WO2009069830A1 - 燃料タンク用鋼板およびその製造方法 - Google Patents

燃料タンク用鋼板およびその製造方法 Download PDF

Info

Publication number
WO2009069830A1
WO2009069830A1 PCT/JP2008/072107 JP2008072107W WO2009069830A1 WO 2009069830 A1 WO2009069830 A1 WO 2009069830A1 JP 2008072107 W JP2008072107 W JP 2008072107W WO 2009069830 A1 WO2009069830 A1 WO 2009069830A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
layer
chromate
amount
Prior art date
Application number
PCT/JP2008/072107
Other languages
English (en)
French (fr)
Inventor
Michitaka Sakurai
Nobuo Baba
Chiyoko Tada
Masayasu Nagoshi
Wataru Tanimoto
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to EP08854204.8A priority Critical patent/EP2233610B1/en
Priority to BRPI0819870-5A priority patent/BRPI0819870B1/pt
Priority to MX2010005154A priority patent/MX2010005154A/es
Priority to CN200880118382.0A priority patent/CN101878325B/zh
Publication of WO2009069830A1 publication Critical patent/WO2009069830A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • C23C22/33Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/565Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils

Definitions

  • the present invention is mainly used for steel plates for fuel tanks, especially when gasoline contains a small amount of water, or when formic acid is generated due to deterioration of gasoline, under high environmental conditions including highly corrosive metal and organic acids.
  • the present invention relates to a fuel tank copper plate and a manufacturing method thereof.
  • materials for gasoline tanks such as automobiles and motorcycles include tin (Sn) -lead (Pb) containing 20 mass% or less of lead (Pb) as disclosed in Japanese Patent Publication No. 57-61833, for example.
  • Pb tin
  • Pb lead
  • Mainly used are steel plates plated with alloys, or multi-layered steel plates in which a Sn—Pb alloy is melted onto a nickel (Ni) electroplated layer.
  • Sn_Pb alloy-plated steel sheet has excellent workability and chemical resistance to gasoline, etc., but the plating layer is soft and easily damaged, and electrochemically more iron (Fe). Because it is noble, it has no sacrificial anticorrosive action on Fe. Therefore, when a gasoline tank using Sn—Pb alloy steel plate is used in an environment containing moisture, if there are defects such as pinholes and cracks in the plating layer, pitting corrosion will occur on the steel plate and gasoline will leak. Problems such as clogging of the combustion filter occur due to red soot caused by corrosion.
  • alcohols such as methyl alcohol, ethyl alcohol or methyl-t-butyl ether and derivatives thereof (hereinafter also referred to as alcohols) themselves, or these Mixed gasoline may be used.
  • Sn-Pb alloy steel plates are easily corroded by alcohol oxides and impurities such as water, formaldehyde, acetoaldehyde, formic acid and Z or acetic acid contained in alcohols. It is unsuitable as a material for use.
  • the plating layer does not have a sacrificial anti-corrosion effect on Fe, so even if the outer surface is applied, local corrosion resistance decreases due to plating peeling or mold galling. Sometimes.
  • Sn_Pb alloy-plated steel sheets have a low secondary adhesion at the interface between the coating and the plating. Or it may cause swelling of the paint film.
  • JP 2005-290556 discloses a steel plate for fuel tanks that does not use Pb.
  • a chromate-treated steel sheet that suppresses the elution of hexavalent Cr has been proposed.
  • This steel sheet has an electric Zn-Ni alloy plating layer containing 5 to 30 mass% of Ni and having an adhesion amount per surface of 1 to 40 g / m 2 on at least one side of the steel sheet.
  • a chrome film is provided on the surface layer, and the chrome film has a change in the amount of chromium deposited after being immersed in boiling water for 30 minutes within 2% of the amount of chromium deposited before immersion.
  • the chromate film has a chromic acid with a mass ratio (trivalent chromium) / (total chromium) of more than 0.5 on the alloy plating layer, and a mass ratio (phosphoric acid) / (total chromium).
  • the object of the present invention is to provide fuel tanks with excellent corrosion resistance over a long period of time, without using Pb, to fuels such as gasoline, alcohols and alcohol-mixed gasoline, and with a good surface.
  • the object is to provide a steel plate and a method for producing the same. Disclosure of the invention
  • the gist of the present invention is as follows.
  • At least one surface of the steel sheet has an electro-zinc-nickel alloy plating layer, and further has a chromate coating on the alloy plating layer, and the chromat coating is in boiling water for 30 minutes.
  • the change in the amount of chromium after immersion is within 2% of the amount of deposit before the immersion.
  • a steel plate for fuel tanks characterized by an L value of 55 or more, and a difference between the maximum and minimum L values of 4 or less.
  • the thickness of the Zn oxide layer on the surface of the alloy is 20 nm or less, and the P content of the Zn oxide layer is 1% or less in terms of atomic% (denoted as at%).
  • An electric Zn—Ni alloy plating layer is formed on at least one surface of the steel plate, the thickness of the Zn oxide layer of the alloy plating surface layer is 20 nm or less, and the P content of the Zn oxide layer is 31%.
  • the chromic acid having a mass ratio (trivalent chromium) / (total chromium) of more than 0.5 is formed on the upper layer of the alloy plating layer, and the mass ratio (phosphoric acid) / (total chromium).
  • a method for producing a steel plate for a fuel tank comprising applying a chromate treatment solution containing 0.1 to 5.0 phosphoric acid and an organic reducing agent and heating.
  • An electric Zn—Ni alloy plating layer is formed on at least one surface of the steel sheet, and the average crystal grain size of the surface of the alloy plating phase is set to 0.8 / zm or more.
  • Chromate treatment containing chromic acid with a mass ratio (trivalent chromium) / (total chromium) of more than 0.5, phosphoric acid with a mass ratio (phosphoric acid) / (total chromium) of 0.1 to 5.0 and an organic reducing agent in the upper layer A method for producing a steel plate for a fuel tank, characterized by applying a liquid and heating.
  • Fig. 1 is a photograph showing the surface of an electroplated Zn-Ni alloy plating layer when the plating crystal grain size is 1.0 // m (Example 1).
  • Fig. 2 is a photograph showing the surface of the electroplated Zn-Ni alloy plating layer when the crystal grain size is 0.3 / im (Example 1).
  • an electric Zn_Ni alloy-plated steel sheet has better corrosion resistance against fuels such as gasoline, alcohols and alcohol-mixed gasoline.
  • the chromate film is a film in which the change in the amount of Cr deposited after immersion in boiling water for 30 minutes is within 2% of the amount of Cr deposited before immersion, a small amount of water is contained in the gasoline. Even when used in an environment containing organic acids with high metal corrosivity, such as when formic acid is produced due to gasoline deterioration, elution of Cr can be reliably prevented.
  • the Zn oxide layer thickness of the surface layer of the Zn-Ni alloy adhesive layer should be 20 nm or less.
  • the P content in the oxide layer is preferably 31% and 1% or less.
  • the Zn-Ni alloy average crystal grain size should be 0.8 / zm or more.
  • -It is preferable to form a predetermined chromate film after forming the Ni alloy plating layer.
  • the electric ⁇ -Ni alloy plating layer is different from conventional gasoline, that is, alcohol such as alcohols and alcohols containing alcohol, alcohol such as formaldehyde, acetoaldehyde, formic acid Z or acetic acid. Effectively suppresses corrosion caused by oxides and impurities. Therefore, it is necessary to form this electric Zn_Ni alloy plating layer at least on the surface of the steel sheet in contact with the fuel.
  • the electroplated Zn—Ni alloy plating layer is not particularly specified, but it is desirable that Ni is contained in an amount of 5 to 30 mass% and the adhesion amount per side is 1 to 40 g / m 2 .
  • the amount of Ni in the plating layer should be 5-30 mass%. Also, if the coating amount per side of the plating layer is less than 1 g / m 2 , sufficient corrosion resistance cannot be obtained, while if it exceeds 40 g / m 2 , the press workability may deteriorate. Therefore, the adhesion amount per one side of the plating layer is desirably 1 to 40 g / m 2 . ,
  • the thickness of the Zn oxide layer on the surface of the Zn—Ni alloy plating layer is preferably 20 nm or less, and the P content contained in the Zn oxide layer is preferably 1% or less in at%. With such a configuration, ⁇ after the chromate treatment can be kept stable.
  • the L value representing the color tone of the steel sheet surface is 55 or more, and the difference between the maximum value and the minimum value is 4 or less.
  • the surface state of the electroplated Zn-Ni alloy plating layer before the chromate treatment is as follows: Zn oxide layer is 20 nm or less, and the P content of the Zn oxide layer is 31%, 1% It's preferable to be below. If the thickness of the oxide layer exceeds 20 nm and the P content in the oxide layer exceeds 1% at%, the color tone of the plating film itself becomes slightly dark and the surface of the plated crystal is very Fine irregularities are formed on the surface, and light interference is suppressed by suppressing irregular reflection of light.
  • the oxide layer is preferably lower than 2 Onm.
  • the time from applying electro-Zn-Ni to applying chromate treatment must be within 120 hours. Is preferred. This is because when the time exceeds 120 hours, the thickness of the oxide film exceeds 20 nm, so that the color tone of the plating film itself becomes dark and the difference in color tone is promoted.
  • the thickness of the oxide or hydroxide layer can be determined by Auger electron spectroscopy (AES) combined with Ar ion sputtering. After sputtering to a predetermined depth, the composition at that depth can be determined by correcting the relative sensitivity factor from the peak intensity of each element to be measured.
  • the O content due to oxides or hydroxides decreases and becomes constant after it reaches its maximum value at a certain depth (this may be the outermost layer).
  • the thickness of the oxide layer is the sum of the maximum value and the constant value at a position where the O content is deeper than the maximum value.
  • the sputtering time for 1Z2 can be determined by conversion based on the sputtering rate of an SiO 2 film with a known film thickness.
  • the P content can be determined by X-ray photoelectron spectroscopy (XPS) combined with Ar ion sputtering. By performing the same measurement, the P concentration profile in the depth direction was obtained, and the value at which the P concentration was the maximum with respect to the depth corresponding to the thickness of the oxide layer was determined as the P content of the oxide layer. did.
  • XPS X-ray photoelectron spectroscopy
  • the average crystal grain size of the surface of the Zn—Ni alloy plating layer is preferably 0.8 / zm or more. With such a configuration, ⁇ after chromate treatment can be kept stable.
  • the L value representing the color tone of the steel sheet surface is 55 or more, and the difference between the maximum value and the minimum value is 4 or less.
  • the Zn oxide layer is 20 nm or less and the P content of the Zn oxide layer is aty. Or less, or the crystal grain size of the surface of the Zn—Ni alloy plating layer on which the chromate film is applied is preferably 0.8 ⁇ m or more.
  • the crystal grain size is less than 0.8 / zm, the color tone of the plating film itself becomes slightly blackish, and the light reflection is suppressed by suppressing the irregular reflection of light.
  • the crystal grain size is 0.8 zm or more, the color tone of the plating film itself becomes slightly whitish, and light interference is likely to occur, and light interference is less likely to occur.
  • the average crystal grain size can be obtained as a circle-equivalent grain size by observing 3000 to 20000 times scanning electron micrographs and counting the number of crystals per unit area.
  • the chromate film of the present invention is a film in which the change in the amount of Cr deposited after immersion for 30 minutes in boiling water is within 2% of the amount of deposit deposited before immersion. With such a coating, even if used in an environment containing highly corrosive organic acids, Cr elution can be reliably prevented, and excellent corrosion resistance against fuels such as gasoline can be obtained.
  • the change in Cr adhesion after immersion in boiling water for 30 minutes is based on the boiling water resistance test described in 8.20 of JIS K 5400-1990. It can be determined by measuring by X-ray fluorescence. In the X-ray fluorescence method, the amount of Cr deposited is determined from a Cr count and a calibration curve for the amount of Cr deposited in advance using a standard sample with a known amount of Cr deposited.
  • the type of elution liquid, elution temperature and elution time such as Volvo Leach Test (Volvo Standard News 199 1.10), are determined and evaluated by the concentration of Cr eluted in the liquid.
  • the L value representing the color tone of the steel sheet surface is 55 or more, and the difference between the maximum value and the minimum value of the L value is 4 or less, preferably 3 or less.
  • Chromated steel sheets, especially trivalent chromium chromated steel sheets, often exhibit interference colors. The interference color ideally depends on the film thickness of the oxide film, and the relationship “reflected light + transmitted light white (complementary color relationship)” holds. Therefore, when the oxide film thickness of the steel plate fluctuates, interference color unevenness may occur, and the surface will be damaged.
  • the amount of deposition of the chromate film is preferably in the range of 10 ⁇ 50 m g / m 2 of metal Cr terms, unevenness in interference color is in the oxide film thickness tends to occur. Therefore, in the present invention, the L value representing the color tone of the copper plate surface is 55 or more, and the difference between the maximum value and the minimum value of the L value is within 4, preferably within 3. Larger L values increase whiteness, and smaller values increase blackness. When the difference between the maximum and minimum L values is within 4, the difference in color tone can be minimized and the surface appearance can be prevented from deteriorating. The lower limit of the L value is 55 or more because the difference in color tone seems to increase as the blackness increases.
  • the L value is less than 55, even if the difference between the maximum and minimum L values is within 4, the difference in color will be noticeable and the surface appearance will be impaired.
  • the L value can be measured by the method specified in JIS Z8722 (for example, Suga Test Instruments multi-light source spectrocolorimeter MSC-1S-2B).
  • the above-described chromate film of the present invention is not particularly limited as long as the color tone after treatment and the amount of elution from the mouth are within a predetermined range.
  • it can be formed by applying a chromate treatment liquid, which will be described later, onto the electroplated Zn—Ni alloy plating layer and then heating.
  • the adhesion amount of the chromate film is preferably 10 to 50 mg / m 2 in terms of metal Cr. This is because if it is less than 10 mg / m 2 , sufficient corrosion resistance cannot be obtained, while if it exceeds 50 mg / m 2 , the cost increases.
  • the steel sheet for a fuel tank of the present invention includes a step of forming an electric Zn_Ni alloy plating layer on at least one steel plate surface, and a step of forming a chromate film on the upper layer of the alloy plating layer.
  • the change in the amount of deposit after the chromate film is immersed in boiling water for 30 minutes is within 2% of the amount of chromium before immersion, and the L value representing the color tone of the copper plate surface is 55 or more.
  • the manufacturing method is not limited as long as the difference between the maximum and minimum L values is 4 or less.
  • the mass ratio of trivalent Cr to chromic acid and total Cr with a mass ratio ((trivalent chromium) / (total chromium)) exceeding 0.5 It can be produced by applying a chromate treatment solution containing phosphoric acid and an organic reducing agent having a ratio ((phosphoric acid) / (total chromium)) of 0.1 to 5.0 and heating.
  • the chromate film produced in this way has a problem that it is difficult to obtain a good appearance like a hexavalent chromate film.
  • Zn-Ni plating and chromate film were processed on separate lines, they were often defective.
  • a good surface can be obtained by making the surface condition before applying the chromate film appropriate.
  • One method is to apply an electroplated Zn-Ni alloy plating layer and reduce the thickness of the zinc oxide layer on the alloy plating surface to 20 nm or less before forming a chromate film on the upper layer.
  • the P content of the oxide layer may be 1% or less in at%. It was confirmed that a good appearance could be secured by using such a surface state. It is also possible to ensure a good appearance by forming a gold-plated layer so that the average crystal grain size of the surface of the electro-plated Zn-Ni alloy is 0.8 / xm and then forming a chromate film. I found.
  • Either or both of the control of the amount of the Zn oxide layer on the surface of the Zn-Ni plating layer and the P ratio in the oxide and the control of the average crystal grain size of the Zn-Ni plating surface may be used.
  • the plating conditions for forming the electroplated Zn—Ni alloy plating layer but the plating layer contains 5-30 mass% Ni and the plating layer adhesion is 1-40 g / m 2. It is preferable.
  • the method for suppressing the P content is not particularly limited, but a normal method may be used such as strengthening washing after degreasing or surface conditioning treatment or reducing the concentration of the treatment liquid.
  • a normal method may be used such as strengthening washing after degreasing or surface conditioning treatment or reducing the concentration of the treatment liquid.
  • a chromate treatment solution containing 1 to 5.0 phosphoric acid and an organic reducing agent is applied onto the electroplated Zn-Ni alloy plating layer and heated in the next layer.
  • Hexavalent Cr in the chromate treatment liquid reacts with the organic reducing agent during heating and is reduced to trivalent Cr. If the mass ratio of trivalent Cr to total Cr is 0.5 or less, the amount of hexavalent Cr Excessive amount of hexavalent Cr remains in the chromate film after heating. Therefore, ku This hexavalent Cr elutes when the mouth coating is immersed in boiling water, so the change in the amount of Cr deposited after immersion in boiling water for 30 minutes exceeds 2%, and it has excellent corrosion resistance against fuels such as gasoline. It can no longer be obtained.
  • the organic reducing agent to be contained in the chromate treatment solution it is preferable to use at least one selected from diols and saccharides.
  • diols particularly preferred are ethylene glycol, propylene glycol, trimethylene glycol, and 1,4-butanediol.
  • saccharides glycerin, polyethylene glycol, saccharose, ratatose, sucrose, glucose, or fructose are advantageously suitable.
  • This organic reducing agent is preferably contained in the chromate treatment liquid so that the mass ratio with respect to total Cr is 0.1 to 0.4. This is because if it is less than 0.1, a sufficient reduction effect cannot be obtained, while if it exceeds 0.1, the stability of the chromate treatment solution may not be maintained.
  • the organic reducing agent is preferably added to the chromate treatment solution immediately before the chromate treatment solution is applied in order to increase the stability of the chromate treatment solution.
  • the chromate treatment solution may contain an inorganic inhibitor as necessary.
  • inorganic inhibitors examples include inorganic colloids such as silica, Zr 0 2 , Ti0 2 , zirconium sulfate, and aluminum biphosphate, and heteropoly acids such as phosphomolybdic acid, key tungstic acid, and phosphovanadmolybdic acid. Illustrated. However, when these inorganic inhibitors are present in the chromate treatment solution, the reaction between hexavalent Cr and the organic reducing agent is delayed, and when the chromate film is immersed in boiling water, the elution of hexavalent Cr is promoted. The content is preferably less than 0.05 by mass ratio with respect to hexavalent Cr.
  • the chromate treatment solution may contain acids such as hydrofluoric acid, sulfuric acid, and hydrochloric acid for the purpose of promoting the reactivity with the electroplated Zn—Ni alloy plating layer.
  • the chromate treatment liquid may contain a water-soluble or water-dispersible polymer compound in order to further suppress Cr elution from the chromate film.
  • water-soluble or water-dispersible polymer compounds include polyvinyl alcohol, polyacrylic acid, polyacrylamide, epoxy ester polymer, melamine alkyd resin polymer, natural polymer compounds such as starch and gazein, Examples include partial hydrolysates of alkinosilicates, partial hydrolysates of alkyl phosphates, and silane compounds such as silane coupling agents and epoxy silanes.
  • water-soluble polymers and water-dispersible polymer compounds have an effect of suppressing Cr elution from the chromate film and a protective film against external mechanical shock, but the terminal functional group is hexavalent. Since it acts as a reducing agent for Cr-ion, to ensure the stability of the treatment liquid, the content is preferably less than 0.05 as a mass ratio with respect to hexavalent Cr.
  • the steel plate After applying chromate treatment solution, heat. At this time, it is preferable to heat the steel plate so that the temperature of the steel plate is 120 ° C or higher. Below 120 ° C, the reduction of Cr does not proceed sufficiently, and the amount of Cr eluted from the chromate film may increase when immersed in boiling water.
  • the aqueous solution containing Ti colloid is preferably applied with an aqueous solution containing pH: 7.5 to 10 and temperature: 40 to 60 ° C. containing Ti colloid at a concentration of 1 to 10 volppm for 1 to 30 seconds.
  • the steel plate used for the fuel tank steel plate according to the present invention is, for example, mass%, C: 0.0007 to 0.0050%, Si: 0.5% or less, Mn: 2.0% or less, P: 0.1. % Or less, S: 0.015% or less, A 1: 0.01 to 0.20%, N: 0.01% or less, Ti: 0.005 to 0.08%, and :: 0.001 to 0.00. 01%
  • a cold-rolled copper plate that is excellent in deep drawability and contains Fe and inevitable impurities is preferable.
  • the content is preferably set to 0.0050% or less. Further, even if the content is less than 0.0007%, the deep drawability is not improved, but rather the cost of the decarburization treatment is increased. Therefore, the C content is preferably set to 0.0007% or more and 0.0050% or less.
  • Si Since Si has an action of increasing the strength of steel, it can be added according to a desired strength. However, if the amount exceeds 0.5%, the deep drawability deteriorates, so the Si amount is preferably 0.5% or less.
  • Mn like Si
  • the Mn amount is preferably 2.0% or less.
  • the P segregates at the grain boundaries and strengthens the grain boundaries, thereby suppressing cracks in the weld and strengthening the steel.
  • the amount exceeds 0.1%, the deep drawability deteriorates. Therefore, the P amount is preferably 0.1% or less. In order to more reliably suppress cracks in the welded portion, it is more preferable that the P content be 0.01% or more and 0.05% or less.
  • the amount is preferably set to 0.015% or less.
  • A1 is added to deoxidize steel and improve the yield of carbonitride-forming elements such as Ti. However, if the amount is less than 0.01%, the effect of addition is poor, whereas if it exceeds 0.20% The effect is saturated. Therefore, the A1 amount is preferably 0.01% or more and 0.20% or less.
  • the amount is preferably 0.01% or less.
  • Ti has the effect of improving the deep drawability by forming precipitates with C and N in the steel and reducing solid solution C and N. However, if the amount is less than 0.005%, the effect is small, while if it exceeds 0.08%, the effect is saturated. Therefore, the Ti content is preferably set to 0.005% or more and 0.08% or less.
  • the B like P, has the effect of suppressing cracks in the weld. However, if the amount is less than 0.001%, the effect is small, while if it exceeds 0.01%, the deep drawability deteriorates. Accordingly, the B content is preferably 0.001% or more and 0.01% or less, and more preferably 0.001% or more and 0.004% or less.
  • weld cracking is presumed to be due to the liquid metal embrittlement, which is the main ingredient of the electrode, Cu, which is a squeezed zinc, which becomes liquid during welding and penetrates into the steel grain boundaries to embrittle the grain boundaries.
  • Cu which is a squeezed zinc
  • B and P tend to pray to the grain boundaries, so the grain boundaries are strengthened to suppress these weld cracks.
  • the balance is Fe and inevitable impurities.
  • the amount of inevitable impurities may be within a normal range, for example, O is 0.000% or less.
  • Example 1 In addition to the above components, addition of Nb in an amount of 0.0005 to 0.0005% or more is suitable for improving the deep drawability.
  • Nb in an amount of 0.0005 to 0.0005% or more is suitable for improving the deep drawability.
  • the average grain size of the plating layer surface is 1.0 / zni and 0.3 ⁇
  • a Zn—Ni alloy plating layer was formed.
  • Figures 1 and 2 show photographs of the surface with average grain sizes of 1. ⁇ and 0.3 / zm, respectively.
  • the average crystal grain size was determined as a circle equivalent grain size by observing 3000 to 20000 times scanning electron micrographs, counting the number of crystals per unit area.
  • the surface of the Zn oxide containing P is contained by neutralizing the acidic electroplating solution by immersing it in disodium hydrogen phosphate at 50 ° C and pH 10 and washing it with water. A layer was formed. On the other hand, the condition that the surface adjustment treatment is not performed was also performed.
  • the thickness of the oxide or hydroxide layer can be determined by Auger electron spectroscopy (AES) combined with Ar ion sputtering.
  • AES Auger electron spectroscopy
  • the content of each element on the surface is measured by AES, and after performing sputtering with Ar to a predetermined depth, the content of each element on the surface is measured by AES.
  • the composition distribution of each element in the vertical direction was measured.
  • the content of 0 due to oxides and hydroxides reaches a maximum at a certain depth and then decreases and becomes constant.
  • the oxide thickness was defined as the depth at which the 0 content was deeper than the maximum value and half the sum of the maximum value and the constant value.
  • Ar contamination was performed for 30 seconds to remove the contamination layer on the surface of the specimen.
  • the P concentration profile in the depth direction is obtained, and the P concentration is compared to the depth corresponding to the thickness of the oxide layer.
  • the maximum value was defined as the P content of the oxide layer.
  • the L value was measured by a method defined in JIS Z8722 (for example, a multi-light source spectrocolorimeter MSC-1S-2B manufactured by Suga Test Instruments Co., Ltd.).
  • the sample size 20 negation X 100 mm prior to processing the sample was processed in a blank diameter of 60 ⁇ , unleaded gasoline and Concentration: 500v O LPPM mass ratio and formic acid aqueous solution of 1: mixed fuel in 1, After immersion at room temperature for 1 month, the area ratio of red cocoon occurrence was measured and the average of these was obtained.
  • the corrosion resistance against gasoline was evaluated according to the following criteria.
  • Red cocoon occurrence area ratio is less than 50% (target of the present invention)
  • Red cocoon occurrence area ratio is 50% or more
  • the change in the amount of Cr deposited was determined by measuring the amount of Cr deposited before and after immersion in boiling water for 30 minutes using the fluorescent X-ray method based on the test for boiling water resistance described in 8.20 of JIS K 5400-1990. .
  • the Cr adhesion amount was determined from a Cr count number and a calibration curve for the Cr adhesion amount prepared in advance using a standard sample with a known Cr adhesion amount.
  • the gasoline resistance is excellent and the surface appearance is good.
  • the Cr elution resistance or the L value is outside the range of the present invention, so either the gasoline resistance or the surface appearance is inferior.
  • the steel sheet of the present invention has excellent corrosion resistance to fuels such as gasoline, alcohol fuel and alcohol-mixed gasoline, and also has a good surface.
  • fuels such as gasoline, alcohol fuel and alcohol-mixed gasoline
  • fuel such as gasoline tanks for automobiles and motorcycles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

燃料タンク用鋼板は、鋼板の少なくとも片面に、電気Zn−Ni合金めっき層を有し、さらに該合金めっき層の上にクロメート皮膜を有している鋼板である。そして、クロメート皮膜は、沸騰水に30分間浸漬後のクロム付着量の変化が浸漬前のクロム付着量の2%以内であり、鋼板表面の色調を表すL値が55以上、L値の最大値と最小値の差が3以内である。さらに、前記クロメート皮膜は、前記合金めっき層の上に、質量比(3価クロム)/(全クロム)が0.5超のクロム酸、質量比(りん酸)/(全クロム)が0.1~5.0のりん酸および有機還元剤を含有するクロメート処理液を塗布したのち、加熱して得ることができる。該燃料タンク用鋼板は、ガソリン、アルコール類およびアルコール類混合ガソリンなどの燃料に対して長期にわたって優れた耐食性を有し、さらに、表面外観が良好である。

Description

燃料タンク用鋼板およびその製造方法
技術分野
本発明は、主に燃料タンク用鋼板、特にガソリン中に微量の水が含まれ ¾場合や、 ガソリンの劣化により蟻酸が生成する場合など、 金属腐食性の高レ、有機酸を含む環 境下で使用される燃料タンク用銅板およびその製造方法に関するものである。
明 背景技術
従来より、 自動車や自動二輪車などのガソリンタンク用材料には、 例えば特公昭 57— 61833号公報に開示されているような 20mass%以下の鉛 (Pb)を含む錫(Sn)—鉛 (Pb)合金がめっきされた鋼板、 またはニッケル (Ni)の電気めつき層の上に Sn— Pb 合金が溶融めつきされた多層めつき鋼板が主に使用されている。
し力 し、 Sn_Pb合金めつき鋼板は、加工性に優れると同時にガソリンなどに対す る耐薬品性も優れているが、 めっき層は、 軟らかく傷つき易い上に、 電気化学的に 鉄 (Fe) より貴であるため、 Feに対する犠牲防食作用は有していない。 そのため、 Sn— Pb合金めつき鋼板を用いたガソリンタンクを水分を含む環境で使用した場合、 めっき層にピンホールゃクラックなどの欠陥が存在すると、 鋼板に孔食が生じてガ ソリンが漏れたり、 腐食により生じた赤鲭により燃焼フィルターが目詰まりすると いった問題が起こる。
近年、 石油事情の悪化を考慮して、 自動車用燃料として、 メチルアルコール、 ェ チルアルコールあるいはメチル— t—ブチルエーテルなどのアルコールやその誘導 体 (以下、 これらをアルコール類とも呼ぶ) そのもの、 あるいはこれらを混合した ガソリンが用いられる場合がある。 し力 し、 Sn— Pb合金めつき鋼板は、 アルコール 類に含まれる水分、 ホルムアルデヒド、 ァセトアルデヒド、 蟻酸および Zまたは酢 酸などのアルコール酸化物や不純物によって、 腐食され易いため、 こうした燃料タ ンク用材料としては不適当である。 また、 Sn—Pb合金めつき銅板をプレス加工すると、 めっき層には Feに対する犠 牲防食作用がないため、 たとえ外面塗装を施してもめっき剥離や型かじりにより局 所的な耐食性の低下が生じることがある。 さらに、 Sn_Pb合金めつき鋼板では、 塗 膜とめっきとの界面の 2次密着力が小さいため、 例えば二輪車の走行時に燃料タン クに石が当った衝撃により塗膜が剥離して赤鲭が発生したり、 塗膜膨れを引き起こ すことがある。
一方、 昨今の環境問題から、 Pbや 6価クロム (Cr) などの有害物質の使用を控え る動きがあり、 特開 2005 - 290556号公報には、 Pbを使用しない燃料タンク用鋼板と して、 6価 Crの溶出を抑制したクロメート処理鋼板が提案されている。
この鋼板は、 鋼板の少なくとも片面に、 Niを 5〜30mass%含み、 かつ片面当たり の付着量が 1〜40g/m2である電気 Zn-Ni合金めつき層を有し、さちに該合金めつき 層の上にクロメ一ト皮膜を有し、該クロメ一ト皮膜は、沸騰水に 30分間浸漬後のク ロム付着量の変化が、 浸漬前のクロム付着量の 2 %以内である。 そして、 前記クロ メート皮膜は、 該合金めつき層の上に、 質量比 (3価クロム) / (全クロム) が 0. 5超のクロム酸、 質量比 (りん酸) / (全クロム) が 0. 1〜5. 0のりん酸および有機 還元剤を含有するクロメート処理液を塗布したのち、 加熱して得たものである。 しかしながら、 この燃料タンク用鋼板においては、 クロメート皮膜面は干渉色を 呈し、 場合によっては、 鋼板の面内において、 部分的に色調が異なり、 表面外観に 劣る場合があることが判明した。
本発明の目的は、 Pbを使用することなく、 ガソリン、 アルコール類およびアルコ ール類混合ガソリンなどの燃料に対して長期にわたって優れた耐食性を有し、 さら に、表面^が良好な燃料タンク用鋼板およびその製造方法を提供することにある。 発明の開示
本発明の要旨は以下の通りである。
[ 1 ]鋼板の少なくとも片面に、電気 Zn— Ni合金めつき層を有し、 さらに該合金め つき層の上にクロメ一ト皮膜を有し、該クロメ一ト皮膜は、沸騰水に 30分間浸漬後 のクロム付着量の変化が浸漬前のク口ム付着量の 2 %以内であり、 鋼板表面の色調 を表す L値が 55以上、 L値の最大値と最小値の差が 4以内であることを特徵とす る燃料タンク用鋼板。
[2] 前記 [1] において、 前記合金めつき表層の Zn酸化物層の厚さは 20nm以下 であり、 該 Zn酸化物層の P含有量は atomic % (at%と記す) で 1%以下であること を特徴とする燃料タンク用鋼板。
[3] 前記 [1] または [2] において、 前記合金めつき層の表面の平均結晶粒径 が 0.8 μ m以上であることを特徴とする燃料タンク用鋼板。
[4]鋼板の少なくとも片面に、電気 Zn— Ni合金めつき層を形成し、該合金めつき 表層の Zn酸化物層の厚さを 20nm以下、該 Zn酸化物層の P含有量を 31%で 1 %以下 とした後、 さらに、 前記合金めつき層の上層に、 質量比 (3価クロム) / (全クロ ム) が 0.5超のクロム酸、 質量比 (りん酸) / (全クロム) が 0.1〜5.0のりん酸お よび有機還元剤を含有するクロメート処理液を塗布し、 加熱することを特徴とする 燃料タンク用鋼板の製造方法。
[5]鋼板の少なくとも片面に、電気 Zn— Ni合金めつき層を形成し、該合金めつき 相の表面の平均結晶粒径を 0.8 /zm以上とした後、 さらに、 前記合金めつき層の上 層に、 質量比 (3価クロム) / (全クロム) が 0.5超のクロム酸、 質量比 (りん酸) / (全クロム)が 0.1〜5.0のりん酸および有機還元剤を含有するクロメート処理液 を塗布し、 加熱することを特徴とする燃料タンク用鋼板の製造方法。 図面の簡単な説明
図 1は、めっき結晶粒径 1.0//mの場合の電気 Zn-Ni合金めつき層表面を示す写真 である (実施例 1) 。
図 2は、めつき結晶粒径 0.3/imの場合の電気 Zn- Ni合金めつき層表面を示す写真 である (実施例 1) 。 発明を実施するための最良の形態
従来から、 Znめっき鋼板の防鲭のために、 めっき層上にクロメート処理によりク 口メート皮膜を形成させることが広く行われている。 本発明者等は、 このようなク ロメ一ト皮膜が形成された Znめつき鋼板の燃料タンクへの適用性について検討し たところ、 以下に述べる知見を得た。
(A) Znめっき鋼板としては、 電気 Zn_Ni合金めつき鋼板が、 ガソリン、 アルコ ール類およびアルコール類混合ガソリンなどの燃料に対してより優れた耐食性を有 する。
(B) クロメート皮膜としては、 沸騰水に 30分間浸漬後の Cr付着量の変化が浸漬 前の Cr付着量の 2 %以内の皮膜とすることにより、ガソリン中に微量の水が含まれ る場合や、 ガソリンの劣化により蟻酸が生成する場合など、 金属腐食性の高い有機 酸を含む環境下で使用される場合でも、 Crの溶出を確実に防止できる。
(C)鋼板表面のむらの発生度合いを評価する指標として、色調を表す L値と L値の 最大値と最小値の差を規定することにより、 表面^ Miの低下を防止できる。
(D)鋼板表面の L値と L値の最大値と最小値の差を所定量以下とするためには、 Z n-Ni合金めつき層の表層の Znの酸化物層厚さを 20nm以下とし、該酸化物層の P含 有量を 31%で 1 %以下とすることが好ましい。
(E) 鋼板表面の L値と L値の最大値と最小値の差を所定量以下とするためには、 Z n-Ni合金平均結晶粒径が 0 . 8 /z m以上になるように Zn- Ni合金めつき層を形成し た後に、 所定のクロメート皮膜を形成することが好ましい。
本発明は、 上記の知見に基づき開発されたもので、 以下にその詳細を述べる。
1 ) 電気 Zn_Ni合金めつき層'
電気 Ζη—Ni合金めつき層は、従来のガソリンとは異なる燃料、すなわちアルコール 類やアルコール類含有ガソリンなどの燃料に含まれる水分、 ホルムアルデヒド、 ァ セトアルデヒド、 蟻酸おょぴ Zまたは酢酸などのアルコール酸化物や不純物による 腐食を効果的に抑制する。従って、 この電気 Zn_Ni合金めつき層は、少なくとも燃 料と接触する鋼板面には形成する必要がある。
この時、 電気 Zn— Ni合金めつき層は、 特に規定するものではないが、 Niを 5〜3 0mass%含み、 かつ片面当たりの付着量が 1〜40g/m2であることが望ましい。
めっき層中の Ni量が 5 maSS%未満では、皮膜欠陥部からの腐食を抑制できず、十 分な耐食性が得られない場合がある。一方、 Ni量が 30mass%を超えるとめつき層が 硬くなり、 プレス加工時に割れが生じ、 この割れを起点として腐食が進行し易くな る。 従って、 めっき層中の Ni量は 5 ~30mass%が望ましレ、。 また、 めっき層の片面 当たりの付着量が 1 g/m2未満では十分な耐食性が得られず、 一方 40g/m2を超えると プレス加工性が劣化する場合がある。 よって、 めっき層の片面当たりの付着量は 1 〜40g/m2が望ましい。 、
また、 Zn- Ni合金めつき層の表面の Zn酸化物層の厚さは 2 0 n m以下、 Zn酸化物 層に含まれている P含有量は at%で 1 %以下が好ましい。 このような構成とするこ とにより、 クロメート処理後の ^を安定に保つことができる。
後述するが、 本発明では、 鋼板表面の色調を表す L値を 5 5以上、 L値の最大値 と最小値の差を 4以内とする。 これを満足させる為には、 クロメート処理を施す前 の電気 Zn - Ni合金めつき層の表面状態として、 Znの酸化物層が 20nm以下、 Zn酸化 物層の P含有量が 31%で 1 %以下であることが好ましレ、。酸化物層の厚さが 20nmを ®え、 かつ、 酸化物層の P含有量が at%で 1 %を超えると、 めっき皮膜自体の色調 がやや黒っぽくなること、 ならびに、 鍍金結晶の表面に非常に微細な凹凸が形成さ れ、 光の乱反射が抑制されることにより、 光の干渉が生じやすくなる。 また、 酸化 物層は、 2 O n mより低いほど好ましい。
なお、電気 Zn-Niめっき表層の Znの酸化物層の厚さを Onm以下とするためには、 電気 Zn - Niを施してからクロメート処理を施すまでの時間は 1 2 0時間以内である ことが好ましい。 120時間を超えて時間が経過すると酸ィ匕膜厚が、 20nmを超えてし まう為、 めっき皮膜自体の色調が黒っぽくなり、 色調の差を助長してしまう結果と なるためである。
酸化物あるいは水酸化物層の厚さは、 A rイオンスパッタリングと組み合わせた ォージェ電子分光法 (A E S ) により求めることができる。 所定深さまでスパッタ した後、 測定対象の各元素のピーク強度から相対感度因子捕正により、 その深さで の組成を求めることができる。 酸化物または水酸化物に起因する Oの含有率は、 あ る深さで最大値となった後 (これが最表層の場合もある) 、 減少し一定となる。 酸 化物層の厚さは、 Oの含有率が、 最大値より深い位置で、 最大値と一定値との和の 1Z2となるスパッタリング時間を、 膜厚既知の S i O 2膜などのスパッタレート をもとに、 換算して求めることができる。
また、 P含有量については、 Arイオンスパッタリングと組み合わせた X線光電子 分光法 (XPS)により求めることができる。同様の測定を行うことにより、深さ方向で の P濃度プロファイルを求め、 酸化物層の厚さに相当する深さに対して P濃度が最 大となる値を酸化物層の P含有量とした。
また、 Zn-Ni合金めつき層の表面の平均結晶粒径は 0. 8/zm以上であることが 好ましい。 このような構成とすることにより、 クロメート処理後の^を安定に保 つことができる。
本発明では、 鋼板表面の色調を表す L値を 55以上、 L値の最大値と最小値の差 を 4以内とする。 これを満足させる為には、 前述したように Znの酸化物層が 20nm 以下で Zn酸化物層の P含有量が aty。で 1%以下とするか、 もしくは、 クロメート皮 膜を塗布する Z n— N i合金めつき層の表面の結晶粒径は、 0· 8μ m以上とすること が好ましい。 結晶粒径が 0.8 /zm未満では、 めっき皮膜自体の色調がやや黒っぽく なること、 ならびに、 光の乱反射が抑制されることにより、 光の干渉が生じやすく なる。 一方、 結晶粒径が 0.8 zm以上では、 めっき皮膜自体の色調がやや白っぽく なること、 ならびに、 光の乱反射がおこりやすくなることにより光の干渉が生じに くくなる。
尚、 結晶粒径に上限はないが、 電気鍍金における Z n_N i合金結晶の大きさを 2 /zm以上に形成させることは、 電気鍍金のプロセス上困難と思われる。 電気鍍金 のプロセスにおいて、 結晶粒径を大きくする為には、 析出の核発生サイトを少なく して、 粒の成長を大きくさせる必要がある。 これを行う為には、 電気鍍金における 電流密度を低くする必要があり、 電流密度を低くすることにより、 鍍金ラインのラ インスピードが低下したり、 生産性を悪化させるので、 好ましくない。
なお、 平均結晶粒径は、 3000〜 20000倍の走査型電子顕微鏡写真を観察 して単位面積あたりの結晶個数を数え、 円相当粒径として求めることができる。
2) クロメート皮膜 上述したように、 本発明のクロメ一ト皮膜は沸騰水に 30分間浸漬後の Cr付着量 の変化が浸漬前のク口ム付着量の 2 %以内の皮膜にする。このような皮膜にすると、 金属腐食性の高い有機酸を含む環境下で使用されても、 Crの溶出を確実に防止でき るので、 ガソリンなどの燃料に対して優れた耐食性が得られる。
なお、 沸騰水に 30分間浸漬後の Cr付着量の変化は、 JIS K 5400— 1990の 8. 20 に記載された耐沸騰水性の試験に基づき、 沸騰水に 30分間浸漬前後の Cr付着量を 蛍光 X線法により測定して求めることができる。 蛍光 X線法では、 Cr付着量が既知 の標準試料を用いて予め作成した Crカウント数と Cr付着量の検量線から Cr付着量 を決定する。
また、 6価 Crの溶出に関しては、 Volvo Leach Test (Volvo Standard News 199 1. 10) のような溶出させる液の種類、 溶出温度、 溶出時間を定め、 液中に溶出した Cr濃度で評価する方法や、 特開平 10-46353号公報に記載されたアル力リ脱脂によ る Cr溶出量で評価する方法があるが、 本発明では沸騰水に 30分間浸漬による Cr 付着量の変化で評価する。 その理由は、 沸騰水に 30分間浸漬することにより Cr溶 出量が一定となり、 かつその量が燃料タンクとして使用したときのクロメート皮膜 残存量と良好な相関があるためである。
また、 本発明のクロメート皮膜は、 鋼板表面の色調を表す L値が 5 5以上、 L値 の最大値と最小値の差が 4以内、 好ましくは 3以内とする。 クロメート処理鋼板、 特に 3価クロムのクロメート処理鋼板は、 干渉色を呈することが多い。 干渉色は、 理想的には酸化皮膜の膜厚に依存し、 「反射光 +透過光 =白色 (補色関係) 」 の関 係が成り立つ。 従って、 鋼板の酸化膜厚が変動することにより、 干渉色のムラが発 生する可能性があり、 表面^を損なうことになる。 本発明の鋼板は、 クロメート 皮膜の付着量が、 好適には金属 Cr換算で 10〜50mg/m2の範囲であり、 干渉色のムラ が出やすい酸化膜厚になっている。 そのため、 本発明では、 銅板表面の色調を表す L値を 5 5以上、 L値の最大値と最小値の差を 4以内、好ましくは 3以内とする。 L 値は大きいほど白味が増し、 小さいほど黒味が増す。 L値の最大値と最小値の差が 4以内とすることにより色調の差を最小限に押えて、表面外観の低下を防止できる。 また、 L値の下限を 5 5以上としたのは、 黒味が増すほど色調の差が大きく感じら れる為であり、 L値 5 5未満では L値の最大値と最小値の差が 4以内としても、 色 調の差が目立ってしまい、 表面外観を損なう結果となる。 なお、 L値は JIS Z8722 に規定される方法 (例えば、 スガ試験機製多光源分光測色計 MSC-1S-2B等)で測定 することができる。
なお、 上述した本発明のクロメ一ト皮膜は処理後の色調及びク口ム溶出量が所定 範囲内であれば特に限定するものではない。 例えば、 後述するクロメート処理液を 電気 Zn— Ni合金めつき層上に塗布後、 加熱することにより形成することができる。 クロメート皮膜の付着量は、 金属 Cr換算で 10〜50mg/m2であることが好ましい。 こ れは、 10mg/m2未満だと十分な耐食性が得られず、 一方 50mg/m2を超えるとコスト高 になるためである。
3 ) 製造方法
本発明の燃料タンク用鋼板は、少なくとも片側の鋼板面に、電気 Zn_Ni合金めつき 層を形成する工程と、 さらに該合金めつき層の上層にクロメート皮膜を形成するェ 程とを有する。
なお、上記工程では、クロメート皮膜が沸騰水に 30分間浸漬後のク口ム付着量の 変化が浸漬前のクロム付着量の 2 %以内であり、 銅板表面の色調を表す L値が 5 5 以上、 L値の最大値と最小値の差が 4以内であれば製造方法は限定しない。
例えば、 クロム溶出量を所定範囲とするためのクロメート処理としては、 3価 Cr の質量比 ( (3価クロム) / (全クロム) ) が 0. 5を超えるクロム酸、 全 Crに対す る質量比 ( (りん酸) / (全クロム) ) が 0. 1〜5. 0のリン酸および有機還元剤を含 有するクロメート処理液を塗布し、 加熱することで製造できる。
このようにして製造されるクロメート皮膜は、 6価クロメート皮膜のような良好 な外観を得にくい問題があった。 特に、 Zn-Niめっきとクロメート皮膜を別ライン で処理した場合、 不良となることが多かった。 し力 し、 発明者らが鋭意検討し た結果、 クロメート皮膜を施す前の表面状態を適正にすることで良好な^を得ら れることをつきとめた。 ひとつの方法として、電気 Zn— Ni合金めつき層を施し、 上 層にクロメート皮膜を形成する前の合金めつき表層の Zn酸化物層の厚さを 20nm以 下、 該酸化物層の P含有量を at%で 1 %以下の状態とすることが挙げられる。 そし て、 このような表面状態とすることで良好な外観を確保出来ることが確認できた。 また、 電気 Zn-Ni合金めつきの表面の平均結晶粒径が 0 . 8 /x mとなるように合 金めつき層を形成してから、 クロメート皮膜を形成することでも良好な外観を確保 出来ることを見出した。
なお、 Zn-Niめっき層の表面の Zn酸化物層量と酸化物中の P比率の制御と、 Zn-N iめっき表面の平均結晶粒径の制御はどちらか一方でもよいし、 両方でもよい。 電気 Zn— Ni合金めつき層を形成するめつき条件は特に限定されるものではない が、 めっき層に 5〜30mass%の Niが含有され、めっき層の付着量が 1〜40g/m2であ ることが好ましい。
尚、 電気めつきラインの最終セクションにコーターを配して、 めっき皮膜を形成 した後、 直ちにクロメート処理を施すことは、 本発明の実施の方法としては、 有効 な方法である。
酸化物層中の P含有量が多いと^に不利となるため、 クロメート処理を行う前 に脱脂や表面調整を行う場合は、 Pが残留しないように洗浄を強化したり脱脂や表 面調整の液を薄くしたりすることが有効である。
また、 Pの含有量を抑える方法は特に限定するものではないが、 脱脂や表面調整 処理後の洗浄を強化したり、処理液濃度を低くするなど通常の方法を用いればよい。 電気 Zn— Ni合金めつき層を形成後、 クロメー卜処理液を電気 Zn— Ni合金めつき 層上に塗布する。 ここで、本発明では、 電気 Zn— Ni合金めつき層上には、 沸騰水に 30分間浸漬後の Cr付着量の変化が 2 %以内となるクロメート皮膜を形成させる必 要があり、 そのため、 全 Crに対する 3価 Crの質量比 ( (3価クロム) / (全クロ ム) ) が 0. 5を超えるクロム酸、全 Crに対する質量比 ( (りん酸) / (全クロム) ) が 0. 1〜5. 0のリン酸、 および有機還元剤を含有するクロメート処理液を、 電気 Zn 一 Ni合金めつき層上に塗布し、 次レヽで加熱すればょレヽ。
クロメート処理液中の 6価 Crは、 加熱時に有機還元剤と反応して 3価 Crに還元 される力 全 Crに対する 3価 Crの質量比が 0. 5以下であると、 6価 Crの量が過剰 になり、 加熱後の クロメート皮膜中に 6価 Crが残存するようになる。 それ故、 ク 口メ一十皮膜を沸騰水に浸漬するとこの 6価 Crが溶出するため、 沸騰水に 30分間 浸漬後の Cr付着量の変化が 2 %を超え、ガソリンなどの燃料に対して優れた耐食性 が得られなくなる。 また、 全 Crに対するリン酸の質量が 0. 1未満だと、 3価 Crが 高分子化してゲル状の沈殿物となるため、 クロメート処理液としての性状を維持で きなくなる。一方、この比が 5. 0 を超えると、クロメート皮膜中にリン酸が残存し、 湿潤環境下でこのリン酸が溶出し、 孔食やめつきの黒変を引き起こす。
クロメート処理液に含有させる有機還元剤としては、 ジオール類と糖類の中から 選んだ少なくとも 1種を用いるのが好ましい。 ジオール類の中では、 エチレンダリ コール、 プロピレングリコール、 トリメチレングリコール、 あるいは 1、 4ーブタ ンジオール等がとりわけ好適である。 一方、 糖類の中では、 グリセリン、 ポリェチ レンダリコール、 サッカロース、 ラタトース、 しょ糖、 ぶどう糖、 あるいは果糖な どが有利に適合する。
この有機還元剤は、 全 Crに対する質量比が 0. 1〜0. 4となるようにクロメート処 理液中に含有させることが好ましい。 これは、 0. 1未満では十分な還元効果が得ら れず、 一方 0. を超えるとクロメ一ト処理液の安定性を維持できなくなる場合があ るためである。 なお、 有機還元剤は、 クロメート処理液を塗布する直前にクロメー ト処理液に添加することが、 クロメート処理液の安定性を高める上で好ましい。 クロメート処理液には、 耐食性を向上させる目的で、 必要に応じて無機インヒビ ターを含有させることができる。 かような無機インヒビターとしては、 シリカ、 Zr 02、 Ti02、 硫酸ジルコニウム、 重リン酸アルミニウムなどの無機コロイ ドや、 リン モリブデン酸、 ケィタングステン酸、 リンバナドモリブデン酸などのへテロポリ酸 などが例示される。 し力 しながら、 これら無機インヒビターがクロメート処理液中 に存在すると、 6価 Crと有機還元剤との反応を遅延させ、クロメート皮膜を沸騰水 に浸漬したときに 6価 Crの溶出を促進させるため、 その含有量は 6価 Crに対する 質量比で 0. 05未満とすることが好ましい。 無機インヒビターが 6価 Crと有機還元 剤との反応速度を遅延させる理由は明らかではないが、 溶液中でイオン化する、 あ るいは分散した際に 6価 Crイオンと相互作用をすることが要因と考えられる。 また、クロメート処理液には、電気 Zn— Ni合金めつき層との反応性を促進する目 的で、 フッ酸、 硫酸、 塩酸などの酸を含有させることができる。
さらに、クロメート処理液には、 クロメート皮膜からの Cr溶出を一層抑制するた めに、 水溶性あるいは水分散性高分子化合物を含有させることもできる。 水溶性あ るいは水分散性高分子化合物としては、 ポリビニルアルコール、 ポリアクリル酸、 ポリアクリルアミ ド、 エポキシエステル重合体、 メラミンアルキド榭脂重合体、 で んぶんやガゼィンなどの天然高分子化合物、 アルキノ珪酸エステルの部分加水分解 物、 アルキルリン酸エステルの部分加水分解物、 シランカップリング剤やエポキシ 系シランなどのシラン化合物が例示される。 これらの水溶性あるレ、は水分散性高分 子化合物は、クロメート皮膜からの Cr溶出抑制効果と外部からの機械的衝撃に対す る保護膜としての作用を有するが、末端官能基が 6価 Crィオンに対して還元剤とし て作用するため、処理液の安定性を確保するには、その含有量を 6価 Crに对する質 量比で 0. 05未満とすることが好ましい。
クロメート処理液を塗布後、 加熱する。 この時、 鋼板温度が 120°C以上となるよ うに加熱することが好ましい。 120°C未満では、 Crの還元反応が十分に進行せず、 沸騰水に浸漬したときにクロメート皮膜からの Crの溶出量が増加する可能性があ る。
さらに、 クロメート処理液を塗布するに先立ち、 Tiコロイドを含む水溶液を塗布 し、乾燥することにより、クロメート皮膜からの Cr溶出をさらに抑制することが可 能である。 これは、 電気 Ζη—Ni合金めつき層上に Tiコロイドを吸着させることに より、 Tiコロイドが酸性のクロメート処理液との反応活性点として作用するため、 加熱時に 6価 Crが不溶性の 3価 Crに還元される反応が促進するためと推察される。
Tiコロイドを含む水溶液の塗布は、濃度: 1〜10 volppmの Tiコロイドを含む p H: 7. 5〜10、 温度: 40〜60°Cの水溶液を 1〜30秒間塗布することが好ましい。 本発明の燃料タンク用鋼板に用いる鋼板としては、 例えば mass%で、 C : 0. 0007 〜0. 0050%、 Si: 0. 5%以下、 Mn: 2. 0%以下、 P : 0. 1%以下、 S : 0. 015%以下、 A 1: 0. 01〜0. 20%、 N: 0. 01%以下、 Ti: 0. 005〜0· 08%および Β : 0. 001〜0. 01%を 含有し、残部が Feおよび不可避的不純物からなる深絞り性に優れた冷延銅板が好適 である。
以下、 各成分の限定理由について説明する。
C : 0. 0007〜0. 0050%
Cは、深絞り性に悪影響を及ぼすため、含有量は 0. 0050%以下とすることが好まし レ、。 また、含有量を 0. 0007%未満としても深絞り性の向上が認められず、 むしろ脱 炭処理のコスト増を招く。従って、 C量は 0. 0007%以上 0. 0050%以下とすることが 好ましい。
Si: 0. 5%以下
Siは、鋼の強度を増加させる作用を有するので、所望の強度に応じて添加すること ができる。 し力 し、 その量が 0. 5%を超えると深絞り性が低下するので、 Si量は 0. 5%以下とすることが好ましい。
Mn: 2. 0%以下
Mnは、 Si同様、鋼の強度を増加させる作用を有するので、所望の強度に応じて添加 することができる。 し力 し、 その量が 2. 0%を超えると深絞り性が低下するので、 M n量は 2. 0%以下とすることが好ましい。
P : 0. 1%以下
Pは、 粒界に偏析して粒界を強化し、 溶接部の割れを抑制すると共に、 鋼を強化す る作用を有する。 し力 し、 その量が 0. 1%を超えると深絞り性が劣化するので、 P 量は 0. 1%以下とすることが好ましい。 なお、 溶接部の割れをより確実に抑制する には、 P量を 0. 01%以上 0. 05%以下とすることがより好ましい。
S : 0. 015%以下
Sは、 深絞り性に悪影響を及ぼすため、 その量を 0. 015%以下とすることが好まし い。
A1: 0. 01〜0. 20%
A1は、 鋼の脱酸や Tiなどの炭窒化物形成元素の歩留り向上のために添加される。 し力 し、 その量が 0. 01%未満ではその添加効果に乏しく、 一方、 0. 20%を超えると その効果が飽和する。 従って、 A1量は 0. 01%以上 0. 20%以下とすることが好まし い。
N: 0. 01%以下
Nは、深絞り性に悪影響を及ぼすため、その量を 0. 01%以下とすることが好ましい。
Ti: 0. 005〜0. 08%
Tiは、鋼中の Cや Nと析出物を形成して固溶 C、 N減少させて深絞り性を向上させ る効果を有する。 し力 し、 その量が 0. 005%未満ではその効果が少なく、 一方、 0. 0 8%を超えるとその効果が飽和する。 従って、 Ti量は 0. 005%以上 0. 08%以下とす ることが好ましい。
B : 0. 001〜0. 01%
Bは、 P同様、 溶接部の割れを抑制する作用を有する。 し力 し、 その量が 0. 001% 未満ではその効果が小さく、 一方 0. 01%を超えると深絞り性が劣化する。 従って、 B量は 0. 001%以上 0. 01%以下、さらには 0. 001%以上 0. 004%以下とすることが好 ましい。
なお、 Bや Pが溶接部の割れを抑制する理由は、 以下のように考えられる。
すなわち、 溶接割れは、 電極の主成分である Cuやめつき成分の Znが溶接時に液体 になり鋼の粒界に侵入して粒界を脆化する液体金属脆性によるものと推察される。 この点、 Bや Pは粒界に偏祈し易いため粒界を強化して、 こうした溶接割れを抑制 する。
残部は Feおよび不可避的不純物である。ここで、不可避的不純物の量は通常の範 囲内であればよく、 例えば Oは 0. 010%以下である。
なお、 上記の成分に加え、 さらに Nbを 0. 0005~0. 0050%以上添加することは、 深 絞り性を向上させる上で好適である。 実施例 1
mass%で、 C: 0. 0015%、 Si: 0. 01%、 Mn: 0. 08%、 P: 0. 011%、 S : 0. 008%、 A1: 0. 05%、 N: 0. 0019%、 Ti: 0. 035%、 Nb: 0. 003%および B: 0. 004%を含有し、 残部は Feおよび不可避的不純物の組成になる冷延鋼板を用い、 常法により電気 Zn 一 Ni合金めつき鋼板 (Ni: 12mass%, 片面当たりの付着量: 20 g/m2) を作製した。 この際に、 電気めつきのラインスピードを 90mpmと 16 Ompmの 2水準に 変化させ、 電流密度を変えることにより、 めっき層の表面の平均結晶粒径が 1. 0 /zniと 0. 3 μπιの電気 Zn— Ni合金めつき層を形成した。 平均結晶粒径 1. Ομπι と 0. 3 /zmのめつき表面の写真を図 1と図 2にそれぞれ示す。 なお、 平均結晶粒 径は、 3000〜 20000倍の走査型電子顕微鏡写真を観察して単位面積あたり の結晶個数を数え、 円相当粒径として求めた。
引き続き、 表面調整処理として、 50°C、 pHl 0のリン酸水素ニナトリウムに 浸漬することにより、 酸性の電気鍍金液を中和し、 水洗することにより、 表層に P を含有する Z n酸化物層を形成した。 一方で、 表面調整処理を行なわない条件も行 つた ο
酸化物あるいは水酸化物層の厚さは、 A rイオンスパッタリングと組み合わせた ォージェ電子分光法 (AES) により求めることができる。 AESにより表面の各元 素の含有率を測定し、 弓 Iき続いて所定の深さまで Arスパッタリングした後、 AESに より表面の各元素の含有率の測定を行い、 これを繰り返すことにより、 深さ方向の 各元素の組成分布を測定した。 酸化物、 水酸ィ匕物に起因する 0の含有率はある深さ で最大となった後、 減少し一定となる。 0の含有率が、 最大値より深い位置で、 最 大値と一定値との和の 1/2となる深さを、 酸化物の厚さとした。 なお、 予備処理と して 30秒の Arスパッタリングを行って、 供試材表面のコンタミネーションレイヤ 一を除去した。
また、 X線光電子分光法 (XPS) を用いて同様の測定を行うことにより、 深さ方向 での P濃度プロフアイルを求め、 酸化物層の厚さに相当する深さに対して P濃度が 最大となる値を、 酸化物層の P含有量とした。
次いで、 めっき後、 直ちにクロメート処理する条件 (経過時間 10秒) 、 めっき 後 100時間経過後にクロメート処理する条件、 めっき後 200時間経過後にクロ メート処理する条件で、これらの電気 Zn_Ni合金めつき層上に、表 2に示すクロメ 一ト処理液をロールコーターによって塗布した後、 表 2に示す加熱温度に加熱し、 表 2に示す Cr付着量のクロメート皮膜を形成した試料 No. ;!〜 9 'を作製した。 ここ で、 加熱温度とは、 鋼板が到達する最高温度のことである。 以上のように得られた クロメート処理鋼板に対して、 L値、 耐ガソリン耐食性、 耐 Cr溶出性および表面外 観について調べた。 測定方法および評価基準は以下の通りである。 得られた結果を 表 1に併せてに示す。
"直
L値は JIS Z8722に規定される方法 (例えば、 スガ試験機製 多光源分光測色計 M SC-1S-2B等)で測定した。
また、 鋼板面内での最大 L値と最小 L値を測定し、 その差を計算した。
ガソリンに对する耐食性
加工前のサイズ 20匪 X 100mmの試料と、 60瞧のブランク径で加工した後の試料を、 無鉛ガソリンと濃度: 500vOlppmの蟻酸水溶液とを質量比 1 : 1で混合した燃料中 に、 室温で 1ヶ月浸漬した後、 赤锖発生面積率を各々の測定し、 これらの平均を求 めた。 そして、 次の基準によりガソリンに对する耐食性を評価した。
〇:赤鑌発生面積率が 50%未満 (本発明の目標)
X :赤鲭発生面積率が 5 0%以上
耐 Cr溶出性
C r付着量変化は JIS K 5400- 1990の 8. 20に記載された耐沸騰水性の試験に基 づき、 沸騰水に 30分間浸漬前後の Cr付着量を蛍光 X線法により測定して求めた。 蛍光 X線法では、 Cr付着量が既知の標準試料を用いて予め作成した Crカウント数 と Cr付着量の検量線から Cr付着量を決定した。
〇: Cr付着減少率が 2 %以下
X : Cr付着減少率が 2 %超
表面外観
クロメート処理後の目視外観を評価した。
〇:良好
△:わずかにむらあり
X :むらあり
Figure imgf000018_0001
Figure imgf000018_0002
表 2
Figure imgf000019_0001
以上より、 本発明例では、 耐ガソリン性に優れ、 表面外観が良好である。
一方、 比較例では、 耐 Cr溶出性または L値が本発明範囲外のため、 耐ガソリン性、 表面外観のいずれかが劣っている。
すなわち、 本発明によれば、 ガソリン、 アルコール類単独あるいはアルコール類 混合ガソリンなどの燃料に対して長期間にわたって優れた耐食性を示し、 かつ沸騰 水浸漬によるクロムの溶出を抑制した、表面外観の良好な ロメ一ト皮膜を有する。 産業上の利用可能性
本発明の鋼板は、 ガソリン、 アルコール燃料およびアルコール類混合ガソリンな どの燃料に対して優れた耐食性を有し、 さらに、 表面 が良好であるため、 例え ば、自動車や自動二輪車のガソリンタンク等の燃料タンク用鋼板として最適である。

Claims

請 求 の 範 囲
1 . 鋼板の少なくとも片面に、電気 Zn— Ni合金めつき層を有し、 さらに該合金 めつき層の上にクロメ一ト皮膜を有し、該クロメ一ト皮膜は、沸騰水に 30分間浸漬 後のクロム付着量の変化が浸漬前のク口ム付着量の 2 %以内であり、 鋼板表面の色 調を表す L値が 5 5以上、 L値の最大値と最小値の差が 4以内であることを特徴と する燃料タンク用鋼板。
2 . 前記合金めつき表層の Zn酸化物層の厚さは 20nm以下であり、該 Zn酸化物 層の P含有量は at%で 1 %以下であることを特徴とする請求項 1記載の燃料タンク 用鋼板。
3 . 前記合金めつき層の表面の平均結晶粒径が 0. 8 /Z m以上であることを特徴 とする請求項 1または 2記載の燃料タンク用鋼板。
4 . 鋼板の少なくとも片面に、電気 Zn— Ni合金めつき層を形成し、該合金めつ き表層の Zn酸化物層の厚さを 20nm以下、該 Zn酸化物層の P含有量を at%で 1 %以 下とした後、 さらに、 前記合金めつき層の上層に、 質量比 (3価クロム) / (全ク ロム) が 0. 5超のクロム酸、 質量比 (りん酸) / (全クロム) が 0. 1〜5. 0のりん酸 およぴ有機還元剤を含有するクロメート処理液を塗布し、 加熱することを特徴とす る燃料タンク用鋼板の製造方法。
5 . 鋼板の少なくとも片面に、電気 Zn_Ni合金めつき層を形成し、該合金めつ き相の表面の平均結晶粒径を 0. 8 / m以上とした後、 さらに、 前記合金めつき層の 上層に、 質量比 (3価クロム) / (全クロム) が 0. 5超のクロム酸、 質量比 (りん 酸) / (全ク口ム) が 0. 1〜5. 0のりん酸および有機還元剤を含有するクロメート処 理液を塗布し、 加熱することを特徴とする燃料タンク用鋼板の製造方法。
PCT/JP2008/072107 2007-11-28 2008-11-28 燃料タンク用鋼板およびその製造方法 WO2009069830A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP08854204.8A EP2233610B1 (en) 2007-11-28 2008-11-28 Steel sheet for fuel tanks and process for manufaturing the sheet
BRPI0819870-5A BRPI0819870B1 (pt) 2007-11-28 2008-11-28 Chapa de aço para tanques de combustivel e método de produção da mesma
MX2010005154A MX2010005154A (es) 2007-11-28 2008-11-28 Lamina de acero para tanques de combustible y metodo para producirlas.
CN200880118382.0A CN101878325B (zh) 2007-11-28 2008-11-28 燃料罐用钢板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-307416 2007-11-28
JP2007307416A JP5315677B2 (ja) 2007-11-28 2007-11-28 燃料タンク用鋼板およびその製造方法

Publications (1)

Publication Number Publication Date
WO2009069830A1 true WO2009069830A1 (ja) 2009-06-04

Family

ID=40678711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072107 WO2009069830A1 (ja) 2007-11-28 2008-11-28 燃料タンク用鋼板およびその製造方法

Country Status (6)

Country Link
EP (1) EP2233610B1 (ja)
JP (1) JP5315677B2 (ja)
CN (1) CN101878325B (ja)
BR (1) BRPI0819870B1 (ja)
MX (1) MX2010005154A (ja)
WO (1) WO2009069830A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015214762A (ja) * 2011-03-10 2015-12-03 Jfeスチール株式会社 熱間プレス用鋼板

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087981A1 (ja) * 2004-03-10 2005-09-22 Jfe Steel Corporation 燃料タンク用鋼板およびその製造方法
JP5884151B2 (ja) * 2010-11-25 2016-03-15 Jfeスチール株式会社 熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法
JP6028843B2 (ja) * 2010-11-25 2016-11-24 Jfeスチール株式会社 熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法
JP5817479B2 (ja) * 2011-03-10 2015-11-18 Jfeスチール株式会社 熱間プレス部材の製造方法
KR101678511B1 (ko) 2012-03-07 2016-11-22 제이에프이 스틸 가부시키가이샤 열간 프레스용 강판, 그의 제조 방법 및, 그것을 이용한 열간 프레스 부재의 제조 방법
JP5953901B2 (ja) * 2012-04-19 2016-07-20 Jfeスチール株式会社 燃料タンク用鋼板およびその製造方法
JP5858175B1 (ja) * 2014-04-16 2016-02-10 Jfeスチール株式会社 電解クロメート処理鋼板の製造方法
WO2017038786A1 (ja) * 2015-08-28 2017-03-09 新日鐵住金株式会社 燃料タンク用表面処理鋼板
KR101908815B1 (ko) * 2016-12-23 2018-10-16 주식회사 포스코 내식성과 가공성이 우수한 Zn-Ni 전기도금강판 및 그 제조방법
CN113924376A (zh) 2019-05-31 2022-01-11 日本制铁株式会社 热冲压用镀覆钢板
CN113631744B (zh) 2019-05-31 2022-07-19 日本制铁株式会社 热冲压用镀覆钢板
WO2020241762A1 (ja) * 2019-05-31 2020-12-03 日本製鉄株式会社 ホットスタンプ用鋼板
KR20240115278A (ko) * 2021-12-28 2024-07-25 제이에프이 스틸 가부시키가이샤 캔용 강판 및 그 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761833B2 (ja) 1980-08-25 1982-12-27 Nippon Steel Corp
JPH05106058A (ja) * 1991-10-18 1993-04-27 Kawasaki Steel Corp 燃料容器用高耐食性表面処理鋼板
JPH07166366A (ja) * 1993-12-13 1995-06-27 Kawasaki Steel Corp 化成処理性及びプレス成形性に優れたZn−Ni合金めっき鋼板の製造方法
JPH09263954A (ja) * 1996-03-27 1997-10-07 Kawasaki Steel Corp 化成処理性に優れるZn−Niめっき鋼板の製造方法
JPH1046353A (ja) 1996-08-01 1998-02-17 Kawasaki Steel Corp 皮膜特性に優れたクロメート処理めっき鋼材とその製造方法
JP2005290556A (ja) 2004-03-10 2005-10-20 Jfe Steel Kk 燃料タンク用鋼板およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69625365T2 (de) * 1996-06-06 2003-09-11 Sumitomo Metal Industries, Ltd. Oberflächenbehandeltes stahlblech mit hervorragenden korrosionseigenschaften nach der bearbeitung
US6235407B1 (en) * 1997-04-09 2001-05-22 Kawasaki Steel Corporation Steel plate for highly corrosion-resistant fuel tank
EP1051539B1 (en) * 1998-12-01 2003-06-25 POHANG IRON & STEEL CO., LTD. Surface-treated steel sheet for fuel tanks and method of fabricating same
US6920386B2 (en) * 2003-09-30 2005-07-19 Detroit Diesel Corporation Method and system for indirectly estimating ambient air temperature
WO2005087981A1 (ja) * 2004-03-10 2005-09-22 Jfe Steel Corporation 燃料タンク用鋼板およびその製造方法
CN101010450A (zh) * 2004-08-31 2007-08-01 杰富意钢铁株式会社 电磁波屏蔽性优良的黑色钢板、电磁波屏蔽部件和电磁波屏蔽筐体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761833B2 (ja) 1980-08-25 1982-12-27 Nippon Steel Corp
JPH05106058A (ja) * 1991-10-18 1993-04-27 Kawasaki Steel Corp 燃料容器用高耐食性表面処理鋼板
JPH07166366A (ja) * 1993-12-13 1995-06-27 Kawasaki Steel Corp 化成処理性及びプレス成形性に優れたZn−Ni合金めっき鋼板の製造方法
JPH09263954A (ja) * 1996-03-27 1997-10-07 Kawasaki Steel Corp 化成処理性に優れるZn−Niめっき鋼板の製造方法
JPH1046353A (ja) 1996-08-01 1998-02-17 Kawasaki Steel Corp 皮膜特性に優れたクロメート処理めっき鋼材とその製造方法
JP2005290556A (ja) 2004-03-10 2005-10-20 Jfe Steel Kk 燃料タンク用鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2233610A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015214762A (ja) * 2011-03-10 2015-12-03 Jfeスチール株式会社 熱間プレス用鋼板

Also Published As

Publication number Publication date
MX2010005154A (es) 2010-06-01
EP2233610B1 (en) 2016-06-08
JP2009127126A (ja) 2009-06-11
EP2233610A4 (en) 2014-04-09
JP5315677B2 (ja) 2013-10-16
BRPI0819870B1 (pt) 2019-07-30
EP2233610A1 (en) 2010-09-29
CN101878325A (zh) 2010-11-03
CN101878325B (zh) 2012-07-18
BRPI0819870A2 (pt) 2015-06-16

Similar Documents

Publication Publication Date Title
JP5315677B2 (ja) 燃料タンク用鋼板およびその製造方法
KR101941806B1 (ko) 연료 탱크용 강판
BG107617A (bg) НЕСЪДЪРЖАЩО 6-ВАЛЕНТЕН ХРОМ СРЕДСТВО ЗА ПОВЪРХНОСТНО ОБРАБОТВАНЕ НА СТОМАНЕНА ЛАМАРИНА С ПОКРИТИЕ НА БАЗАТА НА Sn ИЛИ Al И ПОВЪРХНОСТНО ОБРАБОТЕНА СТОМАНЕНА ЛАМАРИНА
JP3497413B2 (ja) 耐食性、加工性および溶接性に優れた燃料容器用表面処理鋼板
AU2001284461A1 (en) Hexavalent chromium-free surface-treating agent for Sn- or Al-based coated steel sheet, and surface treated steel sheet
JP2001341228A (ja) 高耐食性燃料タンク用鋼板
TWI592516B (zh) Fuel tank steel plate
JP2007186745A (ja) 燃料タンク用鋼板
JP5375798B2 (ja) 燃料タンク用鋼板およびその製造方法
JP2004232040A (ja) 耐食性、塗装性及び加工性に優れるアルミめっき鋼板
JP4072304B2 (ja) 環境適合性に優れた自動車用燃料容器材料および自動車用燃料容器
JP2004307923A (ja) 耐食性、塗装性及び加工性に優れる表面処理鋼板
JPH05106058A (ja) 燃料容器用高耐食性表面処理鋼板
JP4654714B2 (ja) 燃料タンク用鋼板の製造方法
JP6265050B2 (ja) 優れた耐食性と塗料密着性を有する溶融Sn−Znめっき鋼板とその製造方法
JP3111903B2 (ja) 亜鉛系メッキ鋼板の製造方法
JP2001026899A (ja) 高耐食性燃料タンク用鋼板及びその製造方法
WO2018061061A1 (ja) 燃料タンク部材
JP4727840B2 (ja) 加工性及び耐食性に優れた被覆鋼板、並びにその製造方法
JP3111904B2 (ja) 亜鉛系メッキ鋼板の製造方法
JP2008248360A (ja) 自動二輪車用燃料タンク用鋼板
JPH08158062A (ja) 耐食性,塗装性及びアーク溶接性に優れた表面処理鋼板の製造方法
JPH09176869A (ja) 燃料タンク用防錆鋼板およびその製造方法
JPH10265964A (ja) 燃料容器用高耐食性表面処理鋼板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880118382.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08854204

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12010500922

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/005154

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1713/KOLNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2008854204

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0819870

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100528