WO2009079978A1 - Optoelektronisches bauelement - Google Patents

Optoelektronisches bauelement Download PDF

Info

Publication number
WO2009079978A1
WO2009079978A1 PCT/DE2008/002036 DE2008002036W WO2009079978A1 WO 2009079978 A1 WO2009079978 A1 WO 2009079978A1 DE 2008002036 W DE2008002036 W DE 2008002036W WO 2009079978 A1 WO2009079978 A1 WO 2009079978A1
Authority
WO
WIPO (PCT)
Prior art keywords
optoelectronic component
layer
metal body
layer sequence
insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/DE2008/002036
Other languages
German (de)
English (en)
French (fr)
Inventor
Siegfried Herrmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Priority to CN2008801217028A priority Critical patent/CN101904022B/zh
Priority to EP08864112.1A priority patent/EP2223354B1/de
Priority to US12/809,682 priority patent/US8476667B2/en
Priority to JP2010538326A priority patent/JP5568476B2/ja
Publication of WO2009079978A1 publication Critical patent/WO2009079978A1/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/84Coatings, e.g. passivation layers or antireflective coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/858Means for heat extraction or cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/84Coatings, e.g. passivation layers or antireflective coatings
    • H10H20/841Reflective coatings, e.g. dielectric Bragg reflectors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/857Interconnections, e.g. lead-frames, bond wires or solder balls
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/858Means for heat extraction or cooling
    • H10H20/8581Means for heat extraction or cooling characterised by their material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/858Means for heat extraction or cooling
    • H10H20/8585Means for heat extraction or cooling being an interconnection

Definitions

  • the published patent application DE 100 40 448 A1 describes a semiconductor chip and a method for producing semiconductor chips using thin-film technology.
  • a layer composite of an active layer sequence and a base layer is arranged.
  • a reinforcing layer and a subcarrier layer are added to the layer composite, which are applied by electroplating to the base layer before the substrate is peeled off.
  • a film is laminated to handle the semiconductor chips formed from the layer composite.
  • the task that the. Invention is based, is to provide an optoelectronic device that is used as efficiently as possible.
  • the object is solved by features of the independent claim.
  • Advantageous embodiments of the invention are characterized in the subclaims.
  • the invention is characterized by an optoelectronic component having at least one metal body and a layer sequence which is applied to a base body and which is designed to emit electromagnetic radiation and in which insulation is applied to at least one side surface, wherein the at least one Metal body is applied to at least a portion of the insulation and is formed so that it is in heat-conducting contact with the base body.
  • the main body is provided for applying the layer sequences which emit the electromagnetic radiation when exposed to the current.
  • One or more layer sequences can be arranged on the base body.
  • the main body is typically designed as a heat sink and is particularly suitable for dissipating the heat generated during operation of the optoelectronic component, so that the respective optoelectronic component can be operated particularly efficiently. So that the heat can be diverted particularly well to the main body, this includes optoelectronic component at least one metal body which is in heat-conducting contact with the base body.
  • insulation is applied to at least one side surface of the layer sequence, which is preferably designed to be electrically insulating and protects the layer sequence against contamination, for example, during a unification of the optoelectronic components.
  • the metal body may be associated with one or more side surfaces of the optoelectronic component.
  • the insulation is formed as an insulating layer or as an insulating layer sequence.
  • an electrical insulation between the metal body and the layer sequence can be ensured particularly reliably. Furthermore, secure protection against contamination of the layer sequence can be ensured by means of the insulation layer or by means of the insulation layer sequence.
  • the insulation layer or the insulation layer sequence has a passivation layer and / or at least one air layer.
  • the insulating layer or insulation layer sequence formed as a passivation layer is preferably designed to be electrically insulating, so that by means of the metal body - A -
  • the passivation layer protects the layer sequence against contamination, for example during a unification of the optoelectronic components.
  • the air layer can be arranged between the passivation layer and the layer sequence and / or between the passivation layer and the metal body, so that the metal body is electrically insulated from the layer sequence, so that short circuits can be safely avoided.
  • the metal body is formed as a metal mask.
  • the metal mask is designed such that it has a recess for the respective layer sequence of the optoelectronic component, so that the metal body formed as a metal mask may comprise the layer sequence.
  • the metal mask is formed as an annular metal body. In this way, it can be applied, for example, to the insulation of the respective side surface of the layer sequence formed as an insulation layer or insulation layer sequence, so that the heat generated in the layer sequence can be dissipated particularly well to the base body.
  • the metal mask may preferably have a plurality of recesses for a combination of layer sequences and thus be simultaneously applied to the composite of layer sequences, so that the respective optoelectronic components can be produced particularly inexpensively.
  • the metal body is produced by means of a galvanic process.
  • the metal body can be particularly suitably applied to the respective insulation of the layer sequence, so that the metal body is in heat-conducting contact with the main body.
  • the heat generated by the operation of the optoelectronic component can be dissipated well and thus the optoelectronic component can be operated particularly efficiently.
  • a current distribution structure is applied to at least one region of the surface of the layer sequence facing away from the base body.
  • the current distribution structure typically represents an electrical coupling to the layer sequence of the optoelectronic component.
  • the current distribution structure can be applied to the surface of the layer sequence facing away from the base body, for example by means of a photolithographic process and / or galvanic process.
  • the power distribution structure is such applied over the respective surface of the layer sequence, such as in a square or rectangular structure that a supplied during operation of the 'optoelectronic component stream can be particularly homogeneously incorporated in the layer sequence, so that the optoelectronic component is operated particularly efficiently can be.
  • remote surface of the layer sequence is particularly suitable for large-area optoelectronic components for high current applications.
  • the at least one metal body is in an electrically conductive manner with the current distribution structure and with an electrical connection region for electrically contacting the optoelectronic component in contact.
  • the optoelectronic component can be produced in a particularly cost-effective manner.
  • the electrical connection region which is coupled to the current distribution structure on the surface of the layer sequence by means of the metal body, constitutes a second electrical connection region of the optoelectronic component.
  • a first electrical connection region is typically assigned to the surface of the layer sequence facing the base surface.
  • the respective insulation is preferably designed such that it is arranged electrically insulating between the first and second electrical connection region, so that a short circuit is avoided.
  • the base body is designed as a ceramic body, as a passivated silicon body or as a passivated metallic body.
  • Such a design of the base body is particularly suitable as a heat sink and thus for deriving the heat generated during operation of the optoelectronic component.
  • the produced optoelectronic component comprising the base body designed as a heat sink can be arranged in preferred applications such that the base body is coupled to other bodies of suitable thermally conductive material, so that the optoelectronic component can be operated particularly efficiently.
  • electrically conductive base bodies are coated by means of a passivation layer, which is suitably thermally conductive, onto which the layer sequence and / or the electrical connection regions can be applied.
  • the at least one metal body has at least one of the components Au, Ag or Ni.
  • Such materials are particularly suitable for dissipating heat and at the same time as an electrical conductor.
  • the optoelectronic component With a suitable coupling of the metal body with the base body, the optoelectronic component can be produced in a particularly cost-effective manner and operated particularly efficiently.
  • the at least one metal body is designed as a reflector for reflecting the electromagnetic radiation in a predetermined emission direction.
  • the metal body may be formed as a housing of the layer sequence such that by means of its edges, a reflection of the emitted electromagnetic radiation in a predetermined emission direction can be ensured.
  • the emission characteristic of the optoelectronic component can be influenced particularly advantageously.
  • Such a designed optoelectronic component is characterized by a cost-effective production and high efficiency.
  • the optoelectronic component has a converter layer with at least one phosphor which is applied to at least one region of the surface of the layer sequence facing away from the base body and in which the at least one metal body is in heat-conducting contact.
  • the converter layer is typically formed as a luminescence conversion layer with at least one phosphor.
  • the phosphor can be excited by the electromagnetic radiation emitted by the optoelectronic component, which can also be referred to as electromagnetic primary radiation, and emits secondary radiation.
  • the primary radiation and the secondary radiation have different wavelength ranges.
  • a desired resulting color locus of the optoelectronic component can be adjusted, for example, by adjusting a mixing ratio of the primary radiation and the secondary radiation.
  • the converter layer comprises at least one of the group consisting of silicones, siloxanes, spin-on oxides, and photopatternable materials.
  • the at least one phosphor is, for example, as an organic phosphor and / or is partially present as nanoparticles.
  • the phosphors can be heated very strongly due to the excitation by the primary radiation, in particular in a UV primary radiation and thus greatly heat the converter layer. Due to the heat-conductive coupling of the metal body with such a converter layer, the heat generated in the converter layer can be dissipated particularly well on the formed as a heat sink body and thus the optoelectronic device can be operated very efficiently. Furthermore, a FarbortSchwankung be prevented and thus the radiation characteristic of the optoelectronic component are particularly advantageous influenced.
  • FIG. 1 shows schematic sectional views of an optoelectronic component
  • FIG. 3 shows a schematic plan view of an optoelectronic component
  • FIG. 4 shows a further schematic sectional view of an optoelectronic component with metal mask
  • Figure 5 is a schematic representation of a composite of a plurality of optoelectronic devices.
  • the same or equivalent components are each provided with the same reference numerals.
  • the components shown and the size ratios of the components with each other are not to be considered as true to scale. Rather, some details of the figures are exaggerated for clarity.
  • FIG. 1 shows an optoelectronic component 10 which is designed, for example, as a light-emitting diode.
  • the optoelectronic component 10 comprises a base body 11, which is formed, for example, as a ceramic body or as a passivated metallic body or as a passivated silicon body.
  • the main body 11 is preferred as a heat sink with low
  • the main body is a film.
  • the main body 11 serves as a carrier for a layer sequence 17, which is designed to emit electromagnetic radiation upon application of electrical current.
  • the layer sequence 17 is formed for example as a thin-film layer.
  • the thin film layer for example is based on nitride compound semiconductor materials, and has at least 'an active region, which is suitable for emitting electromagnetic radiation.
  • the electromagnetic radiation has, for example, wavelengths from the blue and / or ultraviolet spectrum.
  • the layer sequence 17 is typically grown on a separate AufwachsSubstrat, followed by this detached and on the Base body 11 has been applied.
  • the detachment can take place by means of a laser stripping method, as is known, for example, from WO 98/14986, the content of which is hereby incorporated in this regard.
  • the delamination can be done by etching or other suitable lift-off method.
  • Nitride compound semiconductor materials are compound semiconductor materials containing nitrogen, such as materials of the system In x Al y Ga 1 -x - y N where O ⁇ x ⁇ l, 0 ⁇ y ⁇ 1 and x + y ⁇ 1.
  • the thin-film layer has For example, at least one semiconductor layer of a nitride compound semiconductor material.
  • a conventional pn junction, a double heterostructure, a single quantum well structure (SQW structure) or a multiple quantum well structure (MQW structure) may be included.
  • SQW structure single quantum well structure
  • MQW structure multiple quantum well structure
  • the layer sequence 17 has on its side surfaces an insulating layer 12 formed as an insulation layer, which is formed for example as a passivation layer and as a component, for example, SiO 2 . Furthermore, the insulation 12 may be formed as a coating layer applied to the layer sequence 17.
  • the insulation 12 preferably has electrically insulating properties, ie a particularly high electrical resistance.
  • the insulation 12 formed as a passivation layer can be in direct contact with the side surfaces of the layer sequence 17.
  • the layer sequence 17 at the Side surfaces have formed as an insulation layer sequence insulation 12. This can have, in addition to the passivation layer, at least one further layer, for example an air layer and / or a lacquer layer, which is arranged, for example, between the side surfaces of the layer sequence 17 and the passivation layer.
  • a reflective electrical contact structure 18 is arranged, which is electrically coupled to a first electrical connection region 13.
  • the first electrical connection region 13 is applied to the base body 11 on a further insulation layer 12, which is formed, for example, as a passivation layer. However, the first electrical connection region 13 can also be applied to the base body 11 without further insulation 12.
  • the layer sequence 17 is by means of the reflective electrical contact structure. 18 soldered or glued to the base body 11, wherein the base body 11 is preferably formed electrically insulating, i. has a particularly high electrical resistance. Alternatively, however, the layer sequence 17 can also be applied to it by means of an electrically insulating solder or a passivation layer between the reflective electrical contact structure 18 and the base body 11. r
  • a power distribution structure fourteenth applied is typically metallic, for example of Au or Ag, formed on the surface of the layer sequence 17.
  • This is typically metallic, for example of Au or Ag, formed on the surface of the layer sequence 17.
  • the contact webs form the outlines of several rectangles or squares.
  • the plurality of rectangles or squares each at least. a common side edge (not shown in Figure 1), more preferably even two common side edges, on.
  • the contact webs may form the outline of a plurality of squares and / or rectangles, each having a common corner point.
  • the current distribution structure 14 is designed, when exposed to a current, to introduce it homogeneously into the layer sequence 17 in order to ensure the most homogeneous possible current distribution in the layer sequence 17.
  • a particularly homogeneous emission characteristic of the respective optoelectronic component 10 can be achieved, in particular if it is formed over a particularly large area, for example> 1 mm 2 .
  • a second electrical connection region 16 which is electrically coupled to the current distribution structure 14 by means of a metal body 15, is applied to the base body 11.
  • the metal body 15 is applied to at least one region of the insulation 12 of the layer sequence 17 and has, for example, one
  • the metal body 15 can also be applied to at least one region of an insulation 12 formed as an insulation layer sequence, which may comprise, for example, a Has passivation layer and an air layer.
  • the metal body 15 is applied to the second connection region 16 and / or the insulation 12, for example by means of a galvanic process. In principle, however, other methods known to a person skilled in the art for applying the metal body 15 can also be used.
  • the metal body 15 can be directly on at least one area of the
  • Passivation layer formed insulation 12 may be applied. Between the metal body 15 and the passivation layer, however, a further layer can also be arranged at least in regions, e.g. an air layer.
  • the metal body 15 typically contains constituents of Au, Ag, or Ni and is thus characterized by a low thermal resistance, and a low electrical resistance.
  • the metal body 15 is thermally conductively coupled to the base body 11 by means of the second connection region 16.
  • the first and second electrical connection regions 13 and 16 are either printed or applied over the entire surface using a template and subsequently patterned in the desired manner by means of photolithography.
  • the first and second terminal regions 13 and 16 are formed of a metal or a metal compound,
  • the first and second terminal regions 13 and 16 include Au or Ag.
  • the heat generated during operation of the optoelectronic component 10 can be diverted perpendicularly to the layer sequence 17 into the base body 11 and additionally be led laterally to the layer sequence 17 into the base body 11 by means of the metal body 15 (see arrows 19).
  • the metal body 15 depending be formed by the respective requirement of the heat dissipation of the optoelectronic component 10 more or less bulky.
  • Optoelectronic components 10 for high current applications for example, have the edge length of 1 mm and at a supply voltage of 3 V to 4 V, for example, a current of 1 A to operate, the metal body 15 is particularly large volume and large area coupled to the second terminal portion 16 to the heat dissipated particularly efficiently to the body 11.
  • the reflective electrical contact structure 18 and the second electrical connection region 16 are electrically insulated from one another by means of the insulation 12, so that a short circuit between the two connection regions can be avoided.
  • the optoelectronic component 10 can also be designed such that the current distribution structure 14 is not coupled to the second electrical connection region 16 by means of the metal body 15.
  • the metal body 15 is typically used only for heat dissipation and can thus be applied directly to the base body 11, so that a particularly high heat dissipation is ensured.
  • FIG. 2A shows a further exemplary embodiment of an optoelectronic component 10 with a metal body 15 which surrounds all four side surfaces of the layer sequence 17 as a metal border (only the left and right side surfaces are shown in FIG. 2A), wherein the metal body 15 is not electrically coupled with the power distribution structure 14 on the base body 11th
  • the power distribution structure 14 by means of bonding wire with the second electrical connection portion 16 may be electrically coupled (not shown), the bonding wire, for example, a corner of at least one rectangle or square whose outline is formed by the contact webs assigned.
  • the bonding wire can be assigned to a common corner point of several squares and / or rectangles.
  • the efficiency of the lateral heat dissipation in the base body 11 can be increased, it being important to ensure that the metal body 15 is not simultaneously electrically coupled to the first and second electrical connection area 13 and 16.
  • the optoelectronic component 10 is further characterized in that it comprises a converter layer 20a designed as a luminescence conversion layer with at least one phosphor.
  • a converter layer 20a designed as a luminescence conversion layer with at least one phosphor.
  • a phosphor for example, inorganic phosphors are suitable, the rare earths, in particular with Ce or Tb, doped garnets, which preferably have a basic structure A 3 B 5 Oi 2 , or organic phosphors, such as perylene phosphors.
  • the converter layer 20a is coupled by means of a transparent intermediate layer 21 to the surface of the layer sequence 17 facing away from the main body 11.
  • the transparent intermediate layer is formed as a passivation layer.
  • the transparent intermediate layer 21 is preferably thermally conductive, ie, formed with a low thermal resistance, and further thermally conductively coupled to the metal body 15.
  • Such a training of Optoelectronic component 10 is particularly suitable for dissipating the generated heat of the layer sequence 17 and a heat generated by the phosphor of the converter layer 20a, which is generated during the conversion of the primary radiation into the secondary radiation, in particular at a primary radiation in the UV wavelength range, to the main body 11th derive.
  • the metal body 15 is formed and shaped such that it has a reflective effect on the metal body edges 22 which are assigned to the main emission direction of the emitted electromagnetic radiation of the layer sequence 17 and thus advantageously influences the emission characteristic of the optoelectronic component 10.
  • the metal body 15 constitutes a housing of the optoelectronic component 10 to which additional optical elements and / or layers, such as e.g. optical lenses and / or cover layers can be applied with beam-forming properties.
  • a converter ceramic 20b is applied to the metal body 15.
  • a converter ceramic is in particular a base plate, comprising as a base material, for example, a ceramic in which a phosphor is introduced, which absorbs primary radiation of a first wavelength and converts it into secondary radiation of a further wavelength different from the first wavelength.
  • the phosphor for example, the above-mentioned inorganic phosphors are suitable.
  • the metal body 15 is used in the embodiment of Figure 2B as a support carrier of the converter ceramic 20b.
  • a heat generated by the phosphor of the converter ceramic 20b which is generated during the conversion of the primary radiation into the secondary radiation, in particular with a primary radiation in the UV wavelength range, can be dissipated to the main body 11.
  • Air can be arranged between the converter ceramic 20b and the layer sequence 17. Air has a low thermal conductivity, so that a thermal insulation between the converter ceramics 20b and the layer sequence 17 can be achieved.
  • the converter layer 20b according to the embodiment of FIG. 2A can be connected to the surface of the layer sequence 17 facing away from the main body 11 by means of a transparent intermediate layer.
  • FIG. 2B is identical to the embodiment of FIG.
  • FIG. 3 shows a plan view of an optoelectronic component 10.
  • the first and second electrical connection region 13 and 16 of the optoelectronic component 10 are applied.
  • the first electrical connection region 13 is electrically coupled to the reflective electrical contact structure 18 (not shown).
  • the second electrical connection region 16 is electrically coupled to the current distribution structure 14 by means of the metal body 15.
  • the current distribution structure 14 is applied as a rectangular structure on the surface of the layer sequence 17 facing away from the base body, for example by means of a galvanic process.
  • the current can be supplied in a particularly homogeneous manner to the layer sequence 17 in order to ensure a particularly homogeneous emission characteristic, in particular in the case of large-area optoelectronic components.
  • the current distribution structure '14 may alternatively also be arranged in the form of concentric square or squares and / or rectangles with at least one common vertex.
  • the main body 15 encloses the layer sequence 17 on three side surfaces and thereby ensures a particularly good heat dissipation into the base body 11. A border of all four side surfaces of the layer sequence 17 is possible.
  • FIG. 4 shows a further optoelectronic component 10 with the layer sequence 17 and a current distribution structure 14 applied thereto.
  • FIG. 4 shows a further exemplary embodiment in which the metal body 15 is not applied galvanically, but applied as a metal mask to the insulation 12 of the layer sequence 17 becomes.
  • the metal body 15 formed as a metal mask typically comprises a recess in the form of the layer sequence 17 and can be applied directly to the insulation 12 of the layer sequence 17, for example by being soldered or glued.
  • the metal body 15 formed as a metal mask may be formed such that only one side surface of the layer sequence 17 is covered with the metal body 15.
  • the metal mask may also be annular, so that more than one side surface is covered by the metal body 15.
  • the application of the metal body 15 formed as a metal mask is particularly advantageous if the metal mask more Recesses in the form of the layer sequence 17 and thus a composite of layer sequences 17 of optoelectronic devices 10 are provided on a common base body 11 with a metal body 15, for example. Such a production of optoelectronic components is particularly cost-effective.
  • the optoelectronic component 10 may be designed such that the first electrical connection region 13 is coupled to the surface of the layer sequence assigned to the main body 15 by means of a non-reflective electrical contact structure 18.
  • the base body 11 may be transparent, such as e.g. be formed with glass, or with a Ausnaturalüng in the form of the layer sequence 17 so that the optoelectronic component 10 emits the electromagnetic Strählung in a the base body 11 facing away from the emission direction and the base body 11 facing emission direction. Even with such a design of the optoelectronic component 10, it is ensured that the heat is dissipated laterally into the main body 11 by means of the metal body 15.
  • FIG. 5 shows a plan view of a composite of a plurality of optoelectronic components 10 on a base body 11.
  • Each of the illustrated optoelectronic components 10 comprises the first and second electrical connection regions 13 and 16.
  • the individual optoelectronic components 10 can be interconnected electrically, for example in series.
  • the electrical contacting of the respective optoelectronic components 10 may, for example, by means of Photolithographic process done.
  • a metal body 15 formed as a metal mask which has a plurality of recesses for all layer sequences 17 of the composite of optoelectronic components 10, is conceivable.
  • Each of the optoelectronic components 10 in each case comprises a metal body 15 on an insulation 12 formed as an insulation layer or as an insulation layer sequence.
  • a metal body 15 on an insulation 12 formed as an insulation layer or as an insulation layer sequence.
  • Such a configuration of the individual optoelectronic components 10 makes the required area of the respective optoelectronic component 10 particularly low, and thus the component density can be on a predetermined basic body 11 are designed to be particularly high.
  • the metal body 15 may also be designed in the form of a ring around the layer sequence 17.
  • the optoelectronic components 10 shown in FIG. 5 are rectangular. But other forms of the optoelectronic components 10 are conceivable, such as a hexagonal shape or a round shape. In particular, with regard to optimum heat dissipation and / or optimal use of the predetermined surface of the base body 11 is to decide which form is most suitable form.
  • the composite of optoelectronic devices 10 shown in Figure 5 may be populated with additional electronic devices, e.g. Capacitors, resistors and / or inductors.
  • the additional electronic components may be arranged to a predetermined circuit arrangement for driving the optoelectronic components, such. for current limiting or brightness control.

Landscapes

  • Led Device Packages (AREA)
  • Electroluminescent Light Sources (AREA)
PCT/DE2008/002036 2007-12-20 2008-12-04 Optoelektronisches bauelement Ceased WO2009079978A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2008801217028A CN101904022B (zh) 2007-12-20 2008-12-04 光电子器件
EP08864112.1A EP2223354B1 (de) 2007-12-20 2008-12-04 Optoelektronisches bauelement
US12/809,682 US8476667B2 (en) 2007-12-20 2008-12-04 Optoelectronic component
JP2010538326A JP5568476B2 (ja) 2007-12-20 2008-12-04 オプトエレクトロニクス部品

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102007061480.4 2007-12-20
DE102007061480 2007-12-20
DE102008011809A DE102008011809A1 (de) 2007-12-20 2008-02-29 Optoelektronisches Bauelement
DE102008011809.5 2008-02-29

Publications (1)

Publication Number Publication Date
WO2009079978A1 true WO2009079978A1 (de) 2009-07-02

Family

ID=40690045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2008/002036 Ceased WO2009079978A1 (de) 2007-12-20 2008-12-04 Optoelektronisches bauelement

Country Status (8)

Country Link
US (1) US8476667B2 (enExample)
EP (1) EP2223354B1 (enExample)
JP (1) JP5568476B2 (enExample)
KR (1) KR20100099309A (enExample)
CN (1) CN101904022B (enExample)
DE (1) DE102008011809A1 (enExample)
TW (1) TWI431806B (enExample)
WO (1) WO2009079978A1 (enExample)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243709A (ja) * 2010-05-17 2011-12-01 Panasonic Corp 発光モジュール及びこれを備えた照明装置
DE102010045390A1 (de) 2010-09-15 2012-03-15 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauteil und Verfahren zur Herstellung eines optoelektronisches Halbleiterbauteils
DE102011017633A1 (de) * 2011-04-27 2012-10-31 Osram Ag Verfahren zum Bilden einer Leuchtstoffanordnung und dazugehörige Leuchtstoffanordnung

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013205179A1 (de) * 2013-03-25 2014-09-25 Osram Gmbh Verfahren zum Herstellen einer elektromagnetische Strahlung emittierenden Baugruppe und elektromagnetische Strahlung emittierende Baugruppe
DE102013112826B4 (de) * 2013-11-20 2021-08-05 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronisches Bauelement umfassend eine Haftschicht und Verfahren zur Herstellung einer Haftschicht in einem optoelektronischen Bauelement
DE102014116080A1 (de) * 2014-11-04 2016-05-04 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zu seiner Herstellung
EP3268995B1 (en) 2015-03-11 2019-09-18 Koninklijke Philips N.V. Light emitting device cooling
DE102017102247A1 (de) 2017-02-06 2018-08-09 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauteil und Herstellungsverfahren hierfür
IT201700070601A1 (it) * 2017-06-23 2018-12-23 Laser Point S R L Rilevatore veloce di radiazione elettromagnetica.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3991339A (en) * 1975-05-27 1976-11-09 Rca Corporation Light emitting diode with reflector
US20030085654A1 (en) * 2001-11-02 2003-05-08 Seiko Epson Corporation Electro-optical apparatus, manufacturing method thereof, and electronic instrument
US20060273335A1 (en) * 2004-07-12 2006-12-07 Hirokazu Asahara Semiconductor light emitting device
WO2007025521A2 (de) * 2005-08-30 2007-03-08 Osram Opto Semiconductors Gmbh Verfahren zur herstellung eines halbleiterbauelements mit einer planaren kontaktierung und halbleiterbauelement
WO2008093880A1 (ja) * 2007-02-02 2008-08-07 Sanyo Electric Co., Ltd. 半導体装置及びその製造方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19640594B4 (de) 1996-10-01 2016-08-04 Osram Gmbh Bauelement
JPH10294493A (ja) 1997-02-21 1998-11-04 Toshiba Corp 半導体発光デバイス
DE10040448A1 (de) 2000-08-18 2002-03-07 Osram Opto Semiconductors Gmbh Halbleiterchip und Verfahren zu dessen Herstellung
JP2003324214A (ja) * 2002-04-30 2003-11-14 Omron Corp 発光モジュール
US6650018B1 (en) * 2002-05-24 2003-11-18 Axt, Inc. High power, high luminous flux light emitting diode and method of making same
DE10234978A1 (de) 2002-07-31 2004-02-12 Osram Opto Semiconductors Gmbh Oberflächenmontierbares Halbleiterbauelement und Verfahren zu dessen Herstellung
CN1672260A (zh) 2002-07-31 2005-09-21 奥斯兰姆奥普托半导体有限责任公司 可表面安装的半导体器件及其制造方法
JP4233280B2 (ja) * 2002-08-02 2009-03-04 株式会社沖デジタルイメージング Ledアレイ
US6958498B2 (en) * 2002-09-27 2005-10-25 Emcore Corporation Optimized contact design for flip-chip LED
JP2004140185A (ja) * 2002-10-17 2004-05-13 Matsushita Electric Ind Co Ltd 発光装置
US7420218B2 (en) * 2004-03-18 2008-09-02 Matsushita Electric Industrial Co., Ltd. Nitride based LED with a p-type injection region
JP2006093672A (ja) * 2004-08-26 2006-04-06 Toshiba Corp 半導体発光装置
EP1635403B1 (de) * 2004-09-08 2013-04-03 Asetronics AG Isoliertes Metallsubstrat mit mehreren Leuchtdioden
US7274040B2 (en) * 2004-10-06 2007-09-25 Philips Lumileds Lighting Company, Llc Contact and omnidirectional reflective mirror for flip chipped light emitting devices
JP4579654B2 (ja) * 2004-11-11 2010-11-10 パナソニック株式会社 半導体発光装置及びその製造方法、並びに半導体発光装置を備えた照明モジュール及び照明装置
JP2006173433A (ja) * 2004-12-17 2006-06-29 Ube Ind Ltd 光変換用セラミック複合体およびそれを用いた発光装置
KR100672316B1 (ko) * 2005-02-22 2007-01-24 엘지전자 주식회사 유기 el 소자
JP2006278766A (ja) 2005-03-29 2006-10-12 Seiko Epson Corp 発光素子の実装構造及び実装方法
DE102005025416A1 (de) * 2005-06-02 2006-12-14 Osram Opto Semiconductors Gmbh Lumineszenzdiodenchip mit einer Kontaktstruktur
JP4640010B2 (ja) * 2005-07-19 2011-03-02 カシオ計算機株式会社 照明装置及び液晶表示モジュール
TWI331406B (en) * 2005-12-14 2010-10-01 Advanced Optoelectronic Tech Single chip with multi-led
TW200744227A (en) * 2006-05-19 2007-12-01 Chen Shiang Mian White LED light source and manufacturing method of fluorescent powder thereof
DE102007004301A1 (de) 2006-08-04 2008-02-07 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines Halbleiterbauelements und Dünnfilm-Halbleiterbauelement
JP2008135694A (ja) * 2006-10-31 2008-06-12 Hitachi Cable Ltd Ledモジュール
DE102007030129A1 (de) 2007-06-29 2009-01-02 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung einer Mehrzahl optoelektronischer Bauelemente und optoelektronisches Bauelement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3991339A (en) * 1975-05-27 1976-11-09 Rca Corporation Light emitting diode with reflector
US20030085654A1 (en) * 2001-11-02 2003-05-08 Seiko Epson Corporation Electro-optical apparatus, manufacturing method thereof, and electronic instrument
US20060273335A1 (en) * 2004-07-12 2006-12-07 Hirokazu Asahara Semiconductor light emitting device
WO2007025521A2 (de) * 2005-08-30 2007-03-08 Osram Opto Semiconductors Gmbh Verfahren zur herstellung eines halbleiterbauelements mit einer planaren kontaktierung und halbleiterbauelement
WO2008093880A1 (ja) * 2007-02-02 2008-08-07 Sanyo Electric Co., Ltd. 半導体装置及びその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243709A (ja) * 2010-05-17 2011-12-01 Panasonic Corp 発光モジュール及びこれを備えた照明装置
DE102010045390A1 (de) 2010-09-15 2012-03-15 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauteil und Verfahren zur Herstellung eines optoelektronisches Halbleiterbauteils
WO2012034764A1 (de) 2010-09-15 2012-03-22 Osram Opto Semiconductors Gmbh Galvanisch beschichtetes optoelektronisches halbleiterbauteil und verfahren zur herstellung eines optoelektronisches halbleiterbauteils
US9041020B2 (en) 2010-09-15 2015-05-26 Osram Opto Semiconductors Gmbh Electrolytically coated optoelectronic semiconductor component and method for producing an optoelectronic semiconductor component
DE102011017633A1 (de) * 2011-04-27 2012-10-31 Osram Ag Verfahren zum Bilden einer Leuchtstoffanordnung und dazugehörige Leuchtstoffanordnung

Also Published As

Publication number Publication date
TW200943588A (en) 2009-10-16
DE102008011809A1 (de) 2009-06-25
US8476667B2 (en) 2013-07-02
CN101904022A (zh) 2010-12-01
KR20100099309A (ko) 2010-09-10
TWI431806B (zh) 2014-03-21
JP2011507285A (ja) 2011-03-03
EP2223354B1 (de) 2017-07-05
US20100308362A1 (en) 2010-12-09
JP5568476B2 (ja) 2014-08-06
EP2223354A1 (de) 2010-09-01
CN101904022B (zh) 2013-10-23

Similar Documents

Publication Publication Date Title
EP2223354B1 (de) Optoelektronisches bauelement
DE102008063757B4 (de) Halbleiterbauteil
EP2057681B1 (de) Leuchtdiodenanordnung und verfahren zur herstellung einer solchen
DE102006021648B4 (de) Licht emittierende Vorrichtung für Wechselspannung und Herstellungsverfahren dafür
EP2002176B1 (de) Optoelektronischer frontscheinwerfer
EP2297780B1 (de) Optoelektronisches modul mit einem trägersubstrat und einer mehrzahl von strahlung emittierenden halbleiterbauelementen und verfahren zu dessen herstellung
DE102007046337A1 (de) Optoelektronischer Halbleiterchip, optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelements
DE19832852A1 (de) Halbleiter-Lichtemissionsvorrichtung
EP2047525A2 (de) Dünnfilm-halbleiterbauelement und bauelement-verbund
DE202011110024U1 (de) Weisslichtgerät
DE102004050371A1 (de) Optoelektronisches Bauelement mit einer drahtlosen Kontaktierung
WO2009132618A1 (de) Oberflächenmontierbares leuchtdioden-modul und verfahren zur herstellung eines oberflächenmontierbaren leuchtdioden-moduls
EP2258000A1 (de) Optoelektronisches halbleiterbauteil und verfahren zur herstellung eines optoelektronischen halbleiterbauteils
WO2015036231A1 (de) Optoelektronisches halbleiterbauteil und verfahren zur herstellung eines optoelektronischen halbleiterbauteils
WO2009039816A1 (de) Strahlungsemittierendes bauelement mit glasabdeckung und verfahren zu dessen herstellung
DE112015005127B4 (de) Optoelektronisches Halbleiterbauteil und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauteils
WO2016180732A1 (de) Verfahren zur herstellung optoelektronischer bauelemente und oberflächenmontierbares optoelektronisches bauelement
DE102007054800B4 (de) Lumineszenzdiodenchip mit Lumineszenzkonversionsvorrichtung und Verfahren zum Herstellen von Lumineszenzdiodenchips mit Lumineszenzkonversionsvorrichtung
DE112018001205B4 (de) Verfahren zur Herstellung eines optoelektronischen Bauelements und optoelektronisches Bauelement
DE102011111980A1 (de) Verfahren zur Herstellung einer Leuchtdiode und Leuchtdiode
WO2018146084A1 (de) Led-einheit
WO2012055661A1 (de) Optoelektronisches halbleiterbauelement mit einem halbleiterchip, einem trägersubstrat und einer folie und ein verfahren zu dessen herstellung
EP2304816B1 (de) Elektrolumineszierende vorrichtung und verfahren zur herstellung einer elektrolumineszierenden vorrichtung
DE102017120385A1 (de) Licht emittierendes Bauelement und Verfahren zur Herstellung eines Licht emittierenden Bauelements
WO2017012956A1 (de) Optoelektronisches bauelement, verbund von optoelektronischen bauelementen und verfahren zur herstellung eines optoelektronischen bauelements

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880121702.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08864112

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010538326

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2008864112

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008864112

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107016078

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12809682

Country of ref document: US