WO2009081978A1 - 永久磁石の製造方法 - Google Patents

永久磁石の製造方法 Download PDF

Info

Publication number
WO2009081978A1
WO2009081978A1 PCT/JP2008/073576 JP2008073576W WO2009081978A1 WO 2009081978 A1 WO2009081978 A1 WO 2009081978A1 JP 2008073576 W JP2008073576 W JP 2008073576W WO 2009081978 A1 WO2009081978 A1 WO 2009081978A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
material powder
magnetic field
orientation
cavity
Prior art date
Application number
PCT/JP2008/073576
Other languages
English (en)
French (fr)
Inventor
Hiroshi Nagata
Yoshinori Shingaki
Original Assignee
Ulvac, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac, Inc. filed Critical Ulvac, Inc.
Priority to KR1020107014012A priority Critical patent/KR101137395B1/ko
Priority to CN200880122406XA priority patent/CN101911226B/zh
Priority to JP2009547132A priority patent/JP4914922B2/ja
Priority to DE112008003493T priority patent/DE112008003493T5/de
Priority to US12/745,933 priority patent/US8328954B2/en
Publication of WO2009081978A1 publication Critical patent/WO2009081978A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/02Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space
    • B30B11/027Particular press methods or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Definitions

  • the present invention relates to a method for manufacturing a permanent magnet, and more particularly to a method for manufacturing a Nd—Fe—B permanent magnet having high orientation.
  • Nd-Fe-B based sintered magnets can be manufactured at low cost by being made of a combination of iron and Nd and B elements that are inexpensive and abundant in resources and can be stably supplied.
  • neodymium magnets since it has high magnetic properties (the maximum energy product is about 10 times that of ferrite magnets), it is used in various products such as electronic equipment, and is also used in motors and generators for hybrid cars. is increasing.
  • Nd-Fe-B magnets are mainly produced by powder metallurgy.
  • Nd, Fe, and B are first blended at a predetermined composition ratio, and melted and cast to produce an alloy raw material.
  • the material is once roughly pulverized by a hydrogen pulverization step, and then finely pulverized by, for example, a jet mill pulverization step to obtain a raw material powder.
  • the obtained raw material powder is oriented in a magnetic field (magnetic field orientation), and compression-molded in a state where a magnetic field is applied to obtain a compact. And this sintered compact is sintered on predetermined conditions, and a sintered magnet is produced.
  • a uniaxial pressure type compression molding machine As a compression molding method in a magnetic field, a uniaxial pressure type compression molding machine is generally used. This compression molding machine fills a cavity (filling chamber) formed in a through hole of a die with raw material powder, and a pair of upper and lower punches. The raw material powder is molded by pressing (pressing) from above and below, but at the time of compression molding with a pair of punches, friction between particles in the raw material powder filled in the cavity or the raw material powder and the punch were set. There is a problem that high orientation cannot be obtained due to friction with the mold wall surface, and magnetic characteristics cannot be improved.
  • the object of the present invention is to combine a powder crystal fracture surface having a more equal crystal orientation relationship in a magnetic field or an electric field, so that an oriented body, a molded body, and a sintered body having extremely high orientation.
  • the object is to provide a method for producing a high-performance permanent magnet comprising a body.
  • a method of manufacturing a permanent magnet according to claim 1 is characterized in that a raw material powder is filled in a filling chamber, and pressing means having an area smaller than the transverse area of the filling chamber is pressed against the raw material powder.
  • the method includes an alignment step of aligning in a magnetic field, and a forming step of compression-molding the aligned material into a predetermined shape in a magnetic field.
  • the raw material powder is filled in the filling chamber, and then the magnetic field is oriented in the magnetic field.
  • the pressing means is pressed against the raw material powder in the filling chamber with a predetermined pressure from the same direction as the filling direction of the raw material powder into the filling chamber.
  • the area of the contact surface (pressing surface) of the pressing means with the raw material powder is set smaller than the cross-sectional area of the filling chamber, when the pressing means is pressed against the raw material powder, the pressing means and the filling chamber Raw material powder is pushed away into the space between the inside.
  • the bonds between the particles when the magnetic field is applied are temporarily cut, and the positional relationship between the particles of the raw material powder in the filling chamber is changed from the state of being filled in the filling chamber. Further, among the combinations of crystal fracture planes in the magnetic field orientation direction, there are more opportunities for crystal fracture planes having the same crystal orientation relationship to be combined.
  • the crystal fracture surfaces are joined together without gaps in the magnetic field orientation direction. Then, by compressing and molding the crystal fracture surfaces that are joined together without gaps in the magnetic field orientation direction, a high-density permanent magnet without orientation disorder is obtained, and a high-performance magnet is obtained.
  • the raw material powder is mixed more in the filling chamber.
  • the positional relationship between the particles is changed in the filling chamber, so that opportunities for combining crystal fracture surfaces having the same crystal orientation relationship can be increased. This is particularly effective when the filling chamber has a rectangular cross section.
  • the pressing means may be vibrated in the pressing direction.
  • the fluidity of the raw material powder may be improved by adding a lubricant to the raw material powder at a predetermined mixing ratio and mixing it before filling the bag.
  • the pressing means is preferably a non-magnetic material.
  • a method of manufacturing a permanent magnet according to claim 6 includes a step of filling raw powder into a deformable bag, and a local pressing force applied to the bag. It includes a step of orienting in a magnetic field while kneading the raw material powder in the body, and a step of compressing and molding the oriented raw material powder into a predetermined shape in the magnetic field.
  • the magnetic field is oriented in the magnetic field.
  • pressing force is locally applied to the deformable bag body from a plurality of locations to knead the raw material powder in the bag body.
  • grains when a magnetic field is applied is once cut
  • crystal fracture planes in the magnetic field orientation direction there are more opportunities for crystal fracture planes having the same crystal orientation relationship to be combined.
  • the crystal fracture surfaces are joined together without gaps in the magnetic field orientation direction. Then, by compressing and molding the crystal fracture surfaces that are joined together with no gaps in the magnetic field orientation direction, a high-density magnet without orientation disorder is obtained, and a high-performance magnet is obtained.
  • the fluidity of the raw material powder may be improved by adding a lubricant to the raw material powder at a predetermined mixing ratio and mixing it before filling the filling chamber.
  • the sintering process which sinters the thing which orientated or compression-molded in addition to the said formation process or instead of the said formation process.
  • the raw material powder is for a rare earth magnet produced by a rapid cooling method
  • the raw material powder has an angular grain shape
  • the area of the crystal fracture surface can be increased, and the gap between the particles of the raw material powder is reduced.
  • the orientation can be made extremely high in combination with an increase in the chance of combining crystal fracture surfaces of the raw material powder having a more equal crystal orientation relationship.
  • the compression molding machine 1 is of a uniaxial pressure type in which the pressing direction Y (pressing direction) is perpendicular to the magnetic field orientation direction, and has a base plate 12 supported by leg pieces 11.
  • a die 2 is disposed above the base plate 12.
  • the die 2 is supported by a plurality of support columns 13 penetrating through the base plate 12, and the other end of each support column 13 is connected to a connection plate 14 provided below the base plate 12.
  • the connecting plate 14 is connected to driving means, for example, a cylinder rod 15 of a hydraulic cylinder having a known structure.
  • a through hole 21 in the vertical direction is formed in a substantially central portion of the die 2, and a lower punch 31 erected upward can be inserted into the through hole 21 from the lower side to the substantially central portion of the upper surface of the base plate 12.
  • the lower hydraulic cylinder is operated to lower the die 2
  • the lower punch 31 is inserted into the through hole 21, and a cavity (filling chamber) 22 is defined in the through hole 21.
  • the cross-sectional shape of the through hole 21 (cavity 22) is appropriately selected according to the shape of the sintered magnet to be molded, such as a circle or a rectangle.
  • the cross-sectional shape is formed in a rectangular shape.
  • a known structure of powder supply apparatus (not shown) can be moved forward and backward with respect to the cavity 22, and the alloy powder material, which will be described later, weighed in advance is filled into the cavity 22 by this powder supply apparatus. (See FIG. 2).
  • the die base 16 is disposed above the die 2 so as to face the base plate 12.
  • An upper punch 32 is provided on the lower surface of the die base 16 at a position where it can be inserted into the cavity 22.
  • through holes in the vertical direction are formed at the corners of the die base 16, and guide rods 17 having one ends fixed to the upper surface of the die 2 are inserted into the through holes.
  • driving means for example, a cylinder rod 18 of a hydraulic cylinder (not shown) having a known structure is connected to the upper surface of the die base 16.
  • this hydraulic cylinder is operated, the die base 16 is moved up and down by being guided by the guide rod 17.
  • the upper punch 32 is freely movable in the vertical direction, and can be inserted into the through hole 21 of the die 2.
  • the raw material powder P is compressed by the pair of upper and lower punches 31 and 32 in the cavity 22 to obtain a molded body (molding process).
  • a magnetic field generator 4 is provided on the outer periphery of the die 2 in order to orient the raw material powder P in the cavity 22 in a magnetic field.
  • the magnetic field generator 4 is symmetrically disposed so as to sandwich the die 2 from both sides, and has a pair of yokes 41a and 41b made of a material having high magnetic permeability such as carbon steel, mild steel, pure iron, and permendur.
  • Coils 42a and 42b are wound around the yokes 41a and 41b, and by energizing the coils 42a and 42b, a static magnetic field is generated in the direction X perpendicular to the pressurizing direction (vertical direction Y).
  • the raw material powder P filled in the cavity 22 can be oriented.
  • the raw material powder P is produced as follows. That is, Fe, B, and Nd are blended at a predetermined composition ratio, and an alloy of 0.05 mm to 0.5 mm is first manufactured by a rapid cooling method, for example, a strip casting method. On the other hand, an alloy having a thickness of about 5 mm may be produced by a centrifugal casting method, and a small amount of Cu, Zr, Dy, Al, or Ga may be added during blending. Next, the produced alloy is roughly pulverized by a known hydrogen pulverization step, and then finely pulverized in a nitrogen gas atmosphere by a jet mill pulverization step to obtain a raw material powder having an average particle diameter of 2 to 10 ⁇ m. In this case, when the rapid cooling method is used, the raw material powder P has an angular shape, the area of one crystal fracture surface can be increased, and the gap between the raw material powders P can be reduced.
  • a rapid cooling method for example, a strip casting method.
  • a lubricant is added to the raw material powder P at a predetermined mixing ratio to the raw material powder P produced as described above, and the surface of the raw material powder P is caused by this lubricant. It is covered.
  • a solid lubricant or a liquid lubricant having a low viscosity is used so as not to damage the mold.
  • layered compounds MoS 2 , WS 2 , MoSe, graphite, BN, CFx, etc.
  • soft metals Zn, Pb, etc.
  • hard substances dia powder, TiN powder, etc.
  • organic polymers PTEE system
  • zinc stearate, ethylene amide, and fluoroether type grease are preferably used.
  • Liquid lubricants include natural oils and fats (castor oil, palm oil, palm oil and other vegetable oils, mineral oils, petroleum oils, etc.), organic low molecular weight materials (lower aliphatic, lower fatty acid amide, lower fatty acid ester) In particular, it is preferable to use a liquid fatty acid, a liquid fatty acid ester, or a liquid fluorine-based lubricant. Liquid lubricants are used with surfactants or diluted with solvents, and the residual carbon component of the lubricant remaining after sintering reduces the coercive force of the magnet, so it is low enough to be easily removed during the sintering process. Molecular weight is desirable.
  • a solid lubricant when added to the gold raw material powder P, it may be added at a mixing ratio of 0.02 wt% to 0.5 wt%. If it is less than 0.02 wt%, the fluidity of the raw material powder P will not be improved, and eventually the orientation will not be improved. On the other hand, if it exceeds 0.1 wt%, when a sintered magnet is obtained, the coercive force decreases due to the influence of carbon remaining in the sintered magnet. Further, when the liquid lubricant is added to the raw material powder P, it may be added at a ratio in the range of 0.05 wt% to 5 wt%.
  • the compression molding machine 1 fills the cavity 22 which is a filling chamber with the raw material powder P containing the lubricant, and then performs compression molding (molding process) with the pair of upper and lower punches 31 and 32 of the magnetic field generator 4.
  • the magnetic field can be aligned while mixing the raw material powder P in the cavity 22 (orientation process), and the cavity 22 can be moved forward and backward.
  • the pressing means 5 is provided.
  • the pressing means 5 includes a fixed frame 51 and an elevating frame 53 that is suspended by the fixed frame 51 via a guide rod 52 and is movable up and down.
  • a cylinder 54 is mounted on the fixed frame 51, and a piston rod 54 a extending downward from the cylinder 54 is connected to the lifting frame 53.
  • the lift frame 53 is moved up and down by the cylinder 54.
  • a guide rail 55 extending in a direction orthogonal to the moving direction of the piston rod 54 a is formed on the lower surface of the elevating frame 53, and a movable frame 56 is provided on the guide rail 55.
  • a pressing member 57 is connected to the movable frame 56 so as to extend along the vertical direction Y.
  • the pressing member 57 is a solid quadrangular pyramid-shaped member and is made of a nonmagnetic material, for example, engineering plastics such as PEEK and nylon, and 18-8 stainless steel. Thereby, it can prevent that the raw material powder P adheres and mixing of the raw material powder P becomes inadequate, and a magnetic field is disturbed.
  • the cross-sectional area of the pressing member 57 may be smaller than the cross-sectional area of the cavity 22 so that a predetermined space is formed between the pressing member 57 and the wall surface of the cavity 22 when the raw material powder P is pressed by the pressing member 57.
  • the pressing member 57 it is preferable to set to approximately 1/2 to 1/16 (in this embodiment, 1/2) (see FIG. 3).
  • the cross-sectional area of the pressing member 57 is set to 1 ⁇ 2 of the cross-sectional area of the cavity 22, the pressing member 57 needs to be sized so as not to contact the wall surface defining the cavity 22.
  • the shape of the pressing member 53 can be appropriately selected according to the cross-sectional shape of the cavity 22.
  • the front end of the pressing member 57 is a flat surface or a convex surface inclined toward the front side in the axial direction rather than a plane perpendicular to the axial direction of the pressing member 57.
  • the fixed frame 51 is attached to two guide rails 58 extending in a direction perpendicular to the pressurizing direction Y, and the pressing means 5 slides along the guide rail 58 so that the pressing means 5 can advance and retreat with respect to the cavity 22. It becomes.
  • the benefit device may also be attached to the same guide rail 58 so as to be movable back and forth with respect to the cavity 22. Then, when stopped by a stopper (not shown) provided on the guide rail 58, the pressing member 53 is positioned so that a pressing force is applied to a substantially half region of the cavity 22.
  • the shutter 22 when the shutter is pivotably attached to the guide rod 17 and the pressing force is applied to the raw material powder P by the pressing member 57 and mixed, the shutter 22 defines the cavity 22.
  • a configuration may be adopted in which the upper surface is closed and the alloy powder material P is prevented from jumping out of the cavity 22 during mixing of the raw material powder by the pressing means 5.
  • the production of the Nd—Fe—B based sintered magnet of the first embodiment using the compression molding machine 1 will be described.
  • the hydraulic cylinder is operated to raise the die 2 to a predetermined position.
  • a cavity 22 is defined in the through hole 21.
  • the raw material powder P which has been weighed in advance by a powder supply device (not shown) and to which a lubricant is added at a predetermined mixing ratio, is filled into the cavity 22, and the powder supply device is moved away.
  • the packing density of the raw material powder P in the cavity 22 is set in the range of 10 to 30% with respect to the volume of the cavity 22 in order to leave the freedom of movement of the raw material powder P (see FIG. 2).
  • the pressing means 5 is positioned so that the pressing member is positioned on the left half of the cavity 22 above the cavity 22 (see FIGS. 2 and 3).
  • the cylinder 54 is operated and the piston rod 54a is lowered, the elevating frame 53 is lowered, and the pressing member 57 comes into surface contact with the raw material powder P in a substantially half region of the cavity 22 (see FIG. 4A).
  • the coils 42a and 42b of the magnetic field generator 4 are energized to generate a magnetic field.
  • the pressing means 5 in order to obtain high orientation, it is preferable to perform pressing (pressing) by the pressing means 5 in a static magnetic field in the range of 0.1 kOe to 10 kOe, preferably 0.5 kOe to 6 kOe. If the strength of the magnetic field is weaker than 0.1 k0e, a highly oriented and high magnetic property cannot be obtained, and if it is stronger than 10 k0e, mixing becomes difficult.
  • the pressing member 57 is pushed into the raw material powder P.
  • the pressing force of the pressing member 57 is preferably set to 1 to 50 kg / cm 2 .
  • the area of the contact surface between the pressing member 57 and the raw material powder P is half of the transverse area of the cavity 22, so the pressing member 57 and the inner wall surface of the cavity 22
  • the raw material powder P is pushed away into the space between (see FIGS. 4B and 4C).
  • the elevating frame 53 is once raised to return the pressing member 57 to a predetermined height position.
  • the movable frame 56 is moved and positioned so that the pressing member 57 is positioned in the right half of the cavity 22 (see FIG. 4D). During this operation, energization to the coils 42a and 42b of the magnetic field generator 4 is not stopped. Then, the cylinder 54 is operated to lower the piston rod 54a to push the pressing member 57 into the raw material powder P (see FIGS. 4 (e) and 4 (f)). Such a series of operations is repeated a predetermined number of times (alignment process).
  • the crystal fracture surfaces of the raw material powders P adjacent in the magnetic field orientation direction do not match as shown in FIG. In this case, a gap remains between the raw material powders P, and the raw material powders P are not aligned in the magnetic field orientation direction. If compression molding is performed in this state, the orientation is disturbed.
  • the magnetic field when the magnetic field is applied, the bonded particles are once disconnected, and are oriented while being mixed with the raw material powder P in the magnetic field.
  • the positional relationship between the particles of the raw material powder P in the cavity 22 changes from the state filled in the cavity 22, and there is an opportunity to combine the crystal fracture surfaces of the raw material powder P having a more equal crystal orientation relationship.
  • a strong bond chain is formed, and as shown in FIG. 5 (b), the crystal fracture surfaces are formed in the magnetic field orientation direction just to form a rod shape. Are joined without gaps and aligned in the magnetic field orientation direction.
  • the pressing means 5 is moved away. In this case, energization to the coils 42a and 42b is not stopped. Then, the die base 16 is lowered, the upper punch 32 is inserted into the through-hole 21 from the upper side of the through-hole 22, and the raw powder P is compression-molded in the cavity 22 by the pair of upper and lower punches 31 and 32 with a magnetic field applied. To start. Energization of the coils 42a and 42b is stopped after a predetermined time has elapsed, and compression molding is performed at the maximum pressure in this state (see FIG. 6). Finally, the upper punch 32 is gradually raised and the pressure is gradually reduced to finish the compression molding, and the molded body M is formed (molding process).
  • the raw material powder P is compression-molded in a state in which the crystal fracture surfaces are joined without gaps in the magnetic field orientation direction so as to form a rod-like shape and aligned in the magnetic field orientation direction, a high-density molded body without orientation disorder M (permanent magnet) is obtained and the magnetic properties are also improved.
  • a high-density molded body M1 with no disorder of orientation is obtained, and the strength of the molded body increases and becomes defective.
  • the generation rate M1 (permanent magnet) having high magnetic properties can be obtained while the generation rate can be reduced.
  • a resin binder is mixed with the raw material powder P filled in the cavity 22, a rare earth bonded magnet (molded body) having high magnetic properties can be obtained.
  • the molding pressure in the molding step is set in the range of 0.1 to 2.0 t / cm 2 , more preferably 0.2 to 1.0 t / cm 2 .
  • the molding pressure is lower than 0.1 t / cm 2 , the molded body does not have sufficient strength and, for example, cracks when extracted from the cavity 22 of the compression molding machine.
  • a molding pressure exceeding 2.0 t / cm 2 a high molding pressure is applied to the raw material powder P in the cavity 22 and molding is performed while breaking the orientation, and cracks and cracks occur in the molded body. There is a risk of doing.
  • the strength of the magnetic field in the molding process is set in a range of 5 k0e to 30 k0e. When the strength of the magnetic field is weaker than 5 k0e, a film with high orientation and high magnetic properties cannot be obtained. On the other hand, if it is stronger than 50 k0e, the magnetic field generator becomes too large and is not realistic.
  • the molded body M in the cavity 22 is extracted on the upper surface of the die 2 and the die base 16 is raised. After the upper punch 32 is moved to the rising end, the molded body is taken out. Finally, the obtained molded body is housed in a sintering furnace (not shown), and sintered (sintering process) for a predetermined time at a predetermined temperature (1000 ° C.), for example, in an Ar atmosphere. Further, the predetermined temperature (500 ° C.) A sintered magnet (Nd—Fe—B based sintered magnet) is obtained by aging treatment in an Ar atmosphere for a predetermined time.
  • the compression molding machine 10 is a uniaxial pressurization type in which the pressurization direction Y (press direction) is perpendicular to the magnetic field orientation direction, and is supported by the leg pieces 110, as in the case of performing the manufacturing method of the first embodiment.
  • the die 20 is disposed above the base plate 120, and the die 20 is supported by a plurality of support posts 130 that pass through the base plate 120, and the other end of each support 130 is connected to a connecting plate 140 provided below the base plate 120. Has been.
  • the connecting plate 140 is connected to driving means, for example, a cylinder rod 150 of a hydraulic cylinder having a known structure.
  • driving means for example, a cylinder rod 150 of a hydraulic cylinder having a known structure.
  • a through hole 210 in the vertical direction is formed in a substantially central portion of the die 20, and a lower punch 310 erected upward from the lower side of the die 20 in the substantially central portion of the upper surface of the base plate 120 can be inserted into the through hole 210.
  • the lower hydraulic cylinder is operated to lower the die 20
  • the lower punch 310 is inserted into the through hole 210 and a cavity (filling chamber) 220 is defined in the through hole 210.
  • the cross-sectional shape of the through-hole 210 (cavity 220) is appropriately selected according to the shape of the sintered magnet to be molded, such as a circle or rectangle.
  • the cross-sectional shape is formed in a rectangle in order to produce a rectangular parallelepiped sintered magnet.
  • the die base 160 is disposed above the die 20 so as to face the base plate 120.
  • An upper punch 320 is provided on the lower surface of the die base 160 at a position where it can be inserted into the cavity 220.
  • vertical through holes are formed at the corners of the die base 160, and guide rods 170 having one ends fixed to the upper surface of the die 20 are inserted into the through holes.
  • driving means for example, a cylinder rod 180 of a hydraulic cylinder (not shown) having a known structure is connected to the upper surface of the die base 160. When this hydraulic cylinder is operated, the die base 160 is moved up and down by being guided by the guide rod 170.
  • the upper punch 320 is freely movable in the vertical direction, and can be inserted into the through hole 210 of the die 20. Thereby, at the time of compression molding, the raw material powder P existing in the cavity 220 is compressed by the pair of upper and lower punches 310 and 320 to obtain a molded body.
  • a magnetic field generator 4 is provided on the outer periphery of the die 20 in order to apply a magnetic field when the raw material powder P is kneaded and oriented in a bag to be described later and when the raw material powder P in the cavity 220 is formed. It has been. Since the magnetic field generator 4 is used for the compression molding machine 1, a detailed description thereof is omitted here. Moreover, since the same thing as the said 1st Embodiment can be used also about the raw material powder P, detailed description is abbreviate
  • a kneading means 50 is provided in the upper space of the cavity 220 so as to freely advance and retract in order to knead and orient the raw material powder P filled in the bag B in a magnetic field.
  • the kneading means 50 has a support frame 510.
  • a plurality of cylinders 520 are mounted on the support frame 510, and a piston rod 520a extending downward from each cylinder 520 has a cylindrical body made of a nonmagnetic material.
  • Each of the pushers (pressing members) 530 is attached.
  • the kneading means 50 also includes a frame body 550 suspended by a piston rod 540a extending downward from another cylinder 540 mounted on the support frame 510.
  • the frame body 550 has a quadrangular prism shape with an open top surface, and the inner surface of the side wall is formed so that a plurality of continuous irregularities are repeated.
  • a protruding portion 550a is formed at the inner center of the bottom plate of the frame 550.
  • a bag body B filled with the raw material powder P weighed in advance is stored in the frame body 550.
  • the bag body B is formed from a deformable material such as rubber, elastomer, polyethylene, or vinyl. Then, after the bag body B is stored in the frame body 550, when each cylinder 520 is operated simultaneously or with a time difference, a pressing force is locally applied to the bag body B by each pusher 530.
  • the bag body B is deformed so that the lower center of the bag B extends around the protruding portion 550a and the side portion enters the recess of the side wall.
  • the raw material powder P in the bag body B is kneaded.
  • the production of the Nd—Fe—B based sintered magnet of the second embodiment using the compression molding machine 10 will be described.
  • the kneading means 50 is moved above the cavity 220.
  • the bag body B is filled with the raw material P weighed in advance, and the bag body B is stored in the frame body 550.
  • the packing density of the raw material powder P in the bag body B is set to a range of 15 to 55% with respect to the volume of the bag body B in order to leave the freedom of movement of the raw material powder P, and the raw material powder P is filled.
  • the volume of the bag body B is set in the range of 30 to 80% with respect to the volume of the frame body 550.
  • the coils 42 a and 42 b of the magnetic field generator 4 are energized to apply a magnetic field.
  • a magnetic field in the range of 0.1 kOe to 10 kOe, preferably 0.5 kOe to 6 kOe. If the strength of the magnetic field is weaker than 0.1 k0e, high orientation and high magnetic properties cannot be obtained, and if it is higher than 10 k0e, kneading becomes difficult.
  • each cylinder 520 is operated simultaneously or with a time difference, and a pressing force is locally applied to the bag body B by each pusher 530 (orientation step: see FIG. 9).
  • the crystal fracture surfaces of the raw material powders P adjacent in the magnetic field orientation direction are aligned as shown in FIG. If there is no gap, a gap remains between the raw material powders P, and the raw material powders P are not aligned in the magnetic field orientation direction. If compression molding is performed in this state, the orientation is disturbed.
  • the lower center of the bag body B expands around the protruding portion 550a, and the side portion is deformed so as to enter the concave portion of the side wall.
  • the raw material powder P is kneaded.
  • the bonded particles are once disconnected, and are oriented while being mixed with the raw material powder P in the magnetic field.
  • the positional relationship between the particles of the raw material powder P in the cavity 220 is changed from the state filled in the cavity 220, and there is an opportunity to combine the crystal fracture surfaces of the raw material powder P having a more equal crystal orientation relationship.
  • the hydraulic cylinder is operated to raise the die 20 to a predetermined position, and the cavity 220 is defined in the through hole 210.
  • the oriented raw material alloy is taken out from the bag body B and filled.
  • filling of the raw material alloy into the cavity 220 can be performed manually, and on the other hand, the lower surface of the frame body 550 is formed to be openable and closable, and a cutter (not shown) is provided in the bag body B so as to be able to advance and retreat.
  • a cutter (not shown) is provided in the bag body B so as to be able to advance and retreat.
  • the kneading means 50 is moved away. In this case, energization to the coils 42a and 42b is not stopped. Then, the die base 160 is lowered, the upper punch 320 is inserted into the through hole 210 from the upper side of the through hole 220, and the raw powder P is compression molded in the cavity 220 by the pair of upper and lower punches 310 and 320 in a state where a magnetic field is applied. To start. Energization of the coils 42a and 42b is stopped after a lapse of a predetermined time, and compression molding is performed at the maximum pressure in this state (see FIG. 11).
  • the upper punch 320 is gradually raised and the pressure is gradually reduced to finish the compression molding, and the molded body M2 is formed (molding process).
  • the raw material powder P is compression-molded in a state where the crystal fracture surfaces are joined without gaps in the magnetic field orientation direction so as to form a rod-like shape and aligned in the magnetic field orientation direction, a high density without disturbance of orientation is obtained.
  • a compact M2 (permanent magnet) is obtained, and the magnetic properties are improved.
  • the molding pressure in the molding step is set in the range of 0.1 to 2.0 t / cm 2 , more preferably 0.2 to 1.0 t / cm 2 .
  • the molding pressure is lower than 0.1 t / cm 2 , the molded body does not have sufficient strength and, for example, cracks when extracted from the cavity 220 of the compression molding machine.
  • the molding pressure exceeds 2.0 t / cm 2 , a high molding pressure is applied to the raw material powder P in the cavity 220, and molding is performed while breaking the orientation, and cracks and cracks are generated in the molded body. There is a risk of doing.
  • the strength of the magnetic field in the molding process is set in the range of 5 kOe to 30 kOe. When the strength of the magnetic field is weaker than 5 k0e, a film with high orientation and high magnetic properties cannot be obtained. On the other hand, if it is stronger than 30 k0e, the magnetic field generator becomes too large and is not realistic.
  • the molded body M in the cavity 220 is extracted on the upper surface of the die 20 and the die base 160 is raised. After the upper punch 320 is moved to the rising end, the molded body is taken out. Finally, the obtained molded body is housed in a sintering furnace (not shown), and sintered (sintering process) for a predetermined time at a predetermined temperature (1000 ° C.), for example, in an Ar atmosphere. Further, the predetermined temperature (500 ° C.) A sintered magnet (Nd—Fe—B based sintered magnet) is obtained by aging treatment in an Ar atmosphere for a predetermined time.
  • the uniaxial pressurization type in which the forming direction is perpendicular to the direction of the magnetic field has been described.
  • the present invention is not limited to this, and the forming direction and the direction of the magnetic field You may use the compression molding machine which becomes parallel.
  • a description has been given of molding powder using the uniaxial pressure type compression molding machine 1, but a hydrostatic pressure molding machine (not shown) having a known structure using a rubber mold is used. Can be used.
  • the static magnetic field in which the strength of the magnetic field per unit time does not change is used as the orientation magnetic field at the time of pressing or kneading and molding.
  • a pulsating pulse magnetic field in which the strength of the magnetic field per unit time changes at a constant cycle may be used.
  • a reverse magnetic field may be applied.
  • the pulse period is preferably 1 ms to 2 s, and the non-output time is preferably set to 500 ms or less. Beyond this range, the strong bond chain is broken and high orientation cannot be obtained.
  • the peak value is preferably set in the range of 5 to 50 k0e.
  • the strength of the magnetic field is weaker than 5 k0e, a film with high orientation and high magnetic properties cannot be obtained.
  • the magnetic field generator becomes too large, and the durability of the device becomes low, which is not practical.
  • an orientation body is produced by orienting powder that is polarized in a magnetic field or electric field, or in a magnetic field or electric field.
  • the method for producing a permanent magnet of the present invention is applied to the oriented magnet as long as it is compression-molded, or in addition to or in addition to compression-molding, and a magnetic field or electric-field-oriented or compression-molded material is sintered. Can be applied.
  • Example 1 an Nd—Fe—B-based raw material powder was produced as follows, and an orientation process and a molding process were performed using the following molding apparatus to produce a predetermined molded body, and then an Ar atmosphere Then, a sintering process for sintering the compact was performed at a temperature of 1050 ° C. for 3 hours to obtain an Nd—Fe—B based sintered magnet.
  • ⁇ Raw material powder> As a Nd—Fe—B based sintered magnet, the composition is 22Nd-7Pr-0.95B-1Co-0.2Al-0.05Cu-0.1Zr-0.05Ga-bal.
  • An alloy was prepared by strip casting using an Fe material, and the alloy was hydrogen pulverized (hydrogen pulverization step) in hydrogen gas at 0.2 atm for 3 hours and then vacuum dehydrogenated at 500 ° C. for 3 hours. Went.
  • the powder was pulverized by a jet mill pulverization step, and a raw material powder P having a half-value width of 10 ⁇ m (raw material powder A), 4 ⁇ m (raw material powder B), 2 ⁇ m (raw material powder C) and an average particle size of 3 ⁇ m was obtained. Each was produced.
  • the uniaxial pressurization type compression molding machine 1 shown in FIG. 1 was used as an orientation process.
  • the compression molding machine 1 is configured so that a static magnetic field of 20 k0e can be applied to the cavity 22 having an opening of 50 ⁇ 50 mm square.
  • the raw material powders A, B, and C were filled in the cavity 22.
  • 0.3% of a fixed lubricant (zinc stearate) was added to a specific alloy raw material, and it was filled to a filling depth of 75 mm with a filling density of 25%.
  • the pressing force was set to 10 kg / cm 2 , and the raw material powders A, B, and C were pressed and oriented by the pressing means 5. Conditions such as the shape of the pressing means 5 and the number of pressings at this time are shown in FIG.
  • ⁇ Molding process> compression molding is performed with a pair of upper and lower punches 31 and 32 while applying a magnetic field of 20 k0e to the above-mentioned orientation using the uniaxial pressure type compression molding machine 1 shown in FIG. (Molding process).
  • the molding pressure in this case was set to 0.5 t / cm 2 .
  • a 2 k0 e reverse magnetic field was applied to demagnetize, and the molded body was taken out from the cavity 22.
  • ⁇ Sintering process> The said molded object was sintered using the sintering furnace which has a well-known structure. In this case, the sintering temperature was 1050 ° C. for 3 hours. Prior to sintering, hydrogen was flowed in a vacuum of 100 Pa between 100 ° C. and 500 ° C. to perform a debinding process. Immediately after the debinding treatment, the hydrogen flow was stopped and the dehydrogenation treatment was carried out to a vacuum of 10 ⁇ 5 Pa. After sintering, the sintered magnet was heat-treated at 500 ° C. for 2 hours and then cooled to room temperature.
  • FIG. 12 (b) is a table showing the magnetic properties and the degree of orientation when sintered magnets are obtained by changing the type of raw material powder, the pressing method by the pressing means, and the like.
  • the magnetic characteristic is an average value of the result of evaluation with a BH tracer
  • the orientation degree is a value obtained by dividing the value of the residual magnetic flux density by the saturation magnetic flux density at 10T.
  • the degree of orientation and the coercive force are improved as the half-value width of the particle diameter of the raw material powder becomes narrower (sharp). It can also be seen that the degree of orientation improves as the number of pressings of the pressing means increases. Furthermore, the pressing means is a non-magnetic material, and it can be seen that the degree of orientation is improved when a lubricant is added to the raw material powder. On the other hand, the tip of the pressing means is sharp, and it can be seen that the degree of orientation is improved by applying longitudinal vibration.
  • Example 2 an Nd—Fe—B-based raw material powder was produced as follows, and an orientation process and a molding process were performed using the following molding apparatus to produce a predetermined compact, and then an Ar atmosphere Then, a sintering process for sintering the compact was performed at a temperature of 1050 ° C. for 3 hours to obtain an Nd—Fe—B based sintered magnet.
  • ⁇ Raw material powder> As an Nd—Fe—B based sintered magnet, the composition is 23 Nd-7Pr-0.98B-1Co-0.2Al-0.1V-0.05Sn-bal.
  • An alloy was prepared by strip casting using an Fe material, and the alloy was hydrogen pulverized (hydrogen pulverization step) in hydrogen gas at 0.2 atm for 3 hours and then vacuum dehydrogenated at 500 ° C. for 3 hours. Went.
  • a raw powder P having a mean particle size of 5 ⁇ m with a half width of the powder particle size distribution of 10 ⁇ m (raw powder A), 6 ⁇ m (raw powder B), 2 ⁇ m (raw powder C) is obtained by pulverizing by a jet mill fine grinding process. Each was produced. At that time, 0.3% of a fixed lubricant (zinc stearate) and 0.5% of methyl caproate were appropriately added.
  • the uniaxial pressure type compression molding machine 1 shown in FIG. 7 was used. In this case, it was stored in a bag B made of urethane rubber having a weight of 800 g and a thickness of 0.02 mm and a volume of 500 cc. Then, after storing the bag body B in the frame body 55, three pushers 530 capable of applying a pressing force of 5 kg are used, and each pusher is operated alternately for 5 seconds in a 0.5 second cycle, and a magnetic field The coils 42a and 42b of the generator 4 were energized, a 1 kOe static magnetic field was applied, and the alloy material in the bag was kneaded and oriented in the magnetic field (orientation step).
  • ⁇ Molding Step> compression molding is performed by a pair of upper and lower punches 310 and 320 while applying a static magnetic field of 25 k0e to the above-mentioned orientation using the uniaxial pressure type compression molding machine 10 shown in FIG. Performed (molding process).
  • the cavity 220 has a 75 ⁇ 75 mm square opening, and the molding pressure was set to 0.4 t / cm 2 .
  • a reverse magnetic field of 3 k0e was applied to demagnetize, and the molded body was taken out from the cavity 220.
  • the said molded object was sintered using the sintering furnace which has a well-known structure.
  • the sintering temperature was 1050 ° C. for 3 hours.
  • hydrogen was flown in a vacuum of 1 Pa between 100 ° C. and 500 ° C. to perform a debinding process.
  • the hydrogen flow was stopped and the dehydrogenation treatment was carried out to a vacuum of 10 ⁇ 3 Pa.
  • the sintered magnet was heat-treated at 500 ° C. for 2 hours and then cooled to room temperature.
  • FIG. 13 is a table showing magnetic properties and orientation when a sintered magnet is obtained by changing the type of raw material powder.
  • 800 g of raw material powder is filled directly into a cavity without kneading
  • the magnetic characteristics and orientation when a sintered magnet is obtained under the same conditions as in the above examples are also shown (comparative example).
  • a magnetic characteristic is an average value of the result evaluated by the BH tracer
  • an orientation degree is a value obtained by dividing the value of the residual magnetic flux density by the saturation magnetic flux density at 10T.
  • the degree of orientation and the coercive force are improved as the half-value width of the particle diameter of the raw material powder becomes narrower (sharp). It can also be seen that if the raw material powder is kneaded during the orientation step, the degree of orientation is improved, and in particular, the maximum energy product is increased. Furthermore, it can be seen that the degree of orientation is improved when a lubricant is added.
  • the figure explaining the compression molding machine which enforces the manufacturing method of 1st Embodiment of this invention in a stand-by position The figure explaining the state which moved the press means in the compression molding machine shown in FIG. The figure explaining the position of the press means with respect to a cavity.
  • or (f) is a figure explaining the action
  • A) The figure explaining the magnetic field orientation of a prior art.
  • (B) is a figure explaining the magnetic field orientation in 1st Embodiment.
  • FIG. 6 is a table showing magnetic properties and orientation degrees of sintered magnets produced according to Example 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

 磁界中でより等しい結晶方位関係を有する原料粉末の結晶破面が組み合わさるようにして、極めて高い配向性を有する永久磁石を製造するための方法を提供する。  本発明においては、原料粉末Pをキャビティ22に充填し、キャビティ内で原料粉末Pを、キャビティの横断面積より小さい面積を有する押圧手段5で押付けながら磁界中で配向し、この配向したものを磁界中で所定形状に圧縮成形する。

Description

永久磁石の製造方法
 本発明は、永久磁石の製造方法に関し、より詳しくは、高い配向性を有するNd-Fe-B系の永久磁石を製作する際に用いられるものに関する。
 Nd-Fe-B系の焼結磁石(所謂、ネオジム磁石)は、鉄と、安価であって資源的に豊富で安定供給が可能なNd、Bの元素の組み合わせからなることで安価に製造できると共に、高磁気特性(最大エネルギー積はフェライト系磁石の10倍程度)を有することから、電子機器など種々の製品に利用され、ハイブリッドカー用のモーターや発電機などにも採用され、使用量が増えている。 
 Nd-Fe-B系の磁石は主に粉末冶金法で生産されており、この方法では、先ず、Nd、Fe、Bを所定の組成比で配合し、溶解、鋳造して合金原料を作製し、例えば水素粉砕工程により一旦粗粉砕し、引き続き、例えばジェットミル微粉砕工程により微粉砕して、原料粉末を得る。次いで、得られた原料粉末を磁界中で配向(磁場配向)させ、磁場を印加した状態で圧縮成形して成形体を得る。そして、この成形体を所定の条件下で焼結させて焼結磁石が作製される。
 磁界中の圧縮成形法として、一般に、一軸加圧式の圧縮成形機が用いられ、この圧縮成形機は、ダイの貫通孔に形成したキャビティ(充填室)に原料粉末を充填し、上下一対のパンチによって上下方向から加圧(プレス)して原料粉末を成形するものであるが、一対のパンチによる圧縮成形の際、キャビティに充填された原料粉末における粒子間の摩擦や原料粉末とパンチにセットした金型の壁面との摩擦によって高い配向性が得られず、磁気特性の向上が図れないという問題があった。
 このことから、キャビティに原料粉末を充填した後、磁場配向の際に上パンチ及び下パンチの少なくとも一方を加圧方向(プレス方向)に振動させる圧縮成形法が知られている。この圧縮成形法は、上パンチまたは下パンチで原料粉末を振動させながら磁場を印加することで、キャビティに充填された原料粉末における粒子間の摩擦を静摩擦から動摩擦にかえ、原料粉末における粒子間の摩擦を低減して原料粉末の流動性を向上させ、磁場配向方向により揃うように原料粉末を移動させることができるため、配向性を向上できるというものである。(特許文献1)。
国際公開2002/60677号公報(例えば、特許請求の範囲の記載参照)
 しかしながら、上記圧縮成形法では、磁場配向時に上パンチ及び下パンチのいずれか一方で振動させているだけであるため、キャビティ内での原料粉末の粒子同士の位置関係は、キャビティ内に充填した状態から殆ど変化しない。このため、磁場配向方向で隣り合う原料粉末の粒子同士の結晶破面(Nd-Fe-B系の焼結磁石の原料粉末は、Nd、Fe、Bを配合し、溶解、合金化した後に粉砕して作製されているため、この原料粉末の表面には、特定のへき開面を持たない結晶破面が形成されている)が合わない場合には、結局、原料粉末の粒子間に間隙が残って、磁場配向方向に原料粉末の磁化容易軸が揃わず、この状態で圧縮成形すると配向が乱れるという問題がある。
 そこで、上記点に鑑み、本発明の目的は、磁界または電界中でより等しい結晶方位関係を有する粉末結晶破面が組み合わさるようにして、極めて高い配向性を有する配向体、成形体及び焼結体からなる高性能な永久磁石の製造方法を提供することにある。
 上記課題を解決するために、請求項1記載の永久磁石の製造方法は、原料粉末を充填室に充填し、この原料粉末に対し、当該充填室の横断面積より小さい面積を有する押圧手段を押付けながら磁界中にて配向する配向工程と、この配向したものを磁界中で所定形状に圧縮成形する成形工程とを含むことを特徴とする。
 請求項1記載の発明によれば、充填室内に原料粉末を充填した後、磁場中で磁場配向する。このとき、充填室内の原料粉末に対し、例えば充填室への原料粉末の充填方向と同じ方向から押圧手段を所定の圧力で押付ける。ここで、この押圧手段の原料粉末との接触面(押圧面)の面積は充填室の横断面積より小さく設定されているため、原料粉末に対し押圧手段を押付けていくと、押圧手段と充填室内側との間の空間に原料粉末が押し退けられていく。
 これにより、磁場を印加したときの粒子同士の結合が一旦切られ、充填室での原料粉末の粒子同士の位置関係が充填室内に充填した状態から変化する。そして、磁場配向方向における結晶破面の組み合わせの中から、より等しい結晶方位関係を有する結晶破面が組み合わされる機会が多くなり、等しい結晶方位関係を有する結晶破面が一旦結合すると、強固な結合チェーンを形成することで、磁場配向方向で結晶破面が隙間なく接合されて揃う。そして、磁場配向方向で結晶破面が隙間なく接合されて揃ったものを圧縮成形することで、配向の乱れのない高密度の永久磁石となり、高性能磁石が得られる。
 請求項1記載の発明において、前記充填室の横断面全面に亘って押圧手段の押付けが行われるように、当該押圧手段の位置を順次変化させるようにすれば、充填室で原料粉末がより混ぜ合わされるようになり、充填室内で粒子同士の位置関係を変化させて、等しい結晶方位関係を有する結晶破面が組み合わされる機会が一層多くできる。このことは、充填室の横断面が矩形であるとき特に有効となる。
 また、前記押圧手段を押付ける際に、当該押圧手段をその押付け方向に振動させるようにしてもよい。
 この場合、前記原料粉末に所定の混合割合で潤滑剤を添加して混合した後に袋体に充填するようにしておけば、原料粉末の流動性が向上してよい。
 更に、押圧手段への原料粉末の付着を防止するために、前記押圧手段は非磁性材料であることが好ましい。
 また、上記課題を解決するために、請求項6記載の永久磁石の製造方法は、原料粉末を変形自在な袋体に充填する工程と、前記袋体に対し局所的な押圧力を加えて袋体内の原料粉末を混練しながら磁界中にて配向する工程と、前記配向した原料粉末を磁界中にて所定形状に圧縮成形する工程とを含むことを特徴とする。
 請求項6記載の発明によれば、袋体内に原料粉末を充填した後、磁場中にて磁場配向する。このとき、変形自在な袋体に対し複数の箇所から局所的に押圧力を加えて当該袋体内の原料粉末を混練する。これにより、磁場を印加したときの粒子同士の結合が一旦切られ、袋体内での原料粉末の粒子同士の位置関係が充填室内に充填した状態から変化する。そして、磁場配向方向における結晶破面の組み合わせの中から、より等しい結晶方位関係を有する結晶破面が組み合わされる機会が多くなり、等しい結晶方位関係を有する結晶破面が一旦結合すると、強固な結合チェーンを形成することで、磁場配向方向で結晶破面が隙間なく接合されて揃う。そして、磁場配向方向で結晶破面が隙間なく接合されて揃ったものを圧縮成形することで、配向の乱れのない高密度のものとなり、高性能磁石が得られる。
 この場合、前記原料粉末に所定の混合割合で潤滑剤を添加して混合した後に充填室に充填するようにしておけば、原料粉末の流動性が向上してよい。
 なお、上記発明においては、前記成形工程に加えてまたは前記成形工程にかえて、配向したものまたは圧縮成形したものを焼結する焼結工程を含むことが好ましい。
 また、前記原料粉末は、急冷法により作製した希土類磁石用のものであれば、原料粉末が角張った粒形状となって、結晶破面の面積が大きくでき、原料粉末の粒子間の隙間を小さくでき、より等しい結晶方位関係を有する原料粉末の結晶破面が組み合わされる機会が多くなることと相俟って配向性を極めて高くできる。
 以下、図面を参照して、本発明の第1実施形態の希土類永久磁石、特に、Nd-Fe-B系の焼結磁石を製造することに適した圧縮成形機1を説明する。圧縮成型機1は、加圧方向Y(プレス方向)が磁場配向方向に垂直である一軸加圧式のものであり、脚片11で支持されたベースプレート12を有する。ベースプレート12の上方にはダイ2が配置されている。ダイ2は、ベースプレート12を貫通孔する複数本の支柱13で支持され、各支柱13の他端がベースプレート12の下方に設けた連結板14に連結されている。連結板14は、駆動手段、例えば公知の構造の油圧シリンダのシリンダロッド15に接続される。これにより、下部油圧シリンダを作動させて連結板14を昇降させると、ダイ2が、加圧方向Yたる図1の上下方向に移動自在となる。
 ダイ2の略中央部には上下方向の貫通孔21が形成され、貫通孔21には、その下側から、ベースプレート12の上面略中央部に上方に向かって立設した下パンチ31が挿入でき、下部油圧シリンダを作動させてダイ2を下降すると、貫通孔21内に下パンチ31が挿入されて貫通孔21内にキャビティ(充填室)22が画成される。貫通孔21(キャビティ22)の横断面形状は、円形や矩形など成形しようする焼結磁石の形状に応じて適宜選択される。本実施の形態では、直方体状の焼結磁石を作製するため横断面形状は、矩形に形成されている。キャビティ22に対しては、図示省略した公知の構造の給粉装置が進退自在であり、この給粉装置によってキャビティ22内に、予め秤量された後述の合金粉末材料が充填されるようになっている(図2参照)。
 ダイ2の上方には、ベースプレート12に対向させてダイベース16が配置される。ダイベース16の下面には、キャビティ22に挿入可能な位置に上パンチ32が設けられている。また、ダイベース16の隅部には、上下方向の貫通孔が形成され、各貫通孔には、一端がダイ2の上面に固定されたガイドロッド17が挿通している。また、ダイベース16の上面には駆動手段、例えば公知の構造の油圧シリンダ(図示せず)のシリンダロッド18が接続され、この油圧シリンダを作動させると、ガイドロッド17に案内されてダイベース16が昇降自在、ひいては上パンチ32が上下方向に移動自在になり、ダイ2の貫通孔21内に挿入できる。これにより、圧縮成形時には、キャビティ22内で、上下一対のパンチ31、32とによって原料粉末Pが圧縮されて成形体が得られる(成形工程)。
 また、ダイ2の外周には、キャビティ22内の原料粉末Pを磁場配向させるために、磁界発生装置4が設けられている。磁界発生装置4は、ダイ2を両側から挟むように対称に配置され、炭素鋼、軟鋼、純鉄やパーメンジュールなどの透磁率の高い材料製の一対のヨーク41a、41bを有する。両ヨーク41a、41bにはコイル42a、42bが巻回され、各コイル42a、42bに通電することで、加圧方向(上下方向Y)と直交する方向Xに静磁界が発生し、これにより、キャビティ22内に充填した原料粉末Pを配向できる。
 ここで、原料粉末Pは次のように作製される。即ち、Fe、B、Ndを所定の組成比で配合し、急冷法、例えばストリップキャスト法により0.05mm~0.5mmの合金を先ず作製する。他方で、遠心鋳造法で5mm程度の厚さの合金を作製してもよく、配合の際にCu、Zr、Dy、AlやGaを少量添加してもよい。次いで、作製した合金を、公知の水素粉砕工程により粗粉砕し、引き続き、ジェットミル微粉砕工程により窒素ガス雰囲気中で微粉砕し、平均粒径2~10μmの原料粉末を得る。この場合、急冷法を用いると、原料粉末Pが角張った粒形状となって、一つの結晶破面の面積が大きくでき、原料粉末P相互間の隙間を小さくできる。
 上記のように作製した原料粉末Pには、当該原料粉末Pの流動性を向上させるために、原料粉末Pに所定の混合割合で潤滑剤を添加し、この潤滑剤によって原料粉末Pの表面が被覆されている。潤滑剤としては、金型に傷をつけたりすることがないように粘性が低い固体潤滑剤や液体潤滑剤が用いられる。
 固体潤滑剤として、層状化合物(MoS、WS、MoSe、黒鉛、BN、CFx等)、軟質金属(Zn、Pb等)、 硬質物質(ダイア粉末、TiN粉末等)、有機高分子(PTEE系、ナイロン系脂肪族系、高級脂肪族系、脂肪酸アマイド系、脂肪酸エステル系、金属石鹸系等)が挙げられ、特に、ステアリン酸亜鉛、エチレンアマイド、フルオロエーテル系グリースを用いることが好ましい。
 液体潤滑剤としては、天然油脂材料(ヒマシ油、椰子油、パーム油等の植物油、鉱物油、石油系油脂等)、有機低分子材料(低級脂肪族系、低級脂肪酸アマイド系、低級脂肪酸エステル系)が挙げられ、特に、液状脂肪酸、液状脂肪酸エステル、液状フッ素系潤滑剤を用いることが好ましい。液体潤滑剤は、界面活性剤と共に使用したり、溶媒で薄めて用いられ、焼結後に残る潤滑剤の残留炭素成分が磁石の保磁力を低下させることから、焼結工程で取り除きやすいように低分子量の物が望ましい。
 また、金原料粉末Pに固体潤滑剤を添加する場合、0.02wt%~0.5wt%混合割合で添加すればよい。0.02wt%より小さいと、原料粉末Pの流動性が向上せず、結局、配向性を向上しない。他方で、0.1wt%を超えると、焼結磁石を得たとき、この焼結磁石中に残留する炭素の影響を受けて保磁力が低下する。また、原料粉末Pに液体潤滑剤を添加する場合、0.05wt%~5wt%の範囲の割合で添加すればよい。0.05wt%より小さいと、原料粉末の流動性が向上せず、結局、配向性を向上できない虞があり、他方で、5wt%を超えると、焼結磁石を得たとき、この焼結磁石中に残留する炭素の影響を受けて保磁力が低下する。尚、潤滑剤は、固体潤滑剤と液体潤滑剤との両方を添加すれば、原料粉末Pの隅々まで潤滑剤が行き渡り、より高い潤滑効果によって、より高い配向性が得られる。
 さらに、圧縮成形機1は、潤滑剤を含む原料粉末Pを充填室であるキャビティ22に充填した後、上下一対のパンチ31、32による圧縮成形(成形工程)に先立って、磁界発生装置4の各コイル42a、42bに通電して静磁界を発生させた状態(磁界中)で、キャビティ22内の原料粉末Pを混ぜ合わせながら磁場配向できるように(配向工程)、キャビティ22に対して進退自在な押圧手段5を備えている。
 図2に示すように、押圧手段5は、固定フレーム51と、固定フレーム51にガイドロッド52を介して昇降自在に吊持され、上下方向に移動自在な昇降フレーム53とから構成される。固定フレーム51上にはシリンダ54が搭載され、当該シリンダ54から下方に延びるピストンロッド54aが昇降フレーム53に連結されている。そして、シリンダ54により昇降フレーム53が昇降されるようになっている。昇降フレーム53の下面には、ピストンロッド54aの移動方向に対し直行する方向に延びるガイドレール55が形成され、当該ガイドレール55には可動枠56が設けられている。
 可動枠56には、上下方向Yに沿って延びるように押圧部材57が連結されている。押圧部材57は中実四角錐状の部材であり、非磁性材料、例えば、PEEK、ナイロン等のエンジニアリングプラスチック、18-8ステンレス製である。これにより、原料粉末Pが付着して原料粉末Pの混ぜ合わせが不十分となったり、また、磁界が乱れることが防止できる。押圧部材57の横断面積は、当該押圧部材57により原料粉末Pを押圧したときキャビティ22の壁面との間に所定の空間が形成されるようにキャビティ22の横断面積より小さければよいが、作業性を考慮すると、略1/2~1/16(本実施の形態では、1/2)に設定することが好ましい(図3参照)。尚、例えば押圧部材57の横断面積を、キャビティ22の横断面積の1/2に設定する場合でも、キャビティ22を画成する壁面に接触しないように定寸する必要がある。また、押圧部材53の形状はキャビティ22の横断面形状に応じて適宜選択できる。さらに、押圧部材57の先端は、押圧部材57の軸方向に対して垂直な平面より、寧ろ軸方向前側に向かって傾斜した平面や凸面であることが好ましい。
 固定フレーム51は、加圧方向Yと直角な方向に延びる2本の案内レール58に取付けられ、案内レール58に沿って押圧手段5をスライドさせることで、押圧手段5がキャビティ22に対し進退自在となる。この場合、給付装置も、同じ案内レール58に取付けてキャビティ22に対し進退自在となるようにしてもよい。そして、案内レール58に設けたストッパ(図示せず)で停止すると、キャビティ22の略半分の領域に押圧力が加えられるように押圧部材53が位置決めされる。
 ここで、上記圧縮成型機1では、図示省略したが、ガイドロッド17にシャッターを旋回自在に取付け、押圧部材57により原料粉末Pに押圧力を加えて混ぜ合わせるときに、当該シャッターによりキャビティ22の上面を塞ぎ、押圧手段5による原料粉末の混ぜ合わせの間、合金粉末材料Pがキャビティ22の外側に飛び出すことを抑制する構成を採用してもよい。
 次に、図1乃至図6を参照して、圧縮成型機1を用いた第1実施形態のNd-Fe-B系の焼結磁石の製造について説明する。先ず、ダイ2及び下パンチ31の各上面が面一であり、上パンチ32が上端に位置する待機位置から(図1参照)、液圧シリンダを作動させてダイ2を所定位置まで上昇させ、貫通孔21内にキャビティ22を画成する。次いで、図示しない給粉装置によって、予め秤量され、潤滑剤が所定の混合割合で添加された原料粉末Pをキャビティ22内に充填し、給粉装置を退去させる。この場合、キャビティ22内の原料粉末Pの充填密度は、原料粉末Pの移動の自由度を残すのため、キャビティ22の容積に対し10~30%の範囲に設定される(図2参照)。
 次いで、押圧手段5を、キャビティ22上方で当該キャビティ22の左半分に押圧部材が位置するように位置決めする(図2及び図3参照)。シリンダ54を作動させてピストンロッド54aが下降すると、昇降フレーム53が下降され、キャビティ22の略半分の領域で押圧部材57が原料粉末Pに面接触するようになる(図4(a)参照)。これと同時に、磁界発生装置4のコイル42a、42bに通電され、磁場が発生する。この場合、高い配向性を得るために、0.1kOe~10kOe、好ましくは、0.5kOe~6kOeの範囲の静磁界中で押圧手段5による押し付け(押圧)を行うことが好ましい。磁界の強さが0.1k0eより弱いと、高配向性かつ高磁気特性のものが得られず、また、10k0eより強いと、混合が困難になる。
 次いで、ピストンロッド54aにより昇降フレーム53がさらに下降すると、押圧部材57が原料粉末P内に押込まれていく。この場合、押圧部材57の押圧力は、1~50kg/cmに設定することが好ましい。また、公知の方法で押圧手段57をその押付け方向に振動させるようにしてもよい。そして、押圧部材57が原料粉末P内に押込まれていくと、押圧部材57と原料粉末Pとの接触面の面積がキャビティ22の横断面積の半分であるため、押圧部材57とキャビティ22内壁面との間の空間に原料粉末Pが押し退けられていく(図4(b)及び図4(c)参照)。そして、下パンチ31に接触する手前まで押圧部材57を移動させた後(図4(c)参照)、一旦、昇降フレーム53を上昇させて押圧部材57を所定の高さ位置まで戻す。
 次いで、可動枠56を移動させ、キャビティ22の右半分に押圧部材57が位置するように移動させて位置決めする(図4(d)参照)。この操作の間、磁界発生装置4のコイル42a、42bへの通電は停止しない。そして、シリンダ54を作動させてピストンロッド54aを下降させて押圧部材57を原料粉末P内に押込ませる(図4(e)及び図4(f)参照)。このような一連の動作を所定回数繰り返す(配向工程)。
 これにより、上記従来例のように、たとえ上パンチまたは下パンチにより振動を加えたとしても、図5(a)に示すように磁場配向方向で隣り合う原料粉末P相互の結晶破面が合わない場合には、原料粉末P相互の間に間隙が残って、磁場配向方向に原料粉末Pが揃わず、この状態で圧縮成形すると配向が乱れる。それに対し、本実施形態によれば、磁場を印加したときに結合した粒子同士の結合が一旦切られ、磁場中で原料粉末Pが混ぜ合わされながら配向されるようになる。その結果、キャビティ22内での原料粉末Pの粒子同士の位置関係が、キャビティ22内に充填した状態から変化して、より等しい結晶方位関係を有する原料粉末Pの結晶破面が組み合わされる機会が多くなり、等しい結晶方位関係を有する結晶破面同士が一旦結合すると、強固な結合チェーンを形成することで、図5(b)に示すように、丁度棒状をなすよう磁場配向方向で結晶破面が隙間なく接合されて磁場配向方向に揃う。
 次いで、配向工程が終了すると、押圧手段5を退去させる。この場合、コイル42a、42bへの通電は停止しない。そして、ダイベース16を下降させて、貫通孔22の上側から上パンチ32を貫通孔21に挿入し、磁場を印加した状態で上下一対のパンチ31、32によってキャビティ22内で原料粉末Pの圧縮成形を開始する。所定時間経過後にコイル42a、42bへの通電を停止し、この状態で最大圧力での圧縮成形を行う(図6参照)。最後に、上パンチ32を徐々に上昇させて徐々に減圧して圧縮成形が終了されて成形体Mが形成される(成形工程)。これにより、原料粉末Pが、丁度棒状をなすよう磁場配向方向で結晶破面が隙間なく接合されて磁場配向方向に揃った状態で圧縮成形を行うため、配向の乱れのない高密度の成形体M(永久磁石)が得られ、磁気特性も向上する。
 このように、磁場配向方向で結晶破面が隙間なく接合されて揃った状態で圧縮成形することで、配向の乱れのない高密度の成形体M1となり、成形体の強度が強くなって不良の発生率を低下できると共に、高磁気特性の成形体M1(永久磁石)が得られる。この場合、キャビティ22内に充填される原料粉末Pに樹脂バインダーを混合しておけば、高磁気特性の希土類ボンド磁石(成形体)が得られる。
 成形工程における成形圧力は、0.1~2.0t/cm、より好ましくは0.2~1.0t/cmの範囲に設定される。0.1t/cmより低い成形圧力では 成形体が十分な強度を有さず、例えば、圧縮成形機のキャビティ22から抜き出す際に割れてしまう。他方で、2.0t/cmを超えた成形圧力では、高い成形圧力がキャビティ22内の原料粉末Pへ加わってしまい、配向を崩しながら成形してしまうと共に、成形体にひびや割れが発生する虞がある。また、成形工程における磁界の強さは、5k0e~30k0eの範囲に設定される。磁界の強さが5k0eより弱いと、高配向性かつ高磁気特性のものが得られない。他方で、50k0eより強いと、磁界発生装置が大きくなりすぎて現実的ではない。
 次いで、例えば3k0eの逆磁場を印加して脱磁を行った後に、ダイ2を下降端まで下降させると、キャビティ22内の成形体Mがダイ2上面に抜き出され、ダイベース16を上昇させて上パンチ32を上昇端まで移動させた後に成形体を取り出す。最後に、得られた成形体を、図示しない焼結炉内に収納し、例えばAr雰囲気下で所定温度(1000℃)で所定時間焼結(焼結工程)し、さらに所定温度(500℃)、Ar雰囲気中で所定時間時効処理して、焼結磁石(Nd-Fe-B系の焼結磁石)が得られる。
 次に、図7を参照して、本発明の第2実施形態の希土類永久磁石、特に、Nd-Fe-B系の焼結磁石を製造することに適した圧縮成形機10を説明する。圧縮成型機10は、上記第1実施形態の製法を実施するものと同様、加圧方向Y(プレス方向)が磁場配向方向に垂直である一軸加圧式のものであり、脚片110で支持されたベースプレート120を有する。ベースプレート120の上方にはダイ20が配置され、ダイ20は、ベースプレート120を貫通孔する複数本の支柱130で支持され、各支柱130の他端がベースプレート120の下方に設けた連結板140に連結されている。連結板140は、駆動手段、例えば公知の構造の油圧シリンダのシリンダロッド150に接続され。これにより、下部油圧シリンダを作動させて連結板140を昇降させると、ダイ20が、加圧方向Yたる図7の上下方向に移動自在となる。
 ダイ20の略中央部には上下方向の貫通孔210が形成され、貫通孔210には、その下側から、ベースプレート120の上面略中央部に上方に向かって立設した下パンチ310が挿入でき、下部油圧シリンダを作動させてダイ20を下降すると、貫通孔210内に下パンチ310が挿入されて貫通孔210内にキャビティ(充填室)220が画成される。貫通孔210(キャビティ220)の横断面形状は、円形や矩形など成形しようする焼結磁石の形状に応じて適宜選択される。尚、第2実施形態においても、直方体状の焼結磁石を作製するため横断面形状は、矩形に形成されている。
 ダイ20の上方には、ベースプレート120に対向させてダイベース160が配置される。ダイベース160の下面には、キャビティ220に挿入可能な位置に上パンチ320が設けられている。また、ダイベース160の隅部には、上下方向の貫通孔が形成され、各貫通孔には、一端がダイ20の上面に固定されたガイドロッド170が挿通している。また、ダイベース160の上面には駆動手段、例えば公知の構造の油圧シリンダ(図示せず)のシリンダロッド180が接続され、この油圧シリンダを作動させると、ガイドロッド170に案内されてダイベース160が昇降自在、ひいては上パンチ320が上下方向に移動自在になり、ダイ20の貫通孔210内に挿入できる。これにより、圧縮成形時には、キャビティ220内に存する原料料粉末Pが上下一対のパンチ310、320によりで圧縮され、成形体が得られるようになっている。
 また、ダイ20の外周には、後述する袋体内で原料粉末Pを混練して配向するとき及びキャビティ220内の原料粉末Pを成形するときに磁場を印可するために、磁界発生装置4が設けられている。磁界発生装置4は、上記圧縮成型機1に用いられるものであるため、ここでは詳細な説明は省略する。また、原料粉末Pについても、上記第1実施形態と同様のものを用いることができるため、ここでは詳細な説明は省略する。
 圧縮成型機10には、袋体Bに充填した原料粉末Pを磁場中で混練して配向するために混練手段50が、キャビティ220の上部空間に進退自在に設けられている。混練手段50は、支持フレーム510を有し、支持フレーム510には、複数本のシリンダ520が搭載され、各シリンダ520から下方に延びるピストンロッド520aには、非磁性材料から構成される筒状体たるプッシャー(押圧部材)530がそれぞれ取付けられている。混練手段50はまた、支持フレーム510に搭載された他のシリンダ540から下方に延びるピストンロッド540aで吊設された枠体550を備える。
 枠体550は、上面を開口した四角柱状のものであり、その側壁内面は、連続した複数の凹凸が繰り返すように形成されている。一方、枠体550の底板内側中央には、突出部550aが形成されている。枠体550内には、予め秤量された上記原料粉末Pが充填された袋体Bが収納されるようになっている。袋体Bは、ゴム、エラストマー、ポリエチレン、ビニールなど変形自在な材料から形成されている。そして、枠体550に袋体Bを収納した後、各シリンダ520を同時にまたは時間差を付けて作動させると、各プッシャー530によって袋体Bに対し局所的に押圧力が加えられる。このとき、袋体Bは、その下側中央が突出部550aの周囲に拡がると共に、その側部が側壁の凹部内に侵入するように変形する。その結果、袋体B内の原料粉末Pが混練されるようになる。
 次に、図7乃至図11を参照して、上記圧縮成型機10を用いた第2実施形態のNd-Fe-B系の焼結磁石の製造について説明する。先ず、ダイ20及び下パンチ310の各上面が面一であり、上パンチ320が上端に位置する待機位置において(図7参照)、混練手段50をキャビティ220の上方に移動させる。その際、袋体Bには、予め秤量された上記原料材料Pが充填され、当該袋体Bが枠体550内に収納されている。袋体B内での原料粉末Pの充填密度は、原料粉末Pの移動の自由度を残すのため、袋体Bの容積に対し15~55%の範囲に設定され、原料粉末Pが充填された袋体Bの容積は、枠体550の容積に対し30~80%の範囲に設定されている。
 次いで、磁界発生装置4のコイル42a、42bに通電して磁場を印加する。この場合、高い配向性を得るために、0.1kOe~10kOe、好ましくは、0.5kOe~6kOeの範囲の磁界中で混練装置5による混練を行うことが好ましい。磁界の強さが0.1k0eより弱いと、高配向性かつ高磁気特性のものが得られず、また、10k0eより強いと、混練が困難になる。そして、磁場を印加した状態で、各シリンダ520を同時にまたは時間差を付けて作動させて、各プッシャー530によって袋体Bに対し局所的に押圧力を加える(配向工程:図9参照)。
 これにより、上述したように、従来例ではたとえ上パンチまたは下パンチにより振動を加えたとしても、図10(a)に示すように磁場配向方向で隣り合う原料粉末P相互の結晶破面が合わない場合には、原料粉末P相互の間に間隙が残って、磁場配向方向に原料粉末Pが揃わず、この状態で圧縮成形すると配向が乱れる。それに対し、第2実施形態によれば、袋体Bの下側中央が突出部550aの周囲に拡がると共に、その側部が側壁の凹部内に侵入するように変形することで、袋体B内の原料粉末Pが混練される。この場合、磁場を印加したときに結合した粒子同士の結合が一旦切られ、磁場中で原料粉末Pが混ぜ合わされながら配向されるようになる。その結果、キャビティ220内での原料粉末Pの粒子同士の位置関係が、キャビティ220内に充填した状態から変化して、より等しい結晶方位関係を有する原料粉末Pの結晶破面が組み合わされる機会が多くなり、等しい結晶方位関係を有する結晶破面同士が一旦結合すると、強固な結合チェーンを形成することで、図10(b)に示すように、丁度棒状をなすよう磁場配向方向で結晶破面が隙間なく接合されて磁場配向方向に揃う。
 次いで、液圧シリンダを作動させてダイ20を所定位置まで上昇させ、貫通孔210内にキャビティ220を画成する。そして、袋体Bから、配向された原料合金を取出して充填する。この場合、原料合金のキャビティ220への充填は、手動で行うことができ、他方、枠体550の下面を開閉自在に形成すると共に、図示省略した刃物を袋体Bに進退自在に設けておき、磁場を印加した状態で袋体Bの一部に破り、自動的にキャビティ220に落とし込むような構成を採用することもできる。
 次いで、配向工程が終了すると、混練手段50を退去させる。この場合、コイル42a、42bへの通電は停止しない。そして、ダイベース160を下降させて、貫通孔220の上側から上パンチ320を貫通孔210に挿入し、磁場を印加した状態で上下一対のパンチ310、320によってキャビティ220内で原料粉末Pの圧縮成形を開始する。所定時間経過後にコイル42a、42bへの通電を停止し、この状態で最大圧力での圧縮成形を行う(図11参照)。最後に、上パンチ320を徐々に上昇させて徐々に減圧して圧縮成形が終了されて成形体M2が形成される(成形工程)。この場合もまた、原料粉末Pが、丁度棒状をなすよう磁場配向方向で結晶破面が隙間なく接合されて磁場配向方向に揃った状態で圧縮成形を行うため、配向の乱れのない高密度の成形体M2(永久磁石)が得られ、磁気特性も向上する。
 このように、磁場配向方向で結晶破面が隙間なく接合されて揃った状態で圧縮成形することで、配向の乱れのない高密度の成形体M2となり、成形体の強度が強くなって不良の発生率を低下できると共に、高磁気特性の成形体M2が得られる。この場合、キャビティ220内に充填される原料粉末Pに樹脂バインダーを混合しておけば、高磁気特性の希土類ボンド磁石(成形体)が得られる。
 成形工程における成形圧力は、0.1~2.0t/cm、より好ましくは0.2~1.0t/cmの範囲に設定される。0.1t/cmより低い成形圧力では 成形体が十分な強度を有さず、例えば、圧縮成形機のキャビティ220から抜き出す際に割れてしまう。他方で、2.0t/cmを超えた成形圧力では、高い成形圧力がキャビティ220内の原料粉末Pへ加わってしまい、配向を崩しながら成形してしまうと共に、成形体にひびや割れが発生する虞がある。また、成形工程における磁界の強さは、5kOe~30kOeの範囲に設定される。磁界の強さが5k0eより弱いと、高配向性かつ高磁気特性のものが得られない。他方で、30k0eより強いと、磁界発生装置が大きくなりすぎて現実的ではない。
 次いで、例えば3k0eの逆磁場を印加して脱磁を行った後に、ダイ20を下降端まで下降させると、キャビティ220内の成形体Mがダイ20上面に抜き出され、ダイベース160を上昇させて上パンチ320を上昇端まで移動させた後に成形体を取り出す。最後に、得られた成形体を、図示しない焼結炉内に収納し、例えばAr雰囲気下で所定温度(1000℃)で所定時間焼結(焼結工程)し、さらに所定温度(500℃)、Ar雰囲気中で所定時間時効処理して、焼結磁石(Nd-Fe-B系の焼結磁石)が得られる。
 なお、上記第1及び第2の両実施形態では、成形方向が磁界の方向に垂直である一軸加圧式のものについて説明したが、これに限定されるものではなく、成形方向と磁界の方向とが平行となる圧縮成型機を用いてもよい。ここで、第1実施形態では、一軸加圧式の圧縮成形機1を用いて粉体を成形するものについて説明したが、ゴムモールドを用いた公知の構造の静水圧成形機(図示せず)を用いることができる。
 また、上記第1及び第2の両実施形態では、押圧または混練及び成形時の配向磁場として、単位時間当たりの磁界の強さが変化しない静磁界を用いることとしたが、これに限定されるものでなく、単位時間当たりの磁界の強さが、一定の周期で変化する脈動パルス磁界を用いてもよい。この場合、逆磁場が印加されるようにしてもよい。これにより、成形の際に原料粉末Pに対し振動を加えることができるため、より一層配向性を向上できる。パルスの周期は、1ms~2sが好ましく、また、非出力時間は500ms以下に設定することが好ましい。この範囲を超えると、強固な結合チェーンが切れてしまい、高い配向性が得られない。また、脈動パルス磁場を印加する場合、そのピーク値を、5~50k0eの範囲に設定することが好ましい。磁界の強さが5k0eより弱いと、高配向性かつ高磁気特性のものが得られない。他方で、50k0eより強いと、磁界発生装置が大きくなりすぎ、また、装置の耐久性が低くなり、現実的ではない。
 さらに、上記第1及び第2の両実施形態では、焼結磁石の製造を例として説明したが、磁界または電界中で分極する粉末を配向させて配向体を作製したり、磁界または電界中でこの配向したものを圧縮成形したり、圧縮形成に加えてまたはかえて、磁場または電場配向したものまたは圧縮成形したものを焼結するものであれば、本発明の永久磁石の製造方法が適用または応用できる。例えば、(Tb、Dy)Fe系超磁歪材料、SrO・6Fe系材料、(Sr、La)O・6(Fe、Co)系フェライト焼結磁石、SmFe17系窒化物ボンド磁石、Nd-Fe-B系HDDRボンド磁石などの作製に適用でき、また、所定の粉末を磁界中で成形した後、焼結してなる窒化珪素(Si)焼結体の製造に応用できる。
 実施例1では、以下のようにNd-Fe-B系の原料粉末を作製し、以下の成形装置を用いて配向工程及び成形工程を実施して所定の成形体を作製し、次いで、Ar雰囲気下で1050℃の温度下で3時間、この成形体を焼結する焼結工程を実施してNd-Fe-B系の焼結磁石を得た。
 <原料粉末> Nd-Fe-B系の焼結磁石として、組成が22Nd-7Pr-0.95B-1Co-0.2Al-0.05Cu-0.1Zr-0.05Ga-bal.Feのものを用い、ストリップキャスティング法で合金を作製し、当該合金を0.2気圧の水素ガス中で3時間、水素粉砕(水素粉砕工程)した後、500℃で3時間、真空脱水素処理を行った。
 引き続き、ジェットミル微粉砕工程により微粉砕し、粉末粒度分布の半値幅が10μm(原料粉末A)、4μm(原料粉末B)、2μm(原料粉末C)で平均粒径が3μmの原料粉末Pをそれぞれ作製した。
 <配向工程> 配向工程として、図1に示す一軸加圧式の圧縮成形機1を用いた。ここで、圧縮成形機1は、50×50mm角の開口部を持ったキャビティ22に20k0eの静磁界が印加できるように構成されている。先ず、キャビティ22内に上記原料粉末A、B、Cを充填した。充填に先立って特定の合金原料には、固定潤滑剤(ステアリン酸亜鉛)が0.3%添加されており、また、75mmの充填深さに25%の充填密度で充填されるようにした。そして、4k0eの磁場を印加しながら、押圧力を10kg/cmに設定して押圧手段5により原料粉末A、B、Cを押し付けて配向した。このときの押圧手段5の形状や押し付け回数などの条件は、図12(a)に示す。
 <成形工程> 成形工程として、図1に示す一軸加圧式の圧縮成形機1を用い、上記配向したものに対し、20k0eの磁界を印加しながら、上下一対のパンチ31、32によって圧縮成形を行った(成形工程)。この場合の成形圧力は、0.5t/cmに設定した。そして、圧縮成形後に2k0eの逆磁場を印加し、脱磁を行った後、キャビティ22から成形体を取り出した。
 <焼結工程> 公知構造を有する焼結炉を用い、上記成形体を焼結処理した。この場合、焼結温度を1050℃で3時間行った。焼結に先立って100℃から500℃の間で水素を100Pa真空中流気し、脱バインダー処理を行った。脱バインダー処理後直ちに水素の流気を止め、10-5Paの真空度まで脱水素処理を行った。焼結後、焼結磁石を500℃で2時間熱処理を行い、その後、室温まで冷却した。
 図12(b)は、原料粉末の種類、押圧手段による押し付けの方法等を変えて焼結磁石を得たときの磁気特性及び配向度を示す表である。磁気特性は、BHトレーサーで評価した結果の平均値であり、配向度は、残留磁束密度の値を10Tでの飽和磁束密度で割ることで得た値である。
 これによれば、原料粉末の粒径の半値幅が狭い(シャープ)になる程、配向度及び保磁力が向上していることが判る。また、押圧手段の押し付け回数が増加するほど配向度が向上することが判る。さらに、押圧手段は、非磁性材料であり、原料粉末に潤滑材を添加した方が配向度が向上することが判る。他方、押圧手段の先端は尖っており、また、縦振動を加える方が、配向度が向上することが判る。
 実施例2では、以下のようにNd-Fe-B系の原料粉末を作製し、以下の成形装置を用いて配向工程及び成形工程を実施して所定の成形体を作製し、次いで、Ar雰囲気下で1050℃の温度下で3時間、この成形体を焼結する焼結工程を実施してNd-Fe-B系の焼結磁石を得た。
 <原料粉末> Nd-Fe-B系の焼結磁石として、組成が23Nd-7Pr-0.98B-1Co-0.2Al-0.1V-0.05Sn-bal.Feのものを用い、ストリップキャスティング法で合金を作製し、当該合金を0.2気圧の水素ガス中で3時間、水素粉砕(水素粉砕工程)した後、500℃で3時間、真空脱水素処理を行った。
 引き続き、ジェットミル微粉砕工程により微粉砕し、粉末粒度分布の半値幅が10μm(原料粉末A)、6μm(原料粉末B)、2μm(原料粉末C)で平均粒径が5μmの原料粉末Pをそれぞれ作製した。その際、固定潤滑剤(ステアリン酸亜鉛)を0.3%、カプロン酸メチルを0.5%適宜添加した。
 <配向工程> 配向工程として、図7に示す一軸加圧式の圧縮成形機1を用いた。この場合、800gの重量で肉厚0.02mm、容積500ccのウレタンゴム製の袋体Bに収納した。そして、袋体Bを枠体55内に収納した後、5kgの押圧力を加えることができる3本のプッシャー530を用い、各プッシャーを0.5秒サイクルで交互に5秒間作動させると共に、磁界発生装置4のコイル42a、42bに通電し、1kOeの静磁場を印加し、袋体内の合金原料を磁場中にて混練して配向させた(配向工程)。
 <成形工程> 成形工程として、図6に示す一軸加圧式の圧縮成形機10を用い、上記配向したものに対し、25k0eの静磁界を印加しながら、上下一対のパンチ310、320によって圧縮成形を行った(成形工程)。この場合、キャビティ220は、75×75mm角の開口部を有し、また、成形圧力は、0.4t/cmに設定した。そして、圧縮成形後に3k0eの逆磁場を印加し、脱磁を行った後、キャビティ220から成形体を取り出した。
 <焼結工程> 公知構造を有する焼結炉を用い、上記成形体を焼結処理した。この場合、焼結温度を1050℃で3時間行った。焼結に先立って100℃から500℃の間で水素を1Pa真空中流気し、脱バインダー処理を行った。脱バインダー処理後直ちに水素の流気を止め、10-3Paの真空度まで脱水素処理を行った。焼結後、焼結磁石を500℃で2時間熱処理を行い、その後、室温まで冷却した。
 図13は、原料粉末の種類を変えて焼結磁石を得たときの磁気特性及び配向度を示す表であり、当該表には、800gの原料粉末を混練せずに直接キャビティに充填し、上記実施例と同条件で焼結磁石を得たときの磁気特性及び配向度を併せて示す(比較例)。尚、磁気特性は、BHトレーサーで評価した結果の平均値であり、配向度は、残留磁束密度の値を10Tでの飽和磁束密度で割ることで得た値である。
 これによれば、原料粉末の粒径の半値幅が狭い(シャープ)になる程、配向度及び保磁力が向上していることが判る。また、配向工程の際に、原料粉末を混練すれば、配向度が向上し、特に最大エネルギー積が高くなることが判る。さらに、潤滑材を添加した方が配向度が向上することが判る。
本発明の第1実施形態の製造方法を実施する圧縮成型機を待機位置で説明する図。 図1に示す圧縮成型機において押圧手段を移動させた状態を説明する図。 キャビティに対する押圧手段の位置を説明する図。 (a)乃至(f)は、押圧手段の作動(配向工程)を説明する図。 (a)従来技術の磁場配向を説明する図。(b)は、第1実施形態における磁場配向を説明する図。 図1に示す圧縮成型機の成形工程を説明する図。 本発明の第2実施形態の製造方法を実施する圧縮成型機を待機位置で説明する図。 図7に示す圧縮成型機において混練手段を移動させた状態を説明する図。 混練手段による袋体内の原料粉末の混練を説明する図。 (a)従来技術の磁場配向を説明する図。(b)は、第2実施形態における混練磁場配向を説明する図。 図7に示す成形装置の成形工程を説明する図。 (a)は、押圧手段の形状や押し付け回数などの条件を示す表であり、(b)は、実施例1により作製した焼結磁石の磁気特性及び配向度を示す表。 実施例2により作製した焼結磁石の磁気特性及び配向度を示す表。
符号の説明
1、10 圧縮成形機
2、20 ダイ
21、210 貫通孔
12、220 キャビティ
11、32 パンチ
4 磁界発生装置
5 押圧手段
57 押圧部材
50 混練手段
530 プッシャー
P 原料粉末

Claims (9)

  1.  原料粉末を充填室に充填し、この原料粉末に対し、当該充填室の横断面積より小さい面積を有する押圧手段を押付けながら磁界中にて配向する配向工程と、この配向したものを磁界中で所定形状に圧縮成形する成形工程とを含むことを特徴とする永久磁石の製造方法。
  2.  前記充填室の横断面全面に亘って押圧手段の押付けが行われるように、当該押圧手段の位置を順次変化させることを特徴とする請求項1記載の永久磁石の製造方法。
  3.  前記押圧手段を押付ける際に、当該押圧手段をその押付け方向に振動させることを特徴とする請求項1または請求項2記載の永久磁石の製造方法。
  4.  前記原料粉末に所定の混合割合で潤滑剤を添加して混合した後に充填室に充填することを特徴とする請求項1乃至請求項3のいずれか1項に記載の永久磁石の製造方法。
  5.  前記押圧手段は非磁性材料であることを特徴とする請求項1乃至請求項4のいずれか1項に記載の永久磁石の製造方法。
  6.  原料粉末を変形自在な袋体に充填する工程と、
     前記袋体に対し局所的な押圧力を加えて袋体内の原料粉末を混練しながら磁界中にて配向する工程と、
     前記配向した原料粉末を磁界中にて所定形状に圧縮成形する工程とを含むことを特徴とする永久磁石の製造方法。
  7.  前記原料粉末に所定の混合割合で潤滑剤を添加して混合した後に袋体に充填することを特徴とする請求項6記載の永久磁石の製造方法。
  8.  前記成形工程に加えてまたは前記成形工程にかえて、配向したものまたは圧縮成形したものを焼結する焼結工程を含むことを特徴とする請求項1乃至請求項7のいずれか1項に記載の永久磁石の製造方法。
  9.  前記原料粉末は、急冷法により作製した希土類磁石用のものであることを特徴とする請求項1または請求項8のいずれか1項に記載の永久磁石の製造方法。
PCT/JP2008/073576 2007-12-25 2008-12-25 永久磁石の製造方法 WO2009081978A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020107014012A KR101137395B1 (ko) 2007-12-25 2008-12-25 영구자석의 제조 방법
CN200880122406XA CN101911226B (zh) 2007-12-25 2008-12-25 永磁体的制造方法
JP2009547132A JP4914922B2 (ja) 2007-12-25 2008-12-25 永久磁石の製造方法
DE112008003493T DE112008003493T5 (de) 2007-12-25 2008-12-25 Verfahren zur Herstellung eines Permanentmagneten
US12/745,933 US8328954B2 (en) 2007-12-25 2008-12-25 Method of manufacturing permanent magnet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007-332143 2007-12-25
JP2007332143 2007-12-25
JP2007-339919 2007-12-28
JP2007339919 2007-12-28

Publications (1)

Publication Number Publication Date
WO2009081978A1 true WO2009081978A1 (ja) 2009-07-02

Family

ID=40801276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073576 WO2009081978A1 (ja) 2007-12-25 2008-12-25 永久磁石の製造方法

Country Status (8)

Country Link
US (1) US8328954B2 (ja)
JP (1) JP4914922B2 (ja)
KR (1) KR101137395B1 (ja)
CN (1) CN101911226B (ja)
DE (1) DE112008003493T5 (ja)
RU (1) RU2427050C1 (ja)
TW (1) TWI447751B (ja)
WO (1) WO2009081978A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014218699A (ja) * 2013-05-08 2014-11-20 信越化学工業株式会社 希土類焼結磁石の製造方法
WO2024127713A1 (ja) * 2022-12-14 2024-06-20 株式会社レゾナック 永久磁石の製造装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147341A1 (ja) * 2011-04-25 2012-11-01 株式会社 東芝 磁性シートとそれを用いた非接触受電装置、電子機器および非接触充電装置
CN103081041B (zh) * 2011-06-24 2017-07-11 日东电工株式会社 稀土类永久磁铁及稀土类永久磁铁的制造方法
US9272332B2 (en) * 2011-09-29 2016-03-01 GM Global Technology Operations LLC Near net shape manufacturing of rare earth permanent magnets
US9837207B2 (en) * 2012-07-24 2017-12-05 Intermetallics Co., Ltd. Method for producing NdFeB system sintered magnet
JP5790617B2 (ja) * 2012-10-18 2015-10-07 トヨタ自動車株式会社 希土類磁石の製造方法
TWI460750B (zh) * 2012-10-31 2014-11-11 Metal Ind Res & Dev Ct Electromagnetic drive compacting device and magnet manufacturing method
US9601251B2 (en) 2012-12-07 2017-03-21 Continental Teves Ag & Co. Ohg Correction of angle errors in permanent magnets
CN103084577B (zh) * 2013-02-07 2014-10-08 哈尔滨工业大学 阶梯式热挤压制备富Nd相Nd2Fe14B/α-Fe永磁体装置及方法
JP6689571B2 (ja) * 2015-03-05 2020-04-28 信越化学工業株式会社 希土類焼結磁石の製造方法
US20230278263A1 (en) * 2020-05-18 2023-09-07 The Regents Of The University Of California Structural composite materials, processes, and systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247601A (ja) * 1991-06-07 1993-09-24 Crucible Materials Corp 耐食性永久磁石用合金及びそれから永久磁石を製造する方法
JPH06325962A (ja) * 1993-05-13 1994-11-25 Hitachi Metals Ltd 希土類磁石の湿式成形装置
JPH09312229A (ja) * 1996-05-23 1997-12-02 Sumitomo Special Metals Co Ltd 希土類系焼結磁石の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01124208A (ja) * 1987-11-09 1989-05-17 Hitachi Metals Ltd 径方向2極磁石の製造方法
DE4025278A1 (de) * 1990-08-09 1992-02-13 Siemens Ag Verfahren zur herstellung eines formkoerpers aus einem anisotropen magnetwerkstoff auf basis des stoffsystems sm-fe-n
US5093076A (en) * 1991-05-15 1992-03-03 General Motors Corporation Hot pressed magnets in open air presses
JP3609107B2 (ja) * 1992-11-20 2005-01-12 インターメタリックス株式会社 圧粉成形体成形方法及び装置
US5788782A (en) * 1993-10-14 1998-08-04 Sumitomo Special Metals Co., Ltd. R-FE-B permanent magnet materials and process of producing the same
CN1162235C (zh) * 2000-03-28 2004-08-18 住友特殊金属株式会社 粉体压制装置及稀土合金磁性粉末成型体的制作方法
US6656416B2 (en) * 2000-09-12 2003-12-02 Sumitomo Special Metals Co., Ltd. Powder feeding apparatus, pressing apparatus using the same, powder feeding method and sintered magnet manufacturing method
JPWO2002060677A1 (ja) 2001-01-29 2004-06-03 住友特殊金属株式会社 粉末成形方法
US7740714B2 (en) * 2005-12-13 2010-06-22 Shin-Etsu Chemical Co., Ltd. Method for preparing radially anisotropic magnet
US8072109B2 (en) * 2006-03-16 2011-12-06 Panasonic Corporation Radial anisotropic magnet manufacturing method, permanent magnet motor using radial anisotropic magnet, and iron core-equipped permanent magnet motor
KR101375814B1 (ko) * 2006-11-21 2014-03-20 가부시키가이샤 알박 배향체, 성형체 및 소결체의 제조 방법 및 영구자석의 제조 방법
CN100452252C (zh) * 2006-12-22 2009-01-14 姚燕 稀土永磁体的取向压制成型方法及用于该方法的制备装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247601A (ja) * 1991-06-07 1993-09-24 Crucible Materials Corp 耐食性永久磁石用合金及びそれから永久磁石を製造する方法
JPH06325962A (ja) * 1993-05-13 1994-11-25 Hitachi Metals Ltd 希土類磁石の湿式成形装置
JPH09312229A (ja) * 1996-05-23 1997-12-02 Sumitomo Special Metals Co Ltd 希土類系焼結磁石の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014218699A (ja) * 2013-05-08 2014-11-20 信越化学工業株式会社 希土類焼結磁石の製造方法
WO2024127713A1 (ja) * 2022-12-14 2024-06-20 株式会社レゾナック 永久磁石の製造装置

Also Published As

Publication number Publication date
TWI447751B (zh) 2014-08-01
US8328954B2 (en) 2012-12-11
TW200933659A (en) 2009-08-01
JP4914922B2 (ja) 2012-04-11
KR20100088159A (ko) 2010-08-06
CN101911226A (zh) 2010-12-08
US20100310408A1 (en) 2010-12-09
DE112008003493T5 (de) 2010-10-21
RU2427050C1 (ru) 2011-08-20
JPWO2009081978A1 (ja) 2011-05-06
KR101137395B1 (ko) 2012-04-20
CN101911226B (zh) 2013-07-24

Similar Documents

Publication Publication Date Title
JP4914922B2 (ja) 永久磁石の製造方法
US8128757B2 (en) Method of manufacturing oriented body, molded body and sintered body as well as method of manufacturing permanent magnet
JP4391897B2 (ja) 磁気異方性希土類焼結磁石の製造方法及び製造装置
JP6330907B2 (ja) 希土類磁石成形体の製造方法
US20090304833A1 (en) Molding apparatus
CN100528420C (zh) 稀土类合金粉末的压制成型方法以及稀土类合金烧结体的制造方法
JP4819103B2 (ja) 磁気異方性希土類焼結磁石の製造方法及び製造装置
KR101804313B1 (ko) 희토류영구자석의 제조방법
JP2001210508A (ja) アークセグメント磁石、リング磁石及び希土類焼結磁石の製造方法
JP2006233319A (ja) 磁場中成形方法、希土類焼結磁石の製造方法、磁場中成形装置
WO2002060677A1 (fr) Procede de moulage de poudre
JP2006265574A (ja) 希土類焼結磁石の製造方法、磁場中成形装置、金型
JP4687267B2 (ja) 粉末成形体の製造方法
JP2003193107A (ja) 希土類合金粉末のプレス成形方法および希土類合金焼結体の製造方法
JPH09148165A (ja) ラジアル異方性ボンド磁石の製造方法およびボンド磁石
JP2006278989A (ja) 成形装置、成形方法、及び永久磁石
JP4407834B2 (ja) 磁性粉末の成形方法
JP2005136015A (ja) 永久磁石粉末の配向方法および永久磁石の製造方法
JP2002237406A (ja) 磁気異方性樹脂結合型磁石の製造方法
JP4392605B2 (ja) 成形装置及び成形方法
JP2006328517A (ja) 希土類合金粉末成形体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880122406.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08863671

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009547132

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107014012

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120080034931

Country of ref document: DE

Ref document number: 12010501469

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 12745933

Country of ref document: US

Ref document number: 2010130998

Country of ref document: RU

RET De translation (de og part 6b)

Ref document number: 112008003493

Country of ref document: DE

Date of ref document: 20101021

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 08863671

Country of ref document: EP

Kind code of ref document: A1