WO2009004872A1 - 表面形状測定装置及び表面形状測定方法 - Google Patents

表面形状測定装置及び表面形状測定方法 Download PDF

Info

Publication number
WO2009004872A1
WO2009004872A1 PCT/JP2008/059757 JP2008059757W WO2009004872A1 WO 2009004872 A1 WO2009004872 A1 WO 2009004872A1 JP 2008059757 W JP2008059757 W JP 2008059757W WO 2009004872 A1 WO2009004872 A1 WO 2009004872A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
measurement
displacement
sample
surface shape
Prior art date
Application number
PCT/JP2008/059757
Other languages
English (en)
French (fr)
Inventor
Yasunari Ishikawa
Original Assignee
Tokyo Seimitsu Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co., Ltd. filed Critical Tokyo Seimitsu Co., Ltd.
Priority to EP08764773.1A priority Critical patent/EP2037211B1/en
Priority to JP2008540388A priority patent/JP5312032B2/ja
Priority to US12/309,132 priority patent/US7918036B2/en
Publication of WO2009004872A1 publication Critical patent/WO2009004872A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/20Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/28Measuring arrangements characterised by the use of mechanical techniques for measuring roughness or irregularity of surfaces

Definitions

  • the surface roughness of the surface of the sample is detected by detecting the amount of displacement of the surface caused by the unevenness of the surface by sliding the surface of the surface of the sample with a surface roughness shape measuring device or a roundness measuring device.
  • the present invention relates to a surface shape measuring apparatus that measures the above. More specifically, in surface shape measurement, the present invention relates to a technique for determining a measurement end point for stopping sliding of a probe on the surface of a sample.
  • Surface roughness shape measuring device and roundness measuring device are measured along the measurement surface of the workpiece (workpiece).
  • the displacement detector (pickup) provided with the probe is moved, and the displacement of the probe is converted into an electrical signal and read by a computer such as a computer to measure the surface shape of the object to be measured.
  • Fig. 1A shows the basic configuration of the surface roughness and shape measuring device (see Patent Document 1 below).
  • the shape measuring device 10 moves the surface of the workpiece W 1 placed on the workpiece table 17 in the X-axis direction with the stylus 16 as the measuring element, and the surface of the workpiece W 1 Measure the surface shape of the workpiece W 1 by detecting the displacement in the Z-axis direction of the stylus 16 caused by the unevenness of the workpiece with a displacement detector (pickup) 15.
  • a support column 1 2 is erected vertically on a horizontal surface plate 1 1.
  • Z table 1 3 is slidably supported on support 1 2 It is driven by a z table driving means (not shown) and moves vertically up and down.
  • An X arm 14 is supported horizontally on the Z table 1 3.
  • the X arm 14 is driven by an X arm driving means (not shown) and moves forward and backward in the X axis direction.
  • the displacement detector 15 is provided at the tip of the X arm 14.
  • the stylus 16 reciprocates along the X axis by the X arm 14 moving forward and backward in the X axis direction.
  • the surface of the surface plate 11 is the XY plane
  • the straight line along which the stylus 16 moves in the X_Y plane is the X axis.
  • the straight line perpendicular to the X axis is taken as the ⁇ axis
  • the straight line passing through the intersection (origin ⁇ ) of this ⁇ axis and the X axis is taken as the ⁇ axis.
  • the displacement detector 15 converts the displacement amount of the stylus 16 into an electric signal by a built-in sensor, for example, a differential transformer.
  • FIG. 1B is an explanatory diagram of the amount of displacement detected by the displacement detector 15.
  • the signal value output from the displacement detector 15 indicates the amount by which the stylus 16 is pushed up by contact with the workpiece W 1.
  • the amount by which the stylus 16 is pushed up varies depending on the relative position of the heel direction between the displacement detector 15 supporting the stylus 16 and the workpiece W1, so it is detected by the displacement detector 15
  • the displacement amount Z i of the stylus 16 is the offset amount from the reference Z direction position (Z 0) according to the position of the displacement detector 15.
  • the electrical signal output from the displacement detector 15 is converted into a digital signal by the AZD converter and input to a data processing device (not shown) such as a computer.
  • a data processing device such as a computer.
  • measurement data indicating the surface roughness or shape of the cake is obtained by the data processor.
  • the work table 17 is driven by a work table driving means (not shown) and moves in the Y-axis direction. By moving the work table 17 in the Y-axis direction, the scanning position of the surface of the work W 1 by the stylus 16 can be changed to measure the surface roughness or shape of the work W 1 in the X—Y plane. it can.
  • FIG. 2A is a diagram showing a basic configuration of a roundness measuring apparatus for measuring the roundness of a cross-sectional shape of a workpiece W 2 in which at least a part of the outer periphery of the cross-section has an arc shape (see Patent Document 2 below) )
  • the workpiece When measuring the roundness of the arc on the outer periphery of the cross section of the workpiece W 2 with the roundness measuring device 20, the workpiece is placed on the rotary table 2 7 having a rotation axis along the Z axis shown in the figure. W 2 is placed. Then, with the probe (probe) 2 6 pressed against the side of the workpiece W 2, the workpiece W 2 is rotated around the center of the arc formed by the outer periphery of the cross-section of the workpiece W 2. 2 Slide the tip of 6 on the outer periphery of the workpiece. Then, the tip of the probe 26 is displaced by a change in radius at the outer circumference of the workpiece W 2 cross section. The roundness of the part can be measured.
  • a support column 2 2 is erected vertically on a horizontal surface plate 2 1.
  • a Z table 23 is slidably supported on the support 22 and is vertically moved by being driven by a Z table driving means (not shown).
  • An X arm 2 4 is supported horizontally on the Z table 2 3.
  • the X arm 24 is driven by an X arm driving means (not shown) and moves in the X axis direction.
  • the displacement detector 25 is provided at the tip of the X arm 24. Then, the displacement detector 25 is positioned by moving the Z table 23 and the X arm 24, and the displacement detector 25 is provided on the side surface of the workpiece W 2 placed on the rotary table 27. Stylus 2 6 Contact.
  • the displacement detector 25 converts the displacement amount of the stylus 26 into an electric signal by a sensor such as a differential transformer.
  • FIG. 2B is an explanatory diagram of the amount of displacement detected by the displacement detector 25.
  • the signal value output from the displacement detector 25 is obtained by pushing the stylus 26 pressed against the side surface of the workpiece W 2 in the radial direction of the circular arc on the side surface by the contact with the workpiece W 2. Indicates the amount of extrusion. Since the push-out amount of the stylus 2 6 varies depending on the relative positional relationship between the displacement detector 25 and the workpiece W2, the displacement amount DR i of the stylus 26 detected by the displacement detector 25 is The amount of offset from the reference radius (DR 0) determined according to the position of the displacement detector 25.
  • the electrical signal output from the displacement detector 25 is converted into a digital signal by an AZD converter and input to a data processing device (not shown) such as a computer. Then, the outer peripheral shape of the cross section of the workpiece W 2 is calculated based on the signal input by the data processing device, and the roundness of the arc portion is calculated.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2 0 0 2-1 0 7 1 4 4
  • Patent Document 2 Japanese Patent Laid-Open No. 5-2 3 1 8 0 6 Disclosure of Invention
  • a predetermined threshold is set for the output value of the displacement detector, and when the output value of the displacement detector exceeds this threshold, the position of the gauge moves beyond the measurement range. It is also possible to automatically control the device so that the measurement ends at this point. For example, as shown in Fig. 3B, when measuring the surface shape of the workpiece W 1 with the edges E 1 and E 2, the measuring element 1 6 exceeds the edge E 2 and is separated from the workpiece W 1. When the displacement of 6 becomes smaller than the lower limit Zth, it is detected that the measurement range has been exceeded.
  • the probe 16 even if the probe 16 is detached from the workpiece surface, it cannot be detected immediately and the measurement operation cannot be terminated. For this reason, for example, when measuring the roughness of a thin workpiece such as a biston ring, the probe 16 may be dropped on the workpiece table, and the tip of the probe 16 may be damaged or contaminated. There is.
  • Such a measurement end operation in which the probe is detached from the surface of the workpiece also has a problem in the roundness measuring device. That is, when the side surface of the workpiece W 2 with the notch C on the side as shown in FIG. 4 is scanned with the measuring element 26, the measuring element 26 is dropped into the notch C in the direction indicated by the arrow. If rotation continues, the probe 26 may hit the edge E and break.
  • the present invention has been devised in view of these problems, and it is not necessary to specify the measurement length when measuring the surface shape of workpieces with different measurement ranges.
  • the purpose is to improve the efficiency of measurement work.
  • the surface shape of the sample is determined by detecting the displacement of the probe caused by surface irregularities when the probe is slid on the surface of the sample.
  • the initial displacement which is the displacement of the probe when it is brought into contact with the sliding start point on the surface of the sample, is detected. Compare the displacement amount with the initial displacement amount to determine whether the probe has reached the end of measurement.
  • the initial displacement which is the displacement of the probe at the start of measurement
  • the measurement can be terminated when is detected.
  • the determination as to whether or not the measurement end point has been reached may be invalidated while the probe is slid from the start of sliding to a predetermined distance. By invalidating the determination in this way, it is possible to avoid an error that is erroneously determined to have reached the measurement end point immediately after the start of measurement.
  • a surface shape measuring apparatus that measures the surface shape of a sample by detecting a displacement amount of the measuring member caused by surface irregularities when the measuring member slides on the surface of the sample.
  • This surface shape measuring device includes a displacement detector that detects the displacement of the probe, and a sample. Compared to the initial displacement, which is the displacement of the probe when the probe is touched to the measurement start point on the sample surface, the probe detects the displacement detected while sliding on the surface of the sample.
  • a measurement end determination unit for determining whether or not an end point has been reached;
  • the second aspect of the present invention in surface shape measurement for measuring the surface shape of a sample by detecting the amount of displacement of the probe caused by surface irregularities when the probe is slid on the surface of the sample.
  • a measurement end judgment method is provided for determining whether or not the probe slid on the surface of the sample has reached the measurement end point.
  • the initial displacement which is the displacement of the probe when it is brought into contact with the measurement start point on the surface of the sample, is detected, and the displacement of the probe detected while sliding on the sample surface Compare the amount with the initial displacement to determine if the probe has reached the end of measurement.
  • Fig. 1A is a diagram showing the basic configuration of the surface roughness Z-shape measuring device.
  • Fig. 1B is an explanatory diagram of the amount of displacement detected by the displacement detector.
  • Fig. 2A is a diagram of the roundness measuring device. It is a figure which shows a basic composition.
  • FIG. 2B is an explanatory diagram of the amount of displacement detected by the displacement detector.
  • FIG. 3A is a diagram illustrating a first example of a measurement end determination method.
  • FIG. 3B is a diagram for explaining a second example of the measurement end determination method.
  • FIG. 4 is a diagram for explaining the measurement of roundness of a single notch on the side surface.
  • FIG. 5 is a diagram showing an overall configuration of a surface roughness Z-shape measuring apparatus according to an embodiment of the present invention.
  • FIG. 6 is a block diagram showing a schematic configuration of the control unit shown in FIG.
  • FIG. 7 is a flowchart of the measurement end determination method according to the present invention.
  • FIG. 8 is an explanatory diagram of a method for determining the end of measurement in the surface roughness profile measuring apparatus.
  • FIG. 9 is a diagram showing an overall configuration of a roundness measuring apparatus according to an embodiment of the present invention.
  • FIG. 10 is a block diagram showing a schematic configuration of the control unit shown in FIG. 9.
  • FIG. 11A is an explanatory diagram (No. 1) of a method for determining the end of measurement in the roundness measuring apparatus.
  • FIG. 11B is an explanatory diagram (No. 2) of the method for determining the end of measurement in the roundness measuring device.
  • FIG. 11C is an explanatory diagram (No. 3) of the method for determining the end of measurement in the roundness measuring device.
  • FIG. 5 is a diagram showing an overall configuration of a surface roughness shape measuring apparatus according to an embodiment of the present invention.
  • the surface roughness / shape measuring apparatus 10 has a surface plate 1 1, a column 1 2 erected vertically on the surface plate 1 1, and a column 1 like the configuration described with reference to FIG. 1A.
  • Z table 1 3 slidably supported by 2, X arm 1 4 horizontally supported by Z table 1 3, displacement detector 1 5 provided at the tip of X arm 1 4, displacement detector 1 5 is equipped with a stylus 16 that is a probe for detecting displacement in the Z-axis direction, and a work table 1 7 that is provided on a surface plate 1 1 and on which a work W 1 is placed. .
  • the surface roughness profile measuring device 10 outputs a drive signal to a driving means for driving each moving mechanism such as the Z table 13, the X arm 14, and the work table 17, and the surface roughness profile measuring device 1 Measurement by 0 Controls the operation and based on detection signal from displacement detector 1 5 And a control unit 1 8 for generating the surface roughness of the measurement surface of the workpiece W l or shape data.
  • FIG. 6 is a block diagram showing a schematic configuration of the control unit 18 shown in FIG.
  • the control unit 18 includes a moving mechanism driving unit 3 1 for generating a driving signal to driving means for driving each moving mechanism such as the Z table 13, the X arm 14, and the work table 17, and a displacement detector 15.
  • An analog-to-digital converter (ADC) 3 2 that converts the displacement signal of the stylus 16 detected by the sensor into a digital signal at a predetermined sampling period, and the tactile signal at each time converted to a digital signal
  • the displacement of the needle 16 is associated with the position information of the moving mechanism (Z table 13, X arm 14, and work table 17) at each time, and the Z axis direction on the measurement surface of the workpiece W 1
  • a displacement signal processing unit 3 3 for generating measurement data indicating a position; and a measurement operation control unit 3 4 for controlling the moving mechanism driving unit 31 and the displacement signal processing unit 33.
  • the measurement operation control unit 34 determines the target position when controlling the position of the stylus 16.
  • the moving mechanism drive unit 31 determines the target position of each of the Z table 13 and X arm 14 that can position the stylus 16 at the determined target position, and moves these from the current position to the target position. A drive signal for moving the mechanism is output.
  • the measurement operation control unit 24 places the stylus 16 at the measurement start position by the position input means (not shown) by the operator. Processing unit 3 Outputs to 3.
  • the control unit 18 includes a memory 3 5 for storing the displacement amount of the stylus 16 detected by the displacement detector 15 as an initial displacement amount when the measurement operation control unit 34 outputs a measurement start signal.
  • FIG. 7 is a flowchart of the measurement end determination method according to the present invention
  • FIG. 8 is an explanatory diagram thereof.
  • step S 1 the operator performing the measurement work brings the stylus 16 into contact with the measurement start position on the workpiece W 1 by means of position input means (not shown), and then starts measurement on the surface roughness shape measurement device 10.
  • FIG. 8 shows a state in which the stylus indicated by the reference numeral 16 a is positioned at the measurement start position of the edge E 1 of the workpiece W 1.
  • Reference numeral Z 0 shown in FIG. 8 indicates the position of the position in the reference Z direction described with reference to FIG. 1B.
  • the measurement operation control unit 3 4 When measurement start is instructed by the operator, the measurement operation control unit 3 4 outputs a measurement start signal.
  • the measurement end determination unit 36 receives the measurement start signal, and stores the displacement of the stylus 16 detected by the displacement detector 15 at this time in the memory 35 as the initial displacement (step S 2 And step S3).
  • the initial displacement is the displacement indicated by the reference symbol Z (1) in Fig. 8.
  • step S 4 the stylus 16 slides on the measurement surface of the workpiece W 1 by driving the X arm 14 by the measurement operation control unit 34 and the mobile mechanism drive unit 31.
  • step S5 the measurement invalidation unit 3 7 inputs the amount of movement of the X arm 14 from the movement mechanism drive unit 31 and the stylus 1 on the measurement surface of the work W 1 from the start of measurement to the present. Detect the moving distance of 6. If the movement distance of the stylus 16 is equal to or less than the predetermined determination invalid length L i, the measurement invalidation unit 3 7 goes to the measurement end determination unit 3 6 and the measurement end determination in step S 6 below. Indicates invalidation of processing. Processing by this Returns to step S4 without proceeding to step S6 below, and the movement of the stylus 16 continues.
  • the measurement end determination unit 3 6 in step S 6 determines the displacement amount Z (1) of the stylus 16 detected at present and the initial value.
  • the displacement Z (1) is compared to determine whether the stylus 16 has reached the end of measurement.
  • the measurement end determination unit 36 determines that the currently detected displacement Z (1) of the stylus 16 reaches the initial displacement Z (1). It may be determined that the stylus 16 has reached the end of measurement.
  • the displacement detected by the displacement detector 15 when the stylus is at the current position indicated by reference numeral 16 c is Z (i), and one displacement before this current position is indicated.
  • Z (i-1) be the displacement detected by the displacement detector 15 when the stylus is at the measurement position (indicated by reference numeral 16b).
  • step S 6 If it is determined in step S 6 that the stylus 16 has reached the measurement end point, the measurement end determination unit 3 6 instructs the measurement operation control unit 3 4 to end the measurement (step S 7 ) If it is determined that the stylus 16 has not reached the measurement end point, the measurement is continued by returning to step S4.
  • FIG. 9 is a diagram showing an overall configuration of a roundness measuring apparatus according to an embodiment of the present invention.
  • the roundness measuring device 20 has a surface plate 2 1, a column 2 2 erected vertically on the surface plate 2 1, and a column 2 2.
  • Z table 2 3 supported freely, X arm 2 4 supported horizontally by Z table 2 3 and provided at the tip of X arm 2 4 Displacement detector 2 5, the rotary table 2 7 provided on the surface plate 2 1 on which the work W 2 is placed, and the side of the work W 2 placed on the rotary table 2 7.
  • a probe 2 6 whose displacement is detected by the displacement detector 25 when the workpiece W 2 rotates.
  • the roundness measuring device 20 outputs a drive signal to driving means for driving each moving mechanism such as the Z table 2 3, the X arm 24, and the rotary table 2 7, and the roundness measuring device 20
  • a control unit 28 is provided that controls the measurement operation and calculates the outer peripheral shape of the cross section of the workpiece W 2 based on the detection signal from the displacement detector 25 and calculates the roundness of the arc portion. .
  • FIG. 10 is a block diagram showing a schematic configuration of the control unit 28 shown in FIG.
  • the control unit 28 includes a moving mechanism driving unit 4 1 that generates a driving signal to driving means that drives each moving mechanism such as a Z table 2 3, an X arm 24, and a rotary table 2 7, and a displacement detector 2.
  • Measurer 2 detected by 5 An analog digital converter (ADC) 4 2 that converts the displacement signal of 6 into a digital signal at a predetermined sampling period, and a stylus at each time converted to a digital signal 2 3
  • Displacement signal processing unit that calculates the roundness by measuring the cross-sectional shape of the side surface of work W 2 by associating the displacement amount of 6 with the rotation amount information of the rotary table 27 at each time.
  • a measurement operation control unit 4 4 for controlling the movement mechanism drive unit 41 and the displacement signal processing unit 4 3.
  • the measurement operation control unit 44 determines the target position when controlling the position of the probe 26.
  • the moving mechanism drive unit 4 1 determines the target positions of the Z table 2 3 and the X arm 2 4 that can position the stylus 1 6 at the determined target position, and from these positions to the target position.
  • a drive signal for moving the moving mechanism is output.
  • the measurement operation control unit 4 4 also has a target rotation angle of the rotary table 2 7 on which the workpiece W 2 is placed Determine the degree.
  • the moving mechanism drive unit 4 1 outputs a drive signal for rotating the turntable 2 7 so that the rotation angle of the turntable 2 7 becomes the determined target rotation angle.
  • the measurement operation control unit 44 When the operator moves the probe 2 6 by a position input means (not shown) and rotates the rotary table 2 7 to position the probe 2 6 at the measurement start position of the workpiece W 2 and instruct the start of measurement. Further, the measurement operation control unit 44 outputs a measurement start signal for signaling the start of measurement to the displacement signal processing unit 43.
  • control unit 28 stores the displacement amount of the probe 26 detected by the displacement detector 25 as the initial displacement amount when the measurement operation control unit 44 outputs the measurement start signal. Compare the displacement amount of the probe 26 detected during the measurement with the initial displacement amount, the measurement end determination unit 4 6 that determines whether the probe 26 has reached the measurement end point, and the measurement start And a determination invalidation unit 4 7 for invalidating the determination by the measurement end determination unit 46 until the rotation table 2 7 is rotated by a predetermined angle.
  • the measurement end determination method by the control unit 28 will be described with reference to FIGS. 7 and 11A to 11C.
  • step S 1 shown in FIG. 7 the operator who performs the measurement work brings the probe 26 into contact with the measurement start position on the workpiece W 2 by a position input means (not shown), and then enters the roundness measuring device 20. Instructs the start of measurement.
  • Fig. 1 1 A shows how the roundness of arc A is measured while rotating workpiece W 2 whose part of the outer periphery of the cross-section forms an arc with the center 0 of the arc as the center of rotation. It is.
  • Fig. 1 1 B is an enlarged view of B part of Fig. 1 1 A including the edge E 1 where the measurement start point is located
  • Fig. 1 1 C is Fig. 1 1 including the edge E 2 where the measurement end point is located.
  • the reference sign DR 0 shown in FIGS. 11B and 11C is The position of the reference radius described with reference to Figure 2B is shown.
  • Fig. 1 1 B shows how the probe shown at the position of reference numeral 2 6 a is positioned at the measurement start position of the edge E 1 of the workpiece W 2
  • Measurement operation controller 4 4 outputs a measurement start signal.
  • the measurement end determination unit 46 receives the measurement start signal, and stores the displacement amount of the probe 26 detected by the displacement detector 25 at this time in the memory 45 as an initial displacement amount (step S 2 And step S3).
  • the initial displacement is the displacement indicated by the reference symbol D R (1) in FIG. 11B.
  • step S 4 the measurement operation control unit 44 and the mobile mechanism drive unit 41 rotate the rotary table 2 7, so that the probe 26 slides on the measurement surface of the workpiece W 2.
  • step S5 the measurement invalidation unit 47 inputs the rotation amount of the rotary table 27 from the start of measurement to the present time from the moving mechanism drive unit 41.
  • the measurement invalidation unit 47 transmits to the measurement end determination unit 46 and invalidates the measurement end determination process in step S6 below. Instruct.
  • the process returns to step S4 without moving to the following step S6, and the movement of the probe 26 on the measurement surface of the workpiece W2 is continued.
  • step S 6 the measurement end determination unit 4 6 determines the displacement amount DR (i) of the probe 2 6 currently detected and the initial value.
  • the displacement amount DR (1) is compared to determine whether or not the probe 26 has reached the measurement end point.
  • the measurement end determination unit 46 determines that the currently detected displacement DR (i) of the probe 26 is the initial displacement. Therefore, it may be determined that DR (1) has been reached and therefore the probe 26 has reached the end of measurement.
  • the displacement detected by the displacement detector 25 when the probe is located at the current position indicated by reference numeral 26 c is DR (i), and the measurement one previous from this current position.
  • DR (i-1) be the displacement detected by the displacement detector 25 when there is a probe at the position (indicated by reference numeral 26).
  • step S 6 When it is determined in step S 6 that the probe 26 has reached the measurement end point, the measurement end determination unit 46 instructs the measurement operation control unit 44 to end the measurement, and the measurement ends (step S 7 ) When it is determined that the probe 2 6 has not reached the measurement end point, the measurement is continued by returning to step S4.
  • the present invention it is not necessary to specify the measurement length for sliding the probe in the surface shape measurement. Therefore, when measuring the surface shape of a plurality of workpieces with different measurement ranges, the efficiency of the measurement work is improved. improves.
  • the present invention measures the surface shape of a sample by detecting the amount of displacement of the probe caused by surface irregularities by sliding the probe on the surface of the sample, such as a surface roughness / shape measuring device or a roundness measuring device. It can be used for surface shape measurement.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

試料(W1、W2)の表面に測定子(16、26)を摺動させたときに表面の凹凸により生じる測定子(16、26)の変位量を検出することにより試料(W1、W2)の表面形状を測定する表面形状測定において、試料(W1、W2)の表面上の測定開始点に接触させたときの測定子(16、26)の変位量である初期変位量を検出し、この表面上を摺動する間に検出される測定子(16、26)の変位量を初期変位量と比べて、測定子(16、26)が測定終了点に至ったか否かを判定する。

Description

明 細 書 表面形状測定装置及び表面形状測定方法 技術分野
本発明は、 表面粗さ 形状測定装置や真円度測定装置などといつ た、 試料の表面に測定子を摺動させ、 表面の凹凸により生じる測定 子の変位量を検出して試料の表面形状を測定する表面形状測定装置 に関する。 より詳しくは、 表面形状測定において、 試料の表面にお ける測定子の摺動を停止させる測定終了点を決定する技術に関する
背景技術
表面粗さ 形状測定装置や真円度測定装置 (以下、 これらの測定 装置を本明細書において 「表面形状測定装置」 と総称する) は、 被 測定物 (ワーク) の測定面に沿って、 測定子が設けられた変位検出 器 (ピックアップ) を移動させ、 測定子の変位量を電気信号に変換 してコンピュータ等の計算機に読み取ることで、 被測定物の表面の 形状を測定する。 図 1 Aに、 表面粗さ 形状測定装置の基本構成を 示す (下記特許文献 1参照) 。
表面粗さ 形状測定装置 1 0は、 ワークテーブル 1 7の上に載置 されたワーク W 1の表面を、 測定子である触針 1 6で X軸方向に走 查し、 ワーク W 1の表面の凹凸により生じる触針 1 6の Z軸方向の 変位量を変位検出器 (ピックアップ) 1 5で検出してワーク W 1の 表面形状を測定する。
水平に設置された定盤 1 1の上には、 支柱 1 2が垂直に立設され ている。 支柱 1 2には Zテーブル 1 3が摺動自在に支持されており 、 図示しない zテーブル駆動手段に駆動されて垂直に上下動する。
Zテーブル 1 3には、 Xアーム 1 4が水平に支持されている。 X アーム 1 4は、 図示しない Xアーム駆動手段に駆動されて X軸方向 に進退移動する。 変位検出器 1 5は、 この Xアーム 1 4の先端に設 けられている。 そして、 この Xアーム 1 4が X軸方向に進退移動す ることにより、 触針 1 6が X軸に沿って往復動する。
ここで、 定盤 1 1の表面を X— Y平面とし、 この X _ Y平面にお いて、 触針 1 6が移動する直線を X軸とする。 そして、 この X— Υ 平面において、 X軸に直交する直線を Υ軸とし、 この Υ軸と X軸と の交点 (原点 Ο) を通り、 X— Υ平面に直交する直線を Ζ軸とする 。 このように設定された空間直交座標系を Ο— Χ Υ Ζ座標系とする 触針 1 6 を一定の力でワーク W 1 の表面に押し付けながら X軸に 沿って移動させると、 ワーク W 1の凹凸によって触針 1 6が Ζ方向 に変位する。 変位検出器 1 5は、 内蔵したセンサ、 例えば差動トラ ンスなどにより触針 1 6の変位量を電気信号に変換する。
図 1 Bは変位検出器 1 5により検出される変位量の説明図である 。 変位検出器 1 5から出力される信号値は、 ワーク W 1 との接触に よる触針 1 6の押し上げ量を示す。 触針 1 6を押し上げる量は、 触 針 1 6を支持する変位検出器 1 5 とワーク W 1 との間の Ζ方向の相 対位置開係に応じて異なるので、 変位検出器 1 5により検出される 触針 1 6の変位量 Z i は、 変位検出器 1 5の位置に応じた基準 Z方 向位置 ( Z 0 ) からのオフセッ ト量となる。
変位検出器 1 5から出力される電気信号は AZD変換器によって ディ ジタル信号に変換され、 コンピュータ等のデータ処理装置 (図 示せず) に入力される。 これにより、 デ一夕処理装置によってヮー クの表面粗さ又は形状を示す測定データが取得される。 ワークテーブル 1 7は、 図示しないワークテーブル駆動手段に駆 動されて Y軸方向に移動する。 ワークテーブル 1 7が Y軸方向に移 動することによって、 触針 1 6によるワーク W 1 の表面の走査位置 を変え X— Y平面内におけるワーク W 1 の表面粗さ又は形状を測定 することができる。
図 2 Aは、 断面の外周の少なくとも一部が円弧形状をなすワーク W 2の断面形状の真円度を測定する真円度測定装置の基本構成を示 す図である (下記特許文献 2参照) 。
ワーク W 2の断面の外周の円弧部分の真円度を真円度測定装置 2 0によって測定する際には、 図示の Z軸に沿った回転軸を有する回 転テーブル 2 7の上に、 ワーク W 2 を載置する。 そして、 測定子 ( プローブ) 2 6をワーク W 2の側面に押し当てた状態で、 ワーク W 2の断面の外周がなす円弧の中心を回転中心としてワーク W 2 を回 転させることによって、 測定子 2 6の先端をワークの外周上で摺動 させる。 すると測定子 2 6の先端は、 ワーク W 2の断面の外周の円 弧部分における半径の変化によって変位するので、 この変位量の変 化を測定することによって、 ワーク W 2の断面の外周の円弧部分の 真円度を測定することができる。
水平に設置された定盤 2 1 の上には、 支柱 2 2が垂直に立設され ている。 支柱 2 2には Zテーブル 2 3が摺動自在に支持されており 、 図示しない Zテーブル駆動手段に駆動されて垂直に上下動する。
Zテーブル 2 3には、 Xアーム 2 4が水平に支持されている。 X アーム 2 4は、 図示しない Xアーム駆動手段に駆動されて X軸方向 に移動する。 変位検出器 2 5は、 この Xアーム 2 4の先端に設けら れている。 そして Zテーブル 2 3及び Xアーム 2 4を移動させるこ とによって変位検出器 2 5を位置付け、 回転テーブル 2 7 の上に置 かれたワーク W 2の側面に、 変位検出器 2 5に設けられた触針 2 6 を接触させる。
一定の力でワーク W 2の側面に触針 2 6 を押し付けながらワーク W 2 を回転させると、 ワーク W 2の断面の外周がなす円弧の半径の 違いによって、 かかる円弧の径方向に沿って触針 2 6の先端の位置 が変化する。 変位検出器 2 5は、 差動トランスなどのセンサによつ て触針 2 6の変位量を電気信号に変換する。
図 2 Bは変位検出器 2 5により検出される変位量の説明図である 。 変位検出器 2 5から出力される信号値は、 ワーク W 2の側面に押 し付けられた触針 2 6がワーク W 2 との接触によってその側面の断 面の円弧の半径方向に押し出された押し出し量を示す。 触針 2 6の 押し出し量は、 変位検出器 2 5 とワーク W 2 との間の相対位置関係 に応じて異なるので、 変位検出器 2 5により検出される触針 2 6の 変位量 D R i は、 変位検出器 2 5の位置に応じて定まる基準半径 ( D R 0 ) からのオフセッ ト量となる。
変位検出器 2 5から出力される電気信号は AZD変換器によって ディ ジタル信号に変換され、 コンピュータ等のデータ処理装置 (図 示せず) に入力される。 そして、 データ処理装置によって入力した 信号に基づきワーク W 2の断面の外周形状を算出して、 その円弧部 分の真円度を算出する。
〔特許文献 1〕 特開 2 0 0 2— 1 0 7 1 4 4号公報
〔特許文献 2〕 特開平 5— 2 3 1 8 0 6号公報 発明の開示
上記の表面形状測定装置を操作するオペレータは、 試料の表面に て測定子を摺動させる範囲、 すなわち測定範囲を装置に指示する必 要がある。 従来、 この作業は、 図 3 Aに示すようにワーク W 1の表 面における測定子 1 6の摺動開始位置 S Pと、 摺動長 Lを指定する ことによって行っていた。 その際にオペレータは、 所望の測定範囲
R内を漏れなく測定子 1 6で走査するように摺動長 Lを指定する必 要があつた。
このため、 大きさや形状が異なるワークの表面を繰り返し測定す る場合、 オペレータはワークに応じて摺動長 Lを指定し直す必要が あり、 かかる指定動作が測定作業を繁雑なものとしていた。
このような煩雑を避けるために、 変位検出器の出力値に対して所 定の閾値を設定し、 変位検出器の出力値がこの閾値を超えたとき測 定子の位置が測定範囲を超えて移動したものと判定して、 この時点 で測定を終了するように装置を自動制御することも考えられる。 例 えば図 3 Bに示すように、 エッジ E 1及び E 2 を有するワーク W 1 の表面形状を測定する際に、 測定子 1 6がエッジ E 2 を超えてヮー ク W 1から外れ測定子 1 6の変位が下限 Z t hよりも小さくなつた ときに、 測定範囲を超えたことを検出する。
しかしこの方法では測定子 1 6がワークの表面から外れてもすぐ にそれを検知して測定動作を終了させることができない。 このため 、 例えばビス トンリングのような薄いワークの表面の粗さを測定す る場合には、 測定子 1 6をワークテーブルへ落としてしまい、 測定 子 1 6の先端を破損したり汚染するおそれがある。
このような、 ワークの表面から測定子が外れるような測定終了動 作は、 真円度測定装置においても問題がある。 すなわち図 4に示す ような側面に切欠部 Cがあるようなワーク W 2の側面を測定子 2 6 で走査する場合において、 測定子 2 6が切欠部 Cへ落ちた状態で図 示矢印方向に回転を続けると、 測定子 2 6をエッジ Eにぶつけて破 損するおそれがある。
本発明はこれらの問題点に鑑みて考案されたものであり、 測定範 囲が異なるワークの表面形状を測定する際に、 測定長の指定を不要 にし測定作業の効率を向上することを目的とする。
上記目的を達成するために、 本発明による表面形状測定では、 試 料の表面に測定子を摺動させたときに表面の凹凸により生じる測定 子の変位量を検出することにより試料の表面形状を測定する際に、 試料の表面上の摺動開始点に接触させたときの測定子の変位量であ る初期変位量を検出し、 この表面上を摺動する間に検出される測定 子の変位量を初期変位量と比べて、 測定子が測定終了点に至ったか 否かを判定する。
このように、 測定中に検出される測定子の変位量を監視して測定 子が測定終了点に至ったか否かを判定することにより、 従来必要で あった測定長の指定を不要にして測定作業を簡略化することが可能 となる。
また、 測定開始時点における測定子の変位量である初期変位量を 基準にして、 測定子が測定終了点に至ったか否かを判定することに より、 測定開始時点における変位量と同様の変位量が検出されたと きに測定を終了させることができる。 これによつて、 上記の例のよ うなエッジを有するワークの表面形状を測定する場合においても、 測定子をエッジの外側へ外してしまう前に測定子の摺動を停止する ことができる。
また摺動を開始してから所定距離まで測定子を摺動させる間は、 測定終了点に至ったか否かの判定を無効にしてもよい。 このように 判定を無効化することにより、 測定開始直後において誤って測定終 了点に至つたと判定するエラ一を回避することができる。
本発明の第 1形態によれば、 試料の表面に測定子を摺動させたと きに表面の凹凸により生じる測定子の変位量を検出することにより 試料の表面形状を測定する表面形状測定装置が提供される。 この表 面形状測定装置は、 測定子の変位量を検出する変位検出部と、 試料 の表面上を摺動する間に検出される測定子の変位量を、 試料表面上 の測定開始点に接触させたときの測定子の変位量である初期変位量 と比べて、 測定子が測定終了点に至ったか否かを判定する測定終了 判定部と、 を備える。
本発明の第 2形態によれば、 試料の表面に測定子を摺動させたと きに表面の凹凸により生じる測定子の変位量を検出することにより 試料の表面形状を測定する表面形状測定における、 試料の表面で摺 動させた測定子が測定終了点に至ったか否かを判定する測定終了判 定方法が提供される。 本判定方法では、 試料の表面上の測定開始点 に接触させたときの測定子の変位量である初期変位量を検出し、 試 料表面上を摺動する間に検出される測定子の変位量を初期変位量と 比べて 、 測定子が測定終了点に至ったか否かを判定する。 図面の簡単な説明
図 1 Aは、 表面粗さ Z形状測定装置の基本構成を示す図であ 図 1 Bは、 変位検出器により検出される変位量の説明図である 図 2 Aは、 真円度測定装置の基本構成を示す図である。
図 2 Bは、 変位検出器により検出される変位量の説明図である 図 3 Aは、 測定終了判定方法の第 1例を説明する図である。
図 3 Bは、 測定終了判定方法の第 2例を説明する図である。
図 4は 、 側面に切欠のあるヮ一クの真円度の測定を説明する図で ある。
図 5は 、 本発明の実施例による表面粗さ Z形状測定装置の全体構 成を示す図である。
図 6は、 図 5に示す制御部の概略構成を示すブロック図である。 図 7は、 本発明による測定終了判定方法のフローチャートである 図 8は、 表面粗さ 形状測定装置において測定終了を判定する方 法の説明図である。
図 9は、 本発明の実施例による真円度測定装置の全体構成を示す 図である。
図 1 0は、 図 9に示す制御部の概略構成を示すブロック図である 図 1 1 Aは、 真円度測定装置において測定終了を判定する方法の 説明図 (その 1 ) である。
図 1 1 Bは、 真円度測定装置において測定終了を判定する方法の 説明図 (その 2 ) である。
図 1 1 Cは、 真円度測定装置において測定終了を判定する方法の 説明図 (その 3 ) である。 発明を実施するための最良の形態
図 5は、 本発明の実施例による表面粗さ 形状測定装置の全体構 成を示す図である。 表面粗さ/形状測定装置 1 0は、 図 1 Aを参照 して説明した構成と同様に、 定盤 1 1 と、 定盤 1 1 に垂直に立設さ れた支柱 1 2 と、 支柱 1 2に摺動自在に支持される Zテーブル 1 3 と、 Zテーブル 1 3 に水平に支持される Xアーム 1 4と、 Xアーム 1 4の先端に設けられる変位検出器 1 5 と、 変位検出器 1 5によつ て Z軸方向の変位が検出される測定子である触針 1 6 と、 定盤 1 1 の上に設けられワーク W 1が載置されるワークテーブル 1 7 を備え ている。
また表面粗さ 形状測定装置 1 0は、 Zテーブル 1 3、 Xアーム 1 4及びワークテーブル 1 7 といった各移動機構を駆動する駆動手 段へ駆動信号を出力して、 表面粗さノ形状測定装置 1 0による測定 動作を制御するとともに、 変位検出器 1 5からの検出信号に基づい てワーク W lの測定面の表面粗さデ一夕又は形状データを生成する 制御部 1 8 を備える。
図 6は、 図 5に示す制御部 1 8の概略構成を示すブロック図であ る。 制御部 1 8は、 Zテーブル 1 3 、 Xアーム 1 4及びワークテー ブル 1 7 といった各移動機構を駆動する駆動手段への駆動信号を生 成する移動機構駆動部 3 1 と、 変位検出器 1 5が検出した触針 1 6 の変位信号を所定のサンプリング周期でディジ夕ル形式の信号へ変 換するアナログディジタル変換器 (A D C ) 3 2 と、 ディジタル形 式の信号に変換された各時刻における触針 1 6の変位量を、 それぞ れの時刻における移動機構 ( Zテーブル 1 3 、 Xアーム 1 4及びヮ ークテーブル 1 7 ) の位置情報に対応付けて、 ワーク W 1 の測定面 における Z軸方向位置を示す測定データを生成する変位信号処理部 3 3 と、 移動機構駆動部 3 1及び変位信号処理部 3 3を制御する測 定動作制御部 3 4と、 を備える。
測定動作制御部 3 4は、 触針 1 6の位置を制御する際にその目標 位置を決定する。 移動機構駆動部 3 1 は、 決定された目標位置に触 針 1 6を位置付けることができる Zテーブル 1 3及び Xアーム 1 4 のそれぞれの目標位置を決定し、 現在位置から目標位置までこれら の移動機構を移動するための駆動信号を出力する。 また測定動作制 御部 2 4は、 オペレータが図示しない位置入力手段によって触針 1 6を測定開始位置に位置付け、. 測定開始を指示したときに、 測定の 開始を合図する測定開始信号を変位信号処理部 3 3へ出力する。 さらに制御部 1 8は、 測定動作制御部 3 4が測定開始信号を出力 した時に、 変位検出器 1 5が検出していた触針 1 6の変位量を初期 変位量として記憶するメモリ 3 5 と、 測定中に検出される触針 1 6 の変位量を初期変位量と比べて、 触針 1 6が測定終了点に至ったか 否かを判定する測定終了判定部 3 6 と、 測定開始から触針 1 6を所 定距離を移動するまでの間、 測定終了判定部 3 6による判定を無効 にする判定無効化部 3 7 と、 を備える。 以下、 図 7及び図 8 を参照 しながら制御部 1 8による測定終了判定方法を説明する。
図 7は、 本発明による測定終了判定方法のフローチャートであり 、 図 8はその説明図である。
ステップ S 1 において、 測定作業を行うオペレータは、 図示しな い位置入力手段によって触針 1 6 をワーク W 1上の測定開始位置に 接触させた後、 表面粗さ 形状測定装置 1 0に測定開始を指示する 。 図 8は、 参照符号 1 6 aの位置に示された触針が、 ワーク W 1 の エッジ E 1 の測定開始位置に位置付けられている様子を示す。 なお 図 8に示す参照符号 Z 0は、 図 1 Bを参照して説明した基準 Z方向 位置の位置を示す。
オペレータから測定開始が指示されると、 測定動作制御部 3 4は 測定開始信号を出力する。 測定終了判定部 3 6は測定開始信号を受 信して、 この時点で変位検出器 1 5が検出する触針 1 6の変位量を 、 初期変位量としてメモリ 3 5へ記憶する (ステップ S 2及びステ ップ S 3 ) 。 初期変位量は図 8において参照符号 Z ( 1 ) にて示さ れた変位量である。
その後、 ステップ S 4において、 測定動作制御部 3 4及び移動機 構駆動部 3 1 により Xアーム 1 4が駆動されることにより触針 1 6 がワーク W 1の測定面上で摺動する。
ステップ S 5では、 測定無効化部 3 7は移動機構駆動部 3 1から Xアーム 1 4の移動量を入力して、 測定開始から現在に至るまでの ワーク W 1 の測定面上における触針 1 6 の移動距離を検出する。 そ して触針 1 6の移動距離が予め定めた判定無効長 L i 以下であると きは、 測定無効化部 3 7は測定終了判定部 3 6へ、 以下のステップ S 6による測定終了判定処理の無効を指示する。 これによつて処理 は、 以下のステップ S 6に移行せずにステップ S 4へ戻り、 触針 1 6の移動が続行される。
一方で触針 1 6の移動距離が判定無効長 L i を超えるときは、 ス テツプ S 6 において測定終了判定部 3 6は、 現在検出される触針 1 6の変位量 Z ( 1 ) と初期変位量 Z ( 1 ) とを比べて、 触針 1 6が 測定終了点に至ったか否かを判定する。
このとき測定終了判定部 3 6は、 次の条件式 ( 1 ) が満たされた とき、 現在検出される触針 1 6の変位量 Z ( 1 ) が初期変位量 Z ( 1 ) に至り、 したがって触針 1 6が測定終了点に至ったと判定して もよい。
(Z ( i - l ) - Z ( i ) ) X ( Z ( i ) - Z ( l ) ) ≤ 0 … ( 1 )
ここで図 8において、 参照符号 1 6 cによって示された現在位置 に触針があるときに変位検出器 1 5が検出する変位量を Z ( i ) と し、 この現在位置より 1つの前の測定位置 (参照符号 1 6 bによつ て示す) に触針があるときに変位検出器 1 5が検出する変位量を Z ( i - 1 ) とする。
ステップ S 6 において触針 1 6が測定終了点に至ったと判定した ときは、 測定終了判定部 3 6が測定動作制御部 3 4へ測定終了を指 示することによって測定が終了し (ステップ S 7 ) 、 触針 1 6が測 定終了点に至っていないと判定したときは、 処理がステップ S 4に 戻ることによって測定が続行される。
図 9は、 本発明の実施例による真円度測定装置の全体構成を示す 図である。 真円度測定装置 2 0は、 図 2 Aを参照して説明した構成 と同様に、 定盤 2 1 と、 定盤 2 1 に垂直に立設された支柱 2 2 と、 支柱 2 2に摺動自在に支持される Zテーブル 2 3 と、 Zテーブル 2 3に水平に支持される Xアーム 2 4と、 Xアーム 2 4の先端に設け られる変位検出器 2 5 と、 定盤 2 1 の上に設けられワーク W 2が載 置される回転テーブル 2 7 と、 回転テーブル 2 7 に載置されたヮー ク W 2の側面に押し当てられ、 ワーク W 2が回転する際に変位が変 位検出器 2 5によって検出される測定子 2 6 と、 を備えている。
また真円度測定装置 2 0は、 Zテーブル 2 3 、 Xアーム 2 4及び 回転テーブル 2 7 といった各移動機構を駆動する駆動手段へ駆動信 号を出力して、 真円度測定装置 2 0による測定動作を制御するとと もに、 変位検出器 2 5からの検出信号に基づいてワーク W 2の断面 の外周形状を算出して、 その円弧部分の真円度を算出する制御部 2 8を備える。
図 1 0は、 図 9に示す制御部 2 8の概略構成を示すブロック図で ある。 制御部 2 8は、 Zテーブル 2 3 、 Xアーム 2 4及び回転テー ブル 2 7 といった各移動機構を駆動する駆動手段への駆動信号を生 成する移動機構駆動部 4 1 と、 変位検出器 2 5が検出した測定子 2 6の変位信号を所定のサンプリング周期でディジタル形式の信号へ 変換するアナログディ ジタル変換器 (A D C ) 4 2 と、 ディ ジタル 形式の信号に変換された各時刻における測定子 2 6の変位量を、 そ れぞれの時刻における回転テーブル 2 7の回転量情報に対応付けて ワーク W 2の側面の断面形状を測定し真円度を算出する変位信号処 理部 4 3 と、 移動機構駆動部 4 1及び変位信号処理部 4 3 を制御す る測定動作制御部 4 4と、 を備える。
測定動作制御部 4 4は、 測定子 2 6の位置を制御する際にその目 標位置を決定する。 移動機構駆動部 4 1は、 決定された目標位置に 触針 1 6 を位置付けることができる Zテーブル 2 3及び Xアーム 2 4のそれぞれの目標位置を決定し、 現在位置から目標位置までこれ らの移動機構を移動するための駆動信号を出力する。 測定動作制御 部 4 4はまた、 ワーク W 2を載せた回転テーブル 2 7の目標回転角 度を決定する。 移動機構駆動部 4 1 は、 回転テーブル 2 7の回転角 度が、 決定された目標回転角度となるように回転テーブル 2 7 を回 転させる駆動信号を出力する。
オペレータが図示しない位置入力手段によって測定子 2 6 を移動 させ、 かつ回転テーブル 2 7 を回転させることによって、 測定子 2 6をワーク W 2の測定開始位置に位置付け、 また測定開始を指示し たときに、 測定動作制御部 4 4は、 測定の開始を合図する測定開始 信号を変位信号処理部 4 3へ出力する。
さらに制御部 2 8は、 測定動作制御部 4 4が測定開始信号を出力 した時に、 変位検出器 2 5が検出していた測定子 2 6の変位量を初 期変位量として記憶するメモリ 4 5 と、 測定中に検出される測定子 2 6の変位量を初期変位量と比べて、 測定子 2 6が測定終了点に至 つたか否かを判定する測定終了判定部 4 6 と、 測定開始から回転テ 一ブル 2 7 を所定角度だけ回転させるまでの間、 測定終了判定部 4 6による判定を無効にする判定無効化部 4 7 と、 を備える。 以下、 図 7及び図 1 1 A〜図 1 1 Cを参照しながら制御部 2 8 による測定 終了判定方法を説明する。
図 7 に示すステップ S 1 において、 測定作業を行うオペレータは 、 図示しない位置入力手段によって測定子 2 6をワーク W 2上の測 定開始位置に接触させた後、 真円度測定装置 2 0に測定開始を指示 する。
図 1 1 Aは、 断面の外周の一部が円弧をなすワーク W 2を、 その 円弧の中心 0を回転中心として回転させながら、 その円弧部 Aの真 円度を測定する様子を示した図である。 また、 図 1 1 Bは測定開始 点があるエッジ部 E 1 を含む図 1 1 Aの B部分の拡大図であり、 図 1 1 Cは測定終了点があるエッジ部 E 2を含む図 1 1 Aの C部分の 拡大図である。 なお図 1 1 B及び図 1 1 Cに示す参照符号 D R 0は 、 図 2 Bを参照して説明した基準半径の位置を示す。
図 1 1 Bは、 参照符号 2 6 aの位置に示された測定子が、 ワーク W 2のエッジ E 1の測定開始位置に位置付けられている様子を示す オペレータから測定開始が指示されると、 測定動作制御部 4 4は 測定開始信号を出力する。 測定終了判定部 4 6は測定開始信号を受 信して、 この時点で変位検出器 2 5が検出する測定子 2 6の変位量 を、 初期変位量としてメモリ 4 5へ記憶する (ステップ S 2及びス テツプ S 3 ) 。 初期変位量は図 1 1 Bにおいて参照符号 D R ( 1 ) にて示された変位量である。
その後、 ステップ S 4において、 測定動作制御部 4 4及び移動機 構駆動部 4 1が回転テーブル 2 7 を回転させることによって測定子 2 6がワーク W 2の測定面上で摺動する。
ステップ S 5では、 測定無効化部 4 7は移動機構駆動部 4 1から 、 測定開始から現在に至るまでの回転テーブル 2 7の回転量を入力 する。 そして回転テーブル 2 7の回転量が予め定めた判定無効角度 Θ i 以下であるときは、 測定無効化部 4 7は測定終了判定部 4 6へ 、 以下のステップ S 6による測定終了判定処理の無効を指示する。 これによつて処理は、 以下のステップ S 6に移行せずにステップ S 4へ戻り、 ワーク W 2の測定面上に対する測定子 2 6の移動が続行 される。
一方で回転テーブル 2 7の回転量が判定無効角度 Θ i を超えると きは、 ステップ S 6 において測定終了判定部 4 6は、 現在検出され る測定子 2 6の変位量 D R ( i ) と初期変位量 D R ( 1 ) とを比べ て、 測定子 2 6が測定終了点に至ったか否かを判定する。
このとき測定終了判定部 4 6は、 次の条件式 ( 2 ) が満たされた とき、 現在検出される測定子 2 6 の変位量 D R ( i ) が初期変位量 D R ( 1 ) に至り、 したがって測定子 2 6が測定終了点に至ったと 判定してもよい。
( D R ( i - 1 ) 一 D R ( 1 ) ) X ( D R ( i ) 一 D R ( 1 ) ) ≤ 0 … ( 2 )
ここで図 8において、 参照符号 2 6 c によって示された現在位置 に測定子があるときに変位検出器 2 5が検出する変位量を D R ( i ) とし、 この現在位置より 1つの前の測定位置 (参照符号 2 6 に よって示す) に測定子があるときに変位検出器 2 5が検出する変位 量を D R ( i - 1 ) とする。
ステップ S 6において測定子 2 6が測定終了点に至ったと判定し たときは、 測定終了判定部 4 6が測定動作制御部 4 4へ測定終了を 指示することによって測定が終了し (ステップ S 7 ) 、 測定子 2 6 が測定終了点に至っていないと判定したときは、 処理がステップ S 4に戻ることによって測定が続行される。
本発明によれば、 表面形状測定において、 測定子を摺動させる測 定長の指定を不要になるので、 測定範囲が異なる複数のワークの表 面形状を測定する際に、 測定作業の効率が向上する。
本発明は、 表面粗さ/形状測定装置や真円度測定装置といった、 試料の表面に測定子を摺動させ、 表面の凹凸により生じる測定子の 変位量を検出して試料の表面形状を測定する表面形状測定に利用可 能である。
以上、 本発明の好適な実施態様について詳述したが、 当業者が種 々の修正及び変更をなし得ること、 並びに、 特許請求の範囲は本発 明の真の精神および趣旨の範囲内にあるこの様な全ての修正及び変 更を包含することは、 本発明の範囲に含まれることは当業者に理解 されるべきものである。

Claims

請 求 の 範 囲
1 . 試料の表面に測定子を摺動させたときに前記表面の凹凸によ り生じる前記測定子の変位量を検出することにより前記試料の表面 形状を測定する表面形状測定装置であって、
前記測定子の変位量を検出する変位検出部と、
前記試料の表面上を摺動する間に検出される前記測定子の変位量 を、 該表面上の測定開始点に接触させたときの前記測定子の変位量 である初期変位量と比べて、 前記測定子が測定終了点に至ったか否 かを判定する測定終了判定部と、
を備えることを特徴とする表面形状測定装置。
2 . 前記測定終了判定部は、 前記表面上を摺動する間に検出され る前記測定子の変位量が前記初期変位量へ至ったとき、 前記測定子 が測定終了点に至ったと判定することを特徴とする請求項 1 に記載 の表面形状測定装置。
3 . 前記摺動開始点から所定距離まで前記測定子を摺動させる間 、 前記測定終了判定部による判定を無効にする判定無効化部を、 さ らに備えることを特徴とする請求項 1又は 2 に記載の表面形状測定 装置。
4 . 前記試料と前記測定子とを所定の方向に相対的に移動させて 、 該所定の方向と直角方向における前記測定子の変位量を検出する ことにより、 前記試料表面の表面粗さ又は表面形状を測定する表面 粗さ/形状測定装置であることを特徴とする請求項 1 〜 3のいずれ か一項に記載の表面形状測定装置。
δ . 円状断面を有する前記試料の側面上にて前記試料と前記測定 子とを所定の方向に相対的に移動させて、 前記試料の径方向におけ る前記測定子の変位量を検出することにより、 前記円状断面の真円 度を測定する真円度測定装置であることを特徼とする請求項 1 〜 3 のいずれか一項に記載の表面形状測定装置。
6 . 試料の表面に測定子を摺動させたときに前記表面の凹凸によ り生じる前記測定子の変位量を検出することにより前記試料の表面 形状を測定する表面形状測定における、 前記試料の表面で摺動させ た前記測定子が測定終了点に至ったか否かを判定する測定終了判定 方法であつて、
前記試料の表面上の測定開始点に接触させたときの前記測定子の 変位量である初期変位量を検出し、
該表面上を摺動する間に検出される前記測定子の変位量を前記初 期変位量と比べて、 前記測定子が測定終了点に至ったか否かを判定 する、
ことを特徴とする測定終了判定方法。
7 . 前記表面上を摺動する間に検出される前記測定子の変位量が 前記初期変位量へ至ったとき、 前記測定子が測定終了点に至ったと 判定することを特徴とする請求項 6に記載の測定終了判定方法。
8 . 前記摺動開始点から所定距離まで前記測定子を摺動させる間 は、 前記測定終了点に至ったか否かの判定を無効にすることを特徴 とする請求項 6又は 7 に記載の測定終了判定方法。
9 . 前記表面形状測定において、 前記試料と前記測定子とを所定 の方向に相対的に移動させて、 該所定の方向と直角方向における前 記測定子の変位量を検出することにより、 前記試料表面の表面粗さ 又は表面形状を測定することを特徴とする請求項 6〜 8のいずれか 一項に記載の測定終了判定方法。
1 0 . 前記表面形状測定において、 円状断面を有する前記試料の 側面上にて前記試料と前記測定子とを所定の方向に相対的に移動さ せて、 前記試料の径方向における前記測定子の変位量を検出するこ とにより、 前記円状断面の真円度を測定することを特徴とする請求 項 6〜 8のいずれか一項に記載の測定終了判定方法。
PCT/JP2008/059757 2007-06-29 2008-05-21 表面形状測定装置及び表面形状測定方法 WO2009004872A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08764773.1A EP2037211B1 (en) 2007-06-29 2008-05-21 Surface shape measuring device, and surface shape measuring method
JP2008540388A JP5312032B2 (ja) 2007-06-29 2008-05-21 表面形状測定装置及び表面形状測定方法
US12/309,132 US7918036B2 (en) 2007-06-29 2008-05-21 Surface shape measuring apparatus and surface shape measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007172955 2007-06-29
JP2007-172955 2007-06-29

Publications (1)

Publication Number Publication Date
WO2009004872A1 true WO2009004872A1 (ja) 2009-01-08

Family

ID=40225928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/059757 WO2009004872A1 (ja) 2007-06-29 2008-05-21 表面形状測定装置及び表面形状測定方法

Country Status (4)

Country Link
US (1) US7918036B2 (ja)
EP (1) EP2037211B1 (ja)
JP (1) JP5312032B2 (ja)
WO (1) WO2009004872A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286313A (ja) * 2009-06-10 2010-12-24 Mitsutoyo Corp 真円度測定装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4291394B1 (ja) * 2008-03-12 2009-07-08 ファナック株式会社 接触式計測装置
JP4611403B2 (ja) * 2008-06-03 2011-01-12 パナソニック株式会社 形状測定装置及び形状測定方法
DE102009020294A1 (de) * 2009-05-07 2010-11-18 Mahr Gmbh Verfahren und Vorrichtung zur Messung eines Oberflächenprofils
US8966775B2 (en) * 2012-10-09 2015-03-03 Nike, Inc. Digital bite line creation for shoe assembly
JP6113998B2 (ja) * 2012-10-18 2017-04-12 株式会社ミツトヨ 形状測定機、形状測定機の調整方法および形状測定方法
US9417047B2 (en) * 2014-08-11 2016-08-16 Toyota Motor Engineering & Manufacturing North America, Inc. Three-dimensional edge profile determination
JP6518421B2 (ja) * 2014-09-24 2019-05-22 株式会社ミツトヨ 真円度測定機およびその制御方法
WO2017033581A1 (ja) * 2015-08-27 2017-03-02 株式会社東京精密 表面形状測定方法、心ずれ量算出方法、及び表面形状測定装置
NL1042154B1 (en) * 2016-11-21 2018-05-28 Reginald Galestien a method and direct reference-plane-standards for the fast and accurate determining of the axial position of the gauge plane on the center line of conical objects such as conical gauges, plain or with screw thread, internal and external, with the aim in this gauge plane the accurate measurement of the diameters of plain conical gauges and the major diameter, minor diameter and pitch diameter of screw thread gauges using a known 2 dimensional scanning measuring machine.
JP6361757B1 (ja) * 2017-02-24 2018-07-25 株式会社東京精密 表面測定機用検出器
EP3537102B1 (de) * 2018-03-05 2020-05-13 Carl Zeiss Industrielle Messtechnik GmbH Verfahren und anordnung zum erhöhen des durchsatzes bei einer ausreichenden messgenauigkeit bei der werkstückvermessung
TWI717106B (zh) * 2019-11-18 2021-01-21 財團法人工業技術研究院 銲接品質檢測系統與方法
JP7360591B2 (ja) * 2020-02-18 2023-10-13 株式会社東京精密 ワークの径測定方法及び真円度測定機
CN113536656B (zh) * 2020-04-21 2024-08-13 卡尔蔡司工业测量技术有限公司 用于确定测量测量物体的测量策略的方法和设备及程序

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534145A (ja) * 1991-07-31 1993-02-09 Mitsutoyo Corp 自動オフセツト調整機能付き測定機
JPH05231806A (ja) 1992-02-24 1993-09-07 Tokyo Seimitsu Co Ltd 真円度測定装置
JP2002107144A (ja) 2000-09-29 2002-04-10 Tokyo Seimitsu Co Ltd 粗さ測定方法及び粗さ測定装置
JP2004191365A (ja) * 2002-11-25 2004-07-08 Mitsutoyo Corp 表面性状測定機のワーク座標系原点設定方法とそのプログラムおよび装置
JP2007121146A (ja) * 2005-10-28 2007-05-17 Tokyo Seimitsu Co Ltd 表面粗さ/形状測定装置及びそれを制御するプログラム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4034906B2 (ja) * 1999-04-27 2008-01-16 株式会社ミツトヨ 表面性状測定機
US6460261B1 (en) * 1999-11-18 2002-10-08 Mitutoyo Corporation V-groove shape measuring method and apparatus by using rotary table
US6895359B2 (en) * 2002-11-25 2005-05-17 Mitutoyo Corporation Workpiece coordinate system origin setting method, workpiece coordinate system origin setting program and workpiece coordinate system origin setting device of a surface property measuring machine
JP2005009917A (ja) * 2003-06-17 2005-01-13 Mitsutoyo Corp 表面倣い測定装置、表面倣い測定方法、表面倣い測定プログラムおよび記録媒体
JP2006098063A (ja) * 2004-09-28 2006-04-13 Ogiso Kogyo Kk 真円度測定装置および真円度測定方法
GB2422015B (en) * 2005-02-01 2007-02-28 Taylor Hobson Ltd A metrological instrument
DE102005032749A1 (de) * 2005-07-13 2007-01-18 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren zum Antasten eines Werkstücks mit einem Koordinatenmessgerät und Koordinatenmessgeräte
GB0605796D0 (en) * 2006-03-23 2006-05-03 Renishaw Plc Apparatus and method of measuring workpieces
JP4474443B2 (ja) * 2007-07-17 2010-06-02 キヤノン株式会社 形状測定装置および方法
JP4291382B2 (ja) * 2007-07-31 2009-07-08 ファナック株式会社 接触検知による取り付け誤差の自動補正機能を有する工作機械

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534145A (ja) * 1991-07-31 1993-02-09 Mitsutoyo Corp 自動オフセツト調整機能付き測定機
JPH05231806A (ja) 1992-02-24 1993-09-07 Tokyo Seimitsu Co Ltd 真円度測定装置
JP2002107144A (ja) 2000-09-29 2002-04-10 Tokyo Seimitsu Co Ltd 粗さ測定方法及び粗さ測定装置
JP2004191365A (ja) * 2002-11-25 2004-07-08 Mitsutoyo Corp 表面性状測定機のワーク座標系原点設定方法とそのプログラムおよび装置
JP2007121146A (ja) * 2005-10-28 2007-05-17 Tokyo Seimitsu Co Ltd 表面粗さ/形状測定装置及びそれを制御するプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2037211A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286313A (ja) * 2009-06-10 2010-12-24 Mitsutoyo Corp 真円度測定装置

Also Published As

Publication number Publication date
JP5312032B2 (ja) 2013-10-09
EP2037211A1 (en) 2009-03-18
EP2037211A4 (en) 2016-06-29
US20090300930A1 (en) 2009-12-10
JPWO2009004872A1 (ja) 2010-08-26
EP2037211B1 (en) 2017-05-10
US7918036B2 (en) 2011-04-05

Similar Documents

Publication Publication Date Title
WO2009004872A1 (ja) 表面形状測定装置及び表面形状測定方法
CN108733096B (zh) 驱动台装置的控制方法及形状测定装置的控制方法
JPH0648186B2 (ja) 測定装置
JP5294949B2 (ja) 回転体の肉厚等測定装置
JP4459264B2 (ja) 三次元形状測定方法
JP5292564B2 (ja) 形状測定装置、その校正方法、及び校正プログラム
EP2253931B1 (en) Form measuring instrument, form measuring method, and program
JP2016065751A (ja) 真円度測定機およびその制御方法
CN107796352B (zh) 圆度测量装置
JP5350169B2 (ja) オフセット量校正方法および表面性状測定機
JP2016166766A (ja) 形状測定装置の調整方法
JP2007017292A (ja) ブレーキディスク検査装置
EP3382327A1 (en) Compact coordinate measurement machine configuration with large working volume relative to size
JP4891629B2 (ja) 表面性状測定機、形状解析プログラムおよび記録媒体
JP6326710B2 (ja) 表面粗さ測定機
US20230032119A1 (en) Roundness measuring machine
JP4628248B2 (ja) 表面粗さ/形状測定装置及びそれを制御するプログラム
US11549794B2 (en) Control method of shape measuring apparatus
JP2020067443A (ja) 形状測定装置および形状測定方法
JP5332010B2 (ja) 形状測定装置、形状測定方法及び形状測定プログラム
JP3085352B2 (ja) 真円度測定機の測定対象自動認識方法及びその装置
JP2013068488A5 (ja)
JP2009204463A (ja) ワイヤ式三次元座標測定機
JPH11183157A (ja) 円周測定による被測定物直径計測装置並びに加工物の寸法管理方法
JP2004212147A (ja) 溝測定装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2008540388

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2008764773

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008764773

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12309132

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08764773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE