WO2009038007A1 - ポリウレタン及びポリウレア、並びにその製造法 - Google Patents

ポリウレタン及びポリウレア、並びにその製造法 Download PDF

Info

Publication number
WO2009038007A1
WO2009038007A1 PCT/JP2008/066363 JP2008066363W WO2009038007A1 WO 2009038007 A1 WO2009038007 A1 WO 2009038007A1 JP 2008066363 W JP2008066363 W JP 2008066363W WO 2009038007 A1 WO2009038007 A1 WO 2009038007A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane
general formula
hydrocarbon
diisocyanate
divalent residue
Prior art date
Application number
PCT/JP2008/066363
Other languages
English (en)
French (fr)
Inventor
Yusuke Yamamoto
Osamu Ohmori
Hitotoshi Murase
Hiroaki Takashima
Kohei Mase
Tomokuni Abe
Toshihisa Shimo
Original Assignee
Kabushiki Kaisha Toyota Jidoshokki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toyota Jidoshokki filed Critical Kabushiki Kaisha Toyota Jidoshokki
Priority to EP08831486A priority Critical patent/EP2192137A4/en
Priority to US12/678,932 priority patent/US20100204356A1/en
Priority to CN200880107552A priority patent/CN101802045A/zh
Priority to JP2009533116A priority patent/JPWO2009038007A1/ja
Publication of WO2009038007A1 publication Critical patent/WO2009038007A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • C08G18/341Dicarboxylic acids, esters of polycarboxylic acids containing two carboxylic acid groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3246Polyamines heterocyclic, the heteroatom being oxygen or nitrogen in the form of an amino group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/36Hydroxylated esters of higher fatty acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3819Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen
    • C08G18/3823Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen containing -N-C=O groups
    • C08G18/3831Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen containing -N-C=O groups containing urethane groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4244Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups
    • C08G18/4247Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups derived from polyols containing at least one ether group and polycarboxylic acids
    • C08G18/4252Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups derived from polyols containing at least one ether group and polycarboxylic acids derived from polyols containing polyether groups and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/771Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2230/00Compositions for preparing biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/02Polyureas

Definitions

  • the present invention relates to a biodegradable polymer comprising 2 H-pyrone-2-one 1,6-dicarboxylic acid derived from a plant in a repeating unit structure, particularly polyurea.
  • the present invention relates to tan and polyurea and a method for producing the same.
  • resins such as polyethylene, polypropylene, polyvinyl chloride, and polyethylene terephthalate are widely used as resins.
  • Molded products such as various containers are used in garbage bags and packaging bags.
  • lignin a plant component
  • an aromatic polymer Although it is a biomass resource that is universally contained in the physical cell wall, effective utilization technology has not been developed because its chemical structure is composed of various components and has a complex polymer structure. Therefore, the lignin produced in large quantities in the papermaking process is burned as a substitute for heavy oil without being effectively used.
  • plant aromatic components such as lignin have been converted into several low molecular weight mixtures by chemical decomposition methods, physicochemical decomposition methods, etc., and further used as raw materials for functional plastic materials and chemical products.
  • biodegradable polymers using such lignin include biodegradable polyurethane composites containing lignin (Japanese Patent Laid-Open No. 2 0 00-3 1 9 3 5 0), and conventional thermoplastics.
  • a thermoplastic elastomer composition having improved compression set while maintaining the excellent recyclability of the thermoplastic elastomer by blending the elastomer with the elastomer Japanese Patent Laid-Open No. 20 0 5 — 2 2 5 9).
  • a foam is produced from this biodegradable polyurethane by adding a foaming agent (Japanese Patent Application Laid-Open No. 2 0 00-3 7 8 6 7).
  • a foaming agent such as water or inert gas is blended, hollow microbeads are dispersed and cured in the raw material, and the microbead parts are made independent.
  • foaming and mechanical mixing of the raw materials to mix the air.
  • the foaming method using a foaming agent is often used in that stable foam can be obtained.
  • biomass materials such as lignocellulose have low compatibility with polyisocyanates, so to prepare biomass-derived polyols, first convert them to liquefied biomass, and then use a specific esterifying agent or etherification. The process is complicated, such as denaturation with an agent.
  • PDC is a very low molecular weight compared to lignin, so it has excellent solubility in solvents and reactants.
  • PDC's 2 H-pyrone 1 2 one-on ring structure gives the polymer a rigid structure, which can provide the material with flexibility, elasticity or high strength, and because of its high polarity and high refractive index, these It is known that materials having properties can be obtained (W 09 9/5 4 3 7 6, WO 9 9/5 4 3 8 4). Disclosure of the invention
  • an object of the present invention is to provide a highly elastic biodegradable polyurethane and / or polyurea containing PDC in a repeating unit structure at low cost and simply. It is another object of the present invention to provide a biodegradable foamed polyurethane without using a foaming agent.
  • the present inventors have discovered that a novel biodegradability containing PDC in a repeating unit structure by reacting PDC obtained by fermentation production or a derivative thereof with diisocyanates. It has been found that a polyurethane can be obtained. In addition, in the polyaddition reaction between a diisocyanate component and a diamine component, PDC is converted into a repeating unit structure by using a PDC diisocyanate derivative or a PDC diamine derivative as at least one component. And found that a new biodegradable polyurea can be obtained.
  • R 1 and R 2 each independently represent a hydrocarbon-based divalent residue that may contain a heteroatom having no active hydrogen in its structure;
  • X represents O or N H
  • X represents an integer of 1 or more
  • the polymer which has a repeating unit represented by these is provided.
  • R 1 and R 2 each independently represent a hydrocarbon-based divalent residue that may contain a heteroatom having no active hydrogen in its structure;
  • X represents an integer of 1 or more.
  • the polymer according to (1) which is a polyurethane having a repeating unit represented by:
  • the polyurethane has the following general formula (III):
  • R 1 and R 2 are as defined above.
  • the polyurethane has the following general formula (IV):
  • R 1 and R 2 are as defined above; X is an integer of 2 or more. ]
  • R 1 and R 2 are each independently R 3 , R 3 — (OR 3 ) a , or R 4 — ( ⁇ 2 C-R 3 -CO 2 R 4 ) b (provided that R 3 and R 4 each independently represent a divalent residue of a saturated or unsaturated hydrocarbon having 1 to 24 carbon atoms; a and b each independently represent an integer of 1 to 4)
  • the polymer according to any one of (1) to (4) is provided.
  • the polymer is provided.
  • R 1 represents a hydrocarbon-based divalent residue which may contain a heteroatom having no active hydrogen in its structure.
  • the polymer according to (1) which is a polyurethane having a repeating unit represented by:
  • the present invention provides the polymer described in (7), which is a foamable polyurethane.
  • R 1 force R 3, R 3 one (OR 3) a, or R 4 - ( ⁇ 2 C - R 3 one C_ ⁇ 2 R) b (where, R 3 and R 4 Each independently represents a divalent residue of a saturated or unsaturated hydrocarbon having 1 to 24 carbon atoms; a and b each independently represents an integer of 1 to 4).
  • R 3 and R 4 Each independently represents a divalent residue of a saturated or unsaturated hydrocarbon having 1 to 24 carbon atoms; a and b each independently represents an integer of 1 to 4).
  • (7) or (8) Provide the polymer as described.
  • R 1 and R 2 each independently represent a hydrocarbon-based divalent residue that may contain a heteroatom having no active hydrogen in its structure;
  • X represents ⁇ or NH
  • X represents an integer of 1 or more
  • the manufacturing method is provided.
  • the present invention provides a derivative of 2 H-pyrone-2-one-l, 4,6-dicarboxylic acid, wherein 2 H-pyrone-2-one-4,6-dicarboxylic acid and a polyol
  • the method according to (12) which is a diester of 2H_pyrone_2_one 1,6-dicarboxylic acid, or a polyester thereof obtained by the above reaction.
  • R 1 and R 2 each independently represent a hydrocarbon-based divalent residue which may contain a hetero atom having no active hydrogen in its structure.
  • the polymer as described in (1) which is a polyurea which has a repeating unit represented by these.
  • R 1 and R 2 are each, R 3, R 3 - ( ⁇ R 3) a, or R 4 - (O 2 C - R 3 - CO 2 R 4) b (However, R 3 and R 4 each independently represent a divalent residue of a saturated or unsaturated hydrocarbon having 1 to 24 carbon atoms; a and b each independently represent an integer of 1 to 4
  • the polymer as described in (14) is provided.
  • R 1 and R 2 are each independently a divalent alkylene group having 1 to 24 carbon atoms or a linear or branched alkylene group having 1 to 24 carbon atoms or an aromatic hydrocarbon having 5 to 10 carbon atoms.
  • a polymer according to (14) or (15), which is a residue, is provided.
  • R 1 represents a hydrocarbon-based divalent residue which may contain a heteroatom having no active hydrogen in its structure.
  • R 1 represents a hydrocarbon-based divalent residue which may contain a heteroatom having no active hydrogen in its structure.
  • At least one of the diisocyanate component and the diamine component includes the following general formula (VII):
  • R 1 represents a hydrocarbon-based divalent residue which may contain a heteroatom having no active hydrogen in its structure.
  • R 1 represents a hydrocarbon-based divalent residue which may contain a heteroatom having no active hydrogen in its structure.
  • the method for producing a polymer according to (12) is characterized in that a diisocyanate component and a diamine component are polyadded using the compound represented by formula (1).
  • the biodegradable polymer of the present invention is industrially useful as a material for paints, adhesives, sealing materials, fillers / heat insulation materials, textile products, shoe products, automobile parts and the like.
  • FIG. 1 is a diagram showing the results of D S C measurement of the BHPDC-based polyurethane obtained in Example 2.
  • FIG. 2 is a temperature-weight loss rate curve of the BHPDC-based polyurethane obtained in Example 2.
  • Figure 3 shows the MA L of the BHPDC-based polyurethane obtained in Example 2. It is a figure which shows D—TOF—MS. BEST MODE FOR CARRYING OUT THE INVENTION
  • the polymer of the present invention is a polymer having a repeating unit represented by the general formula (I) (hereinafter, “polymer of the general formula (I)”) is a polyurethane or a polyurea.
  • R 1 and R 2 each independently represent a hydrocarbon-based divalent residue that may contain a heteroatom having no active hydrogen in its structure, R 3, R 3 - (oR 3) a, or R 4 - ( ⁇ 2 C - R 3 - CO 2 R) b (where each independently R 3 and R 4 are saturated with carbon number 1-2 4 Or a divalent residue of an unsaturated hydrocarbon; a and b each independently represent an integer of 1 to 4.
  • R 3 for example, a linear or branched alkylene group having 1 to 24 carbon atoms (for example, ethylene group, trimethylene group, tetramethylene group, hexamethylene group, octamethylene group, decamethylene group, Dodecamethylene group, etc.), divalent residues of cyclic alkanes having 3 to 8 carbon atoms (for example, cyclohexylene groups, etc.), divalent residues of aromatic hydrocarbons having 5 to 10 carbon atoms (phenylene) Group, tolylene group, xylylene group, naphthylene group, methylnaphthylene group, biphenylene group, etc.), carbon number consisting of alkyl group having 1 to 6 carbon atoms and aryl group having 6 to 14 carbon atoms Examples thereof include a divalent residue of 7 to 24 aralkyl and a divalent residue of an alkylarylalkyl group having 8 to 24 carbon atoms.
  • R 3 — (OR 3 ) a group examples include 1 CH 2 CH 2 — (OCH 2 CH 2 ) 2 —.
  • These hydrocarbon-based divalent residues are alkyl groups (preferably Or -C 6 alkyl), an alkoxy group (preferably one
  • Arukanoiru group preferably, c 2 - C 6 Al Kanoiru
  • Ariru group preferably, C 6 - 4 Ariru
  • Ararukiru group preferably, C 7 - 8 Ararukiru
  • Hydrogen such It may be further substituted with a substituent not having.
  • R 1 and R 2 are preferably a linear or branched alkylene group having 1 to 24 carbon atoms or a divalent residue of an aromatic hydrocarbon having 5 to 10 carbon atoms.
  • the polymers of general formula (I) include the following polymers:
  • R 1 and R 2 each independently represent a hydrocarbon-based divalent residue that may contain a heteroatom having no active hydrogen in its structure;
  • X represents an integer of 1 or more.
  • R 1 represents a hydrocarbon-based divalent residue which may contain a heteroatom having no active hydrogen in its structure.
  • R 1 and R 2 each independently represent a hydrocarbon-based divalent residue which may contain a hetero atom having no active hydrogen in its structure. ] Having a repeating unit represented by the following formula:
  • the polyurethane of the formula (I I) is preferably the following general formula (I I I):
  • R 1 and R 2 are each a R 1 in formula (I), R 2 synonymous.
  • the polyurethane represented by the general formula (V) is preferably a foamable polyurethane.
  • the polyurethane of the present invention can be produced by addition polymerization of a diol component (PDC diester or PDC polyester) and a diisocyanate or an alkali metal adduct thereof.
  • a diol component PDC diester or PDC polyester
  • a diisocyanate or an alkali metal adduct thereof A production example is shown below.
  • the polyurethane (I I I) of the present invention can be obtained by addition polymerization of the PDC diester (1) and the diisocyanate (2).
  • the diester (1) of PDC can be obtained, for example, by a reaction between a PDC derivative (3) obtained by esterifying or halide-forming PDC by a conventional method and the following polyols.
  • X represents a lower alkoxy group such as a methoxy group, an ethoxy group, n-propoxy group, or a halogen atom such as F, Cl, Br, or I
  • the polyol is not particularly limited as long as it is a hydrocarbon-based polyol that may contain a hetero atom having no active hydrogen in its structure.
  • Diisocyanates (2) include, for example, 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, toluene diisocyanate (TDI), naphtho Aromatic diisocyanates such as Range Isocyanate, 1,4-Fenylene Diisocyanate; Ethylene Diisocyanate, 2, 2, 4 — Trimethylhexamethylene diisocyanate ⁇ , 1, 6 — Aliphatic diisocyanates such as hexamethylene diisocyanate (HDI); Hydrogenated 4, 4'-diphenylmethane diisocyanate (HMDI), 1, 4 — Cyclohexane diisocyanate (CHDI) ), Isophorone diisocyanate (IPDI), hydrogenated m_xylylene diisocyanate (HXDI), norbornane diisocyanate, xylylene range Soshiane Doo (X
  • alkali metal adducts of diisocyanates examples include the above-mentioned diisocyanates, such as calcium salts and sodium salts.
  • the PDC is, for example, vanillin, syringe aldehyde, vanillic acid, syringic acid or protocatechuic acid by the method described in Japanese Patent Application Laid-Open No. 2005-027 4 49. It can be easily obtained from plant-derived low molecular weight compounds such as lignin, or mixtures thereof.
  • PDC peroxide-semiconductor
  • a host such as a microorganism (eg, Pseudomonas putida PpYllOO) to produce a transformant
  • PDC can be obtained in high yield by culturing the transformant in the presence of the above compound or mixture.
  • the PDC may be obtained in the form of a salt such as an alkali metal (for example, sodium, potassium, rubidium, silver, etc.) salt, an alkaline earth metal (calcium, magnesium) salt, or the like.
  • the mixing ratio of the above PDC diester (1) and diisocyanate (2) is not particularly limited, but is preferably about 2: 1 to about 1: 3 in molar ratio. If diisocyanate is used in excess of this range, the isocyanate remaining at the end of the polymer may react with the amine to cause off-flavors and odors.
  • PDC diesters (1) and diisocyanates (2) in a molar ratio of approximately 1: 1. It is preferable.
  • a polymerization catalyst is not necessarily required, but a catalyst used in the production of a normal polyurethane, for example, triethylamine, triptylamin, N-methylmorpholine, N_ethylmorpholine. , N, N, N ', N'—Tetramethylethyle ,-*
  • N dimethylbenzylamine
  • N, N dimethylcyclohexylamine
  • N, N ′, N ′ tetramethyl 1, 3 — buchenha hen
  • 1, 2 dimethylimidazole
  • Nomonium hydroxide, benzyltrimethylammonium hydroxide ⁇ and other tetraalkylammonium hydroxides alkali metal phenols such as sodium phenolate; hydroxides of alkaline metals such as lithium Hydroxides; alkali metal alkoxides such as sodium methoxide; potassium acetate, sodium acetate,
  • Phosphines such as Lithium Phosphine; Metal chelate compounds such as Carium-Salicylaldehyde; Subsequent Acetate, Subsequent Nasoctate (Subanus 2-Ethylhexoate) and other organotin (II) Compound: Dibutyltin oxide, dibutyltin dichloride, dibutyltin diacetate, dibutyltin dilaurate, dibutyltin maleate, dioctyltin diacetate and other organotin (IV) compounds; dialkyl tita Mention may be made of other organometallic compounds such as nates.
  • organometallic compounds such as nates.
  • Isocyanuration catalysts such as tris (dimethylaminomethyl) phenol, N, ⁇ ', N' — tris (dimethylaminopropyl) hexahydros-triazine can also be used. These catalysts are preferably used in an amount of about 0.01 to 1% by weight in the reaction mixture.
  • the solvent examples include tetrahydrofuran and jetyl ether.
  • Ether solvents such as 1,4-dioxane and dimethoxetane
  • aromatic hydrocarbon solvents such as benzene, toluene and xylene
  • alicyclic hydrocarbon solvents such as cyclohexane and cyclohexanone
  • Ester solvents such as ketones; ketone solvents such as acetone and methylethyl ketones; non-protonic polar solvents such as acetonitrile, N, N-dimethylformamide and dimethyl sulfoxide. Two or more of these solvents can be used in combination.
  • the solvent is used in an amount of usually 20 to 1,000 parts by weight with respect to 100 parts by weight of the total amount of raw material monomers.
  • the polymerization reaction may be carried out for 1 hour to several hours at 0 to room temperature, optionally with heating.
  • the polyurethane (IV) of the present invention can be obtained by addition polymerization of PDC polyester (4) and diisocyanate (5).
  • the PDC polyester (4) is prepared by, for example, the method described in International Publication No. 9/95/43/84 pamphlet, that is, the single polycondensation of the PDC diester (1) of the production method 1 or the PDC diester ( 1) Obtained by polycondensation with dihalide carbonate such as dichloride carbonate
  • the P DC polyester (4) includes those obtained by polycondensation of the P DC derivative (3) and the above polyols.
  • the mixing ratio of the above PDC polyester (4) and diisocyanate (5) is not particularly limited, but is preferably about 2: 1 to about 1: 3 in molar ratio. If diisocyanate is used in excess of this range, the isocyanate remaining at the end of the polymer may react with the amine to cause off-flavors and odors.
  • a high molecular weight polyurethane for example, a polyurethane having a weight average molecular weight of 100,000 or more, it is preferable to use PDC polyester (4) and diisocyanate (5) in a molar ratio of about 1: 1. .
  • the molecular weight of the polyurethane obtained by the production method of the present invention is particularly although it is not limited and varies depending on the application, it is usually from about 500,000 to about 40,000 in weight average molecular weight. From the viewpoint of physical properties such as ease of preparation of the solution, molding processability, and mechanical strength, about 10,000 to about 300,000 are particularly preferable.
  • the foamed polyurethane of the general formula (V) of the present invention can be produced by reacting PDC with diisocyanates (6). Instead of PDC, the aforementioned salt of PDC may be used. In the production method of the present invention, since carbon dioxide produced by the reaction becomes a foaming source, it is not necessary to use a foaming agent such as an inert gas generally used for the production of foamed polyurethane. A production example is shown below.
  • R 1 represents a hydrocarbon-based divalent residue which may contain a heteroatom having no active hydrogen in its structure.
  • diisocyanate (6) used in the present invention those conventionally used for the production of polyurethane can be used.
  • diisocyanates include aromatic diisocyanates having 6 to 20 carbon atoms (excluding carbon in the NCO group), aliphatic diisocyanates having 2 to 18 carbon atoms, and alicyclic rings having 4 to 15 carbon atoms.
  • diisocyanates (6) include 1,3—and 1,4-phenolic diisocyanate, 2,4—and / or 2,6—tolylene diisocyanate. (TDI), crude TDI, diphenylmethane 1, 2, 4, and / or 4, 4, 1 diisocyanate
  • aromatic diisocyanates such as naphthylene-1,5-diisocyanate, trifluoromethane-1,4,4,4 "—triisocyanate, m- and p-isocyanatophenylsulfonylisocyanate G: Ethylene diisocyanate ⁇ , tetramethylene diisocyanate Hexamethylene diisocyanate, dodecamethylene diisocyanate, 1, 6, 11 1 undodecane lyisocyanate, 2, 2, 4 1 trimethylhexane diisocyanate, lysine diisocyanate 2, 6—Diisocyanate methyl caproate, Bis (2—Isocyanate cetyl) fumarate, Bis (2—Isocyanate ethyl) carbonate, 2—Isocyanate cetyl— 2, 6, _Diisocyanate hexanoate Aliphatic diisocyanates such as isophorone diisocyanate, dicycl
  • the mixing ratio of the above PDC and diisocyanate (6) is not particularly limited, but is preferably about 2: 1 to about 1: 2.5 in molar ratio. If disocynates are used beyond this range, a cross-linked structure is formed and stable foaming becomes difficult. On the other hand, if used below this range, it will be difficult to foam.
  • a polymerization catalyst is not always necessary, but when used, it is listed in ⁇ Production of Polyurethanes Represented by General Formulas (III) and (IV)>.
  • the amount used is also in accordance with the amount described in the production method.
  • a foam stabilizer In the production method of the present invention, a foam stabilizer, a A settling agent or the like may be added.
  • foam stabilizer examples include, for example, known organic surfactants such as L 1 5 0 1, L 1 5 2 0, L-5 3 2, L-5 4 0, L 1 5
  • the foam stabilizer is 0.05 to 1% by weight, particularly 0
  • filler for example, vinylidene chloride, aerosil and the like can be mentioned.
  • stabilizer for example, trimethyl phosphate can be mentioned for diisocyanates.
  • solvent examples include tetrahydrofuran and jetyl ether.
  • 1, 4_dioxane, dimethixetane and other ether solvents 1, 4_dioxane, dimethixetane and other ether solvents; benzene, toluene, xylene and other aromatic hydrocarbon solvents; cyclohexane, cyclohexanone and other alicyclic hydrocarbon solvents; acetic acid ester And ester solvents such as ketones; ketone solvents such as acetone and methylethylketone.
  • the amount of the solvent used is usually from 20 to 1,000 parts by weight with respect to 100 parts by weight of the total amount of raw material monomers.
  • the polymerization reaction is about 0 T: to about 75, and may be further heated for 1 hour to several hours in some cases.
  • the molecular weight of the polyurethane foam obtained by the production method of the present invention varies depending on the application, but is usually about 10,000 or more in weight average molecular weight, and preferably about 10,000 to about 400,000. From the viewpoint of physical properties such as ease of preparation of the solution, molding processability and mechanical strength, about 10,000 to about 300,000 are particularly preferable.
  • the average bubble diameter is about 10 m to about 200 m. For the average bubble diameter, a scanning electron microscope SEM 2400 (manufactured by Hitachi, Ltd.) was used. It was determined by measuring all the bubble diameters present.
  • composition containing the polyurethane of the present invention represented by the general formula (11 1), (IV) or (V)
  • various additives used in the conventional polyurethane composition such as a phosphorus compound, are used.
  • Flame retardants such as halogen-containing compounds, antioxidants, ultraviolet absorbers, pigments, dyes, plasticizers and the like can be added.
  • the polyurea (VI) of the present invention comprises a diamine component including a diamine of 2 H-pyrone-2-one-4,6-dicarboxylic acid, and 2 H-pyrone-1-2-one-4,6-dicarboxylic acid. It can be produced by a polyaddition reaction with diisocyanate components including diisocyanate. However, at least one of the diminin component and diisocyanate component may contain 2 H-pyrone 1 2-on-4, 6-dicarboxylic acid diamine and / or 2 H-pyrone 1 2-on 4 , Use 6-dicarboxylic acid diisocyanate.
  • the “jamine component” means 2 H-pyrone 1 2 -on 1 4, It includes diamines of 6-dicarboxylic acid and diamines represented by the following general formula (8).
  • the “diisocyanate component” includes diisocyanate of 2 H-pyrone-2-one 1 6 6-dicarboxylic acid and diisocyanates represented by the following general formula (9).
  • the polyurea (VI) of the present invention comprises a diisocyanate derivative represented by the general formula (7) and a diamine (8) represented by the formula: H 2 N—R 2 —NH 2.
  • a diaddition derivative represented by the general formula (9) and a diisocyanate represented by the formula: CN—R 2 —NCO (10) Can do.
  • it can also be produced by polyaddition reaction of a diisocyanate derivative represented by the general formula (7) and a dimine derivative represented by the general formula (9).
  • Formula: H, N _ RNH formula: OCN- R 2 - R 2 in the NCO is as defined in general formula (I).
  • the production examples of the polyurea (VI) of the present invention are shown below.
  • the diisocyanate derivative represented by the general formula (7) is a novel compound.
  • diisocyanate (10) described later and PDC It can be obtained by reacting at room temperature until foaming disappears. If necessary, a small amount of a catalyst usually used for the production of polyurethane, such as tin 2-ethylhexanoate (II), can be added.
  • the reaction solvent is not particularly limited, but examples thereof include ether solvents such as tetrahydrofuran, jet ether, 1,4-dioxane and dimethoxetane; aromatic hydrocarbon solvents such as benzene, toluene and xylene; Cyclohexane, cyclohexanone and other alicyclic hydrocarbon solvents; acetate esters and other ester solvents; aceton and methyl ethyl ketone and other ketone solvents; and combinations of two or more of these It is done.
  • the reaction solvent may be used usually in an amount of 20 to 1,000 parts by weight with respect to 100 parts by weight of the total amount of raw materials.
  • diamines (8) examples include hydrazine derivatives such as oxalic acid dihydrazide, succinic acid dihydrazide, adipic acid dihydrazide, terephthalic acid dihydrazide; ethylenediamine, neopentanediamine
  • aliphatic diamines such as polyoxyalkylene diamines with an average molecular weight of 14 8 to 40 000 g / mole; p — or m-xylylene diamine, etc.
  • a polymerization catalyst is not always necessary.
  • ⁇ General Formulas (III) and (IV) are preferably used, and the amount used is also in accordance with the amount described in the production method.
  • solvent examples include tetrahydrofuran and jetyl ether.
  • Ether solvents such as 1,4-dioxane and dimethoxetane; aromatic hydrocarbon solvents such as benzene, toluene and xylene; alicyclic hydrocarbon solvents such as cyclohexane and cyclohexanone; And ester solvents such as ketones; ketone solvents such as acetone and methylethylketone.
  • aromatic hydrocarbon solvents such as benzene, toluene and xylene
  • alicyclic hydrocarbon solvents such as cyclohexane and cyclohexanone
  • ester solvents such as ketones
  • ketone solvents such as acetone and methylethylketone.
  • the polymerization reaction may be carried out for 1 hour to several hours at 0 to room temperature, optionally with heating.
  • the diamine derivative represented by the general formula (9) is a novel compound, and can be obtained, for example, by adding water to the diisocyanate derivative (7) and reacting at room temperature until no foaming occurs.
  • Water may be usually used in an amount of 500 to 1,000 parts by weight with respect to 100 parts by weight of the diisocyanate derivative (7).
  • Diisocyanates (10) include diisocyanates described in ⁇ Production of Polyurethanes Represented by General Formulas (III) and (IV)>. Nates (5) can be used.
  • Polymerization conditions such as catalyst, temperature, and time in production method 2 are the same as in production method 1.
  • the mixing ratio of the diamine component and the diisocyanate component is not particularly limited, but is preferably about 1: 1.2 to about 1: 2 in terms of molar ratio. If the diisocyanate component is used in excess of this range, a high molecular weight product cannot be obtained, or a crosslinked structure reacted with a urea bond that has already been formed. On the other hand, if it is used below this range, sufficient high molecular weight polymer cannot be obtained, and the desired physical properties cannot be obtained.
  • the molecular weight of the polyurea of the present invention is not particularly limited and varies depending on the use, but is usually about 2,00 to about 200,000 in terms of weight average molecular weight. From the viewpoint of physical properties such as ease of preparation of the solution, molding processability and mechanical strength, about 2,500 to about 100,000 is particularly preferred.
  • the composition containing the polyurethane of the present invention is used in various additives used in conventional polyurea compositions, for example, flame retardants such as phosphorus compounds and halogen-containing compounds, antioxidants, and ultraviolet absorption. Agents, pigments, dyes, plasticizers, etc. can be added.
  • the polymer of the present invention is polyurethane or polyurea
  • the polymer of the present invention is a sheet, film, belt, hose, anti-vibration material, shoe sole, artificial leather, synthetic leather, fiber treatment agent, paint, adhesive. It is useful for various applications such as waterproof materials, elastic fibers, and flooring materials.
  • various uses such as a heat insulating material, a structural material, a protective material, a sound insulating material, such as an automobile carpet, a ceiling / wall shock absorbing and a sound absorbing cushion. It is useful for lining materials, linings of various safety parts, gaskets, hair filters, household and commercial carpets, and clothing.
  • the glass transition temperature was measured by differential scanning calorimetry (DSC method) at a heating rate of 10 / min.
  • Weight average molecular weight The molecular weight was measured by gel permeation chromatography (GPC). Calibration was performed using standard polystyrene, and the weight average molecular weight was calculated in terms of polystyrene.
  • Crystallization temperature The crystal growth rate was measured using a differential scanning calorimeter.
  • Flexural modulus, loss factor Evaluated by dynamic viscoelasticity (DMS) method.
  • the equipment is S DM / 5 60, 0, DM S 110, manufactured by Seiko Insulmen Co., Ltd. — — 60: temperature range from ⁇ 100, with temperature increase rate of 5 / min. While measuring.
  • Loss factor Measured by the bending (dual-supported beam) measurement method at frequencies of 0.1, 0.5, 1.5, 10, 0, 50, 100 Hz.
  • PDC acid chloride PDC dichloride
  • 10 g (1 7 ml) of ethylene glycol was added to 5 g (22.73 mm o 1) of this PDC acid chloride.
  • 9 mm o 1) was added, and the mixture was allowed to react at room temperature in a nitrogen atmosphere for 1 hour.
  • Precipitated white powder was collected by filtration and dried under reduced pressure to obtain 3 g of PDC diester (hereinafter referred to as “BHPDC”).
  • hexamethylene diisocyanate 1 O g (8.6 1 mm o 1) was added in several batches and allowed to react for 1 hour at room temperature under a nitrogen atmosphere. Thereafter, it was precipitated in methanol, and the precipitate was collected by filtration and dried under reduced pressure to obtain 0.7 g of polyurethane.
  • Weight average molecular weight 300,000 or more ( ⁇ , ⁇ -dimethylformamide (DMF)).
  • a polyurethane was obtained in the same manner as in Example 1 except that the solvent was changed to dimethyl sulfoxide.
  • Weight average molecular weight 300,000 or more (DM F).
  • Figures 1 and 2 show the DSC and TG soot results of the polyurethane obtained in Example 2, respectively. From these figures, the glass transition temperature is 60 In a vicinity of 2 0% weight loss temperature (T d 8 D) is 2 6 0 around der ivy.
  • FIG. 3 shows the results of MAL D-T 0 F-MS measurement of the polyurethane obtained in Example 2.
  • the expected molecular weight was calculated from the measurement results of MA LD—TOF—MS.
  • a 2- to 5-mer urethane oligomer (with a molecular weight of 1, 20.00 to 2,800) was formed. Became clear.
  • Weight average molecular weight 1 3, 000 or more (T H F).
  • Flexural modulus 1 7 2.6 M Pa ( ⁇ 30,), 5.7 M Pa (2 5), 3.3 M Pa (50 t :).
  • Loss coefficients 0.16 (_30 t :), 0.26 (25 :), 0.13 (50).
  • Example 1 PD CP EG 2 0 0 polyester obtained in Example 1 1.
  • 3 g (0. ll mm ol) was dissolved in 10 ml DM F, and a small amount of 2-ethyl hexanoate (II) was added. Thereafter, 0.05 8 g (0.34 mm o 1) of tolylene diisocyanate was added in several portions, and the mixture was allowed to react at room temperature for 1 hour in a nitrogen atmosphere. Thereafter, it was dried under reduced pressure under 6 O t: 0.66 g (57%) of polyurethane was obtained.
  • Crystallization temperature 1 15 Crystal melting point: 3 3.
  • Example 13 Polyester polyurethane PDC polyester 0.37 g (0.29 mm o 1) obtained in Example 9 was added to trilylene isocyanate 0.22 g (0.18 mm o 1) several times. Separately added and reacted for 1 hour at room temperature under nitrogen atmosphere. Thereafter, it was dried under reduced pressure at 60 to obtain 0.31 g (79%) of polyurethane.
  • TDF tetrahydrofuran
  • N 4 is (5-isocyanate ⁇ ⁇ 1 2-methylphenyl) 1 2-oxo-2H 1-pyran-1 4,6-dicarboxamide and its three positional isomers (N 4, N 6-bis (3-isocyanate ⁇ —4_methylphenyl) 1-2-oxo 2 H-pyran-4,6-dicarboxyamide; N 4-(5-isosocyanate 1-to-1 methylphenyl), N 6 — (3 —Isocinane ⁇ ⁇ 4 ⁇ ⁇ ⁇ X ⁇ ⁇ ) ⁇
  • DMF Dimethylformamide
  • PDC diamine (0.44 g, 1.1 mm o 1) obtained in (2) above.
  • 5 ml Add a small amount of PDC diisocyanate mixture (0.5 g, 1. l mm ol) obtained in (1) to a DMF (5 ml) solution, react at room temperature for 3 hours, and then in methanol. The precipitate was obtained by re-precipitation. Thereafter, it was dried at 60 ° C. under vacuum to obtain 0.27 g (yield 28.5%) of the desired polyurea.
  • PDCHE 2 H-pyrone-4,6-dicarboxylic acid di (2-hydroxyethyl) ester
  • This PDC HE (0; 44 g, 1.27 mm o 1) is dissolved in TH F (5 ml) and hexamethylene diisocyanate (0.5 4 g, 3.2 1 mm o). 1) and a small amount of 2-ethyl hexylhexanoate (II) were added, followed by reaction at room temperature for 4 hours in a nitrogen atmosphere. Then, water (0.03 g, 1.67 mmol) was added dropwise. After 15 minutes, a pale yellow solid solution was obtained. The obtained solid solution was reprecipitated in methanol, filtered, washed with water and methanol, and dried overnight at 50 to obtain 0.40 g of a pale yellow powder.
  • Weight average molecular weight 71,00 or more (DM F).
  • Dissolve PDCHE (0.36 g, 1.3 2 mm o 1) in 5 ml TH F, TDI (0.6 g, 3.4 5 mm o 1), and a small amount of tin 2-ethylhexanoate. After adding (II), the mixture was reacted at room temperature for 4 hours under a nitrogen atmosphere. Then, water (0.03 g, 1.67 7 mm o 1) was added dropwise. After 15 minutes, an orange solid solution was obtained. The obtained solid solution liquid was reprecipitated in methanol, filtered, washed with water and methanol, and dried overnight at 50 to obtain 0.8 l g of orange powder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

溶媒や反応物への溶解性に優れるPDCを繰り返し単位構造に含む、高弾性の生分解性ポリマーを安価に提供する。 下記一般式(I):[式中、 R1及びR2は各々独立に、その構造中に活性水素を有さないヘテロ原子を含んでもよい炭化水素系の二価残基を示し; Xは、O又はNHを示し; xは、1以上の整数を示し;及び m及びnは、0又は1を示す。]で表される繰り返し単位を有するポリマー;及びその製造法。

Description

ポリウレタン及びポリウレア、 並びにその製造法
技術分野
本発明は、 植物由来の 2 H —ピロン— 2 —オン一 4, 6 —ジカル ボン酸を繰り返し単位構造に含む生分解性ポリマー、 特にポリウレ 明
タン及びポリウレァ、 並びにその製造法に関する。
背景技術 書
従来、 広く用いられている樹脂として、 ポ Uェチレン 、 ポリプロ ピレン、 ポリ塩化ビニル、 ポリエチレンテレフ夕レー卜等が知られ ており、 各種容器等の成形品ゃゴミ袋、 包装袋等に使用されている
。 しかし、 これらの樹脂は、 石油を原料としているため 、 使用後廃 棄する際、 焼却により地球上の二酸化炭素を増大させ、 地球温暖化 を助長させる。 また、 焼却せずに埋設処理しても、 自然環境下でほ とんど分解されないために半永久的に地中に残留する。 また、 投機 されたプラスチック類により、 景観が損なわれ、 海洋生物の生活環 境が破壊されるなどの問題がある。
近年、 トウモロコシ、 サトウキビ等の植物からつく られる植物性 樹脂が注目されている。 当該樹脂は、 生分解性を有するため、 環境 破壊を招く ことも少ない。 このような樹脂としては、 ポリ乳酸、 ポ リ ヒ ドロキシ酪酸等があり、 石油系樹脂と同等の剛性と強度を備え 、 各種成形材料への用途開発が進められている。 しかし、 これらの 植物性樹脂においても、 デンプン コーンスターチ等の食物を原料 としているため、 食物と競合する可能性がある。
一方、 植物成分であるリグニンは、 芳香族高分子化合物として植 物細胞壁に普遍的に含まれているバイオマス資源であるが、 化学構 造が多様な成分で構成されていることや複雑な高分子構造を有する ために、 有効な利用技術が開発されていない。 そのため、 製紙工程 で大量に生成するリ グニンは有効利用されることなく、 重油の代替 品と して燃焼されている。 しかし、 近年、 リ グニン等の植物芳香族 成分が、 化学的分解法、 物理化学的分解法などにより、 数種の低分 子混合物に変換され、 更に機能性プラスチック原料や化学製品の原 料となり得る中間物質である 2 —ピロン一 4, 6 —ジカルボン酸 ( 2-pyron-4, 6-d i ca rboxy l i c ac i d) (以下、 「 P D C」 と略する) に変換できることとなった。 従って、 食物と競合しない植物性樹脂 原料と してリ グニンを有効利用する方法の開発が望まれている。 現在、 このようなリ グニンを用いる生分解性ポリマーとしては、 リグニンを含有する生分解性ポリ ウレタン複合体 (特開 2 0 0 0 — 3 1 9 3 5 0号公報) 、 及び従来の熱可塑性エラス 卜マーにリ グ二 ンを配合させることにより、 熱可塑性エラス トマ一の優れたリサイ クル性を維持しつつ、 圧縮永久歪を改善した熱可塑性エラス トマ一 組成物 (特開 2 0 0 5 — 2 2 5 9号公報) が報告されている。
また、 リ グノセルロース由来のポリオールと、 ポリイソシァネー トとから得られるものが知られている (特開 2 0 0 0 - 3 7 8 6 7 号公報) 。 更に、 この生分解性ポリ ウレタンから、 発泡剤の添加に より発泡体が製造されている (特開 2 0 0 0 — 3 7 8 6 7号公報) 。 ポリ ウレタンに発泡性を付与するためには、 一般的に、 水、 不活 性ガス等の発泡剤を配合する方法、 原料中に中空のマイクロビーズ を分散して硬化させ、 マイクロビーズ部分を独立気泡させる方法、 原料を機械的に攪袢して空気を混合させる方法等が知られているが 、 これらの中でも、 発泡剤による発泡法は、 安定した気泡が得られ る点で多用されている。 しかしながら、 リ グノセルロース等のバイオマス物質はポリイソ シァネー ト類に対する相溶性が低いため、 バイオマス由来のポリオ ールを調製するには、 先ず液状化バイオマスに変換し、 更に特定の エステル化剤又はエーテル化剤で変性する、 というよ'うに工程が煩 雑である。
また、 発泡剤を使用する場合、 フロン、 アルゴン等の不活性ガス は高価であり、 水はポリイソシァネー ト類と反応して、 ポリ ウレァ の合成原料となるポリアミ ンを生じる。
一方、 P D Cは、 リ グニンと比べて非常に低分子であるため、 溶 媒ゃ反応物への溶解性に優れる。 また、 P D Cの 2 H—ピロン一 2 一オン環構造は、 ポリマーに剛直構造を与え、 そのため、 柔軟性、 弾性又は高強度を素材に提供でき、 更にその高い極性及び高い屈折 率から、 これらの性質を有する素材が得られることが知られている (W 09 9 /5 4 3 7 6、 WO 9 9 /5 4 3 8 4 ) 。 発明の開示
従って、 本発明は、 P D Cを繰り返し単位構造に含む、 高弾性の 生分解性ポリウレ夕ン及び/又はポリゥレアを安価かつ簡便に提供 することを目的とする。 また、 発泡剤を使用することなく、 生分解 性の発泡ポリウレタンを提供することを目的とする。
本発明者らは、 斯かる現状に鑑み鋭意検討した結果、 発酵生産に よって得られる P D C又はその誘導体をジイソシァネー ト類と反応 させることにより、 P D Cを繰り返し単位構造に含む、 新規な生分 解性ポリウレタンが得られることを見出した。 また、 ジイソシァネ ー ト成分とジァミ ン成分との重付加反応において、 少なく ともいず れかの成分として、 P D Cのジイソシァネー ト誘導体又は P D Cの ジァミン誘導体を用いることにより、 P D Cを繰り返し単位構造に 含む、 新規な生分解性ポリウレアが得られることを見出し、 を完成した。
すなわち、 ( 1 ) 本発明は、 下記一般式 ( I ) :
Figure imgf000005_0001
[式中、
R 1 及び R 2 は各々独立に、 その構造中に活性水素を有さないへ テロ原子を含んでもよい炭化水素系の二価残基を示し;
Xは、 O又は N Hを示し ;
Xは、 1 以上の整数を示し ; 及び
m及び nは、 0又は 1 を示す。 ]
で表される繰り返し単位を有するポリマーを提供する。
( 2 ) 本発明は、 下記一般式 ( I I ) :
Figure imgf000005_0002
[式中、
R 1 及び R 2 は各々独立に、 その構造中に活性水素を有さないへ テロ原子を含んでもよい炭化水素系の二価残基を示し;
Xは、 1 以上の整数を示す。 ]
で表される繰り返し単位を有するポリ ウレタンである、 ( 1 ) 記載 のポリマーを提供する。
( 3 ) 本発明は、 前記ポリ ウレタンが、 下記一般式 ( I I I ) :
Figure imgf000006_0001
[式中、
R 1 及び R 2 は前記定義のとおりである。 ]
で表される繰り返し単位を有する、 ( 2 ) 記載のポリマーを提供す る。
( 4 ) 本発明は、 前記ポリウレタンが、 下記一般式 ( I V) :
Figure imgf000006_0002
[式中、 R 1 及び R 2 は前記定義のとおりであり ; Xは 2以上の整 数である。 ]
で表される繰り返し単位を有する、 ( 2 ) 記載のポリマーを提供す る。
( 5 ) 本発明は、 前記 R 1 及び R 2 が各々独立に、 R 3 、 R 3 — (O R 3 ) a 、 又は R 4 ― (〇 2 C - R 3 - C O 2 R 4 ) b (但し、 R 3 及び R 4 は各々独立に、 炭素数 1〜 2 4の飽和又は不飽和炭化 水素の二価残基を示し ; a及び bは各々独立に、 1〜 4の整数を示 す。 ) を示す、 ( 1 ) 〜 ( 4 ) のいずれか 1記載のポリマーを提供 する。
( 6 ) 本発明は、 前記 R 1 及び R 2 が各々独立に、 炭素数 1〜 2 4の直鎖又は分岐鎖のアルキレン基である、 ( 1 ) 〜 ( 5 ) のいず れか 1記載のポリマーを提供する。
( 7 ) 本発明は、 下記一般式 (V) :
Figure imgf000007_0001
[式中、 R 1 は、 その構造中に活性水素を有さないヘテロ原子を含 んでもよい炭化水素系の二価残基を示す。 ]
で表される繰り返し単位を有するポリ ウレタンである、 ( 1 ) 記載 のポリマーを提供する。
( 8 ) 本発明は、 発泡性ポリウレタンである、 ( 7 ) 記載のポリ マ一を提供する。
( 9 ) 本発明は、 前記 R 1 力 R 3 、 R 3 一 (O R 3 ) a 、 又は R 4 - (〇 2 C - R 3 一 C〇 2 R ) b (但し、 R 3 及び R 4 は各々 独立に、 炭素数 1〜 2 4の飽和又は不飽和炭化水素の二価残基を示 し ; a及び bは各々独立に、 1〜 4の整数を示す。 ) を示す、 ( 7 ) 又は ( 8 ) 記載のポリマーを提供する。
( 1 0 ) 本発明は、 前記 R 1 カ^ 炭素数 1〜 2 4の直鎖又は分岐 鎖のアルキレン基である、 ( 7 ) 〜 ( 9 ) のいずれか 1記載のポリ マ一を提供する。
( 1 1 ) 本発明は、 前記 R 1 カ^ へキサメチレン基である、 ( 7 ) 〜 ( 1 0 ) のいずれか 1記載のポリマーを提供する。
( 1 2 ) 本発明は、 下記一般式 ( I ) :
Figure imgf000007_0002
ぼ中、 R 1 及び R 2 は各々独立に、 その構造中に活性水素を有さないへ テロ原子を含んでもよい炭化水素系の二価残基を示し;
Xは、 〇又は NHを示し ;
Xは、 1以上の整数を示し ; 及び
m及び nは、 0又は 1 を示す。 ]
で表される繰り返し単位を有するポリマーの製造法であって、 発泡剤の非存在下に、 2 H—ピロン— 2—オン— 4, 6 —ジカル ボン酸又はその誘導体をジイソシァネー ト類と反応させるか ; 又は 発泡剤の非存在下に、 2 H—ピロン— 2 —オン— 4, 6 —ジカル ボン酸のジァミ ンを含むジァミ ン成分を、 2 H—ピロン一 2 —オン — 4 , 6—ジカルボン酸のジイソシァネー トを含むジイソシァネー ト成分と反応させる、 但し、 該ジァミ ン成分及び該ジイソシァネー ト成分の少なく とも一方に、 2 H—ピロン _ 2 _オン— 4, 6 —ジ カルボン酸のジァミ ン、 及び/又は 2 H—ピロン _ 2 _オン— 4, 6 —ジカルボン酸のジイソシァネー トを用いる、
ことを特徴とする、 前記製造法を提供する。
( 1 3 ) 本発明は、 前記の 2 H—ピロン— 2 —オン一 4 , 6 —ジ カルボン酸の誘導体が、 2 H—ピロン— 2—オン— 4, 6 —ジカル ボン酸とポリオール類との反応により得られる 2 H_ピロン _ 2 _ オン一 4, 6—ジカルボン酸のジエステル、 又はそのポリエステル である、 ( 1 2 ) 記載の方法を提供する。
( 1 4 ) 本発明は、 下記一般式 (V I ) :
Figure imgf000008_0001
[式中、 R 1 及び R2は各々独立に、 その構造中に活性水素を有さな いへテロ原子を含んでもよい炭化水素系の二価残基を示す。 ] で表される繰り返し単位を有するポリ ウレアである、 ( 1 ) 記載の ポリマーを提供する。
( 1 5 ) 本発明は、 前記 R 1 及び R 2が各々独立に、 R 3 、 R 3 - (〇 R 3 ) a 、 又は R 4 - (O 2 C - R 3 - C O 2 R 4 ) b (但し、 R 3 及び R 4 は各々独立に、 炭素数 1〜 2 4の飽和又は不飽和炭化 水素の二価残基を示し ; a及び bは各々独立に、 1〜 4の整数を示 す。 ) を示す、 ( 1 4 ) 記載のポリマーを提供する。
( 1 6 ) 本発明は、 前記 R 1 及び R 2が各々独立に、 炭素数 1〜 2 4の直鎖もしくは分岐鎖のアルキレン基、 又は炭素数 5〜 1 0の 芳香族炭化水素の二価残基である、 ( 1 4 ) 又は ( 1 5 ) 記載のポ リマーを提供する。
( 1 7 ) 本発明は、 下記一般式 (V I I ) :
Figure imgf000009_0001
[式中、 R 1 は、 その構造中に活性水素を有さないヘテロ原子を含 んでもよい炭化水素系の二価残基を示す。 ]
で表される化合物を提供する。
( 1 8 ) 本発明は、 下記一般式 (V I I I ) :
Figure imgf000009_0002
[式中、 R 1 は、 その構造中に活性水素を有さないヘテロ原子を含 んでもよい炭化水素系の二価残基を示す。 ]
で表される化合物を提供する。 ( 1 9 ) 本発明は、 ジイソシァネー ト成分及びジァミ ン成分の少 なく とも一方に、 下記一般式 (V I I ) :
Figure imgf000010_0001
[式中、 R 1 は、 その構造中に活性水素を有さないヘテロ原子を含 んでもよい炭化水素系の二価残基を示す。 ]
で表される化合物、 又は下記一般式 (V I I I ) : .......
(VIII )
Figure imgf000010_0002
[式中、 R 1 は、 その構造中に活性水素を有さないヘテロ原子を含 んでもよい炭化水素系の二価残基を示す。 ]
で表される化合物を用いて、 ジイソシァネー ト成分とジァミ ン成分 とを重付加させることを特徴とする、 ( 1 2 ) 記載のポリマーの製 造法を提供する。
本発明によれば、 高弾性の生分解性ポリマーが収率良くかつ安価 に得られる。 従って、 本発明の生分解性ポリマーは、 塗料、 接着剤 、 シーリ ング材、 充填剤 · 断熱材、 繊維製品、 靴製品、 自動車部品 等の材料として工業的に有用である。 図面の簡単な説明
図 1 は、 実施例 2で得られた B H P D C系ポリ ウレタンの D S C 測定の結果を示す図である。
図 2は、 実施例 2で得られた B H P D C系ポリ ウレタンの温度— 重量減少率曲線である。
図 3は、 実施例 2で得られた B H P D C系ポリ ウレタンの MA L D— T O F— M S を示す図である。 発明を実施するための最良の形態
<本発明のポリ ウレタン及びポリ ウレァ>
本発明のポリマーは、 前記一般式 ( I ) で表される繰り返し単位 を有するポリマー (以下、 「一般式 ( I ) のポリマ一」 ) は、 具体 的にはポリ ウレタン又はポリウレアである。
一般式 ( I ) において、 R 1 及び R 2 は各々独立に、 その構造中 に活性水素を有さないヘテロ原子を含んでいてもよい炭化水素系の 二価残基を示し、 この中で、 R 3 、 R 3 - (O R 3 ) a 、 又は R 4 - (〇 2 C - R 3 - C O 2 R ) b (但し、 R 3 及び R 4 は各々独立 に、 炭素数 1〜 2 4の飽和又は不飽和炭化水素の二価残基を示し ; a及び bは各々独立に、 1〜 4の整数を示す。 ) が好ましい。
ここで、 R 3 としては、 例えば、 炭素数 1〜 2 4の直鎖又は分岐 鎖のアルキレン基 (例えば、 エチレン基、 ト リ メチレン基、 テトラ メチレン基、 へキサメチレン基、 ォクタメチレン基、 デカメチレン 基、 ドデカメチレン基等) 、 炭素数 3〜 8 の環状アルカンの二価残 基 (例えば、 シクロへキシレン基等) 、 炭素数 5〜 1 0の芳香族炭 化水素の二価残基 (フエ二レン基、 ト リ レン基、 キシリ レン基、 ナ フチレン基、 メチルナフチレン基、 ビフエ二レン基等) 、 炭素数 1 〜 6のアルキル基と炭素数 6〜 1 4のァリール基とからなる炭素数 7〜 2 4のァラルキルの二価残基、 炭素数 8〜 2 4のアルキルァリ ールアルキル基の二価残基等挙げられる。 R 3 — (O R 3 ) a 基とし ては、 例えば、 一 C H 2 C H 2 - (O C H 2 C H 2 ) 2 —が挙げら れる。 R 4 - (〇 2 C - R 3 - C O 2 R 4 ) b 基としては、 一 C H 2 C H 2 - (〇 2 C - C H 2 C H 2 - C O 2 C H 2 C H 2 ) 一が挙 げられる。 これらの炭化水素系の二価残基は、 アルキル基 (好まし く は、 - C 6 アルキル) 、 アルコキシ基 (好ましく は、 一
C 6 アルコキシ) 、 アルカノィル基 (好ましく は、 c 2 - C 6 アル カノィル) 、 ァリール基 (好ましく は、 C 64 ァリール) 、 ァラルキル基 (好ましくは、 C 78 ァラルキル) 等の活性水 素を有さない置換基で更に置換されていてもよい。
R 1 及び R 2 と.しては、 炭素数 1〜 2 4の直鎖又は分岐鎖のアル キレン基、 又は炭素数 5〜 1 0の芳香族炭化水素の二価残基が好ま しい。
一般式 ( I ) のポリマーには、 以下のポリマー :
( i ) 下記一般式 ( I I ) :
Figure imgf000012_0001
[式中、
R 1 及び R 2 は各々独立に、 その構造中に活性水素を有さないへ テロ原子を含んでもよい炭化水素系の二価残基を示し;
Xは、 1以上の整数を示す。 ]
で表される繰り返し単位を有するポリ ウレタン ;
( i i ) 下記一般式 (V) :
Figure imgf000012_0002
[式中、 R 1 は、 その構造中に活性水素を有さないヘテロ原子を含 んでもよい炭化水素系の二価残基を示す。 ]
で表される繰り返し単位を有するポリ ウレタン ; 及び ( i i i ) 下記一般式 (V I )
Figure imgf000013_0001
[式中、 R 1 及び R2は各々独立に、 その構造中に活性水素を有さな いへテロ原子を含んでもよい炭化水素系の二価残基を示す。 ] で表される繰り返し単位を有するポリゥレア、 が含まれる。
前記式 ( I I ) のポリウレタンとしては、 好ましくは、 下記一般 式 ( I I I ) :
Figure imgf000013_0002
(式中、 R 1 及び R 2 は各々、 一般式 ( I ) 中の R 1 、 R 2 と同義 である。 )
で表される、 P D Cのジエステルとジイソシァネート類とからなる 繰り返し単位を有するポリウレタン ; 又は、 下記一般式 ( I V) :
Figure imgf000013_0003
(式中、 R 1 及び R 2 は各々、 一般式 ( I ) 中の R 1 、. R 2 と同義 であり ; Xは 2以上の整数である。 )
で表される、 P D Cのポリエステルとジイソシァネート類とからな る繰り返し単位を有するポリウレタンである。 前記一般式 (V) で表されるポリ ウレタンは、 好ましくは発泡性 ポリウレタンである。
以下に、 本発明の一般式 ( 1 1 1 ) 、 ( I V) 、 (V) 及び (V I ) で表されるポリ ウレタンの代表的な製造法について説明する。 <一般式 ( I I I ) 及び ( I V) で表されるポリウレタンの製造法
>
本発明のポリ ウレタンは、 ジオール成分 (P D Cのジエステル又 は P D Cのポリエステル) と、 ジイソシァネー ト類又はそのアル力 リ金属付加物との付加重合により製造することができる。 以下に製 造例を示す。
製造法 1 :
Figure imgf000014_0001
(式中、 R 1 及び R 2 は前記定義のとおりである。 )
すなわち、 P D Cのジエステル ( 1 ) とジイソシァネー ト類 ( 2 ) とを付加重合させることにより、 本発明のポリ ウレタン ( I I I ) が得られる。
P D Cのジエステル ( 1 ) は、 例えば、 P D Cを常法によりエス テル化又はハライ ド化することにより得られる P D C誘導体 ( 3 ) と、 下記のポリオール類との反応により得られる。
Figure imgf000015_0001
(式中、 Xは、 メ トキシ基、 エ トキシ基、 n —プロポキシ基等の低 級アルコキシ基、 又は F、 C l 、 B r、 I 等のハロゲン原子を示す o )
ポリオール類としては、 その構造中に活性水素を有さないヘテロ 原子を含んでもよい炭化水素系のポリオール類であれば特に制限さ れず、 例えば、 エチレングリコール、 1, 3 —プロパンジオール、 1 , 4 —ブタンジオール、 1, 5 _ペンタンジオール、 1, 6 —へ キサンジオール等の直鎖脂肪族アルコール類 ; ヒ ドロキノン、 ビス フエノール A、 4, 4 , 一イソプロピリデン一ビス ( 2, 6 —ジメ チルフエノール 4, 4 ' — (へキサフルォロイソプロピリデン) ジフエノール、 4 , 4 ' —ジヒ ドロキシビフエニル、 4, 4 ' 一 ( 1, 3 —ァダマンテンジィル)ジフエノール等の二価の芳香族アル コール類 ; デォキシコール酸、 ケノデォキシコール酸、 ウルソデォ キシコール酸などの胆汁酸類、 1, 5 —ジヒ ドロキシ— 1, 2, 3 , 4 _テトラヒ ドロナフ夕レン等の非等価水酸基を有する化合物、 4, 4 , ージヒ ドロキシビフエニル、 4, - [ ( N , N—ジヒ ドロキ シェチル)ァミ ノ ]— 4 —ニトロァゾベンゼン、 4, - [ ( N , N—ジ ヒ ドロキシェチル)ァミ ノ]— 4 —メ トキシァゾベンゼン、 4, - [ ( N , N —ジヒ ドロキシェチル)ァミ ノ ] 一 4ーシァノアゾベンゼン等 のジオール類 ; 3, 6 —ヒ ドロキシメチルー 9一へプチルカルバゾ ール、 2 —ヒ ドロキシメチル _ 3 — ( N—ベンジル— 3 _カルバゾ リル)プロパノール等のジオール類 ; 2 — [ 6— [ 4, 一ブトキシ— 4 —ビフエニルォキシ]ブチル]プロパン一 1, 3 —ジオール、 2 — [ 6 - [ 4 ' —メ トキシ - 4 -ビフエニルォキシ]プチル]プロパン— 1 , 3 —ジオールなどのメソゲンを有するジオール類 ; N , N —ジヒ ドロキシェチルイソニコチンアミ ド、 N —フエ二ルジェ夕ノールァ ミ ン等の水素結合可能なアミ ノ基を有するジオール類 ; グリセリ ン 、 ト リ メチロールェタン、 ト リメチロールプロパン、 ペン夕エリス リ トール、 へキサン一 1 , 2 , 6 _ トリオール、 又はソルビ トール 、 ォレイ ン酸、 ガドレイ ン酸、 エル力酸、 リ ノール酸、 リ ノ レン酸 、 リ シノール酸、 ァラキ ドン酸等の高級脂肪酸のグリセリ ド、 又は 数平均分子量で 2 0 0〜 1 0万のポリエチレングリ コール等の多価 アルコール類など、 又はこれらの二種以上の組み合わせが挙げられ る。
ジイソシァネー ト類 ( 2 ) としては、 例えば、 4 , 4 '—ジフエ ニルメタンジイソシァネー ト、 2, 4 ' —ジフエニルメタンジイソ シァネー ト、 トルエンジイソシァネー ト ( T D I ) 、 ナフ夕レンジ イソシァネー ト、 1 , 4—フエ二レンジイソシァネー ト等の芳香族 ジイソシァネ一 卜 ; エチレンジイソシァネー ト、 2 , 2 , 4 — ト リ メチルへキサメチレンジイソシァネー 卜、 1, 6 —へキサメチレン ジイソシァネー ト ( H D I ) 等の脂肪族ジイソシァネー ト ; 水素添 加 4 , 4 '—ジフエニルメタンジイソシァネー ト ( H M D I ) 、 1 , 4 —シクロへキサンジイソシァネー ト (C H D I ) 、 イソフォロ ンジイソシァネー ト ( I P D I ) 、 水素添加 m _キシリ レンジイソ シァネー ト ( H X D I ) 、 ノルボルナンジイソシァネー ト、 キシリ レンジイソシァネー ト ( X D I ) 、 テトラメチルキシリ レンジイソ シァネー ト (T M X D I ) 等の脂環式ジイソシァネー トなどが挙げ られる。
ジイソシァネー ト類のアルカ リ金属付加物と しては、 上記ジイソ シァネー ト類のカ リ ウム塩、 ナ トリ ウム塩等が挙げられる。 ここで、 P D Cは、 例えば、 特開 2 0 0 5— 2 7 8 5 4 9号公報 に記載の方法により、 バニリ ン、 シリ ンガアルデヒ ド、 バニリ ン酸 、 シリ ンガ酸もしくはプロ トカテク酸のようなリ グニン等の植物由 来の低分子化合物、 又はその混合物から容易に得ることができる。 具体的には、 P D Cを生産するための多段階反応を触媒する 4種類 の酵素 (ベンズアルデヒ ドデヒ ドロゲナ一ゼ、 ディ メチラーゼ、 プ 口 トカテク酸 4, 5-ジォキシゲナーゼ、 4-カルボキシ- 2-ヒ ドロキシ ムコン酸- 6-セミアルデヒ ドデヒ ドロゲナーゼ) をコー ドする遺伝 子を含む組換えベクターを、 微生物 (例えば、 シユー ドモナス * プ チダ (Pseudomonas putida) PpYllOO) などの宿主に導入して形質 転換体を作製し、 次いで、 該形質転換体を上記の化合物又は混合物 の存在下に培養することにより、 高収率で P D Cを得ることができ る。 P D Cは、 アルカリ金属 (例えば、 ナ ト リウム、 カ リウム、 ル ビジゥム、 銀等) 塩、 アルカリ土類金属 (カルシウム、 マグネシゥ ム) 塩などの塩の形態で得られたものでもよい。
上記の P D Cのジエステル ( 1 ) とジイソシァネー ト類 ( 2 ) と の混合比は特に限定されないが、 モル比で、 約 2 : 1〜約 1 : 3が 好ましい。 ジイソシァネー ト類をこの範囲を超えて過剰に使用する と、 ポリマー末端に残るイソシァネー トがァミ ンに反応して異臭や 悪臭の原因となることがある。 高分子量のポリ ウレタン、 例えば重 量平均分子量で 1 0万以上のポリ ウレタンを得るためには、 P D C のジエステル ( 1 ) とジイソシァネー ト類 ( 2 ) とをほぼ 1 : 1の モル比で使用することが好ましい。
本発明のポリ ウレタンを製造するに際し、 重合触媒は必ずしも必 要ではないが、 通常のポリ ウレタンの製造に用いられる触媒、 例え ば、 ト リェチルァミ ン、 トリプチルァミ ン、 N—メチルモルホリ ン 、 N _ェチルモルホリ ン、 N, N , N ' , N'—テ トラメチルェチレ 、 -*·
ンンァミン、 ペン夕メチルジェチレン 卜リアミ ン、 ト リェチレノン ァ ン、 N —メチルー N ' —ジメチルアミノエチルピぺラジン、 N
, N —ジメチルベンジルァミ ン、 N, N —ジメチルシク Πへキシル ァ ン、 N, N , N ' , N ' —テトラメチル一 1 , 3 —ブ夕ンンァ へ ン 、 1 , 2 —ジメチルイミダゾ一ル及びその他の第 3級ァミ ン類
, ンメチルァミ ンなどの第 2級ァミ ン類 ; N —メチルジエタノール ァへ ン、 N —ェチルジェ夕ノールァミ ン、 N, N —ジメチルェ夕ノ
―ルァミン、 及びその他のアルカノールァミ ン類 ; テ トラメチルァ ヽ
ノモ二ゥムヒ ドロキシド、 ベンジルトリメチルアンモニゥムヒ ド□ キシド及びその他のテトラアルキルアンモニゥムヒ ドロキシ ド類 ; ナ 卜リ ウムフエノ ラー トなどのアルカリ金属フエノ ラ一 卜 ; 水酸化 力 リゥムなどのアルカ リ金属の水酸化物 ; ナト リウムメ 卜キシ ドな どのアルカ リ金属アルコキシ ド ; 酢酸カ リウム、 酢酸ナ 卜 リ.ゥム、
2 ―ェチルへキサン酸カリウムなどのカルボン酸のアルカ リ金属塩
, リエチルホスフィ ンなどのホスフィ ン類 ; カ リウムーサリチル アルデヒ ドなどの金属キレー ト化合物 ; ス夕ナスアセテー ト、 ス夕 ナスォク トェ一 ト (ス夕ナス 2 —ェチルへキソエー ト) 及びその他 の有機スズ ( I I ) 化合物 ; ジブチルチンォキシド、 ジブチルチン ジクロライ ド、 ジブチルチンジアセテー ト、 ジブチルチンジラウレ ー ト、 ジブチルチンマレエ一 ト、 ジォクチルチンジアセテー ト及び その他の有機スズ ( I V ) 化合物 ; ジアルキルチタネー トなどのそ の他の有機金属化合物を挙げることができる。 トリス (ジメチルァ ミ ノメチル) フエノール、 N , Ν ' , N ' — ト リス (ジメチルァミ ノ プロピル) へキサハイ ドロ一 s - ト リァジンなどのイソシァヌ レー ト化触媒も使用できる。 これらの触媒は、 反応混合物中で、 約 0 . 0 0 1 〜 1重量%用いることが好ましい。
溶媒としては、 例えば、 テ トラヒ ドロフラン、 ジェチルエーテル 、 1, 4—ジォキサン、 ジメ トキシェタン等のエーテル系溶媒 ; ベ ンゼン、 トルエン、 キシレン等の芳香族炭化水素系溶媒 ; シクロへ キサン、 シクロへキサノ ン等の脂環式炭化水素系溶媒 ; 酢酸エステ ル等のエステル系溶媒 ; アセ トン、 メチルェチルケ トン等のケ トン 系溶媒 ; ァセ トニト リル、 N, N—ジメチルホルムアミ ド、 ジメチ ルスルホキシド等の非プロ トン性極性溶媒などが挙げられる。 これ らの溶媒は 2種以上を組み合わせて使用することもできる。 溶媒の 使用量は、 原料モノマーの総量 1 0 0重量部に対して、 通常 2 0〜 1 , 0 0 0重量部の量で用いられる。
重合反応は、 0で〜室温で、 場合により加熱して、 1時間〜数時 間行えばよい。
製造法 2 :
Figure imgf000019_0001
(式中、 R 1 、 R 2 及び Xは前記定義のとおりである。 )
すなわち、 P D Cのポリエステル ( 4 ) とジイソシァネー ト類 ( 5 ) とを付加重合させることにより、 本発明のポリ ウレタン ( I V ) が得られる。
P D Cポリエステル ( 4 ) は、 例えば、 国際公開第 9 9 /5 4 3 8 4号パンフレッ トに記載の方法、 すなわち、 前記の製造法 1の P D Cジエステル ( 1 ) の単独重縮合、 又は P D Cジエステル ( 1 ) と、 炭酸ジクロリ ド等の炭酸ジハライ ドとの重縮合により得られる
。 また、 P D Cポリエステル ( 4 ) には、 P D C誘導体 ( 3 ) と前 記のポリオール類との重縮合により得られるものも含まれる。
上記の P D Cポリエステル ( 4 ) とジイソシァネー ト類 ( 5 ) と の混合比は特に限定されないが、 モル比で、 約 2 : 1〜約 1 : 3が 好ましい。 ジイソシァネー ト類をこの範囲を超えて過剰に使用する と、 ポリマー末端に残るイソシァネー トがァミ ンに反応して異臭や 悪臭の原因となることがある。 高分子量のポリウレタン、 例えば重 量平均分子量で 1 0万以上のポリウレタンを得るためには、 P D C ポリエステル ( 4 ) とジイソシァネー ト類 ( 5 ) とをほぼ 1 : 1の モル比で使用することが好ましい。
製造法 2で使用される、 ポリオール類、 ジイソシァネー ト類、 触 媒、 及び溶媒、 温度、 時間等の反応条件は、 製造法 1 と同様である 本発明の製造法によって得られるポリウレタンの分子量は特に制 限されず、 用途により異なるが、 通常、 重量平均分子量で約 5 , 0 0 0〜約 4 0万である。 溶液の調製し易さ、 成形加工性、 機械的強 度等の物性の点から、 約 1万〜約 3 0万が特に好ましい。
<一般式 (V) で表される発泡ポリ ウレタンの製造法 >
本発明の一般式 (V) の発泡ポリウレタンは、 P D Cとジイソシ アナー ト類 ( 6 ) との反応により製造することができる。 P D Cに 代わり に、 前記の P D Cの塩を用いてもよい。 本発明の製造法では 、 反応により生成される二酸化炭素が発泡源となるため、 発泡ポリ ウレタンの製造に一般的に使用される不活性ガス等の発泡剤を使用 する必要がない。 製造例を以下に示す。
Figure imgf000021_0001
[式中、 R 1 は、 その構造中に活性水素を有さないヘテロ原子を含 んでもよい炭化水素系の二価残基を示す。 ]
本発明において使用するジイソシァネー ト類 ( 6 ) としては、 従 来からポリ ウレタン製造に使用されているものが使用できる。 この ようなジイソシァネートとしては、 炭素数 (N C O基中の炭素を除 く) 6〜 2 0の芳香族ジイソシァネー ト、 炭素数 2〜 1 8の脂肪族 ジイソシァネー ト、 炭素数 4〜 1 5の脂環式ジイソシァネー ト、 炭 素数 8〜 1 5の芳香脂肪族ジイソシァネー ト及びこれらのジイソシ ァネー トの変性物 (ウレタン基、 カルポジイ ミ ド基、 ァロファネー ト基、 ビュシァヌ レー ト基、 ォキサゾリ ドン基含有変性物等) が含 まれる。
このようなジイソシァネー ト ( 6 ) の具体例としては、 1 , 3 — 及び 1, 4—フエ二レンジイソシァネー ト、 2 , 4—及び/又は 2 , 6 — ト リ レンジイソシシァネー ト ( T D I ) 、 粗製 T D I 、 ジフ ェニルメタン一 2, 4, 一及び/又は 4 , 4, 一ジイソシァネー ト
(MD I ) 、 ナフチレン一 1, 5 —ジイソシァネー ト、 トリ フエ二 ルメタン一 4 , 4, , 4 " — トリイソシァネー ト、 m—及び p—ィ ソシアナ トフェニルスルホニルイソシァネー ト等の芳香族ジイソシ ァネー ト ; エチレンジイソシァネー 卜、 テ トラメチレンジイソシァ ネー ト、 へキサメチレンジイソシァネー ト、 ドデカメチレンジイソ シァネー ト、 1 , 6, 1 1 _ゥンドデカン ト リイソシァネー ト、 2 , 2 , 4 一 ト リ メチルへキサンジイソシァネー ト、 リ ジンジイソシ ァネー ト、 2, 6 —ジイソシァネー トメチルカプロエー ト、 ビス ( 2 —イソシァネー トェチル) フマレー ト、 ビス ( 2 —イソシァネー トェチル) カーボネー ト、 2 —イソシァネー トェチル— 2 , 6 _ジ イソシァネー トへキサノエー ト等の脂肪族ジイソシァネー ト ; イソ ホロンジイソシァネー ト、 ジシクロへキシルメタンジイソシァネー ト (水添 M D I ) 、 シクロへキシレンジイソシァネー ト、 メチルシ クロへキシレンジイソシァネート (水添 T D I ) 、 ビス ( 2 —イソ シァネー トェチル) 4 —シクロへキセン— 1 , 2 —ジカルボキシレ ー ト等の脂環式ジイソシァネー ト ; キシリ レンジイソシァネー ト、 ジェチルベンゼンジイソシァネー ト等の芳香脂肪族ジイソシァネー ト ; 変性 M D I (ウレタン変性 M D I 、 カルポジイ ミ ド変性 M D I 、 トリ ヒ ドロカルビルホスフェー ト変性 M D I 等) ; ウレタン変性 T D I 等のウレタン変性ジイソシァネー ト ; 並びにこれらの 2種以 上の混合物が挙げられる。
上記の P D C とジイソシァネー ト類 ( 6 ) との混合比は特に限定 されないが、 モル比で、 約 2 : 1〜約 1 : 2 . 5が好ましい。 ジィ ソシァネー ト類をこの範囲を超えて使用すると、 架橋構造を生じ、 安定した発泡が困難となる。 一方、 この範囲を下回って使用すると 、 発泡しにく くなる。
本発明の発泡ポリ ウレタンを製造するに際し、 重合触媒は必ずし も必要ではないが、 使用する場合には、 <一般式 ( I I I ) 及び ( I V ) で表されるポリ ウレタンの製造法 >で挙げたものが好ましく 、 使用量も該製造法に記載の量に準じる。
本発明の製造法においては、 必要に応じて整泡剤、 ワイ ラー、 安 定剤等を添加してもよい
整泡剤としては、 例えば、 公知の有機ケィ素界面活性剤 、 具体的 には、 L一 5 0 1、 L一 5 2 0、 L - 5 3 2 、 L - 5 4 0 、 L一 5
4 4、 L一 3 5 5 0 、 L一 5 3 0 2、 L - 5 3 0 5、 L - 5 3 2 0
, L - 5 3 4 0、 L ― 5 3 5 0、 L - 5 4 1 0、 L - 5 4 2 0、 し
- 5 7 1 0、 L - 5 7 2 0 (いずれも日本ュ二カー社製) , S H ―
1 9 0、 S H一 1 9 2 、 S H— 1 9 3、 S H - 1 9 4 , S H一 1 9
5、 S H一 2 0 0、 S R X - 2 5 3 (いずれち 卜ーレ · シ U π―ン 社製) ; F一 1 1 4 、 F一 1 2 1、 F - 1 2 2、 F - 2 2 0 、 F
2 3 0、 F - 2 5 8 、 F一 2 6 0、 F - 3 0 5、 F - 3 0 6 、 F
3 1 7、 F一 3 4 1 、 F一 6 0 1、 F— 6 0 6 B、 X - 2 0 一 2 0
0、 X— 2 0 - 2 0 1 (いずれも信越シリ コーン社製) ; T F A ―
4 2 0 0 、 T F A— 4 2 0 2 (いずれも東芝シリ コーン社製 ) 、 B
8 4 1 4 (ゴ —ルドシュミ ッ ト社製) 等を挙げることがでさる 整 泡剤は、 ジィソシァネ一 ト類に対して 0. 0 5〜 1重量% 、 特に 0
. 0 8〜 0. 8重量%使用するのが好ましい。
フイ ラ一としては、 例えば、 塩化ビニリデン、 ァエロジル等を挙 げることができる。 安定剤としては、 ジイソシァネー ト類に対して 、 例えば、 ト リ メチルホスフェー トを挙げることができる。
溶媒としては、 例えば、 テトラヒ ドロフラン、 ジェチルエーテル
、 1 , 4 _ジォキサン、 ジメ 卜キシェタン等のエーテル系溶媒 ; ベ ンゼン、 トルエン、 キシレン等の芳香族炭化水素系溶媒 ; シクロへ キサン、 シクロへキサノン等の脂環式炭化水素系溶媒 ; 酢酸エステ ル等のエステル系溶媒 ; アセ トン、 メチルェチルケ トン等のケ トン 系溶媒などが挙げられる。 これらの溶媒は 2種以上を組み合わせて 使用することもできる。 溶媒の使用量は、 原料モノマーの総量 1 0 0重量部に対して、 通常 2 0〜 1, 0 0 0重量部の量で用いられる 重合反応は、 0 T:〜 7 5 程度で、 場合により更に加熱して、 1 時間〜数時間行えばよい。
本発明の製造法により得られる発泡ポリウレタンの分子量は、 用 途により異なるが、 通常、 重量平均分子量で約 1万以上であり、 好 ましく は約 1万〜約 4 0万である。 溶液の調製し易さ、 成形加工性 、 機械的強度等の物性の点から、 約 1万〜約 3 0万が特に好ましい 。 また、 その平均気泡径は、 約 1 0 m〜約 2 0 0 mである。 平 均気泡径は、 走査電子顕微鏡 S E M 2 4 0 0 (日立製作所 (株) 製 ) を使用し、 パッ ド断面を倍率 2 0 0倍で観察した写真を画像処理 装置で解析し、 写真中に存在する全ての気泡径を計測することによ り求めた。
一般式 ( 1 1 1 ) 、 ( I V) 又は (V) の本発明のポリ ウレタン を含む組成物には、 使用にあたって、 従来のポリ ウレタン組成物に 使用される各種添加剤、 例えばリ ン系化合物、 ハロゲン含有化合物 等の難燃剤、 酸化防止剤、 紫外線吸収剤、 顔料、 染料、 可塑剤など を添加することができる。
ぐ一般式 (V I ) で表されるポリウレアの製造法 >
本発明のポリ ウレァ (V I ) は、 2 H—ピロン— 2 —オン— 4 , 6 —ジカルボン酸のジァミ ンを含むジァミ ン成分と、 2 H—ピロン 一 2 —オン一 4 , 6 —ジカルボン酸のジィソシァネー トを含むジィ ソシァネー ト成分との重付加反応により製造することができる。 但 し、 該ジァミ ン成分及びジイソシァネー ト成分の少なく とも一方に は、 2 H—ピロン一 2 —オン— 4, 6—ジカルボン酸のジァミ ン及 び/又は 2 H—ピロン一 2—オン— 4 , 6—ジカルボン酸のジイソ シァネー トを使用する。
ここで、 「ジァミ ン成分」 とは、 2 H—ピロン一 2 —オン一 4, 6—ジカルボン酸のジァミ ン、 及び下記一般式 ( 8 ) で表されるジ アミ ン類を含む。 また、 「ジイソシァネー ト成分」 とは、 2 H—ピ ロン— 2—オン一 4 6 —ジカルボン酸のジイソシァネー ト、 及び 下記一般式 ( 9 ) で表されるジイソシァネー ト類を含む。
本発明のポリ ウレァ (V I ) は、 具体的には、 一般式 ( 7 ) で表 されるジイソシァネー ト誘導体と式 : H2 N— R2— NH2で表され るジァミ ン類 ( 8 ) との重付加反応、 又は、 一般式 ( 9 ) で表され るジミ ン誘導体と式 : 〇 C N— R2— N C Oで表されるジイソシァ ネー ト類 ( 1 0 ) との重付加反応により製造することができる。 あ るいは、 一般式 ( 7 ) で表されるジイソシァネー ト誘導体と一般式 ( 9 ) で表されるジミ ン誘導体との重付加反応によっても製造する とができる。 式 : H, N _ R N H 式 : O C N— R2— N C O 中の R2は、 一般式 ( I ) において定義したとおりである。 以下に 本発明のポリウレァ (V I ) の製造例を示す。
製造法 1 :
Figure imgf000025_0001
(式中、 R 1 及び R 2 は、 前記定義のとおりである。 )
一般式 ( 7 ) で表されるジイソシァネー ト誘導体は、 新規化合物 であり、 例えば、 後記のジイソシァネー ト類 ( 1 0 ) と P D Cとを 発泡がなくなるまで室温で反応させることにより得られる。 必要に より、 2 —ェチルへキサン酸スズ ( I I ) 等の、 ポリ ウレタンの製 造に通常用いられる触媒を少量添加することができる。 反応溶媒と しては、 特に制限されないが、 例えば、 テトラヒ ドロフラン、 ジェ チルエーテル、 1 , 4 —ジォキサン、 ジメ トキシェタン等のエーテ ル系溶媒 ; ベンゼン、 トルエン、 キシレン等の芳香族炭化水素系溶 媒 ; シクロへキサン、 シクロへキサノ ン等の脂環式炭化水素系溶媒 ; 酢酸エステル等のエステル系溶媒 ; アセ トン、 メチルェチルケ ト ン等のケ トン系溶媒など、 あるいはこれらの 2種以上の組み合わせ が挙げられる。 反応溶媒の使用量は、 原料の総量 1 0 0重量部に対 して、 通常、 2 0〜 1 , 0 0 0重量部の量で用いればよい。
ジァ ン類 ( 8 ) としては、 シユウ酸ジヒ ドラジ ド、 コハク酸ジ ヒ ドラシ ド、 アジピン酸ジヒ ドラジ ド、 テレフタル酸ジヒ ドラジド 等のヒ ラジン誘導体 ; エチレンジァミ ン 、 ネオペン夕ンジァミ ン
、 1, 2 —又は 1 , 3 —プロパンジァミ ン 、 1 , 6 一へキサメチレ ンジァ ン、 1, 8 —ォクタメチレンジァミ ン 、 1, 1 2 _ ドデカ メチレンジァミン、 シクロへキシルジアミ ン、 4 , 4 ' —ジァミノ ジシク Pへキシルメタン、 3 , 3 ' —ジメチル _ 4 , 4 ' ージアミ ノジシク口へキシルメタン、 イソホロンジァミ ン、 4, 7 —ジォキ ソデカン — 1 , 1 0 —ジァミ ン、 4 , 7 , 1 0 一 ト リォキサデカン
- 1, 1 3 —ジァミ ン、 平均分子量が 1 4 8〜 4 0 0 g /モルのポ リオキシアルキレンジァミ ン等の脂肪族ジァミ ン ; p —又は m—キ シリ レンジァミ ン等のァリール脂肪族ジァミン ; 4, 4 ' —ジアミ ノジフェニルメタン、 3 , 3 ' ージメチル - 4 , 4 ' —ジアミノジ フエ二ルメタン等の芳香族ジァミ ンなどが挙げられる。
本発明のポリウレァを製造するに際し、 重合触媒は必ずしも必要 ではないが、 使用する場合には、 <一般式 ( I I I ) 及び ( I V ) で表されるポリウレタンの製造法 >で挙げたものが好ましく、 使用 量も該製造法に記載の量に準じる。
溶媒としては、 例えば、 テトラヒ ドロフラン、 ジェチルエーテル
、 1 , 4一ジォキサン、 ジメ トキシェタン等のエーテル系溶媒 ; ベ ンゼン、 トルエン、 キシレン等の芳香族炭化水素系溶媒 ; シクロへ キサン、 シクロへキサノ ン等の脂環式炭化水素系溶媒 ; 酢酸エステ ル等のエステル系溶媒 ; アセ トン、 メチルェチルケ トン等のケ トン 系溶媒などが挙げられる。 これらの溶媒は 2種以上を組み合わせて 使用することもできる。 溶媒の使用量は、 原料モノマーの総量 1 0 0重量部に対して、 通常、 2 0〜 1, 0 0 0重量部の量で用いられ る。
重合反応は、 0で〜室温で、 場合により加熱して、 1時間〜数時 間行えばよい。
製造法 2 :
Figure imgf000027_0001
(9)
(式中、 R 1 及び R 2 は、 前記定義のとおりである。 )
一般式 ( 9 ) で表されるジァミ ン誘導体は、 新規化合物であり、 例えば、 前記のジイソシァネー ト誘導体 ( 7 ) に水を加え、 発泡が なくなるまで室温で反応させることにより得られる。 水は、 ジイソ シァネー ト誘導体 ( 7 ) 1 0 0重量部に対して、 通常、 5 0 0〜 1 , 0 0 0重量部の量で用いればよい。
ジイソシァネー ト類 ( 1 0 ) としては、 <一般式 ( I I I ) 及び ( I V) で表されるポリ ウレタンの製造法〉に記載したジイソシァ ネー ト類 ( 5 ) が使用できる。
製造法 2 における触媒、 温度、 時間等の重合条件は、 製造法 1 と 同様である。
ジァミ ン成分とジイソシァネー ト成分との混合比は特に限定され ないが、 モル比で、 約 1 : 1 . 2〜約 1 : 2が好ましい。 ジイソシ ァネー ト成分をこの範囲を超えて過剰に使用すると、 高分子量体が 得られない、 又は既に生成したゥレア結合と反応した架橋構造を形 成する。 一方、 この範囲を下回って使用すると、 十分な高分子量ポ リマーが得られず、 目的とする物性が得られない。
本発明のポリ ウレアの分子量は特に制限されず、 用途により異な るが、 通常、 重量平均分子量で約 2, 0 0 0〜約 2 0万以上である 。 溶液の調製し易さ、 成形加工性、 機械的強度等の物性の点から、 約 2, 5 0 0〜約 1 0万が特に好ましい。
本発明のポリ ウレァを含む組成物は、 使用にあたって、 従来のポ リ ウレア組成物に使用される各種添加剤、 例えばリ ン系化合物、 ハ ロゲン含有化合物等の難燃剤、 酸化防止剤、 紫外線吸収剤、 顔料、 染料、 可塑剤などを添加することができる。
本発明のポリマーは、 本発明のポリマーがポリウレタン又はポリ ゥレアの場合には、 シー ト、 フィルム、 ベルト、 ホース、 防振材、 靴底、 人工皮革、 合成皮革、 繊維処理剤、 塗料、 接着剤、 防水材、 弾性繊維、 床材など各種用途に有用である。 また、 本発明のポリマ 一が発泡ウレタンの場合には、 断熱材、 構造材、 保護材、 遮音材等 の各種用途、 例えば、 自動車用カーペッ ト、 天井 · 壁用の衝撃吸収 用や吸音用ク ッショ ン材、 各種安全部品の内張り、 ガスケッ ト、 ェ ァ一フィルター、 家庭用及び業務用カーペッ ト、 衣料用などに有用 である。 実施例
次に、 実施例を挙げて本発明を更に説明するが、 本発明はこれら 実施例に限定されるものではない。 なお、 得られた重合体の物性は 、 以下の方法により測定した。
( 1 ) ガラス転移温度 : 示差走査熱量法 (D S C法) にて昇温速度 1 0 /分で昇温し、 測定した。
( 2 ) 熱重量 : 熱重量分析 (T GA) 計 (T G 5 0 ; メ トラートレ ド製) により、 窒素雰囲気下、 5 0でから昇温速度 1 0で Z分で昇 温した時の初期重量から減少した重量の温度を測定することにより 行った。
( 3 ) 重量平均分子量 : ゲルパーミエーシヨンクロマトグラフィー (G P C) で分子量測定を行った。 なお、 標準ポリスチレンを用い て校正を行い、 ポリスチレン換算で重量平均分子量を求めた。
( 4 ) 結晶融点 : 示查熱分析 (D TA) により測定した。
( 5 ) 結晶化温度 : 示差走査型熱量計を用いて、 結晶成長速度の測 定を行った。
( 6 ) 曲げ弾性率、 損失係数 : 動的粘弾性 (DM S ) 法により評価 した。 装置は、 セイコーインスルメンッ株式会社製 S DM/5 6 0 0、 DM S 1 1 0 を用い、 — 6 0 :〜 1 0 0での温度範囲で、 昇温 速度 5で/分で昇温しながら測定した。
( 7 ) 損失係数 : 周波数 0. 1、 0. 5、 1. 5、 1 0、 5 0、 1 0 0 H zで、 曲げ (両持ち梁) 測定法により測定した。
実施例 1 : B H P D C系ポリウレタン
P D Cを常法により P D Cの二塩化物 (以下、 「 P D C酸クロ」 と称する) とした後、 この P D C酸クロ 5 g ( 2 2. 7 3 mm o 1 ) にエチレングリコール 1 0 m l ( 1 7 9. 3 9 mm o 1 ) を 加え、 室温、 窒素雰囲気下で 1時間反応させた。 析出した白色粉末 を濾集、 減圧乾燥して、 P D Cジエステル (以下、 「B H P D C」 と称する) 3 gを得た。
Ή-NMR (400MHz, dに DMS0) δ ppm: 7.3, 7.1, 5.0, 4.3, 3· 7。
IR ( v cm— 1 ) : 3501 (-OH) , 1736 (ケ トン) , 1734 (ケトン) , 1282, 1072 (-C-0-C-) 。
B H P D C 1. 7 g ( 6. 2 4 mm o 1 ) にテトラヒ ドロフラ ン (TH F) 5 m l 及び 2 -ェチルへキサン酸スズ ( I I ) を少量 加えた後、 へキサメチレンジイソシァネー ト 1. O g ( 8. 6 1 mm o 1 ) を数回に分けて加え、 窒素雰囲気下、 室温にて 1時間反 応させた。 その後メタノール中に沈殿させ、 沈殿物を濾集、 減圧乾 燥して 0. 7 gのポリウレタンを得た。
Ή-NMR (400MHz, d6- DMS0) δ pm: 7.3, 7.1, 6· 9, 4.6, 4.4, 4. 3, 4.2, 3.7, 2.9, 1.3, 1.2。
IR ( ν cm"1) : 3420 (NH- ) , 1736 (ケ トン) , 1734 (ケトン) , 1282 (-C-0-C-) 。
重量平均分子量 : 3 0万以上 (Ν, Ν—ジメチルホルムアミ ド (D M F ) ) 。
実施例 2 : B H P D C系ポリウレタン
溶媒をジメチルスルホキシドに変える以外は実施例 1 と同様にし て、 ポリウレタンを得た。
Ή-N R (400MHz, d6-DMS0) δ (ppm) : 7.3, 7. 1, 6.9, 4.6, 4.4 , 4.3, 4.2, 3.7, 2.9, 1.3, 1.1。
IR ( v cm— 1 ) : 3423 (NH-) , 1736 (ケ トン) , 1282, 1072 (-C- 0-C-) 。
重量平均分子量 : 3 0万以上 (DM F) 。
図 1、 2 に、 実施例 2で得られたポリ ウレタンの D S C及び T G Α測定の結果を各々示す。 これらの図より、 ガラス転移温度は 6 0 で付近であり、 2 0 %重量減少温度 (Td 8 D) は 2 6 0 付近であ つた。
また、 図 3 に、 実施例 2で得られたポリウレタンの MA L D— T 〇 F— M S測定の結果を示す。 MA L D— T O F— M Sの測定結果 から、 予想される分子量を計算したところ、 2〜 5量体のウレタン オリゴマー (分子量は 1 , 2 0 0〜 2 , 8 0 0 ) が形成されているこ とが明らかとなった。
実施例 3 : B H P D C系ポリ ウレタン
B H P D C 0. 4 2 g ( 1. 5 5 mm o 1 ) に DM F 5 m l に 溶解し、 2 -ェチルへキサン酸スズ ( I I ) を少量加えた後、 ト リ レンジイソシァネー ト 0. 2 6 g ( 1. 5 1 mm o 1 ) を数回に 分けて加え、 窒素雰囲気下、 室温にて 1時間反応させた。 その後メ 夕ノール中に再沈させ、 濾過、 水洗し、 6 0で下減圧乾燥して、 0 . 4 8 g ( 7 1 %) のポリ ウレタンを得た。
IR ( V cm-1) : 1761 (ケ トン) , 1737 (ピロン環上ケ トン) , 173 1 (ケ トン) , 1707 (カルボニル) , 1287, 1090 (-C-0-C-) 。
ガラス転移温度 : 1 1 4 。
2 0 %重量減少温度 : 2 2 3 :、 5 0 %重量減少温度 : 4 4 0 :。 重量平均分子量 : 6 , 5 0 0以上 (TH F) 。
実施例 4 : B H P D C系ポリ ウレタン
B H P D C 0. 6 4 g ( 2. 3 6 mm o 1 ) に DM F 1 0 m l に溶解し、 2 -ェチルへキサン酸スズ ( I I ) を少量加えた後、 ト リ レンジイソシァネー ト 1. 0 6 gを数回に分けて加え、 窒素雰 囲気下、 室温にて 1時間反応させた。 その後、 リ シノール酸ト リ グ リセリ ド 3. 8 0 g ( 4. 4 7 mm o 1 ) を数回に分けて加え、 窒素雰囲気下、 室温にて 1 2時間反応させた。 反応物を 6 0 下減 圧乾燥して、 4. 9 4 g ( 8 9 %) のポリ ウレタンを得た。 IR ( v cm— 1 ) : 3523 (水素結合) , 3361 (ΝΗ-) , 1751 (エステル
) , 1731 (ケ トン) , 1715 (カルボニル) , 1705 (力ルポニル) ,
1238, 1088 (-C-0-C-) 。
ガラス転移温度 : 一 3 1で。
重量平均分子量 : 1 3, 0 0 0以上 (T H F ) 。
曲げ弾性率 : 1 7 2 . 6 M P a ( - 3 0 ,) 、 5 . 7 M P a ( 2 5 ) 、 3 . 3 M P a ( 5 0 t:) 。
損失係数 : 0 . 1 6 ( _ 3 0 t:) 、 0 . 2 6 ( 2 5 :) 、 0 . 1 3 ( 5 0 ) 。
実施例 5 : B H P D C系ポリウレタン
B H P D C 1 . 0 1 g ( 3 . 7 3 mm o 1 ) とリシノール酸ト リ グリセリ ド 2 . 6 4 g ( 3 . 1 1 mm o 1 ) との混合溶液に、 2 -ェチルへキサン酸スズ ( I I ) を少量加えた後、 へキサメチレ ンジイソシァネー ト 1 . 5 7 g ( 9 . 3 5 mm o 1 ) を数回に分 けて加え、 窒素雰囲気下、 室温にて 1 2時間反応させた。 その後、 5 0 で 2時間更に反応させ、 反応物を 6 0 下減圧乾燥して、 4 . 8 2 g ( 9 2 % ) のポリ ウレタンを得た。
IR ( V cm" 1 ) : 3402 (NH-) , 3360 (NH-) , 2928, 2857 (-CH2 -) , 1753 (エステル) , 1733 (ケ トン) , 1721 (カルボニル) , 1705 (カルボニル) , 1282, 1044 (-C-0-C-) 。
2 0 %重量減少温度 : 2 9 0 t:、 5 0 %重量減少温度 : 4 1 0で。 曲げ弾性率 : 5 7 . 2 M P a (— 3 0で) 、 1 . 0 1 M P a ( 2 5 で) 、 0 . 8 2 M P a ( 5 0 ) 。
損失係数 : 0 . 1 1 (― 3 0 t:) 、 0 . 0 8 ( 2 5で) 、 0 . 0 8
( 5 0で) 。
実施例 6 : B H P D C系ポリ ウレタン
B H P D Cを 1 . 0 4 g ( 3 . 8 1 mm o l ) 、 リ シノール酸ト リグリセリ ドを 5. 4 5 g ( 6. 4 1 mm o 1 ) 、 及びへキサメチ レンジイソシァネー トを 1. 2 1 g ( 7. 2 2 mm o l ) 用いる以 外は、 実施例 5 と同様にして、 5. 8 1 g ( 7 6 %) のポリ ウレ夕 ンを得た。
IR ( V cm" 1 ) : 3402 (NH -) , 3366 (NH-) , 2932, 2858 (- CH2- ) , 1742 (エステル) , 1733 (ケ トン) , 1727 (力ルポニル) , 1712 (カルボニル) , 1252, 1041. (-C-0-C-) 。
2 0 %重量減少温度 : 3 0 0 t 、 5 0 %重量減少温度 : 4 1 0で。 曲げ弾性率 : 4. 1 4 M P a (— 3 0で) 、 0. 5 7 M P a ( 2 5 ) 、 0. 4 0 M P a ( 5 0で) 。
損失係数 : 0. 3 6 (― 3 0 t:) 、 0. 2 1 ( 2 5 ) 、 0. 1 7
( 5 0で) 。
実施例 7 : B H P D C系ポリ ウレタン
B H P D C 0. 6 4 g ( 2. 3 6 mm o 1 ) とリ シノール酸ト リ グリセリ ド 3. 8 0 g ( 4. 4 7 mm o 1 ) との混合溶液に、 2 -ェチルへキサン酸スズ ( I I ) を少量加えた後、 ト リ レンジィ ソシァネー ト 1. 0 4 g ( 6. 0 5 mm o l ) を数回に分けて加 え、 窒素雰囲気下、 室温にて 1 2時間反応させた。 その後、 5 0で で 2時間更に反応させ、 反応物を 6 0で下減圧乾燥して、 4. 9 4 g ( 9 0 %) のポリ ウレタンを得た。
2 0 %重量減少温度 : 2 9 0で、 5 0 %重量減少温度 : 4 0 0で。 実施例 8 : エステル系ポリ ウレタン
P D C酸クロ 4. 1 4 g ( 1 8. 8 mm o 1 ) を TH F 1 5 m 1 に溶解し、 リ シノール酸ト リ グリセリ ド 3 2. 4 6 g ( 3 8. 2 4 mm o 1 ) を加えた後、 窒素雰囲気下、 室温にて 1時間反応さ せた、 5 0でで 1時間更に反応させた。 その後、 へキサメチレンジ イソシァネー ト 6. 3 3 g ( 3 7. 6 5 mm 0 1 ) を数回に分け て加え、 窒素雰囲気下、 室温にて 1 2時間反応させた。 その後、 反 応物を 6 0で下減圧乾燥して、 3 8. 6 2 g ( 9 2 %) のポリウレ タンを得た。
IR ( レ cm—リ : 3410 (NH-) , 3323 (NH-) , 1741 (エステル) , 1 731 (ケトン.) , 1707 (カルボニル) , 1245, 1069 (- C- 0-C- ) 。 ガラス転移温度 : 一 4 5 t。
2 0 %重量減少温度 : 3 1 5 、 5 0 %重量減少温度 : 4 1 0 。 実施例 9 : ポリエステル系ポリウレタン
P D C酸クロ 2. 5 g ( 1 1 . 3 7 mm o 1 ) にエチレンダリ コール 1 m l ( 1 7. 9 4 mm o 1 ) を数回に分けて加え、 室温 、 窒素雰囲気下で 1 2時間反応させた。 その後、 メタノール中に沈 殿させ、 沈殿物を濾集、 減圧乾燥して、 P D Cポリエステル 2. 5 gを得た。
'H-NMR (400匪 z, d6- DMSO) <5 (ppin) : 7.3, 7. 1, 4.6, 4.2, 3.6
IR ( v cm—1 ) : 3501 (一 OH) , 1740 (ケ トン) , 1736 (ケ トン) , 1282 (-C-0-C-) 。
次いで、 この P D Cポリエステル 1 . 2 g ( 0. 9 2 mm o 1 ) をジメチルスルホキシド 5 m l に溶解し、 2 -ェチルへキサン酸 スズ ( I I ) を少量加えた後、 へキサメチレンジイソシァネー ト 0. 1 6 g ( 0. 9 8 mm o 1 ) を数回に分けて加え、 窒素雰囲気 下、 室温にて 1時間反応させた。 その後メタノール中に沈殿させ、 沈殿物を濾集、 減圧乾燥して 0. 6 0 gのポリウレタンを得た。 重量平均分子量 : 3 0万 (D M F ) 。
実施例 1 0 : ポリエステル系ポリ ウレタン
P D C酸クロ 2. 9 9 g ( 1 3. 5 9 mm o 1 ) を DM F 1 0 mLに溶解し、 ポリエチレンォキシ ド (分子量 2 0 0 ) を 2. 7 2 g (等量) 加えた後、 窒素雰囲気下、 室温にて 1 2時間反応させた 。 その後、 6 0 下減圧乾燥して、 P D C- P E G 2 0 0ポリエス テル 3. 5 7 g ( 7 5 %) を得た。
IR ( V cm—1 ) : 1760 (エステル) , 1738 (ピロン環上ケ トン) , 1 731 (ケ トン) , 1285 (-C-0-C-) 。
ガラス転移温度 : — 2 6 t:。
2 0 %重量減少温度 : 2 9 5 t:、 5 0 %重量減少温度 : 3 7 5で。 重量平均分子量 : 1 0 , 0 0 0以上 (TH F) 。
次いで、 この P D C- P E G 2 0 0ポリエステル 1. 3 2 g ( 0 . 1 3 mm o l ) を DM F 1 0 m l に溶解し、 2 -ェチルへキサン 酸スズ ( I I ) を少量加えた後、 へキサメチレンジイソシァネー ト 0. 0 6 5 g ( 0. 3 9 mm o 1 ) を数回に分けて加え、 窒素雰 囲気下、 室温にて 1時間反応させた。 その後、 6 0で下減圧乾燥し て、 0. 8 0 g ( 6 0 %) のポリ ウレタンを得た。
IR ( V cm—1) : 3500 (水素結合) , 3412 (NH) , 1721 (エステル ) , 1714 (カルボニル) 1705 (カルボニル) , 1235, 1090 (-C-0- C-) 。
ガラス転移温度 : — 6 :。
2 0 %重量減少温度 : 3 1 0 :、 5 0 %重量減少温度 : 3 7 0で。 重量平均分子量 : 5, 0 0 0以上 (T H F) 。
実施例 1 1 : ポリエステル系ポリウレタン
実施例 1 0で得られた P D C-P E G 2 0 0ポリエステル 1. 1 3 g ( 0. l l mm o l ) を DM F 1 0 m l に溶解し、 2 -ェチル へキサン酸スズ ( I I ) を少量加えた後、 ト リ レンジイソシァネ一 ト 0. 0 5 8 g ( 0. 3 4 mm o 1 ) を数回に分けて加え、 窒素 雰囲気下、 室温にて 1時間反応させた。 その後、 6 O t:下減圧乾燥 して、 0. 6 6 g ( 5 7 %) のポリ ウレタンを得た。 IR ( v cm" 1 ) : 3500 (水素結合) , 3400 (NH) , 1759 (エステル ) , 1731 (ピロン環上ケ トン) , 1725 (ケ トン) , 1714 (カルボ二 ル) , 1705 (カルボニル) , 1278, 1038 (-C-0-C-) 。
ガラス転移温度 : 4 t:。
2 0 %重量減少温度 : 3 0 0で、 5 0 %重量減少温度 : 3 7 5 。 実施例 1 2 : ポリエステル系ポリウレタン
ジオール成分をポリエチレンォキシ ド (分子量 1 0 0 0 ) に変え る以外は実施例 1 0 と同様にして、 P D C- P E G 1 0 0 0ポリエ ステル 1 2. 0 8 g ( 8 2 ) を得た。
IR ( V cm—1) : 1763 (エステル) , 1738 (ピロン環上ケ トン) , 1 727 (ケ トン) , 1718 (カルボニル) , 1280 (-C-0-C-) 。
結晶化温度 : 一 1 5で。 結晶融点 : 3 3 。
2 0 %重量減少温度 : 3 0 0で、 5 0 %重量減少温度 : 3 8 0で。 重量平均分子量 : 1 1 , 0 0 0以上 (TH F) 。
次いで、 この P D C- P E G 1 0 0 0ポリエステル 2. 6 7 g ( 0. 2 4 mm o 1 ) を DM F 1 0 m l に溶解し、 2 -ェチルへキサ ン酸スズ ( I I ) を少量加えた後、 へキサメチレンジイソシァネー ト 0. 0 4 8 g ( 0. 2 9 mm o 1 ) を数回に分けて加え、 窒素 雰囲気下、 室温にて 1時間反応させた。 その後、 6 0 下減圧乾燥 して、 0. 8 3 g ( 3 1 %) のポリ ウレタンを得た。
IR (レ cm"1 ) : 3500 (水素結合) , 3262 (NH-0-) , 1739 (エステ ル) , 1700 (カルボニル) , 1254, 1099 (-C-0-C-) 。
ガラス転移温度 : 一 4 4で。 結晶化温度 : 一 1 5で。 結晶融点 : 3 3 。
2 0 %重量減少温度 : 3 3 5 X:、 5 0 %重量減少温度 : 3 8 0で。 重量平均分子量 : 7 , 5 0 0以上 (T H F) 。
実施例 1 3 : ポリエステル系ポリ ウレタン 実施例 9で得られた P D Cポリエステル 0 . 3 7 g ( 0 . 2 9 mm o 1 ) に ト リ レンジイソシァネー ト 0 . 0 2 2 g ( 0 . 1 8 mm o 1 ) を数回に分けて加え、 窒素雰囲気下、 室温にて 1時間反 応させた。 その後、 6 0で下減圧乾燥して、 0 . 3 1 g ( 7 9 % ) のポリ ウレタンを得た。
IR ( V cm— 1 ) : 3459 (NH-) , 3392 (NH-) , 2931, 2865 (- CH2- ) , 1770 (エステル) , 1292, 1047 (-C-0-C-) 。
ガラス転移温度 : 1 1 i :。
2 0 %重量減少温度 : 2 8 5 t:、 5 0 %重量減少温度 : 3 9 0 :。 重量平均分子量 : 3 0万以上 (D M F ) 。
実施例 1 4 : 発泡ポリウレタン
P D C ( 1 . 7 g、 9 . 2 4 mm o 1 ) にエチレングリコール ( 1 . 2 3 , 1 9 . 8 4 mm o l ) 及び 2 —ェチルへキサン酸スズ ( I I ) を少量加え、 7 5 にて溶解した。 次いで、 へキサメチレ ンジイソシァネー ト ( 3 . 1 6 g、 1 8 . 8 1 mm o 1 ) を加え、 同温度で 5 〜 1 5分間反応させ、 発泡ポリ ウレタンを得た。
実施例 1 5 : 発泡ポリ ウレ夕ン
P D C l m o l %を溶解させたエチレングリコール ( 1 . 0 5 g、 1.6 . 9 6 mm o 1 ) に、 へキサメチレンジイソシァネー ト ( 2 . 8 0 g , 1 6 . 6 7 mm o 1 ) 、 ポリエチレンォキシ ド (Mw = 6 0 0 ) ( 0 . 1 g ) ジメチルスルホキシ ド ( 0 . l g ) 、 2 - ェチルへキサン酸スズ ( I I ) (少量) を加え、 室温にて 5 〜 1 5 分間反応させ、 発泡ポリウレタンを得た。
実施例 1 6 : ポリ ウレァ
( 1 ) P D Cジイソシァネー トの合成
ト リ レンジイソシァネー ト (以下、 「T D I 」 とする) ( 0 . 5 g、 2 . 8 6 mm o l ) をテ卜ラヒ ドロフラン (以下、 「T H F」 とする) ( 1 m l ) に溶解させ、 P D C ( 0. 2 5 g、 1. 3 6 m mo 1 ) 及び 2—ェチルへキサン酸スズ ( I I ) を少量加え、 窒素 下で約 1時間反応させ、 下記式 :
Figure imgf000038_0001
で表される N 4 , N 6 —ビス ( 5 -ィソシァネー 卜一 2 一メチルフ ェニル) 一 2—ォキソ _ 2 H一ピラン一 4, 6 -ジカルポキシアミ ドとその 3種の位置異性体 ( N 4 , N 6—ビス ( 3 -ィソシァネー 卜— 4 _メチルフエニル) 一 2 -ォキソー 2 H—ピラン - 4 , 6 - ジカルボキシアミ ド ; N 4 - ( 5 -ィソシァネ一 卜一 2 一メチルフ ェニル) , N 6 — ( 3 —イソシナネー 卜一 4ーメチルフ X二ル) 一
2 —ォキソ一 2 H—ピラン一 4 , 6 -ジカルポキシァ ド ; N 4 -
( 3 _イソシァネー 卜一 4一メチルフェニル) , N 6 ( 5一イソ シナネー 卜一 2 —メチルフエニル) 一 2—ォキソ一 2 11 -ピラン一
4, 6 —ジカルボキシアミ ド) とを含む混合物を得た。 この混合物 は、 精製することなく、 実施例 2に使用した。
( 2 ) P D Cジァミ ンの合成
上記 ( 1 ) で得た P D Cジイソシァネー トの混合物を純水 ( 0. l m l ) に加え、 発泡がなくなるまで室温で 1時間反応させ、 下記 式 :
Figure imgf000039_0001
で表される N 4, N 6 —ビス ( 5—ァミノ一 2 _メチルフエニル) 一 2—ォキソ一 2 H—ピラン一 4 , 6—ジカルボキシアミ ドと実施 例 1 に記載の 3種の位置異性体のアミ ドとを含む混合物を得た。
( 3 ) ポリ ウレアの製造
上記 ( 2 ) で得た P D Cジァミ ンの混合物 ( 0. 4 4 g、 1. 1 mm o 1 ) のジメチルホルムアミ ド (以下、 「DM F」 とする). ( 5 m l ) 溶液を、 上記 ( 1 ) で得た P D Cジイソシァネー トの混合 物 ( 0. 5 g、 1. l mm o l ) の DM F ( 5 m l ) 溶液に少量ず つ添加し、 室温で 3時間反応させた後、 メタノール中に再沈し、 析 出物を得た。 その後、 真空下で 6 0 にて乾燥させ、 目的のポリ ウ レア 0. 2 7 g (収率 2 8. 5 % ) を得た。
実施例 1 7 : ポリ ウレア
前記 ( 2 ) で得た P D Cジァミ ンの混合物 ( 0. 1 3 g、 0. 3 3 mm o 1 ) の DM F ( 5 m l ) 溶液に、 TD I ( 0. 0 5 7 m l 、 0. 4 0 mm o 1 ) を添加し、 室温で 3時間反応させた後、 メタ ノール中に再沈し、 析出物を得た。 その後、 真空下で 6 0でにて乾 燥させ、 目的のポリ ウレァ 0. 0 8 9 g (収率 4 8 %) を得た。 実施例 1 8 : ポリ ウレァ
先ず、 2 H—ピロン— 4 , 6 —ジカルボン酸ジ ( 2—ヒ ドロキシ ェチル) エステル (以下、 「 P D C H E」 とする) を、 国際公開第 9 9 /5 4 3 7 6号パンフレツ 卜に記載の方法に準じて P D Cより 合成した。 P D Cは、 特開 2 0 0 5— 2 7 8 5 4 9号公報に記載の 方法により製造した。
この P D C HE ( 0; 4 4 g、 1. 2 7 mm o 1 ) を TH F ( 5 m l ) に溶解し、 へキサメチレンジイソシァネー ト ( 0. 5 4 g、 3. 2 1 mm o 1 ) 及び少量の 2 —ェチルへキサン酸スズ ( I I ) を加えた後、 窒素雰囲気下、 室温にて 4時間反応させた。 その後、 水 ( 0. 0 3 g、 1. 6 7 mm o l ) を滴下した。 1 5分後、 薄黄 色の固溶液体を得た。 得られた固溶液体をメタノール中に再沈殿、 濾過後、 水及びメタノールで洗浄し、 5 0 にて終夜乾燥し、 0. 4 0 gの薄黄色粉末を得た。
FT-IR ( V cm—1) : 1 6 5 0 (NHC0NH) 、 1 3 3 6 (N-C-N) 。
5 %重量減少温度 : 2 1 0 T 、 5 0 %重量減少温度 : 3 2 5で、 8
0 %重量減少温度 : 2 6 0で。
重量平均分子量 : 7 1 , 0 0 0以上 (DM F) 。
実施例 1 9 : ポリウレァ
P D C H E ( 0. 3 6 g、 1. 3 2 mm o 1 ) を TH F 5 m l に溶解し、 T D I ( 0. 6 g、 3. 4 5 mm o 1 ) 、 及び少量の 2 ーェチルへキサン酸スズ ( I I ) を加えた後、 窒素雰囲気下、 室温 にて 4時間反応させた。 その後、 水 ( 0. 0 3 g、 1. 6 7 mm o 1 ) を滴下した。 1 5分後、 橙色の固溶液体を得た。 得られた固溶 液体をメタノール中に再沈殿、 濾過後、 水及びメタノールで洗浄し 、 5 0でで終夜乾燥し、 0. 8 l gの橙色粉末を得た。
FT-IR ( V cm" 1 ) : 1 6 5 0 (NHC0NH) 、 1 3 3 8 (N-C-N) 。
5 %重量減少温度 : 1 8 0で、 5 0 %重量減少温度 : 3 9 5 、 8 0 %重量減少温度 : 2 4 0 。
重量平均分子量 : 3 0万以上 (DM F) 。 産業上の利用可能性 本発明によれば、 高弾性の生分解性ポリマーが収率良くかつ安価 に製造できる。

Claims

請 求 の 範 囲 下記一般式 ( I ) :
Figure imgf000042_0001
[式中、
R 1 及び R 2 は各々独立に、 その構造中に活性水素を有さないへ テロ原子を含んでもよい炭化水素系の二価残基を示し;
Xは、 〇又は NHを示し ;
Xは、 1以上の整数を示し ; 及び
m及び nは、 0又は 1 を示す。 ]
で表される繰り返し単位を有するポリマー。
2. 下記一般式 ( I I ) :
Figure imgf000042_0002
[式中、
R 1 及び R 2 は各々独立に、 その構造中に活性水素を有さないへ テロ原子を含んでもよい炭化水素系の二価残基を示し;
Xは、 1以上の整数を示す。 ]
で表される繰り返し単位を有するポリウレタンである、 請求項 1記 載のポリマー。
3. 前記ポリウレタンが、 下記一般式 ( I I I ) : O 1
Figure imgf000043_0001
[式中、 R 1 及び R 2 は前記定義のとおりである。 ]
で表される繰り返し単位を有する、 請求項 2記載のポリマ
4. 前記ポリウレタンが、 下記一般式 ( I V) :
Figure imgf000043_0002
[式中、 R 1 及び R 2 は前記定義のとおりであり ; Xは 2以上の整 数である。 ]
で表される繰り返し単位を有する、 請求項 2記載のポリマー。
5 . 前記 R 1 及び R 2 が各々独立に、 R 3 、 R 3 - (O R 3 ) a 、 又は R 4 (〇 2 C - R 3 - C O , R 4 ) b (但し、 R 3 及び R は各々独立に、 炭素数 1〜 2 4の飽和又は不飽和炭化水素の二価残 基を示し ; a及び bは各々独立に、 1〜 4の整数を示す。 ) を示す 、 請求項 1〜 4のいずれか 1項記載のポリマー。
6. 前記 R 1 及び R 2 が各々独立に、 炭素数 1〜 2 4の直鎖又は 分岐鎖のアルキレン基である、 請求項 1〜 5のいずれか 1項記載の ポリマー。
7. 下記一般式 (V) :
Figure imgf000043_0003
[式中、 R 1 は、 その構造中に活性水素を有さないヘテロ原子を含 んでもよい炭化水素系の二価残基を示す。 ]
で表される繰り返し単位を有するポリウレタンである、 請求項 1記 載のポリマー。
8. 発泡性ポリウレタンである、 請求項 7記載のポリマー。
9. 前記 R 1 が、 R 3 、 R 3 — (〇 R 3 ) a 、 又は R 4 — (〇 2 C - R 3 — C〇 2 R 4 ) b (但し、 R 3 及び R 4 は各々独立に、 炭素 数 1〜 2 4の飽和又は不飽和炭化水素の二価残基を示し ; a及び b は各々独立に、 1〜 4の整数を示す。 ) を示す、 請求項 7又は 8記 載のポリマー。
1 0. 前記 R 1 が、 炭素数 1〜 2 4の直鎖又は分岐鎖のアルキレ ン基である、 請求項 7〜 9のいずれか 1項記載のポリマー。
1 1. 前記 R 1 が、 へキサメチレン基である、 請求項 7〜 1 0の いずれか 1項記載のポリマー。
1 2. 下記一般式 ( I ) :
Figure imgf000044_0001
[式中、
R 1 及び R 2 は各々独立に、 その構造中に活性水素を有さないへ テロ原子を含んでもよい炭化水素系の二価残基を示し;
Xは、 〇又は N Hを示し ;
Xは、 1以上の整数を示し ; 及び
m及び nは、 0又は 1 を示す。 ]
で表される繰り返し単位を有するポリマーの製造法であって、 発泡剤の非存在下に、 2 H—ピロン一 2 _オン— 4, 6—ジカル ボン酸又はその誘導体をジイソシァネート類と反応させるか ; 又は 発泡剤の非存在下に、 2 H—ピロン— 2—オン— 4, 6 —ジカル ボン酸のジァミ ンを含むジァミ ン成分を、 2 H—ピロン一 2 _オン 一 4 , 6 —ジカルボン酸のジイソシァネー トを含むジイソシァネー ト成分と反応させる、 但し、 該ジァミ ン成分及び該ジイソシァネー ト成分の少なく とも一方に、 2 H—ピロン— 2 —オン— 4, 6 —ジ カルボン酸のジァミ ン、 及び/又は 2 H—ピロン— 2 —オン— 4 , 6—ジカルボン酸のジイソシァネー トを用いる、
ことを特徴とする、 前記製造法。
1 3. 前記の 2 H—ピロン— 2—オン— 4, 6—ジカルボン酸の 誘導体が、 2 H—ピロン一 2 —オン— 4 , 6 —ジカルボン酸とポリ オール類との反応により得られる 2 H—ピロン _ 2 _オン一 4, 6
—ジカルボン酸のジエステル、 又はそのポリエステルである、 請求 項 1 2記載の方法。
1 4. 下記一般式 (V I ) :
Figure imgf000045_0001
[式中、 R 1 及び R2は各々独立に、 その構造中に活性水素を有さな いへテロ原子を含んでもよい炭化水素系の二価残基を示す。 ] で表される繰り返し単位を有するポリ ウレアである、 請求項 1記載 のポリマー。
1 5. 前記 R 1 及び R 2が各々独立に、 R 3 、 R 3 - (O R 3 ) a 、 又は R 4 - (O C - R 3 C O ? R 4 ) (但し、 R 3 及び R は各々独立に、 炭素数 1〜 2 4の飽和又は不飽和炭化水素の二価残 基を示し ; a及び bは各々独立に、 1〜 4の整数を示す。 ) を示す 、 請求項 1 4記載のポリマー。
1 6. 前記 R 1 及び R2が各々独立に、 炭素数 1〜 2 4の直鎖も しく は分岐鎖のアルキレン基、 又は炭素数 5〜 1 0の芳香族炭化水 素の二価残基である、 請求項 1 4又は 1 5記載のポリマー。
1 7. 下記一般式 (V I I ) :
Figure imgf000046_0001
[式中、 R 1 は、 その構造中に活性水素を有さないヘテロ原子を含 んでもよい炭化水素系の二価残基を示す。 ]
で表される化合物。
1 8. 下記一般式 (V I I I ) :
Figure imgf000046_0002
[式中、 R 1 は、 その構造中に活性水素を有さないヘテロ原子を含 んでもよい炭化水素系の二価残基を示す。 ]
で表される化合物。
1 9. 前記ジイソシァネー ト成分及び前記ジァミ ン成分の少なく とも一方に、 下記一般式 (V I I ) :
Figure imgf000046_0003
[式中、 R 1 は、 その構造中に活性水素を有さないヘテロ原子を含 んでもよい炭化水素系の二価残基を示す。 ]
で表される化合物、 又は下記一般式 (V I I I ) :
Figure imgf000047_0001
[式中、 R 1 は、 その構造中に活性水素を有さないヘテロ原子を含 んでもよい炭化水素系の二価残基を示す。 ]
で表される化合物を用いて、 ジイソシァネー ト成分とジァミ ン成分 とを重付加させることを特徴とする、 請求項 1 2記載のポリマーの 製造法。
PCT/JP2008/066363 2007-09-19 2008-09-04 ポリウレタン及びポリウレア、並びにその製造法 WO2009038007A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP08831486A EP2192137A4 (en) 2007-09-19 2008-09-04 POLYURETHANE AND POLYUREA, AND PROCESS FOR PRODUCING THEM
US12/678,932 US20100204356A1 (en) 2007-09-19 2008-09-04 Polyurethanes, polyureas, and process for their production
CN200880107552A CN101802045A (zh) 2007-09-19 2008-09-04 聚氨酯和聚脲、及其制造方法
JP2009533116A JPWO2009038007A1 (ja) 2007-09-19 2008-09-04 ポリウレタン及びポリウレア、並びにその製造法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2007-242499 2007-09-19
JP2007242499 2007-09-19
JP2007-325071 2007-12-17
JP2007-325034 2007-12-17
JP2007325034 2007-12-17
JP2007325071 2007-12-17

Publications (1)

Publication Number Publication Date
WO2009038007A1 true WO2009038007A1 (ja) 2009-03-26

Family

ID=40467824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/066363 WO2009038007A1 (ja) 2007-09-19 2008-09-04 ポリウレタン及びポリウレア、並びにその製造法

Country Status (5)

Country Link
US (1) US20100204356A1 (ja)
EP (1) EP2192137A4 (ja)
JP (1) JPWO2009038007A1 (ja)
CN (1) CN101802045A (ja)
WO (1) WO2009038007A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270286A (ja) * 2009-05-25 2010-12-02 Toyota Industries Corp ポリウレタン及びポリウレア、並びにその製造法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100015499A (ko) * 2007-04-13 2010-02-12 노파르티스 아게 Gpbar1 효능제로서의 피리다진-, 피리딘- 및 피란-유도체
KR101553057B1 (ko) 2015-04-24 2015-09-15 좌운선 미끄럼 방지 기능을 가진 도막 방수 조성물 및 시공방법

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999054376A1 (fr) 1998-04-20 1999-10-28 Cosmo Research Institute Polyester et procede de production de celui-ci
WO1999054384A1 (fr) 1998-04-20 1999-10-28 Cosmo Research Institute Polyamide et procede de production
JP2000032988A (ja) * 1998-07-17 2000-02-02 Cosmo Sogo Kenkyusho:Kk 新規遺伝子及びその遺伝子を保有する形質転換細胞
JP2000037867A (ja) 1998-07-22 2000-02-08 Seiko Epson Corp インクジェット式記録装置及び記録方法
JP2000319350A (ja) 1999-05-10 2000-11-21 Agency Of Ind Science & Technol 生分解性ポリウレタン複合体及びその製造方法
JP2004256747A (ja) * 2003-02-27 2004-09-16 Junko Shigehara プラスチック接着剤、及びそれを用いた接着方法
JP2005002259A (ja) 2003-06-13 2005-01-06 Yokohama Rubber Co Ltd:The 熱可塑性エラストマー組成物
JP2005278549A (ja) 2004-03-30 2005-10-13 Yoshihiro Katayama 2−ピロン−4,6−ジカルボン酸を発酵生産するための遺伝子、前記遺伝子を含むプラスミド、前記プラスミドを含む形質転換体及び2−ピロン−4,6−ジカルボン酸の製造方法
JP2007037452A (ja) * 2005-08-03 2007-02-15 Forestry & Forest Products Research Institute ガリック酸から2−ピロン‐4,6−ジカルボン酸を生産するための遺伝子、その遺伝子等が導入された形質転換体及びその形質転換体を用いたガリック酸からの2−ピロン−4,6−ジカルボン酸の製造方法
JP2007525146A (ja) * 2003-12-30 2007-09-06 ガムリンク エー/エス 生分解性ポリマーを含み且つ分解性を促進させたチューインガム
WO2007148471A1 (ja) * 2006-06-23 2007-12-27 Kabushiki Kaisha Toyota Jidoshokki Pdcー乳酸コポリエステル及びその成形体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2310307C2 (de) * 1973-03-01 1983-12-29 Hoechst Ag, 6230 Frankfurt Lichtempfindliches Aufzeichnungsmaterial
JP2675997B2 (ja) * 1988-05-16 1997-11-12 工業技術院長 新規なポリウレタンの製造方法
US5614564A (en) * 1993-07-28 1997-03-25 Samsung General Chemicals Co., Ltd. Degradable foam and the method for its production
US6025452A (en) * 1996-12-27 2000-02-15 Kurple; Kenneth R. Lignin based polyols
CA2574933C (en) * 2004-07-26 2015-05-19 Synthes (U.S.A.) Biocompatible, biodegradable polyurethane materials with controlled hydrophobic to hydrophilic ratio
CN101796194A (zh) * 2007-08-08 2010-08-04 株式会社丰田自动织机 2-吡喃酮-4,6-二羧酸的大量纯化方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999054376A1 (fr) 1998-04-20 1999-10-28 Cosmo Research Institute Polyester et procede de production de celui-ci
WO1999054384A1 (fr) 1998-04-20 1999-10-28 Cosmo Research Institute Polyamide et procede de production
JP2000032988A (ja) * 1998-07-17 2000-02-02 Cosmo Sogo Kenkyusho:Kk 新規遺伝子及びその遺伝子を保有する形質転換細胞
JP2000037867A (ja) 1998-07-22 2000-02-08 Seiko Epson Corp インクジェット式記録装置及び記録方法
JP2000319350A (ja) 1999-05-10 2000-11-21 Agency Of Ind Science & Technol 生分解性ポリウレタン複合体及びその製造方法
JP2004256747A (ja) * 2003-02-27 2004-09-16 Junko Shigehara プラスチック接着剤、及びそれを用いた接着方法
JP2005002259A (ja) 2003-06-13 2005-01-06 Yokohama Rubber Co Ltd:The 熱可塑性エラストマー組成物
JP2007525146A (ja) * 2003-12-30 2007-09-06 ガムリンク エー/エス 生分解性ポリマーを含み且つ分解性を促進させたチューインガム
JP2005278549A (ja) 2004-03-30 2005-10-13 Yoshihiro Katayama 2−ピロン−4,6−ジカルボン酸を発酵生産するための遺伝子、前記遺伝子を含むプラスミド、前記プラスミドを含む形質転換体及び2−ピロン−4,6−ジカルボン酸の製造方法
JP2007037452A (ja) * 2005-08-03 2007-02-15 Forestry & Forest Products Research Institute ガリック酸から2−ピロン‐4,6−ジカルボン酸を生産するための遺伝子、その遺伝子等が導入された形質転換体及びその形質転換体を用いたガリック酸からの2−ピロン−4,6−ジカルボン酸の製造方法
WO2007148471A1 (ja) * 2006-06-23 2007-12-27 Kabushiki Kaisha Toyota Jidoshokki Pdcー乳酸コポリエステル及びその成形体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270286A (ja) * 2009-05-25 2010-12-02 Toyota Industries Corp ポリウレタン及びポリウレア、並びにその製造法

Also Published As

Publication number Publication date
US20100204356A1 (en) 2010-08-12
CN101802045A (zh) 2010-08-11
JPWO2009038007A1 (ja) 2011-01-06
EP2192137A1 (en) 2010-06-02
EP2192137A4 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
Hojabri et al. Fatty acid-derived diisocyanate and biobased polyurethane produced from vegetable oil: synthesis, polymerization, and characterization
JP5826814B2 (ja) バイオポリウレタン樹脂及びバイオポリウレタン樹脂組成物
TW564252B (en) Polycarbonate diol
US20090312450A1 (en) Polyurethanes made from hydroxyl-containing fatty acid amides
JP5345387B2 (ja) 二級アルコール基を含有するポリエステルポリオールおよびポリウレタン、例えば、柔軟性ポリウレタン発泡体の製造におけるそれらの使用
TWI694094B (zh) 聚碳酸酯樹脂
RU2417235C2 (ru) Пенополиуретаны, полученные из гидроксиметилсодержащих алкиловых эфиров жирных кислот
TW200842172A (en) Alkoxysilane-containing resin, modified alkoxysilane-containing resin, their production methods, hot melt adhesive, and resin cured product
TW201211155A (en) Polyurethane resin composition and molded article thereof
KR20220044896A (ko) 폴리에테르폴리카보네이트디올 및 그 제조 방법
TW201634514A (zh) 發泡體產物及其製備方法
WO2009038007A1 (ja) ポリウレタン及びポリウレア、並びにその製造法
EP4132989B1 (en) Thermoplastic polyurethanes derived from lignin monomers
JP2021042291A (ja) ウレタンホットメルト接着剤組成物
CN107922569B (zh) 用于制备开环聚合产物的方法
TW200400210A (en) Low emission tin catalysts
JP2004517992A (ja) ポリウレタンの製造方法
JP4145039B2 (ja) ポリエステルポリオールおよびポリウレタン、およびそれらの製造方法
JPH10251369A (ja) ポリウレタン樹脂の製造方法
JPH05247167A (ja) ポリウレタン及びその製造法
JP2023168021A (ja) ポリウレタン及びその製造方法
JP2017222625A (ja) ジオール化合物、該ジオール化合物から製造されるポリカーボネート樹脂、ポリカーボネートポリオール樹脂、ポリエステル樹脂、ポリエステルポリオール樹脂及びポリウレタン樹脂
JP2011213866A (ja) 鎖伸長剤およびその製造方法、および、熱可塑性ポリウレタン樹脂
JP3941048B2 (ja) ポリウレタン樹脂用組成物
WO2020160094A2 (en) Beta-hydroxyphosphonate functionalized polyols

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880107552.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08831486

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009533116

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12678932

Country of ref document: US

Ref document number: 2008831486

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE