WO2009081689A1 - 半導体モジュール - Google Patents

半導体モジュール Download PDF

Info

Publication number
WO2009081689A1
WO2009081689A1 PCT/JP2008/071605 JP2008071605W WO2009081689A1 WO 2009081689 A1 WO2009081689 A1 WO 2009081689A1 JP 2008071605 W JP2008071605 W JP 2008071605W WO 2009081689 A1 WO2009081689 A1 WO 2009081689A1
Authority
WO
WIPO (PCT)
Prior art keywords
stress relaxation
relaxation layer
ceramic substrate
semiconductor
stress
Prior art date
Application number
PCT/JP2008/071605
Other languages
English (en)
French (fr)
Inventor
Naoki Ogawa
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to US12/810,135 priority Critical patent/US20100264520A1/en
Priority to CN2008801199922A priority patent/CN101897022B/zh
Priority to EP08865477A priority patent/EP2224484A4/en
Publication of WO2009081689A1 publication Critical patent/WO2009081689A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Definitions

  • the present invention relates to a semiconductor module in which an insulating substrate on which a semiconductor element is mounted and a cooling member are assembled with a stress relaxation layer interposed therebetween.
  • High-voltage, high-current power modules mounted on hybrid vehicles and electric vehicles have a large amount of self-heating when operating semiconductor elements. Therefore, the in-vehicle power module needs to have a cooling structure with high heat dissipation.
  • FIG. 6 shows an example of a power module having a cooling structure.
  • the power module 90 includes a plurality of semiconductor elements 10, a ceramic substrate 20 on which the semiconductor elements 10 are mounted, and a cooler 30 having a refrigerant flow path therein.
  • the power module 90 radiates heat generated from the semiconductor element 10 by the cooler 30.
  • the linear expansion coefficient of the ceramic substrate 20 is as small as 4 to 6 ppm / ° C.
  • the coefficient of linear expansion of aluminum as the material of the cooler 30 is relatively large at 23 ppm / ° C.
  • a material such as high-purity aluminum having high thermal conductivity and a linear expansion coefficient close to that of the cooler 30 is used between the ceramic substrate 20 and the cooler 30.
  • a stress relaxation layer 40 is provided (for example, Patent Document 1). As shown in FIG. 7, the stress relaxation layer 40 is provided with a large number of through holes 41, which absorb the linear expansion strain between the ceramic substrate 20 and the cooler 30.
  • the power module as a whole is promoted to be compact, but the ceramic substrate 20 itself is increased in size.
  • the stress relaxation layer 40 also increases in size. Therefore, the strain generated in the stress relaxation layer 40 (mainly the outer periphery thereof) becomes large, and the stress relaxation effect is insufficient. As a result, problems such as warping and cracking occur in the ceramic substrate 20. In particular, if a crack is generated immediately below or in the vicinity of the semiconductor element 10, the damage is large.
  • the through hole 41 is a space and has low thermal conductivity. Further, when a number of spaces are formed in the stress relaxation layer 40, the heat transfer path is blocked by these spaces. Therefore, in order to ensure high heat dissipation, it is preferable that the number of through holes 41 be as small and small as possible. That is, since the stress relaxation layer 40 also functions as a heat transfer to the cooler 30, there is a trade-off between improving the stress relaxation effect and ensuring high thermal conductivity.
  • the present invention has been made to solve the problems of the conventional semiconductor device described above. That is, the problem is to provide a semiconductor module that achieves both improvement of the stress relaxation effect and securing of high thermal conductivity.
  • a semiconductor module has a cooling member (heat sink), an insulating substrate on which a plurality of semiconductor elements are arranged, one surface bonded to the insulating substrate, and the other surface bonded to the cooling member.
  • a stress relaxation layer having both a heat transfer function and a stress relaxation function, and the stress relaxation layer is provided with at least one slit for separating the stress relaxation layer into a plurality of pieces, It is characterized in that it is located in the non-semiconductor element region, which is a region other than the projection region of the semiconductor element, as viewed from the thickness direction of the stress relaxation layer in the plane of the stress relaxation layer.
  • a stress relaxation layer is disposed between an insulating substrate on which a semiconductor element is mounted and a cooling member, and these are joined to form an integral body. Further, the stress relaxation layer is divided into a plurality of pieces by at least one slit. Therefore, even if there is a difference in expansion and contraction between the cooling member and the insulating substrate due to temperature changes during reliability evaluation such as cooling cycles and when used in the market, the stress strain borne by each piece is small. . Therefore, stress strain can be absorbed with certainty, cracks and warpage in the insulating substrate and bonding material are prevented, and high reliability is ensured.
  • the slit is defined as a non-semiconductor element region and a non-semiconductor element region other than the projection region. Located in the element region. That is, the slit which is a space is not arranged in the semiconductor element region. Therefore, the effect of the slit on the heat transfer path is small. Therefore, high thermal conductivity is ensured.
  • the semiconductor elements are distributed and arranged in the individual pieces. Therefore, stress strain is assigned to each individual piece, and each individual piece can exert its effect within the range of its own stress relaxation ability.
  • At least one of the slits crosses the stress relaxation layer. That is, by providing a slit that crosses the stress relaxation layer, the size of the outer periphery of each piece can be reduced. Therefore, each piece part can exhibit the stress relaxation ability more reliably.
  • each piece of the stress relaxation layer is preferably different according to the arrangement of the semiconductor elements. That is, the position of the slit is designed according to the semiconductor element. As a result, each piece can exert its stress relaxation capability more reliably, and the degree of freedom in designing the layout of the semiconductor elements is high.
  • a semiconductor module that achieves both improvement of the stress relaxation effect and securing of high thermal conductivity is realized.
  • the present invention is applied as an intelligent power module for a hybrid vehicle.
  • the power module 100 of the present embodiment includes a semiconductor element 10 that is a heating element, a ceramic substrate 20 on which the semiconductor element 10 is mounted, a cooler 30 that includes a refrigerant flow path therein, and a ceramic substrate. 20 and a cooler 30, and a stress relaxation layer 45 having a stress relaxation function for relaxing stress strain due to a difference in linear expansion coefficient between the two.
  • the power module 100 radiates heat from the semiconductor element 10 to the cooler 30 via the ceramic substrate 20 and the stress relaxation layer 45.
  • the semiconductor element 10 is an electronic component constituting the inverter circuit (in this embodiment, the IGBT is 11 and the diode is 12).
  • a plurality of semiconductor elements 10 are mounted on the ceramic substrate 20 and fixed by soldering.
  • many semiconductor elements are mounted on the in-vehicle power module, only a part thereof is schematically illustrated in this specification for the sake of simplicity.
  • the ceramic substrate 20 may be formed of any ceramic as long as the required insulating properties, thermal conductivity, and mechanical strength are satisfied.
  • aluminum oxide or aluminum nitride is applicable.
  • aluminum nitride (AlN) is used as the ceramic substrate 20.
  • the linear expansion coefficient is 4.6 ppm / ° C., which is substantially equal to the base material AlN.
  • a metal pattern layer 21 is provided on the upper surface of the ceramic substrate 20.
  • the pattern layer 21 only needs to have high electrical conductivity and excellent wettability with solder.
  • high-purity aluminum with nickel plating can be used.
  • a metal layer 22 is provided on the lower surface of the ceramic substrate 20.
  • the metal layer 22 only needs to have high thermal conductivity and excellent wettability with the brazing material. For example, high purity aluminum is applicable.
  • the stress relaxation layer 45 is provided with a stress absorption space that absorbs stress strain caused by a difference in linear expansion coefficient between the aluminum cooler 30 and the ceramic substrate 20.
  • the stress relaxation layer 45 of this embodiment is an aluminum plate having a purity of 99.99% or more.
  • the linear expansion coefficient of the stress relaxation layer 45 made of high-purity aluminum is 23.5 ppm / ° C., which is equal to the intrinsic value of aluminum.
  • High-purity aluminum is a relatively soft material with a Young's modulus of 70.3 GPa and has a large deformation with respect to stress. Therefore, the stress strain between the cooler 30 and the ceramic substrate 20 can be relaxed.
  • the stress relaxation layer 45 has a function of dissipating heat from the semiconductor element 10 in the surface direction of the stress relaxation layer 45 and transferring heat to the cooler 30. That is, the stress relaxation layer 45 has a heat transfer function as well as a stress relaxation function.
  • the stress relaxation layer 45 is provided with two slits 461 and 462 in the joint surface with the ceramic substrate 20.
  • the slits 461 and 462 become stress absorption spaces.
  • the slits 461 and 462 penetrate the stress relaxation layer 45 in the thickness direction (vertical direction in FIG. 1), and further, one slit 461 crosses the stress relaxation layer 45 in plan view, and the other slit 462
  • the stress relaxation layer 45 is cut vertically. That is, the stress relaxation layer 45 is completely divided into a plurality of pieces by the slits 461 and 462.
  • the stress relaxation layer 45 of this embodiment is divided into four pieces of individual pieces 45A, 45B, 45C, and 45D by slits 461 and 462.
  • the positional relationship between the slits 461 and 462 and the semiconductor element 10 will be described later.
  • the cooler 30 has cooling fins 31 that are arranged in a line in the interior of the cooler 30, and forms a coolant channel 35 between the adjacent cooling fins 31.
  • cooling fins 31 that are arranged in a line in the interior of the cooler 30, and forms a coolant channel 35 between the adjacent cooling fins 31.
  • aluminum having high thermal conductivity and light weight can be applied.
  • refrigerant either liquid or gas may be used.
  • the ceramic substrate 20 and the stress relaxation layer 45 are directly bonded onto the cooler 30 by brazing in order to efficiently transfer heat from the semiconductor element 10 to the cooler 30.
  • a brazing material such as an Al—Si based alloy or an Al—Si—Mg based alloy is applicable.
  • an Al—Si alloy is used and brazing is performed at a temperature of less than 600 ° C.
  • the cooler 30 and the stress relieving member 45 may be joined simultaneously with the formation of the cooler 30.
  • FIG. 3 shows an example of the arrangement of the semiconductor elements 10 (IGBT 11 and diode 12) on the ceramic substrate 20 in plan view. Further, in FIG. 3, the arrangement of the individual pieces 45A, 45B, 45C, and 45D of the stress relaxation layer 45 is shown by broken lines.
  • one IGBT 11 and one diode 12 are arranged on each piece 45A, 45B, 45C, 45D when viewed from the thickness direction of the stress relaxation layer 45. More specifically, IGBT11 and each diode 12 are arrange
  • the slits 461 and 462 of the stress relaxation layer 45 are not located under the semiconductor element 10.
  • 4 shows an in-plane of the stress relaxation layer 45 as viewed from the thickness direction of the stress relaxation layer, an element region 45X which is a projection region of the semiconductor element 10 below the semiconductor element 10 and a position below the semiconductor element 10.
  • the non-element region 45Y is shown separately.
  • the slits 461 and 462 are provided so as to be accommodated in the non-element region 45Y and do not straddle the element region 45X.
  • the stress relaxation layer 45 is separated into pieces by the slits 461 and 462. Therefore, even if the size of the stress relaxation layer 45 as a whole increases as the size of the ceramic substrate 20 increases, the size of each piece 45A, 45B, 45C, 45D is small. Therefore, the stress strain generated in each piece 45A, 45B, 45C, 45D is small, and the stress relaxation layer 45 as a whole can sufficiently exhibit the stress relaxation effect.
  • the slits 461 and 462 are arranged between the semiconductor elements so that the semiconductor elements 11 and 12 are equally arranged in the individual pieces 45A, 45B, 45C and 45D. Thereby, the semiconductor elements 11 and 12 are distributed and arranged in the individual pieces 45A, 45B, 45C, and 45D. Therefore, the stress strain is shared by the individual piece portions 45A, 45B, 45C, and 45D, and the individual piece portions 45A, 45B, 45C, and 45D can exhibit their effects within the range of their own stress relaxation ability.
  • the stress of the stress relaxation layer 45 and the ceramic substrate 20 becomes maximum near the outer periphery of the divided pieces 45A, 45B, 45C, 45D.
  • the portions where the individual pieces 45A, 45B, 45C, 45D and the ceramic substrate 20 are joined are in a state where the ceramic substrate 20 is lined with the individual pieces 45A, 45B, 45C, 45D, and the strength is high. Therefore, when the ceramic substrate 20 reaches the limit and cracks are generated, there is a high possibility that the ceramic substrate 20 is generated from a portion not joined to the individual pieces 45A, 45B, 45C, and 45D. That is, cracks are likely to occur at the portions facing the slits 461 and 462.
  • the semiconductor element 10 is mounted only on the portion on the ceramic substrate 20 where the individual pieces 45A, 45B, 45C, and 45D exist.
  • the slits 461 and 462 exist only in the non-element region 45Y between the semiconductor elements. Therefore, even if a crack occurs in the ceramic substrate 20, the crack occurs between the semiconductor elements 10 and 10. Therefore, a fatal problem can be avoided.
  • the heat transfer function of the stress relaxation layer 45 may be lowered by providing the slits 461 and 462, the slits 461 and 462 are not provided under the semiconductor element 10 that is a heating element. That is, the stress relaxation layer 45 exists without a gap in the element region 45X where heat transfer is most required. Therefore, the effect on heat dissipation is small.
  • the stress relaxation layer 45 of this form is divided
  • the size of the individual pieces may be adjusted depending on the arrangement of the semiconductor elements 10.
  • three slits 463, 464, 465 are provided in the stress relaxation layer, only the slit 463 crosses the stress relaxation layer, and the other slits 464, 465 position the semiconductor element 10. Arranged to avoid.
  • the stress relaxation layer is divided into individual pieces 450A, 450B, 450C, and 450D, and the sizes of the individual pieces are different.
  • the slits in the stress relaxation layer do not hinder the design freedom of the arrangement of the semiconductor element 10. That is, the size of the individual piece can be adjusted within a range in which the stress strain due to the difference in linear expansion coefficient between aluminum and ceramic does not exceed the strength of the ceramic substrate 20 (for example, 20 mm square with a thickness of 1 mm).
  • two semiconductor elements 11 and 12 are arranged in one piece, but a slit is also provided between the semiconductor elements 11 and 12 so that one piece of semiconductor element is formed in one piece. Good. Further, three or more semiconductor elements may be arranged on one piece as long as the stress strain can be absorbed.
  • the stress relaxation layer 45 is divided into four pieces 45A, 45B, 45C, and 45D by the slits 461 and 462. That is, even if the overall size of the stress relaxation layer 45 is large, the size is small when attention is paid to the individual pieces 45A, 45B, 45C, and 45D. Therefore, even if there is a difference in expansion and contraction between the cooling member and the insulating substrate due to temperature changes during reliability evaluation such as cooling cycles and when used in the market, the stress strain borne by each piece is small. . Therefore, the stress strain can be reliably absorbed, cracks and warpage of the ceramic substrate 20 and the bonding material are prevented, and high reliability is ensured.
  • the slits 461 and 462 are located in the non-element region 45Y. That is, the slits 461 and 462 are not arranged in the element region 45X, and the influence on the heat transfer path is small. Therefore, high thermal conductivity is ensured. Therefore, a semiconductor module that achieves both improvement of the stress relaxation effect and ensuring high thermal conductivity has been realized.
  • the stress relaxation layer 45 contributes to the enlargement of the ceramic substrate 20 and the resulting compact power module.
  • this embodiment is merely an example, and does not limit the present invention. Therefore, the present invention can naturally be improved and modified in various ways without departing from the gist thereof.
  • a slit is provided as a stress absorption space in the stress relaxation layer of the present embodiment, a through hole may be provided in combination with the slit. Thereby, the stress relaxation effect can be further exhibited for each divided region.
  • the member that dissipates heat from the semiconductor element is not limited to the cooler having the refrigerant flow path.
  • a heat radiating plate using a metal plate made of an inexpensive material having high thermal conductivity (aluminum, copper, etc.) may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

 半導体モジュール100は,半導体素子10(IGBT11,ダイオード12)を実装するセラミック基板20と,セラミック基板20の裏面側に位置する冷却器との間に,応力緩和層45を配し,それらが一体となっている。さらに,応力緩和層45は,2つのスリット461,462によって複数の個片部45A,45B,45C,45Dに分割される。さらに,スリット461,462は,応力緩和層45の厚さ方向から見て半導体素子間に位置し,半導体素子の投影領域内に位置しない。

Description

半導体モジュール
 本発明は,半導体素子を実装した絶縁基板と冷却部材とが応力緩和層を挟んで組み付けられた半導体モジュールに関する。
 ハイブリッド自動車や電気自動車等に車載される高耐圧・大電流用のパワーモジュールは,半導体素子の動作時の自己発熱量が大きい。そのため,車載用パワーモジュールは,高放熱性を有する冷却構造を具備する必要がある。
 図6は,冷却構造を具備するパワーモジュールの一例を示している。パワーモジュール90は,複数の半導体素子10と,半導体素子10を実装するセラミック基板20と,内部に冷媒流路を備えた冷却器30とを有している。パワーモジュール90は,半導体素子10から発せられる熱を冷却器30によって放熱する。
 このような構造のパワーモジュール90では,線膨張率の相違に起因する応力集中が懸念される。つまり,セラミック基板20の線膨張率は4~6ppm/℃と小さい。一方,冷却器30の素材となるアルミの線膨張率は23ppm/℃と比較的大きい。
 そこで,この線膨張率差を吸収するため,セラミック基板20と冷却器30との間には,高熱伝導性を有し,かつ冷却器30と線膨張率が近い素材(高純度アルミ等)からなる応力緩和層40が設けられる(例えば,特許文献1)。この応力緩和層40には,図7に示すように,多数の貫通穴41が設けられており,それら貫通穴41がセラミック基板20と冷却器30との線膨張歪を吸収する。
特開2006-294699号公報
 近年,図8に示すように,大サイズのセラミック基板20を用意し,これまでより多くの半導体素子10(例えば,IGBT11,ダイオード12)を1枚のセラミック基板20上に配置することが検討されている。これにより,半導体素子10,10間のスペースが縮小され,結果としてパワーモジュール全体のコンパクト化を図ることができる。
 しかしながら,大サイズのセラミック基板20を利用する場合には,次のような問題があった。すなわち,パワーモジュール全体としてはコンパクト化が促進されるが,セラミック基板20自体は大型化する。そして,セラミック基板20が大型化することに伴って,応力緩和層40も大サイズ化することになる。そのため,応力緩和層40(主としてその外周部)に生じる歪が大きくなり,応力緩和効果が不足する。その結果,セラミック基板20に反り・割れ等の問題が生じる。特に,半導体素子10の直下や近傍に割れが生じるとダメージが大きい。
 特許文献1の応力緩和層は,図7に示したように貫通穴41以外の部分は繋がっている。応力緩和層およびセラミック基板の応力歪は,外周のサイズが大きくなるほど大きい。そのため,半導体素子の載置面のサイズが大きいセラミック基板20を利用した場合,応力緩和効果が不足する。
 また,貫通穴41の数を多くあるいは穴径を大きくし,応力緩和効果を向上させることが考えられる。しかし,貫通穴41は空間であり,熱伝導率が低い。また,応力緩和層40に幾つもの空間を形成すると,それらの空間によって伝熱経路が遮断されることになる。そのため,高放熱性を確保するためには,貫通穴41はできる限り少なくそして小さいほうが好ましい。つまり,応力緩和層40が冷却器30への伝熱機能を兼ねていることから,応力緩和効果の向上と高熱伝導性の確保とがトレードオフの関係にある。
 本発明は,前記した従来の半導体装置が有する問題点を解決するためになされたものである。すなわちその課題とするところは,応力緩和効果の向上と高熱伝導性の確保とを両立させた半導体モジュールを提供することにある。
 この課題の解決を目的としてなされた半導体モジュールは,冷却部材(ヒートシンク)と,複数の半導体素子が配される絶縁基板と,一方の面を絶縁基板と接合し,他方の面を冷却部材と接合し,伝熱機能と応力緩和機能とを兼ねる応力緩和層とを有し,応力緩和層には,当該応力緩和層を複数の個片部に分離する少なくとも1つのスリットが設けられ,スリットは,応力緩和層の面内中,応力緩和層の厚さ方向から見て,半導体素子の投影領域以外の領域である非半導体素子領域内に位置することを特徴としている。
 本発明の半導体モジュールは,半導体素子を実装する絶縁基板と冷却部材との間に応力緩和層を配し,それらが接合されて一体をなしている。さらに,応力緩和層は,少なくとも1つのスリットによって複数の個片部に分割されている。そのため,冷熱サイクル等の信頼性評価時や市場での使用時の温度変化により,冷却部材と絶縁基板との間において伸縮量の違いが発生したとしても,各個片部で負担する応力歪は小さい。よって,応力歪を確実に吸収でき,絶縁基板や接合材へのクラックや反りが防止され,高信頼性が確保される。
 さらに,応力緩和層の面内の領域を,応力緩和層の厚さ方向から見て,半導体素子の投影領域と,投影領域以外の領域である非半導体素子領域とに区別すると,スリットは非半導体素子領域内に位置する。すなわち,空間であるスリットは,半導体素子領域には配置されていない。そのため,スリットが伝熱経路に与える影響は小さい。よって,高熱伝導性は確保される。
 さらに,万が一,絶縁基板に割れが生じたとしても,その割れは半導体素子から離れた非半導体素子領域で生じる可能性が高い。このことから,割れの初期段階での致命的なダメージを回避することができる。
 また,スリットのうち少なくとも1つは,半導体素子間に位置することとするとよりよい。これにより,半導体素子が各個片部に分散配置される。そのため,各個片部に応力歪が分担され,各個片部が各自の応力緩和能力の範囲内でその効果を発揮できる。
 また,スリットのうち少なくとも1つは,応力緩和層を横断することとするとよりよい。すなわち,応力緩和層を横断するスリットを設けることで,各個片部の外周の小サイズ化が図られる。よって,各個片部が応力緩和能力をより確実に発揮できる。
 また,応力緩和層の各個片部のサイズは,半導体素子の配置に合わせて異なることとするとよりよい。すなわち,スリットの位置は,半導体素子に合わせて設計される。これにより,各個片部が応力緩和能力をより確実に発揮できるとともに,半導体素子の配置の設計自由度が高い。
 本発明によれば,応力緩和効果の向上と高熱伝導性の確保とを両立させた半導体モジュールが実現している。
実施の形態にかかるパワーモジュールの構成を示す概略断面図である。 実施の形態にかかる応力緩和層の構成を示す斜視図である。 実施の形態にかかる半導体素子とスリットとの配置関係を示す平面透視図である。 実施の形態にかかる応力緩和層の領域の概要を示す図である。 応用例にかかる半導体素子とスリットとの配置関係を示す平面透視図である。 従来の形態にかかるパワーモジュールの構成を示す概略断面図である。 従来の形態にかかる応力緩和層の構成を示す斜視図である。 従来の形態にかかる半導体素子とスリットとの配置関係を示す平面透視図である。
 以下,本発明を具体化した実施の形態について,添付図面を参照しつつ詳細に説明する。なお,以下の形態では,ハイブリッド自動車用のインテリジェントパワーモジュールとして本発明を適用する。
 本形態のパワーモジュール100は,図1に示すように,発熱体である半導体素子10と,半導体素子10を実装するセラミック基板20と,内部に冷媒流路を備えた冷却器30と,セラミック基板20と冷却器30との間に介在し,両者の線膨張率差による応力歪を緩和する応力緩和機能を有する応力緩和層45とを備えている。パワーモジュール100は,半導体素子10からの熱をセラミック基板20および応力緩和層45を介して冷却器30に放熱する。
 半導体素子10は,インバータ回路を構成する電子部品(本形態では,IGBTを11,ダイオードを12とする)である。半導体素子10は,セラミック基板20上に複数実装され,半田付けによって固定される。なお,車載用のパワーモジュールには,多くの半導体素子が搭載されるが,本明細書では説明を簡略化するためにその一部のみを概略図示している。
 セラミック基板20は,必要とされる絶縁特性,熱伝導率および機械的強度を満たしていれば,どのようなセラミックから形成されていてもよい。例えば,酸化アルミニウムや窒化アルミニウムが適用可能である。本形態では,セラミック基板20として窒化アルミニウム(AlN)を用いる。そして,その線膨張率は,基材のAlNとほぼ等しい4.6ppm/℃である。
 また,セラミック基板20の上面には,金属のパターン層21が設けられている。パターン層21には,電気伝導率が高く,はんだとの濡れ性に優れたものであればよい。例えば,純度が高いアルミニウムにニッケルメッキを施したものが適用可能である。一方,セラミック基板20の下面には,金属層22が設けられている。金属層22は,熱伝導率が高く,ロウ材との濡れ性に優れたものであればよい。例えば,高純度アルミニウムが適用可能である。
 応力緩和層45には,アルミ製の冷却器30とセラミック基板20との線膨張率差による応力歪を吸収する応力吸収空間が設けられている。本形態の応力緩和層45は,純度が99.99%以上のアルミ板である。高純度アルミである応力緩和層45の線膨張率は,アルミニウムの固有値と等しい23.5ppm/℃である。高純度アルミは,ヤング率が70.3GPaと比較的軟らかい材料であり,応力に対する変形が大きい。そのため,冷却器30とセラミック基板20との間の応力歪を緩和できる。
 また,応力緩和層45の材料である高純度アルミは,高熱伝導性を有する。そのため,応力緩和層45は,半導体素子10からの熱を応力緩和層45の面方向に散熱するとともに冷却器30に伝熱する機能を有している。つまり,応力緩和層45は,応力緩和機能とともに伝熱機能を兼ねている。
 また,応力緩和層45は,図2に示すように,セラミック基板20との接合面内に2つのスリット461,462が設けられている。応力緩和層45では,スリット461,462が応力吸収空間になる。また,スリット461,462は,応力緩和層45を厚さ方向(図1中の上下方向)に貫通し,さらに平面視において一方のスリット461が応力緩和層45を横断し,他のスリット462が応力緩和層45を縦断している。つまり,応力緩和層45は,スリット461,462によって複数の個片に完全に分割されている。具体的に本形態の応力緩和層45は,スリット461,462によって,個片部45A,45B,45C,45Dの各個片に4分割されている。スリット461,462と半導体素子10との位置関係については,後述する。
 冷却器30は,その内部に列状に等間隔配置された冷却フィン31を有し,隣り合う冷却フィン31,31間に冷媒流路35を形成する。冷却器30を構成する各部材には,高熱伝導性を有し軽量であるアルミが適用可能である。冷媒としては,液体および気体のいずれを用いてもよい。
 セラミック基板20と応力緩和層45は,半導体素子10からの熱を効率よく冷却器30に伝達させるため,ロウ付けによって冷却器30上に直接接合される。ロウ材としては,Al-Si系合金,Al-Si-Mg系合金等のアルミニウムロウ材が適用可能である。本形態では,Al-Si系合金を用い,600℃弱の温度でロウ付けを行う。なお,冷却器30と応力緩和材45等との接合は,冷却器30の形成と同時に行ってもよい。
 続いて,本形態のパワーモジュール100の,セラミック基板20上の半導体素子10と応力緩和層45のスリット461,462との配置関係について,図3ないし図4を参照しつつ詳説する。
 図3は,セラミック基板20上の半導体素子10(IGBT11,ダイオード12)の配置の一例を平面視にて示している。さらに,図3では,破線によって,応力緩和層45の個片部45A,45B,45C,45Dの配置をそれぞれ示している。本形態では,応力緩和層45の厚さ方向から見て,各個片部45A,45B,45C,45D上に,IGBT11およびダイオード12が1つずつ配置されている。より具体的には,IGBT11および各ダイオード12は,隣り合う個片部間を跨ぐことなく,1つの個片部内に収まるように配置されている。
 つまり,応力緩和層45のスリット461,462は,半導体素子10下に位置していない。図4は,応力緩和層45の面内を,応力緩和層の厚さ方向から見て,半導体素子10下であって半導体素子10の投影領域となる素子領域45Xと,半導体素子10下に位置しない非素子領域45Yとに分けて図示している。スリット461,462は,非素子領域45Y内に収まるように設けられ,素子領域45Xを跨がない。
 本形態のパワーモジュール100では,スリット461,462によって応力緩和層45が個片化されている。そのため,セラミック基板20のサイズが大きくなることに伴って応力緩和層45全体のサイズが大きくなったとしても,各個片部45A,45B,45C,45Dのサイズは小さい。そのため,各個片部45A,45B,45C,45Dに生じる応力歪は小さく,応力緩和層45全体として応力緩和効果を十分に発揮することができる。
 また,スリット461,462は,各個片部45A,45B,45C,45Dに均等に半導体素子11,12が配置されるように,半導体素子間に配置される。これにより,半導体素子11,12が各個片部45A,45B,45C,45Dに分散配置される。そのため,各個片部45A,45B,45C,45Dに応力歪が分担され,各個片部45A,45B,45C,45Dが各自の応力緩和能力の範囲内でその効果を発揮できる。
 また,応力緩和層45およびセラミック基板20の応力は,分割された個片部45A,45B,45C,45Dの外周近傍で最大となる。個片部45A,45B,45C,45Dとセラミック基板20とが接合されている部位は,セラミック基板20が個片部45A,45B,45C,45Dで裏打された状態であり,強度が高い。そのため,セラミック基板20が限界に達し,割れが生じる場合は,個片部45A,45B,45C,45Dと接合していない部分から発生する可能性が高い。つまりは,スリット461,462と対峙する部分で割れが生じ易い。
 しかしながら,本形態において,半導体素子10は,セラミック基板20上であって個片部45A,45B,45C,45Dが存在する部分にのみ実装されている。言い換えると,スリット461,462は,半導体素子間である非素子領域45Yにしか存在しない。そのため,万が一,セラミック基板20に割れが生じたとしても,その割れは半導体素子10,10間で発生する。よって,致命的な問題を回避することができる。
 また,スリット461,462を設けることで応力緩和層45の伝熱機能の低下が懸念されるが,スリット461,462は発熱体である半導体素子10の下には設けられていない。すなわち,熱伝達性が最も要求される素子領域45Xには応力緩和層45が隙間なく存在する。そのため,放熱性への影響は小さい。
 なお,本形態の応力緩和層45は,スリット461,462によって概ね同サイズの個片部に45A,45B,45C,45Dに分割しているが,これに限るものではない。例えば,図5に示すように,半導体素子10の配置によって個片部のサイズを調節してもよい。図5に示した半導体モジュールでは,応力緩和層に3つのスリット463,464,465が設けられ,スリット463のみが応力緩和層を横断し,他のスリット464,465は,半導体素子10の位置を避けるように配置される。これらのスリットにより,応力緩和層は,個片部450A,450B,450C,450Dに分割され,各個片部のサイズは異なる。すなわち,応力緩和層のスリットは,半導体素子10の配置の設計自由を妨げるものではない。つまり,個片部のサイズは,アルミとセラミックとの線膨張率差による応力歪がセラミック基板20の強度を超えない範囲内(例えば,厚さが1mmで20mm角)で調節可能である。
 また,本形態では,1つの個片部に2つの半導体素子11,12が配置されているが,半導体素子11,12間にもスリットを設け,1つの個片部に1つの半導体素子としてもよい。また,応力歪を吸収できる範囲内であれば,3つ以上の半導体素子を1つの個片部上に配置してもよい。
 以上詳細に説明したように本形態の半導体モジュール100は,応力緩和層45がスリット461,462によって4つの個片部45A,45B,45C,45Dに分割されている。すなわち,応力緩和層45全体としてのサイズは大きくても,個片部45A,45B,45C,45Dに着目するとそのサイズは小さい。そのため,冷熱サイクル等の信頼性評価時や市場での使用時の温度変化により,冷却部材と絶縁基板との間において伸縮量の違いが発生したとしても,各個片部で負担する応力歪は小さい。よって,応力歪を確実に吸収でき,セラミック基板20や接合材へのクラックや反りが防止され,高信頼性が確保される。
 さらに,スリット461,462は非素子領域45Y内に位置する。すなわち,スリット461,462は素子領域45Xには配置されておらず,伝熱経路に与える影響は小さい。よって,高熱伝導性は確保される。従って,応力緩和効果の向上と高熱伝導性の確保とを両立させた半導体モジュールが実現している。
 また,応力緩和層45全体としてのサイズは大きくても,応力緩和層45の応力緩和効果と高熱伝導性とが確保される。そのため,セラミック基板20の大型化,その結果としてのパワーモジュールのコンパクト化に資する。
 なお,本実施の形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。例えば,本実施の形態の応力緩和層には,応力吸収空間としてスリットしか設けられていないが,スリットと併せて貫通穴を設けてもよい。これにより,分割された領域ごとにさらに応力緩和効果を発揮することができる。
 また,半導体素子からの熱を放熱する部材は,冷媒流路を有する冷却器に限るものではない。例えば,安価で高熱伝導性を有する材料(アルミや銅等)からなる金属板を用いた放熱板であってもよい。

Claims (4)

  1.  冷却部材と,
     複数の半導体素子が配される絶縁基板と,
     一方の面を前記絶縁基板と接合し,他方の面を前記冷却部材と接合し,伝熱機能と応力緩和機能とを兼ねる応力緩和層とを有し,
     前記応力緩和層には,当該応力緩和層を複数の個片部に分離する少なくとも1つのスリットが設けられ,
     前記スリットは,前記応力緩和層の面内中,前記応力緩和層の厚さ方向から見て,前記半導体素子の投影領域以外の領域である非半導体素子領域内に位置することを特徴とする半導体モジュール。
  2.  請求の範囲第1項に記載する半導体モジュールにおいて,
     前記スリットのうち少なくとも1つは,半導体素子間に位置することを特徴とする半導体モジュール。
  3.  請求の範囲第1項または第2項に記載する半導体モジュールにおいて,
     前記スリットのうち少なくとも1つは,前記応力緩和層を横断することを特徴とする半導体モジュール。
  4.  請求の範囲第1項から第3項のいずれか1つに記載する半導体モジュールにおいて,
     前記応力緩和層の各個片部のサイズは,半導体素子の配置に合わせて異なることを特徴とする半導体モジュール。
PCT/JP2008/071605 2007-12-25 2008-11-28 半導体モジュール WO2009081689A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/810,135 US20100264520A1 (en) 2007-12-25 2008-11-28 Semiconductor module
CN2008801199922A CN101897022B (zh) 2007-12-25 2008-11-28 半导体模块
EP08865477A EP2224484A4 (en) 2007-12-25 2008-11-28 SEMICONDUCTOR MODULE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-331353 2007-12-25
JP2007331353A JP4832419B2 (ja) 2007-12-25 2007-12-25 半導体モジュール

Publications (1)

Publication Number Publication Date
WO2009081689A1 true WO2009081689A1 (ja) 2009-07-02

Family

ID=40801001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/071605 WO2009081689A1 (ja) 2007-12-25 2008-11-28 半導体モジュール

Country Status (6)

Country Link
US (1) US20100264520A1 (ja)
EP (1) EP2224484A4 (ja)
JP (1) JP4832419B2 (ja)
KR (1) KR101097571B1 (ja)
CN (1) CN101897022B (ja)
WO (1) WO2009081689A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102237354A (zh) * 2010-04-28 2011-11-09 本田技研工业株式会社 电路基板

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012208767A1 (de) * 2011-06-17 2012-12-20 Robert Bosch Gmbh Elektronische Schaltungsanordnung mit Verlustwärme abgebenden Komponenten
JP5548722B2 (ja) 2012-03-30 2014-07-16 三菱マテリアル株式会社 ヒートシンク付パワーモジュール用基板、及び、ヒートシンク付パワーモジュール用基板の製造方法
CN102738138A (zh) * 2012-06-05 2012-10-17 嘉兴斯达微电子有限公司 一种针对电动汽车应用的igbt功率模块
JP6154248B2 (ja) * 2012-08-24 2017-06-28 京セラ株式会社 流路部材およびこれを用いた熱交換器ならびに半導体製造装置
JP2014093365A (ja) * 2012-11-01 2014-05-19 Toyota Industries Corp 半導体装置
JP6232697B2 (ja) * 2012-11-08 2017-11-22 ダイキン工業株式会社 パワーモジュール
DE102014101926A1 (de) * 2014-02-17 2015-05-07 Semikron Elektronik Gmbh & Co. Kg Leistungshalbleitermodul
US9449867B2 (en) * 2014-06-17 2016-09-20 Taiwan Semiconductor Manufacturing Co., Ltd. VHF etch barrier for semiconductor integrated microsystem
JP1528485S (ja) * 2015-01-14 2015-07-13
JP1528936S (ja) * 2015-01-14 2015-07-13
JP1528484S (ja) * 2015-01-14 2015-07-13
JP2019079958A (ja) * 2017-10-25 2019-05-23 株式会社豊田中央研究所 パワーモジュール
JP7159620B2 (ja) * 2018-05-30 2022-10-25 富士電機株式会社 半導体装置、冷却モジュール、電力変換装置及び電動車両
JP7147610B2 (ja) * 2019-02-12 2022-10-05 三菱マテリアル株式会社 絶縁回路基板及びその製造方法
US11388839B2 (en) * 2020-08-14 2022-07-12 Toyota Motor Engineering & Manufacturing North America, Inc. Power electronics cooling assemblies and methods for making the same
WO2022097792A1 (ko) * 2020-11-04 2022-05-12 주식회사 리빙케어 대용량 열전모듈
DE102022208583A1 (de) 2022-08-18 2023-08-03 Zf Friedrichshafen Ag Leistungshalbleitermodul mit innerem kühlkanal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088372A (ja) * 1994-06-23 1996-01-12 Toshiba Corp 放熱装置
JPH08274228A (ja) * 1995-03-29 1996-10-18 Origin Electric Co Ltd 半導体搭載基板、電力用半導体装置及び電子回路装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69034139T2 (de) * 1989-10-09 2004-11-25 Mitsubishi Materials Corp. Keramiksubstrat zur Herstellung elektrischer oder elektronischer Schaltungen
JPH083372A (ja) * 1994-06-17 1996-01-09 Ube Ind Ltd 大型車両用タイヤ
JP2002343911A (ja) * 2001-05-16 2002-11-29 Hitachi Metals Ltd 基 板
JP3793562B2 (ja) * 2001-09-27 2006-07-05 京セラ株式会社 セラミック回路基板
JP2003163315A (ja) * 2001-11-29 2003-06-06 Denki Kagaku Kogyo Kk モジュール
JP2006165409A (ja) * 2004-12-10 2006-06-22 Hitachi Ltd 電力変換装置
JP4621531B2 (ja) * 2005-04-06 2011-01-26 株式会社豊田自動織機 放熱装置
DE102006011995B3 (de) * 2006-03-16 2007-11-08 Semikron Elektronik Gmbh & Co. Kg Leistungshalbleitermodul mit segmentierter Grundplatte

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088372A (ja) * 1994-06-23 1996-01-12 Toshiba Corp 放熱装置
JPH08274228A (ja) * 1995-03-29 1996-10-18 Origin Electric Co Ltd 半導体搭載基板、電力用半導体装置及び電子回路装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2224484A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102237354A (zh) * 2010-04-28 2011-11-09 本田技研工业株式会社 电路基板
US8659900B2 (en) 2010-04-28 2014-02-25 Honda Motor Co., Ltd. Circuit board including a heat radiating plate
CN102237354B (zh) * 2010-04-28 2014-08-13 本田技研工业株式会社 电路基板

Also Published As

Publication number Publication date
JP4832419B2 (ja) 2011-12-07
CN101897022B (zh) 2013-04-17
JP2009158502A (ja) 2009-07-16
EP2224484A1 (en) 2010-09-01
US20100264520A1 (en) 2010-10-21
KR20100085191A (ko) 2010-07-28
CN101897022A (zh) 2010-11-24
EP2224484A4 (en) 2012-05-30
KR101097571B1 (ko) 2011-12-22

Similar Documents

Publication Publication Date Title
JP4832419B2 (ja) 半導体モジュール
EP1873827B1 (en) Heat radiating device
JP4867793B2 (ja) 半導体装置
JP5007296B2 (ja) パワーモジュール用ベース
US20100187680A1 (en) Heat radiator
JP6199397B2 (ja) 半導体装置およびその製造方法
JP6409690B2 (ja) 冷却モジュール
KR101017452B1 (ko) 반도체 패키지
JP2008294280A (ja) 半導体装置
JP2011159662A (ja) 半導体装置
US20140151891A1 (en) Semiconductor package
JP2008294279A (ja) 半導体装置
JP5163199B2 (ja) ヒートシンク付パワーモジュール用基板及びヒートシンク付パワーモジュール
JP4146888B2 (ja) 半導体モジュールと半導体モジュールの製造方法
JP2861981B2 (ja) 半導体装置の冷却構造
JP2009200258A (ja) 半導体モジュール
JPWO2020105075A1 (ja) 半導体装置
JP4046623B2 (ja) パワー半導体モジュールおよびその固定方法
JP2008124187A6 (ja) パワーモジュール用ベース
JP2008124187A (ja) パワーモジュール用ベース
JP5282075B2 (ja) 放熱装置
JP2006066464A (ja) 半導体装置
JP6555159B2 (ja) 冷却チューブ
JP7306294B2 (ja) 半導体モジュール
JP4396366B2 (ja) 半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880119992.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08865477

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008865477

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12810135

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107013942

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE