gas.
  • a fluorinated compound is produced by reacting a raw material gas with a non-gas raw material.
  • the raw material liquid L and the raw material gas are made to react.
  • the raw material liquid L needs to be continuously supplied to the reaction region where the raw material liquid L and the raw material gas react.
  • a method for continuously supplying the raw material liquid L to the reaction zone a method of circulating the liquid acidic ammonium fluoride in the tank by applying the principle of the bubble column is disclosed (for example, see Patent Document 2).
  • liquid acidic ammonium fluoride is reacted with gaseous fluorine to produce NF 3 .
  • HF that does not participate in the reaction in the system is introduced into the tank as a vapor jet.
  • a process for biological treatment of wastewater by converting into: (A) wastewater to be treated, one or more inlets / nozzles for inflow of wastewater, one or more outlets / nozzles for removal of purified water, one or more draft tubes, the draft Passing through a reaction vessel inside the tube having one or more inlets / nozzles for gas / air input capable of raising bubbles and a bed of particles with attached microbial membranes; (B) contacting the wastewater to be treated with a bed of particles containing the microorganisms to convert some components of the wastewater into a solid product; (C) introducing gas / air into the draft tube through a gas nozzle to form an upward flow of liquid through the draft tube; (D) separating the bed of particles from the solid product by the action of buoyancy; removing the
  • an opening is provided from the middle wall of the reaction tank, and a partition wall is arranged upward.
  • the inside of the partition wall is a reaction part
  • the outside is a precipitation part
  • air is sent from the lower part of the air lift wall provided in the reaction part to cause the carrier to flow upward, while microorganisms on the surface of the carrier enter the reaction tank.
  • a wastewater treatment apparatus for treating wastewater to be supplied wherein a movable wall is provided on an upper portion of the air lift wall, and an upper end position of the movable wall is adjusted to suppress turbulent flow, thereby forming a biofilm on the surface of the carrier
  • a wastewater treatment apparatus that promotes the above (see, for example, Patent Document 4).
  • the heat of reaction substantially equivalent to the heat of HF evaporation is cooled by the HF recovery device by installing a coil cooler or the like on the outer wall of the reactor.
  • the tank into which the liquid is introduced that is, the reactor 20 is not a linear shape as in the present invention, but is a bowl shape. Therefore, when the production scale is increased, the capacity of the reactor 20 is increased. Must be increased.
  • the reactor 20 having a large capacity it is difficult to uniformly maintain the liquid introduced therein at a predetermined temperature, resulting in an increase in equipment costs and manufacturing costs. For example, in order to vaporize HF in ammonium oxyfluoride, it is necessary to maintain the reaction system at 100 ° C. or higher, and the above-described problem of increasing the capacity of the reactor becomes significant.
  • the reaction vessel 1 that uses the process described in Patent Document 3 in the method for producing a fluorinated gas compound is also not a linear shape but a bowl shape as in the present invention. Therefore, if the production scale is to be increased, the capacity of the reaction vessel 1 must be increased, and there is the same problem as in Patent Document 2.
  • the method and apparatus for producing a fluorinated gas compound according to the present invention includes a conventional method for producing nitrogen trifluoride and a method for returning a part of the gas generated by the reaction to the reaction region and using it as a flow source for circulating the reactants.
  • An object of the present invention is to provide a method and an apparatus for producing a fluorinated gas compound, which is made in view of the above-described problems, has a simple apparatus, is less likely to fail, and can efficiently perform a chemical reaction.
  • the first invention is in the method for producing a fluorinated gas compound in which a raw material liquid and a raw material gas are reacted to produce a fluorinated gas compound,
  • a reaction region in which the mixed liquid containing the raw material liquid reacts with the raw material gas, a flow region in which only the mixed liquid flows, and an upper portion in which the mixed liquid after the reaction is moved from the upper part of the reaction region to the upper part of the flow region Forming a circulation system comprising a moving region and a lower moving region for moving the mixed liquid from a lower part of the flow region to a lower part of the reaction region; (A) a second gas obtained by further fluorinating the raw material gas below the reaction region, and (B) a first fluorinated gas compound and a first fluorinated gas compound which are reaction products in the reaction region.
  • the second fluorinated gas compound obtained by further fluorinating the first fluorinated gas compound and the first fluorinated gas compound, which are reaction products in the reaction region, in addition to the raw material gas below the reaction region.
  • the fluorinated gas compound of the reaction product may have a room for further fluorination, that is, the reactivity may be low due to the reactivity.
  • the apparatus material such as the introduction pipe may be deteriorated. Therefore, in order to stably operate the apparatus, the gaseous compound introduced simultaneously with the raw material gas is obtained by further fluorinating the fluorinated gas compound, which is a reaction product in the reaction region, in order to reduce the reactivity. It is preferable to use a gaseous compound.
  • Embodiments of the first invention are as follows.
  • the liquid temperature of the mixed liquid is adjusted in the flow region or the region below the reaction region.
  • the liquid temperature of the said mixed liquid can be adjusted effectively and a fluorinated gaseous compound can be manufactured efficiently.
  • the region below the reaction region into which the raw material gas and the gaseous compound are introduced is a region in which the liquid temperature is adjusted, because the gas and liquid flows are in the same direction and the circulation of the liquid becomes more efficient.
  • the source gas is preferably an interhalide.
  • the raw material liquid L which is a complex compound, and the interhalide are combined
  • the raw material interhalide (ClF 3 ) is injected into the raw material liquid L
  • the interhalide gas is converted into the raw material It dissolves in the raw material liquid L according to the solubility in the liquid L.
  • the reaction occurs between the raw material gas converted into the liquid and the raw material liquid L, so that the reaction proceeds efficiently.
  • the circulation of the circulation system can be facilitated by further introducing the fluorinated gas compound of the reaction product into the lower part of the reaction region.
  • the second invention is in the apparatus for producing a fluorinated gas compound, which reacts a raw material liquid and a raw material gas to produce a fluorinated gas compound,
  • a reaction region in which the mixed liquid containing the raw material liquid reacts with the raw material gas, a flow region in which only the mixed liquid flows, and an upper portion in which the mixed liquid after the reaction is moved from the upper part of the reaction region to the upper part of the flow region Forming a circulation system comprising a moving region and a lower moving region for moving the mixed liquid from a lower part of the flow region to a lower part of the reaction region;
  • An apparatus for producing a fluorinated gas compound is provided with a gas introduction part for introducing a compound.
  • Embodiments of the second invention are as follows.
  • a liquid temperature adjusting device for adjusting the liquid temperature of the mixed liquid is provided in the flow region or the region below the reaction region.
  • the liquid temperature of the said mixed liquid can be adjusted effectively and a fluorinated gas compound can be manufactured efficiently.
  • the method and apparatus for producing a fluorinated gas compound of the present invention it is possible to constitute a method and apparatus for producing a fluorinated gas compound that is simple and less prone to failure, and that can efficiently perform chemical reactions.
  • FIG. 1 is a side view of the fluorinated gas compound production apparatus 10 of the first embodiment.
  • FIG. 2 is a plan view of the fluorinated gas compound production apparatus 10.
  • FIG. 3 is a horizontal sectional view of the return cooling section.
  • FIG. 4 is an enlarged partial cross-sectional view of the source gas supply port of FIG.
  • FIG. 5 is a longitudinal sectional view of the raw material reaction gas supply nozzle.
  • the fluorinated gas compound production apparatus 10 includes a vertical cylindrical reaction unit 12, a separation tank 16 that separates liquid and gas by connecting an upper part of the reaction part 12 to a bottom part 14, and a separation tank 16. And a return cooling part 20 connected to the bottom part 14 and extending downward.
  • a liquid such as NH 4 F ⁇ nHF is continuously circulated through the reaction unit 12, the separation tank 16, and the supply cooling unit 20 sequentially.
  • the separation tank 16 connected to the bottom 14 above the reaction unit 12 to separate the liquid and the gas has a hollow cylindrical shape, and the inner surface is covered with a polytetrafluoroethylene thin film.
  • the separation tank 16 having a circular horizontal cross section has a reaction part 12 and a return cooling part 20 connected to a bottom part 14.
  • the separation tank 16 is provided with a reaction liquid amount adjusting port 30 for taking out or supplying the reaction liquid in a lower region of the side surface.
  • a vacuum pump (not shown) may be installed at the port 32 in order to depressurize the inside of the separation tank 16.
  • a liquid level gauge introduction port 32 is disposed at the center of the upper surface of the separation tank 16 (a liquid level gauge is not shown), and a thermometer introduction port 34 is formed on the same circumference in the middle part. (A thermometer is not shown) and four gas outlets 36 are provided.
  • the return cooling unit 20 is provided with a refrigerant supply port 40 that supplies a chlorofluorocarbon refrigerant or the like in a lower region on the side surface, and a refrigerant takeout port 42 that extracts the chlorofluorocarbon refrigerant or the like in an upper region on the side surface.
  • the return cooling unit 20 has a plurality of reaction liquid paths 46 in which the reaction liquid descends arranged in parallel inside a hollow cylindrical cooling housing 44. The refrigerant rises between the cooling housing 44 and the reaction liquid passage 46.
  • the return cooling unit 20 has a lower end region that is bent at a right angle and becomes horizontal, and further bent at a right angle and is turned upward, and communicates with a lower end region of the reaction unit 12.
  • a thermometer 50 for measuring the temperature of the reaction solution is horizontally disposed in a portion where the lower end region of the return cooling unit 20 is bent at a right angle and becomes horizontal.
  • the reaction liquid which is taken out from the reaction liquid amount adjusting port 30 and adjusted to be the same level as the virgin raw material liquid L is returned to the return cooling section.
  • a reaction solution replenishing port 54 for replenishing and supplying the gas 20 is provided vertically upward.
  • the virgin raw material liquid L may be introduced from the return cooling unit 20.
  • the return cooling unit 20 in the vicinity of the reaction unit 12 includes a raw material reaction gas ClF 3 , reaction products NF 2 Cl and NFCl 2 as reaction products in the reaction region, and NF obtained by further fluorinating these reaction product gases.
  • a raw material gas supply port 60 for supplying 3 is provided.
  • ClF 3 is a newly supplied raw material reaction gas
  • NF 2 Cl and NFC 1 2 are taken out from the gas outlet 36 on the upper surface of the separation tank 16
  • NF 3 is a product reaction gas NF taken out from the gas outlet 36. It was obtained by further fluorinating 2 Cl and NFCl 2 .
  • fluorinating agents that fluorinate NF 2 Cl and NFCl 2 include, for example, fluorine-based gases such as F 2 and ClF 3 , metal fluorides such as CoF 3, and composite metals such as K 3 NiF 7. There are fluorides. It is also possible to generate NF 3 by thermal decomposition of NF 2 Cl and NFCl 2 besides fluorinating NF 2 Cl and NFCl 2.
  • a raw material reaction gas supply nozzle 62 for supplying raw material reaction gases ClF 3 , NF 2 Cl, NFCl 2 , and NF 3 to the return cooling unit 20 is hollow and closed at its tip. A plurality of obliquely downward nozzle holes 66 are provided in the vicinity of the tip.
  • the raw material reaction gas supply nozzle 62 is arranged such that the nozzle hole 66 is in the substantially central region of the return cooling unit 20.
  • the operation of the fluorinated gas compound production apparatus 10 described above is as follows.
  • the apparent specific gravity of the liquid in the reaction part (reaction area) is small and light, and the reaction part 12 (reaction area) rises while reacting and enters the separation tank 16.
  • the source gas include (NH 4 ) 3 AlF 6 .nHF.
  • Other examples of the raw material liquid include ClF, BrF, BrF 3 , ClF 5 , BrF 5 , IF 5 and IF 7 .
  • the amount of the reaction liquid in the separation tank 16, that is, the water level of the reaction liquid, refers to the measurement value of the liquid level gauge 32, and the adjustment valve (not shown) of the reaction liquid amount adjustment port 30 of the separation tank 16 and the return cooling unit 20. Adjustment is performed by operating an adjustment valve (not shown) of the reaction liquid replenishing port 54.
  • the generated reaction gases NF 2 Cl and NFC 1 2 are taken out from the four gas outlets 36, a part is sent to the next step as a target product, and the other part is supplied to the raw material gas supply port 60. .
  • thermometer 34 of the separation tank 16 and the thermometer 50 of the return cooling unit 20 are set so that the temperature in the reaction unit 12 that directly affects the generation of the fluorinated gas compound is, for example, 20 ⁇ 5 ° C.
  • an adjustment valve (not shown) is operated to control the supply amount of the refrigerant.
  • FIG. 6 is a side view of the fluorinated gas compound production apparatus 10 of the second embodiment.
  • the difference between the fluorinated gas compound production apparatus 110 of the second embodiment and the fluorinated gas compound production apparatus 10 of the first embodiment is that the cooling unit 124 is further below the lower part of the reaction region where the raw material gas and the gaseous compound are introduced. This is a point provided in the region.
  • the cooling unit 124 may be configured to have a horizontal cross section as shown in FIG. Since the liquid temperature is adjusted by the cooling unit 124, the cooling unit 124 does not need to be provided in the return unit 122 corresponding to the return cooling unit 20 in FIG.
  • Example 1 A reaction apparatus having the structure of the fluorinated gas compound apparatus 10 shown in FIG. 1 was prepared.
  • the raw material liquid L (NH 4 F ⁇ 2.0HF) was introduced from the reaction liquid replenishing port 54, and the raw material liquid L was introduced into the reaction apparatus to a height approximately in the middle of the separation layer 16.
  • the amount of raw material liquid introduced is about 35L.
  • the reduced amount of the raw material liquid L was appropriately replenished from the reaction liquid replenishing port 54.
  • a raw material gas ClF 3 gas is introduced from the raw material supply port 60 at a flow rate of 4 SLM, the reaction is started, and reaction product gases NF 2 Cl and NFCl 2 obtained by the reaction are taken out from the gas outlet 36, and a part thereof is not shown. It returns to the raw material supply port 60 through piping (made of SUS304).
  • the flow rate of the reaction product gas introduced from the raw material supply port 60 was set to 40 to 60 SLM.
  • the temperature of the liquid in the separation layer 16 parts was adjusted to 19 ° C. to 25 ° C. by cooling the return cooling part.
  • the reactor was operated for 240 hours, but no problem occurred.
  • Example 2 A reaction apparatus having the structure of the fluorinated gas compound apparatus 10 shown in FIG. 1 was prepared.
  • the raw material liquid L (NH 4 F ⁇ 2.0HF) was introduced from the reaction liquid replenishing port 54, and the raw material liquid L was introduced into the reaction apparatus to a height approximately in the middle of the separation layer 16.
  • the amount of the raw material liquid introduced is 35L.
  • the reduced amount of the raw material liquid L was appropriately replenished from the reaction liquid replenishing port 54.
  • the raw material gas ClF 3 gas is introduced from the raw material supply port 60 at a flow rate of 0.4 SLM, the reaction is started, the reaction product gases NF 2 Cl and NFCl 2 obtained by the reaction are taken out from the gas outlet 36, and the total amount thereof is as follows:
  • “gas compound NF 3 obtained by further fluorination” is obtained, and a part of the obtained gas compound is returned to the raw material supply port 60 through a pipe (not shown) (manufactured by SUS304).
  • the flow rate of the reaction product gas introduced from the raw material supply port 60 was set to 40 to 60 SLM. This includes 5 to 6 SLM of unreacted ClF 3 . Of these, including the source gas ClF 3 gas, about 4 SLM actually reacts.
  • the temperature of the liquid in the separation layer 16 parts was adjusted to 19 ° C. to 25 ° C. by cooling the return cooling part.
  • the reactor was operated for 240 hours, but no problem occurred. Further, the gas composition at the latter stage of the gas outlet 36 was analyzed during the reaction. The results are shown in Table 1. Compared to Comparative Example 1, the ratio of N 2 in the gas was small.
  • Comparative Example 1 A reaction apparatus having the structure of the fluorinated gas compound apparatus 10 shown in FIG. 1 was prepared.
  • the raw material liquid L (NH 4 F ⁇ 2.0HF) was introduced from the reaction liquid replenishing port 54, and the raw material liquid L was introduced into the reaction apparatus to a height approximately in the middle of the separation layer 16.
  • the amount of the raw material liquid introduced is 35L.
  • the reduced amount of the raw material liquid L was appropriately replenished from the reaction liquid replenishing port 54.
  • the raw material gas ClF 3 gas is introduced from the raw material supply port 60 at a flow rate of 4 SLM, the reaction is started, the reaction product gases NF 2 Cl and NFCl 2 obtained by the reaction are taken out from the gas outlet 36, and a part of the taken out is shown in the figure. Is returned to the raw material supply port 60 through a pipe (made of SUS304).
  • the flow rate of the reaction product gas introduced from the raw material supply port 60 was set to 40 to 60 SLM.
  • the temperature of the liquid in the separation layer 16 parts was adjusted to 19 ° C. to 25 ° C. by cooling the return cooling part.
  • FIG. 1 is a side view of the fluorinated gas compound production apparatus 10 of the first embodiment.
  • FIG. 2 is a plan view of the fluorinated gas compound production apparatus 10 of the first embodiment.
  • FIG. 3 is a horizontal sectional view of the return cooling unit 20 or the cooling unit 21.
  • FIG. 4 is an enlarged partial cross-sectional view of the source gas supply port of FIG. 1 or FIG.
  • FIG. 5 is a longitudinal sectional view of the raw material reaction gas supply nozzle.
  • FIG. 6 is a side view of the fluorinated gas compound production apparatus 110 of the second embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Treating Waste Gases (AREA)

Abstract

 原料液体を含む混合液体を原料気体と反応させる反応領域と、前記混合液体のみが流動する流動領域と、反応後の前記混合液体を前記反応領域の上部から前記流動領域の上部へ移動させる上部移動領域と、前記混合液体を前記流動領域の下部から前記反応領域の下部へ移動させる下部移動領域とからなる循環系を形成し、(A)前記反応領域の下部に前記原料気体と、(B)前記反応領域における反応生成物である第1フッ素化気体化合物及び該第1フッ素化気体化合物をさらにフッ素化させて得られる第2フッ素化気体化合物から選ばれる少なくとも一種のフッ素化気体化合物とを導入することによって前記混合液体を循環させるフッ素化気体化合物製造装置。

Description

フッ素化気体化合物の製造方法及び装置
 フッ素化された気体状化合物、例えば、NF3、IF5、IF7、ClF3、WF6等は、CVD装置、PVD装置等の半導体製造装置の内部洗浄剤として使用されている。これら気体状化合物を効率的に生産するための方法が、種々検討されている。なお、前記NF3、IF5、IF7、ClF3、WF6は、本発明ではフッ素化反応が完全に進行したものである例として挙げられる。
 例えば、本出願人は、液状のアンモニウム錯体化合物と気体状のClF3等のインターハロゲン化物を反応させて、式NFx3-x(Lは、F以外のハロゲン、1≦x≦3)で表される気体状のハロゲン化窒素を合成する方法を提案している(特許文献1参照)。該ハロゲン化窒素は、後工程でさらにフッ素化されて、NF3へと変換される。気体状のフッ素化された化合物を効率的に製造するためには、連続的な生産工程でなされることが好ましい。ここで、「連続的」とは、技術手段の作動中に、原料を切れ目なく導入して、反応を起こし機能性気体を生じせしめることを意味している。フッ素化された化合物は、多くの場合、原料気体と気体ではない原料とを反応させて製造される。例えば、特許文献1では、原料液体Lと原料気体とを反応させている。
 このような条件で、連続的な生産を効率良く行うためには、原料液体Lと原料気体とが反応する反応領域に原料液体Lが継続的に供給される必要がある。原料液体Lを反応領域に継続的に供給される方法として、気泡塔の原理を応用し、槽内で液体酸性弗化アンモニウムを循環させる方法を開示している(例えば、特許文献2参照)。特許文献2では、液体酸性弗化アンモニウムを気体フッ素と反応させて、NF3を生じせしめている。液体酸性弗化アンモニウムを循環、すなわち作動させるために、系内の反応に関与しないHFを蒸気ジェットとして槽内に導入している。
 反応により発生した気体の一部を反応領域に戻して反応物質の循環の流動源として使用する従来技術として、保持可能な生物学的触媒を用い、廃水の成分を容易に分離可能である固形形態に変換することによる、廃水の生物学的処理のためのプロセスであって:
(a)処理されるべき廃水を、廃水の流入のための1つ以上の入口/ノズル、精製された水の除去のための1つ以上の出口/ノズル、1つ以上のドラフトチューブ、該ドラフトチューブの内側の、泡を上昇させ得るガス/空気のインプットのための1つ以上の入口/ノズル、および微生物膜が付着した粒子のベッドを有する反応ベッセル中を通過させる工程;
(b)該処理されるべき廃水を、該微生物を含む粒子のベッドと接触させ、該廃水のいくつかの成分を固形産物に変換する工程;
(c)該ドラフトチューブを通る液体の上向き流れを形成するために、ガスノズルを通じて該ドラフトチューブ中にガス/空気を導入する工程;
(d)浮力の作用により該固形産物から該粒子のベッドを分離し;該ベッセルから、処理水を、所望であれば連続的に除去する工程;および
(e)該反応ベッセルの底から、該粒子の固形産物を、所望であれば連続的に除去する工程、を包含する、プロセスが提案されている(例えば、特許文献3参照)。
 反応により発生した気体の一部を反応領域に戻して反応物質の循環の流動源として使用する他の従来技術として、反応槽の途中の壁から開口部を設けて上方へ隔壁が配置され、その隔壁の内側を反応部、外側を沈殿部とし、かつ、前記反応部内に立設されたエアリフト壁の下部から空気を送込んで担体を上方へ流動させながら担体表面の微生物により前記反応槽内に供給される廃水を処理する廃水処理装置であって、前記エアリフト壁の上部に可動壁を設け、この可動壁の上端位置を調整して乱流を抑制し、前記担体表面での生物膜の形成を促すようにした廃水処理装置が提案されている(例えば、特許文献4参照)。
WO2007/04409号パンフレット 特開2003-238122号公報 特表2004-526561号公報 特開02-135195号公報
 特許文献2に記載の三フッ化窒素の製造方法においては、反応器外壁にコイルクーラー等を設置することによって、HF蒸発熱分にほぼ相当する反応熱がHF回収装置によって冷却される。引用文献2の製造方法においてはまた、液体を導入される槽すなわち反応器20は、本発明にように線状でなく壷状であるから、生産規模を大きくしようとすると、反応器20の容量を大きくしなければならない。容量の大きな反応器20は、そこに導入された液体を所定温度に均一に保持することが困難であり、設備費や製造コストの増大をもたらす。例えば、酸化フッ化アンモニュウム中でHFを気化するためには、反応系を100℃以上に維持する必要があり、反応器の容量を大きくすることの上述した問題が顕著になる。
 特許文献3に記載されたプロセスをフッ素化気体化合物の製造方法に使用する反応容器1も、本発明にように線状でなく壷状である。従って、生産規模を大きくしようとすると、反応容器1の容量を大きくしなければならず、特許文献2と同じ問題がある。
 特許文献4に記載されたプロセスをフッ素化気体化合物の製造方法に応用する場合にも、特許文献4の反応槽22が本発明にように線状でなく壷状であるから、生産規模を大きくしようとすると、反応槽22の容量を大きくしなければならず、特許文献2と同じ問題がある。
(発明の目的)
 本発明のフッ素化気体化合物の製造方法及び装置は、従来の三フッ化窒素の製造方法及び反応により発生した気体の一部を反応領域に戻して反応物質の循環の流動源として使用する方法の上述した問題点に鑑みてなされたものであって、装置が簡易で故障のおそれが少なく、化学反応も効率的になされるフッ素化気体化合物の製造方法及び装置を提供することを目的とする。
 第1発明は、
 原料液体と原料気体とを反応させてフッ素化された気体化合物を製造するフッ素化気体化合物の製造方法において、
 前記原料液体を含む混合液体を原料気体と反応させる反応領域と、前記混合液体のみが流動する流動領域と、反応後の前記混合液体を前記反応領域の上部から前記流動領域の上部へ移動させる上部移動領域と、前記混合液体を前記流動領域の下部から前記反応領域の下部へ移動させる下部移動領域とからなる循環系を形成し、
 (A)前記反応領域の下部に前記原料気体と、(B)前記反応領域における反応生成物である第1フッ素化気体化合物及び該第1フッ素化気体化合物をさらにフッ素化させて得られる第2フッ素気体化合物から選ばれる少なくとも一種のフッ素化気体化合物とを導入することによって前記混合液体を循環させることを特徴とするフッ素化気体化合物の製造方法である。
 原料気体を原料液体Lに導入すると、原料気体と原料液体Lとの反応が始まる。この反応過程で液体と気体とが共存することによるみかけ比重の低下があまり生じないことがあり、結果、循環系を循環させるための駆動力が小さいものとなる。
 前記反応領域の下部に前記原料気体だけでなく、前記反応領域における反応生成物である第1フッ素化気体化合物及び該第1フッ素化気体化合物をさらにフッ素化させて得られる第2フッ素化気体化合物から選ばれる少なくとも一種のフッ素化気体化合物を導入することによって、液体と気体とが共存することによるみかけ比重の低下の抑制を確実に行うことができるようになる。
 また、反応生成物のフッ素化気体化合物は、さらにフッ素化される余地のある場合、すなわち、反応性があるので安定性が低い場合がある。この場合、反応生成物のフッ素化気体化合物を反応領域の下方の領域に戻そうとする過程において、導入管などの装置材料を劣化させることがある。従って、装置を安定的に操業させるため、原料気体と同時に導入する気体化合物は、その反応性を低下させるために、前記反応領域における反応生成物であるフッ素化気体化合物をさらにフッ素化させて得られる気体化合物とすることが好ましい。
 第1発明の実施態様は、以下のとおりである。
 前記流動領域、又は前記反応領域より下方の領域において、前記混合液体の液温調整することを特徴とする。このように構成することによって、有効に前記混合液体の液温調整を行って、効率的にフッ素化気体化合物を製造することができる。
 さらに、原料気体及び気体化合物が導入される反応領域の下方の領域を、液温調整する領域とすると、気体と液体の流れが同一方向となり、液の循環がより効率化するので好ましい。
 前記原料気体が、インターハロゲン化物であることが好ましい。このように構成することによって、例えば錯体化合物である原料液体Lとインターハロゲン化物を組み合わせると、原料のインターハロゲン化物(ClF3)を原料液体Lに注入したときに、インターハロゲン化物気体が、原料液体Lへの溶解度に応じて原料液体Lに溶け込む。これにより、原料気体と原料液体Lとの反応に加えて、液体に転じた原料気体と原料液体Lとが反応が生じるので、反応が効率的に進行する。原料気体が原料液体Lに溶け込むと、気体と液体との共存によるみかけ比重の低下があまり生じず、結果、循環系を循環させるための駆動力が小さいものとなる。本発明では、前記反応領域の下部にさらに反応生成物のフッ素化気体化合物を導入することにより、循環系の循環を容易にせしめることができるようになる。
 第2発明は、
 原料液体と原料気体とを反応させてフッ素化された気体化合物を製造するフッ素化気体化合物の製造装置において、
 前記原料液体を含む混合液体を原料気体と反応させる反応領域と、前記混合液体のみが流動する流動領域と、反応後の前記混合液体を前記反応領域の上部から前記流動領域の上部へ移動させる上部移動領域と、前記混合液体を前記流動領域の下部から前記反応領域の下部へ移動させる下部移動領域とからなる循環系を形成し、
 前記反応領域の下部に前記原料気体及び反応生成物の第1フッ素化気体化合物及び該第1フッ素化気体化合物をさらにフッ素化させて得られる第2フッ素化気体化合物から選ばれる少なくとも一種のフッ素気体化合物を導入する気体導入部を設けたことを特徴とするフッ素化気体化合物の製造装置である。
 第2発明の実施態様は、以下のとおりである。
 前記流動領域、又は前記反応領域より下方の領域において、前記混合液体の液温調整する液温調整装置を設けたことを特徴とする。このように構成することにより、有効に前記混合液体の液温調整を行って、効率的にフッ素化気体化合物を製造することができる。
 本発明のフッ素化気体化合物の製造方法及び装置によれば、装置が簡易で故障のおそれが少なく、化学反応も効率的になされるフッ素化気体化合物の製造方法及び装置を構成することができる。
(第1実施形態)
 以下に、本発明の第1実施形態のフッ素化気体化合物の製造装置を図に基づいて説明する。図1は、第1実施形態のフッ素化気体化合物製造装置10の側面図である。図2は、フッ素化気体化合物製造装置10の平面図である。図3は、戻り冷却部の水平断面図である。図4は、図1の原料ガス供給口の拡大部分断面図である。図5は、原料反応ガス供給ノズルの縦断面図である。
(装置の構成)
 フッ素化気体化合物製造装置10は、図1に示すように、垂直な円筒状の反応部12、反応部12の上方部を底部14に連結され液体と気体を分離する分離槽16、分離槽16の底部14に連結され下方へ延びた戻り冷却部20を有する。NH4F・nHF等の液体は、反応部12、分離槽16及び供給冷却部20を順次連続的に循環する。
 反応部12の上方で底部14を連結され液体と気体を分離する分離槽16は、中空円柱状であって、内面はポリテトラフルオロエチレン薄膜によって被われている。
 水平断面が円形の分離槽16は、底部14に反応部12及び戻り冷却部20を連結されている。分離槽16は、側面の下方域に、反応液を取り出しあるいは供給するための反応液量調整口30が設けられる。また、分離槽16内を減圧するために、口32に真空ポンプ(図示せず)を設置してもよい。分離槽16の上面には、図2に示すように、中心に液面計導入口32が配置され(液面計は図示せず)、中間部の同一円周上に、温度計導入口34(温度計は図示せず)と四つのガス出口36が設けられている。
 戻り冷却部20は、図1に示すように、側面の下方域にフロン系冷媒等を供給する冷媒供給口40及び側面の上方域にフロン系冷媒等を取り出す冷媒取り出し口42が設けられている。戻り冷却部20は、図3の水平断面に示すように、中空円柱状の冷却ハウジング44の内部に、反応液が下降する複数の反応液路46が互いに平行に配置されている。冷却ハウジング44と反応液路46の間を冷媒が上昇する。
 戻り冷却部20は、下端域が直角に曲がって水平になり、さらに直角に曲がって上向きになり、反応部12の下端域に連通している。戻り冷却部20の下端域が直角に曲がって水平になる部分に、反応液の温度を測定するための温度計50が水平に配置されている。戻り冷却部20の下端域が直角に曲がって垂直に上がる部分には、反応液量調整口30から取り出され、バージンの原料液体Lと同程度になるように調整された反応液を戻り冷却部20に補充供給するための反応液補充口54が垂直上向きに設けられている。尚、バージンの原料液体Lは、戻り冷却部20から導入してもよい。
 反応部12近傍の戻り冷却部20には、原料反応ガスであるClF3、反応領域における反応生成物である生成反応ガスNF2Cl及びNFCl2、これらの反応生成ガスをさらにフッ素化させたNF3を供給するための原料ガス供給口60が設けられている。ClF3は新しく供給される原料反応ガスであって、NF2Cl及びNFCl2は分離槽16の上面のガス出口36から取り出されたもの、NF3はガス出口36から取り出された生成反応ガスNF2Cl及びNFCl2をさらにフッ素化反応させて得られたものである。NF2Cl及びNFCl2をフッ素化するフッ素化剤の例としては、例えば、F2やClF3などのフッ素系ガス、もしくはCoF3などの金属フッ化物、更にはK3NiF7などの複合金属フッ化物などがある。また、NF2Cl及びNFCl2をフッ素化する以外にNF2Cl及びNFCl2の熱分解によってNF3を生成させても良い。
 戻り冷却部20に原料反応ガスであるClF3、NF2Cl、NFCl2、NF3を供給するための原料反応ガス供給ノズル62は、図4及び5に示すように、中空で先端が閉じ、先端近傍に斜め下向きの複数のノズル孔66を設けている。原料反応ガス供給ノズル62は、ノズル孔66が戻り冷却部20の管路の略中心領域にあるように配置される。
 (装置の作動)
 上述したフッ素化気体化合物製造装置10の作動は、以下のとおりである。戻り冷却部20において、反応液量調整口30から取り出され、バージンの原料液体Lと同程度になるように調整された反応液、バージンの原料液体L(例えば、NH4F・nHF)、及び戻り冷却部20で冷却された原料液体Lのいずれかを一種以上を有する液体に、供給口60から原料気体(原料反応ガス)ClF3と、生成反応ガスNF2Cl、NFCl2、NF3等とが混入される。その結果、反応部(反応領域)の液体の見かけ上の比重が小さく軽量になり、反応をしながら反応部12(反応領域)を上昇して、分離槽16に入る。
 原料気体のその他の例として、(NH43AlF6・nHF等が挙げられる。また、原料液体のその他の例としてClF、BrF、BrF3、ClF5、BrF5、IF5、IF7等が挙げられる。
 分離槽16における反応液量すなわち反応液の水位は、液面計32の測定値を参照して、分離槽16の反応液量調整口30の調整バルブ(図示せず)と戻り冷却部20の反応液補充口54の調整バルブ(図示せず)の操作によって調整される。
 分離槽16では、生成反応ガスNF2Cl及びNFCl2が四つのガス出口36から取り出され、一部は目的物として次の工程に送られ、他の部分は原料ガス供給口60に供給される。
 フッ素化気体化合物の生成に直接影響を与える反応部12内の温度は、例えば、20±5℃になるように、分離槽16の温度計34及び戻り冷却部20の温度計50の測定値を参照して、冷媒供給口40の調整バルブ(図示せず)を操作して冷媒の供給量を制御することによって行う。
(第2実施形態)
 図6は、第2実施態様のフッ素化気体化合物製造装置10の側面図である。第2実施態様のフッ素化気体化合物製造装置110と第1実施態様のフッ素化気体化合物製造装置10の差異は、冷却部124が原料気体及び気体化合物が導入される反応領域の下部のさらに下方の領域に設けられている点である。冷却部124は、図3に示すような水平断面をもつように構成してもよい。冷却部124によって液温調整がなされるから、図6の装置110では、図1中の戻り冷却部20に相当する戻り部122では、冷却構造を設けなくてもよい。
 実施例1
 図1に示すフッ素化気体化合物装置10の構造を有する反応装置を用意した。反応液補充口54から原料液体L(NH4F・2.0HF)を導入し、分離層16の中間程度の高さまで原料液体Lを反応装置に導入した。導入された原料液体量は、約35Lである。反応中に原料液体Lの減少分は、反応液補充口54から適宜補充を行った。
 原料供給口60から、原料気体ClF3ガスを流量4SLMで導入し、反応を開始させ、反応で得られた反応生成ガスNF2Cl、NFCl2をガス出口36から取り出し、その一部を図示しない配管(SUS304製)を通じて、原料供給口60に戻される。原料供給口60から導入される反応生成ガスの流量は40から60SLMとした。
 尚、反応中は、戻り冷却部を冷却することで、分離層16部の液体の温度19℃~25℃に調整された。
 原料気体と反応生成ガスとを原料供給口60から導入し始めてから、240時間反応装置を作動させたが問題が発生することはなかった。
 実施例2
 図1に示すフッ素化気体化合物装置10の構造を有する反応装置を用意した。反応液補充口54から原料液体L(NH4F・2.0HF)を導入し、分離層16の中間程度の高さまで原料液体Lを反応装置に導入した。導入された原料液体量は、35Lである。反応中に原料液体Lの減少分は、反応液補充口54から適宜補充を行った。
 原料供給口60から、原料気体ClF3ガスを流量0.4SLMで導入し、反応を開始させ、反応で得られた反応生成ガスNF2Cl、NFCl2をガス出口36から取り出し、その全量を以下の反応を経て「さらにフッ素化させて得られる気体化合物NF3」とし、得られた当該気体化合物の一部を図示しない配管(SUS304製)を通じて、原料供給口60に戻される。原料供給口60から導入される反応生成ガスの流量は40~60SLMとした。この中には未反応のClF3が5から6SLM含まれる。原料気体ClF3ガスも含め、このうち実際に反応するのは約4SLMとなる。
 なお、反応中は、戻り冷却部を冷却することで、分離層16部の液体の温度19℃~25℃に調整された。
 原料気体と反応生成ガスとを原料供給口60から導入し始めてから、240時間反応装置を作動させたが問題が発生することはなかった。さらに、反応中にガス出口36の後段のガス組成を分析した。その結果を表1に示す。比較例1と比べてガス中のN2の比率が少なかった。
Figure JPOXMLDOC01-appb-T000001
 比較例1
 図1に示すフッ素化気体化合物装置10の構造を有する反応装置を用意した。反応液補充口54から原料液体L(NH4F・2.0HF)を導入し、分離層16の中間程度の高さまで原料液体Lを反応装置に導入した。導入された原料液体量は、35Lである。反応中に原料液体Lの減少分は、反応液補充口54から適宜補充を行った。
 原料供給口60から、原料気体ClF3ガスを流量4SLMで導入し、反応を開始させ、反応で得られた反応生成ガスNF2Cl、NFCl2をガス出口36から取り出し、取り出した一部を図示しない配管(SUS304製)を通じて、原料供給口60に戻される。原料供給口60から導入される反応生成ガスの流量は40~60SLMとした。
 尚、反応中は、戻り冷却部を冷却することで、分離層16部の液体の温度19℃~25℃に調整された。
 一方、反応で得られ、ガス出口36から取り出した反応生成ガスNF2Cl、NFCl2のうち、原料供給口60に戻されなかった残りのガスを別の反応器でF2と反応させ、NF3とした。この反応は、収率がほぼ100%となることがわかっている。反応器後段のガス組成を分析した。その結果を表2に示す。
 実施例1と比較して明らかにガス出口36の後段のガス組成中に占めるN2の割合が多かった。NF2Cl、NFCl2とF2からNF3を合成する反応の収率はほぼ100%であるため、実施例2と比べ劣る結果となった。
Figure JPOXMLDOC01-appb-T000002
図1は、第1実施形態のフッ素化気体化合物製造装置10の側面図である。 図2は、第1実施形態のフッ素化気体化合物製造装置10の平面図である。 図3は、戻り冷却部20又は冷却部21の水平断面図である。 図4は、図1又は図6の原料ガス供給口の拡大部分断面図である。 図5は、原料反応ガス供給ノズルの縦断面図である。 図6は、第2実施形態のフッ素化気体化合物製造装置110の側面図である。
符号の説明
L      原料液体
10     フッ素化気体化合物製造装置
12     反応部
14     底部
16     分離槽
20     戻り冷却部
30     反応液量調整口
32     液面計導入口
34     温度計導入口
36     ガス出口
40     冷媒供給口
42     冷媒取り出し口
44     冷却ハウジング
46     反応液路
50     温度計
54     反応液補充口
60     原料ガス供給口
62     原料反応ガス供給ノズル
66     複数のノズル孔
110    フッ素化気体化合物製造装置
122    戻り部
124    冷却部

Claims (7)

  1.  原料液体と原料気体とを反応させてフッ素化された気体化合物を製造するフッ素化気体化合物の製造方法において、
     前記原料液体を含む混合液体を原料気体と反応させる反応領域と、前記混合液体のみが流動する流動領域と、反応後の前記混合液体を前記反応領域の上部から前記流動領域の上部へ移動させる上部移動領域と、前記混合液体を前記流動領域の下部から前記反応領域の下部へ移動させる下部移動領域とからなる循環系を形成し、
     (A)前記反応領域の下部に前記原料気体と、(B)前記反応領域における反応生成物である第1フッ素化気体化合物及び該第1フッ素化気体化合物をさらにフッ素化させて得られる第2フッ素化気体化合物から選ばれる少なくとも一種のフッ素化気体化合物とを導入することによって前記混合液体を循環させることを特徴とするフッ素化気体化合物の製造方法。
  2.  前記流動領域、又は前記反応領域より下方の領域において、前記混合液体の液温調整することを特徴とする請求項1に記載のフッ素化気体化合物の製造方法。
  3.  前記原料気体が、インターハロゲン化物であることを特徴とする請求項1又は請求項2に記載のフッ素化気体化合物の製造方法。
  4.  前記原料液体が、錯体化合物であることを特徴とする請求項1乃至請求項3のいずれかに記載のフッ素化気体化合物の製造方法。
  5.  前記第2フッ素化気体化合物が、フッ素化反応が完全に進行したものであることを特徴とする請求項1ないし4のいずれかに記載のフッ素化気体化合物の製造方法。
  6.  原料液体と原料気体とを反応させてフッ素化された気体化合物を製造するフッ素化気体化合物の製造装置において、
     前記原料液体を含む混合液体を原料気体と反応させる反応領域と、前記混合液体のみが流動する流動領域と、反応後の前記混合液体を前記反応領域の上部から前記流動領域の上部へ移動させる上部移動領域と、前記混合液体を前記流動領域の下部から前記反応領域の下部へ移動させる下部移動領域とからなる循環反応部を形成し、
     前記反応領域の下部に前記原料気体及び反応生成物の第1フッ素化気体化合物及び該第1フッ素化気体化合物をさらにフッ素化させて得られる第2フッ素化気体化合物から選ばれる少なくとも一種のフッ素気体化合物を導入する気体導入部を設けたことを特徴とするフッ素化気体化合物の製造装置。
  7.  前記流動領域、又は前記反応領域より下方の領域において、前記混合液体の液温調整する液温調整装置を設けたことを特徴とする請求項6に記載のフッ素化気体化合物の製造装置。
PCT/JP2008/073178 2007-12-27 2008-12-19 フッ素化気体化合物の製造方法及び装置 WO2009084475A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020107015397A KR101163894B1 (ko) 2007-12-27 2008-12-19 불소화 기체화합물의 제조방법 및 장치
CN2008801206339A CN101896423B (zh) 2007-12-27 2008-12-19 氟化气体化合物的制造方法及装置
EP08868239.8A EP2246296B1 (en) 2007-12-27 2008-12-19 Process and apparatus for producing fluorinated gaseous compound
US12/740,386 US20100239485A1 (en) 2007-12-27 2008-12-19 Method of manufacturing fluorinated gas compounds and apparatus for manufacturing the same
JP2009548014A JP5413201B2 (ja) 2007-12-27 2008-12-19 フッ素化気体化合物の製造方法及び装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007337326 2007-12-27
JP2007-337326 2007-12-27

Publications (1)

Publication Number Publication Date
WO2009084475A1 true WO2009084475A1 (ja) 2009-07-09

Family

ID=40824192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073178 WO2009084475A1 (ja) 2007-12-27 2008-12-19 フッ素化気体化合物の製造方法及び装置

Country Status (6)

Country Link
US (1) US20100239485A1 (ja)
EP (1) EP2246296B1 (ja)
JP (1) JP5413201B2 (ja)
KR (1) KR101163894B1 (ja)
CN (1) CN101896423B (ja)
WO (1) WO2009084475A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104548861B (zh) * 2015-01-26 2016-06-29 核工业理化工程研究院 从六氟化钨混合气体中分离氮气或氧气的分离方法
JP6687843B2 (ja) * 2015-07-23 2020-04-28 セントラル硝子株式会社 五フッ化ヨウ素の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02135195A (ja) 1988-11-14 1990-05-24 Toshiba Corp 廃水処理装置
JP2000044212A (ja) * 1998-05-22 2000-02-15 Central Glass Co Ltd 三フッ化窒素の製造方法
JP2002201011A (ja) * 2000-12-14 2002-07-16 Boc Group Inc:The 三フッ化窒素の製造方法及び装置
JP2003238122A (ja) 2002-02-08 2003-08-27 Boc Group Inc:The 三フッ化窒素の製造方法及び製造装置
JP2004203739A (ja) * 2002-12-23 2004-07-22 Boc Group Inc:The Nf3製造反応器
JP2004526561A (ja) 2001-03-09 2004-09-02 カウンシル・オブ・サイエンティフィック・アンド・インダストリアル・リサーチ 汚水浄化のためのプロセスおよび逆流動ループリアクタ
WO2007004409A1 (ja) 2005-07-06 2007-01-11 Central Glass Company, Limited ハロゲン化窒素の合成方法
JP2007099600A (ja) * 2005-10-07 2007-04-19 Showa Denko Kk 三フッ化窒素の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3084025A (en) * 1960-05-27 1963-04-02 Pennsalt Chemicals Corp Process for preparing chlorodi-fluoromaine
KR100452233B1 (ko) * 2002-07-19 2004-10-12 한국과학기술연구원 젯트루프식 분사형 반응기를 이용한 삼불화질소 제조방법
US7413722B2 (en) * 2005-08-04 2008-08-19 Foosung Co., Ltd. Method and apparatus for manufacturing nitrogen trifluoride
KR100975490B1 (ko) * 2005-08-26 2010-08-11 쇼와 덴코 가부시키가이샤 삼불화질소의 제조 방법 및 제조 장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02135195A (ja) 1988-11-14 1990-05-24 Toshiba Corp 廃水処理装置
JP2000044212A (ja) * 1998-05-22 2000-02-15 Central Glass Co Ltd 三フッ化窒素の製造方法
JP2002201011A (ja) * 2000-12-14 2002-07-16 Boc Group Inc:The 三フッ化窒素の製造方法及び装置
JP2004526561A (ja) 2001-03-09 2004-09-02 カウンシル・オブ・サイエンティフィック・アンド・インダストリアル・リサーチ 汚水浄化のためのプロセスおよび逆流動ループリアクタ
JP2003238122A (ja) 2002-02-08 2003-08-27 Boc Group Inc:The 三フッ化窒素の製造方法及び製造装置
JP2004203739A (ja) * 2002-12-23 2004-07-22 Boc Group Inc:The Nf3製造反応器
WO2007004409A1 (ja) 2005-07-06 2007-01-11 Central Glass Company, Limited ハロゲン化窒素の合成方法
JP2007099600A (ja) * 2005-10-07 2007-04-19 Showa Denko Kk 三フッ化窒素の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2246296A4

Also Published As

Publication number Publication date
KR101163894B1 (ko) 2012-07-09
CN101896423B (zh) 2012-10-10
EP2246296B1 (en) 2016-11-09
JPWO2009084475A1 (ja) 2011-05-19
EP2246296A1 (en) 2010-11-03
KR20100103574A (ko) 2010-09-27
JP5413201B2 (ja) 2014-02-12
CN101896423A (zh) 2010-11-24
US20100239485A1 (en) 2010-09-23
EP2246296A4 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP6382786B2 (ja) 断熱栓流反応器を含む装置
JP2008060536A (ja) 高流量のGaCl3供給
JP2015535739A (ja) せきクエンチおよびそれを組み込んだ方法
JP4188590B2 (ja) 三フッ化窒素の製造方法及び装置
JP2018514577A (ja) ビス(フルオロスルホニル)−イミドの製造方法
US7083773B2 (en) Method for producing nitrogen trifluoride using jet-loop reactors
JP5413201B2 (ja) フッ素化気体化合物の製造方法及び装置
CN115448256A (zh) 一步法合成三氟化氯的方法及反应装置
US11286221B2 (en) Method for producing 1-chloro-3,3,3-trifluoropropene
JP2008520626A (ja) 少なくとも2種類のガスを液相存在下で反応させる反応器及び方法
KR20040058047A (ko) 삼플루오르화질소 제조 반응기
JP2010143801A (ja) フッ素化気体化合物の製造方法及び装置
WO2010055769A1 (ja) インターハロゲン化合物の合成方法
TW202138338A (zh) 製造鹵化丙烷之方法
US11040931B2 (en) Method for producing tetrafluoromethane
US7413722B2 (en) Method and apparatus for manufacturing nitrogen trifluoride
TWI396949B (zh) Neutralization method of developing waste liquid containing tetraalkylammonium hydroxide
US20040101448A1 (en) Reactor for producing hydrofluorocarbon compound
EP4045458A1 (en) Process for preparation of chlorine from hydrogen chloride
TWI710545B (zh) 四氟甲烷之製造方法
KR101141169B1 (ko) 초음파진동자를 이용한 가스하이드레이트 제조장치 및 방법
JP6730605B2 (ja) 五フッ化酸化ヨウ素の製造方法
US20110150747A1 (en) Method for Manufacturing Oxygen-Containing Halogenated Fluoride
EP1296963A1 (en) Reactor and method for producing melamine
KR20200121332A (ko) 1,2,3,4-테트라클로로부탄의 제조 방법 및 제조 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880120633.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08868239

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009548014

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12740386

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107015397

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2008868239

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008868239

Country of ref document: EP