WO2009003365A1 - Pièce de matériau de structure en alliage d'al contenant mg et à forte teneur en si et procédé de fabrication de celle-ci - Google Patents

Pièce de matériau de structure en alliage d'al contenant mg et à forte teneur en si et procédé de fabrication de celle-ci Download PDF

Info

Publication number
WO2009003365A1
WO2009003365A1 PCT/CN2008/001246 CN2008001246W WO2009003365A1 WO 2009003365 A1 WO2009003365 A1 WO 2009003365A1 CN 2008001246 W CN2008001246 W CN 2008001246W WO 2009003365 A1 WO2009003365 A1 WO 2009003365A1
Authority
WO
WIPO (PCT)
Prior art keywords
structural material
aluminum alloy
alloy
temperature
heat treatment
Prior art date
Application number
PCT/CN2008/001246
Other languages
English (en)
French (fr)
Inventor
Liang Zuo
Fuxiao Yu
Gang Zhao
Xiang Zhao
Yongliang Yang
Yan Li
Original Assignee
Northeastern University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University filed Critical Northeastern University
Priority to US12/451,232 priority Critical patent/US20100126639A1/en
Priority to CA002689332A priority patent/CA2689332A1/en
Priority to JP2010513624A priority patent/JP2010531388A/ja
Priority to EP08772999.2A priority patent/EP2172572B1/en
Publication of WO2009003365A1 publication Critical patent/WO2009003365A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent

Definitions

  • the invention relates to an aluminum alloy and a preparation technique thereof, in particular to a magnesium containing high
  • Aluminum-silicon alloys especially high-silicon-aluminum-silicon alloys, have a wide range of applications in the automotive industry and the aerospace industry due to their low density, high wear resistance, high corrosion resistance and low coefficient of thermal expansion.
  • the aluminum-silicon alloy prepared by the ordinary solidification method there are coarse block-like precipitated Si particles and lath-like eutectic structure in the ingot, which makes the alloy brittle, and it is difficult to further improve the solidification structure and manufacture by plastic processing. High-performance materials in various cross-section shapes, thus limiting the range of applications of the alloy.
  • aluminum-silicon alloys have been classified as cast aluminum alloys.
  • Direct Chill Casting In the production of industrial pure aluminum and deformed aluminum alloys, Direct Chill Casting (DC casting) has been widely used. People mainly focus on how to reduce alloy composition segregation, reduce grain size and improve surface quality. A technique for preparing a high-silicon aluminum alloy ingot of a large-size specification without any modifier (such as P, Na, Sr) by a semi-continuous casting method has been applied for by one of the inventors of the present invention and obtained a Chinese patent authorization (Patent No. ZL200510119550) .6).
  • the object of the present invention is to provide a structural material part containing magnesium high-silicon aluminum alloy and a preparation method thereof, which can be manufactured at low cost by thermoplastic processing and heat treatment without adding any modifier on the casting process.
  • Plastic, high-strength magnesium-containing high-silicon deformation aluminum alloy structural material
  • the invention specifically provides a structural material part containing magnesium high silicon aluminum alloy, including profiles, bars, plates and forgings, characterized in that:
  • the structural material member is prepared by a semi-continuous casting method, and then pre-heat treated
  • the particles of the eutectic silicon phase are dispersed, and the final shape and microstructure are obtained by thermoplastic processing and heat treatment, and the strengthening mechanism is fine grain strengthening of the aluminum matrix, particle strengthening of the silicon particles, and precipitation strengthening of the second phase particles;
  • the structural material has a Mg content of 0.2 to 2.0% by weight and a Si content of 8 to 18% by weight; a uniformly refined microstructure, an aluminum matrix structure of equiaxed grains, and an average size of ⁇ 6 ⁇ ⁇ , Si and other second phase particles are dispersed and the average size is ⁇ 5 ⁇ ⁇ ;
  • the structural material of the magnesium-containing high-silicon aluminum alloy provided by the present invention may further contain one or more of Cu, Zn, Ni, Ti, Fe, and the total content is less than 2% by weight.
  • the invention further provides a method for preparing a structural material member of the above magnesium-containing high-silicon aluminum alloy, characterized in that:
  • Casting temperature corresponding to the liquidus temperature of the alloy above 150 ⁇ 300 °C ;
  • the amount of cooling water around the solidified billet 5 ⁇ 15g/mm-s;
  • Heating rate 10 ⁇ 30 °C / min ;
  • Heating temperature 450 ⁇ 520 °C ;
  • thermoplastic processing The above-mentioned pre-heat treated ingot is subjected to thermoplastic processing, and the process parameters are: deformation temperature: 400 ⁇ 520 ° C;
  • Cooling method natural cooling or forced cooling
  • thermoplastically processed structural material
  • the heat treatment adopts a solution treatment + an artificial aging process:
  • Heating rate 10 ⁇ 30 ° C / min
  • Solution treatment temperature 500 ⁇ 540 °C ;
  • the heat treatment adopts artificial aging or natural aging process: ——The artificial aging parameters are:
  • the total rolling reduction is preferably greater than 40%.
  • the extrusion ratio is preferably more than 15.
  • the forging ratio is more than 40%.
  • the key to the invention is to overcome the traditional technical prejudice, and use the traditional semi-continuous casting method for the preparation of magnesium-containing high-silicon aluminum alloy without adding any modifier, and combine the thermoplastic processing and heat treatment to obtain unexpected
  • the technical effect is that a new aluminum alloy processing material having fine dispersed silicon particles and a second phase distributed on an equiaxed grain aluminum substrate with good plasticity and high strength is obtained.
  • Table 1 exemplifies the extruded silicon aluminum alloy (Al-8.5Si-1.8Mg-0.27Fe, Al-12.7Si-0.7Mg-1.5Cu-0.3Ni-0.3Ti-0.3Fe and Al- prepared by the present invention). 15.5Si-0.7Mg-0.27Fe) Mechanical properties under extrusion and heat treatment, and compared with the mechanical properties of extruded 6063 alloy in Chinese national standard under T5 and ⁇ 6 conditions. Table 1 Comparison of mechanical properties of alloys prepared by the present invention and Chinese national standard 6063 alloy
  • 6063 alloy is the most versatile extruded profile alloy, which is widely used in construction, vehicles, decoration and other fields at home and abroad, and has broad market demand. Once the 6063 alloy is partially replaced with a magnesium-containing high-silicon aluminum alloy, it will bring huge economic benefits. In addition, the addition of silicon will save a lot of aluminum resources. BRIEF DESCRIPTION OF THE DRAWINGS
  • Figure 1 is a schematic structural view of a semi-continuous casting equipment
  • Example 2 is a semi-continuous casting of a typical Al-12.7Si-0.7Mg-0.3Fe alloy (#3) in Example 1 (casting temperature 730 ° C, casting speed 180 mm/min, cooling water flow rate 8 g/mrrrs) As-cast microstructure morphology;
  • Figure 3 is a semi-continuous casting of a typical Example 1 AI-12.7Si-0.7Mg-0.3Fe alloy (#3) (casting temperature 730 ° C, casting speed 180 mm / min, cooling water flow rate 8 g / mm, s) High-magnification microstructure of the ingot;
  • Figure 4 is a microscopic view of a semi-continuously cast Al-12.7Si-0.7Mg-0.3Fe alloy (#3) in Example 2 after preheating at 500 °C for 2 hr and 470 °C hot extrusion (extrusion ratio 15).
  • Fig. 5 is a typical example 3 semi-continuous casting Al-12.7Si-0.7Mg-0.3Fe alloy (#3) preheated at 500 °C for 2 hr, hot extrusion at 470 °C (extrusion ratio 15).
  • the microstructure of the post-T6 state solution temperature 540V, time lhr; artificial aging temperature 200 ° C, time 3 hr);
  • Figure 6 is a semi-continuous casting of a typical Al-15.5Si-0.7Mg-0.27Fe alloy (# 5 ) in Example 1 (casting temperature 800 ° C, casting speed 140 mm / min, cooling water flow 10 g / mnrs ) ingot The as-cast microstructure morphology;
  • Figure 7 is a semi-continuous casting of a typical Al-15.5Si-0.7Mg-0.27Fe alloy (#5) in Example 1 (casting temperature 800 ° C, casting speed 140 mm / min, Cooling water flow rate lOg/mnvs) high-strength as-cast microstructure of the ingot;
  • Figure 8 is a diagram showing the microstructure of a semi-continuously cast Al-15.5Si-0.7Mg-0.27Fe alloy (#5) in a typical example 2 after 500 hr preheating for 2 hr and 470 °C hot extrusion (extrusion ratio 45).
  • Figure 9 is a typical example 2 semi-continuous casting Al-15.5Si-0.7Mg-0.27Fe alloy (# 5) rectangular casting billet pre-heat treated at 500 ° C for 1 hr, 500 ⁇ hot rolling (compression amount 60%) Post-microscopic morphology;
  • Figure 10 is a typical example 3 semi-continuous casting Al-15.5Si-0.7Mg-0.27Fe alloy (# 5) preheated at 500 ° C for 2 hr, 470 ° C hot extrusion (extrusion ratio 45) after T6 state Microstructure morphology (solution temperature 520 ° C, time 2 hr; artificial aging temperature 180 ° C, time 4 hr);
  • Figure 11 is a typical example 3 semi-continuous casting Al-15.5Si-0.7Mg-0.27Fe alloy (# 5) rectangular casting blank pre-heat treated at 500 ° C for 1 hr, 500 ° C hot rolling (60% reduction)
  • the microstructure of the post-T6 state solution temperature 520 ° C, time 3 hr ; artificial aging temperature 200 ° C, time 4 hr);
  • Figure 12 is a typical example 3 semi-continuous casting Al-15.5Si-0.7Mg- 0.27Fe alloy (#5) high-microscopic microscopic micro-microscopic after 200
  • Example 13 is a semi-continuous casting of a typical Al-17.5Si-0.7Mg-l.0Cu-0.27Fe alloy (#7) in Example 1 (casting temperature 850 ° C, casting speed 120 mm/min, cooling) Water flow rate 10g/mnvs) The as-cast microstructure of the ingot.
  • Example 1 casting temperature 850 ° C, casting speed 120 mm/min, cooling
  • the equipment used is self-made equipment, and its structural principle is shown in Figure 1.
  • the chemical composition of the alloy is shown in Table 2.
  • the casting process parameters are shown in Table 3.
  • the pre-heat treatment is heated in the heat treatment furnace at a set heating rate, and after reaching the set temperature, it is kept warm for the set time.
  • the plastic deformation is then completed using an extruder, a hot rolling mill and a forging machine.
  • the specific process parameters are given in Table 4, Table 5, and Table 6, respectively.
  • the structural material part of the magnesium-containing high-silicon aluminum alloy of the invention and the preparation method thereof can be manufactured with good plasticity and high strength at low cost by thermoplastic processing and heat treatment without adding any modifier on the casting process.
  • Magnesium-containing high-silicon deformation aluminum alloy structural material is

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)
  • Continuous Casting (AREA)
  • Extrusion Of Metal (AREA)

Description

一种含镁高硅铝合金的结构材料件及其制备方法 技术领域
本发明涉及铝合金及其制备技术, 特别提供了一种含镁高
构材料件及其制备方法。 背景技术
铝硅合金, 尤其是高硅含量的铝硅合金, 由于其低密度、 高耐磨性、 高 抗腐蚀性和低热膨胀系数, 在汽车工业和航天航空工业领域中有着广泛的应 用。 然而, 对于普通凝固方法制备的铝硅合金, 其锭坯中存在粗大的块状先 析出 Si颗粒和板条状共晶组织, 致使合金脆性极大, 难以通过塑性加工来进 一步改善凝固组织和制造各种断面形状的高性能材料, 从而限制了合金的应 用范围。 传统上, 铝硅合金被划分在铸造铝合金之列。 针对普通凝固铝硅合 金变形能力差的问题, 人们进而寻求快速凝固的方法。 但是, 采用快速凝固 方法只能获得尺寸很小 (< 10mm) 的块体, 若是制造大尺寸的部件则需要 进一步的工序。 一个典型的例子即是通过粉末冶金的方法制备, 但其生产成 本和工艺复杂程度均很高。
在工业纯铝和变形铝合金的生产中, 半连续铸造方法 (Direct Chill Casting, 简称 DC铸造) 一直被广泛应用, 人们主要关注如何降低合金成分 偏析、 减小晶粒尺寸、 提高表面质量。 利用半连续铸造方法制备大尺寸规格 且不含任何变质剂 (如 P、 Na、 Sr) 的高硅铝合金锭坯的技术已由本发明的 发明人之一申请并获得中国专利授权 (专利号 ZL200510119550.6)。 通过发 明人的进一步研究发现, 利用上述发明技术, 放宽 Si的下限含量 (到 8%重 量), 降低 Si的上限含量(到 18%重量), 调整 Mg的含量以及其它合金元素 的含量, 通过热塑性加工和随后热处理, 可获得具有良好塑性、 高强度的含 镁高硅铝合金的结构材料件。 发明的公开
本发明的目的在于提供一种含镁高硅铝合金的结构材料件及其制备方 法, 可以在铸造过程中不添加任何变质剂的前提下, 通过热塑性加工和热处 理, 低成本地制造出具有良好塑性、 高强度的含镁高硅变形铝合金结构材料 件。
本发明具体提供了一种含镁高硅铝合金的结构材料件,包括型材、棒材、 板材、 锻件, 其特征在于:
所述结构材料件采用半连续铸造方法制备锭坯, 然后通过预先热处理进 行共晶硅相的颗粒离散, 再通过热塑性加工和热处理获得最终形状和微观组 织的制品, 其强化机理为铝基体的细晶强化、 硅颗粒的颗粒强化和第二相粒 子的沉淀强化;
所述结构材料件中 Mg的含量为 0.2〜2.0%重量, Si的含量为 8〜18 %重 量; 具有均匀细化的微观组织结构, 铝基体组织为等轴晶粒, 平均尺寸<6 μ πι, Si与其它第二相颗粒呈弥散分布且平均尺寸 <5 μ πι;
本发明所提供的含镁高硅铝合金的结构材料件中, 还可含有 Cu、 Zn、 Ni、 Ti、 Fe之一种或多种, 总含量低于 2 %重量。
本发明另外还提供了一种上述含镁高硅铝合金的结构材料件的制备方 法, 其特征在于:
——采用半连续铸造方法制备锭坯, 工艺参数为:
浇铸温度: 对应合金液相线温度以上 150〜300°C ;
铸造速度: 100〜200mm/min;
凝固坯外围冷却水量: 5〜15g/mm-s;
不添加任何变质剂;
——对上述锭坯通过预先热处理进行共晶硅相的颗粒离散化, 工艺参数 为:
加热速度: 10〜30°C/min;
加热温度: 450〜520°C ;
保温时间: l〜3hr;
——对上述经预先热处理后的锭坯进行热塑性加工, 工艺参数为: 变形温度: 400〜520°C ;
冷却方式: 自然冷却或者强制冷却;
——对上述经热塑性加工后的结构材料件进行热处理。
本发明所提供的含镁高硅铝合金的结构材料件的制备方法中, 对于热塑 性加工后自然冷却的结构材料件, 热处理采用固溶处理 +人工时效工艺:
——固溶处理参数为:
加热速度: 10〜30°C/min;
固溶处理温度: 500〜540°C ;
固溶处理时间: 0.5〜3hr;
——人工时效参数为:
时效温度: 160〜200°C ;
时效时间: l〜10hr。
本发明所提供的含镁高硅铝合金的结构材料件的制备方法中, 对于热塑 性加工后强制冷却的结构材料件, 热处理采用人工时效或自然时效工艺: ——人工时效参数为:
时效温度: 160〜200°C ;
时效时间: l〜10hr。
本发明所提供的含镁高硅铝合金的结构材料件的制备方法中, 当热塑性 加工采用轧制工艺时, 轧制总压下量最好大于 40%。
本发明所提供的含镁高硅铝合金的结构材料件的制备方法中, 当热塑性 加工采用挤压工艺时, 挤压比最好大于 15。
本发明所提供的含镁高硅铝合金的结构材料件的制备方法中, 当热塑性 加工采用锻造工艺时, 锻造比大于 40%。
本发明的关键在于克服了传统的技术偏见, 在不添加任何变质剂的前提 下, 将传统的半连续铸造方法用于含镁高硅铝合金的制备, 结合热塑性加工 和热处理, 获得了意想不到的技术效果, 即得到了具有细小弥散硅颗粒和第 二相分布在等轴晶粒铝基体上、 具有良好塑性和高强度的新型铝合金加工材 料。
表 1示例给出采用本发明制备的挤压硅铝合金 (Al-8.5Si-l .8Mg-0.27Fe、 Al-12.7Si-0.7Mg- 1.5Cu-0.3Ni-0.3Ti-0.3Fe和 Al-15.5Si- 0.7Mg-0.27Fe) 在挤压 和热处理状态下的力学性能, 并与中国国家标准中的挤压 6063合金在 T5、 Τ6状态下的力学性能进行了对比。 表 1 本发明制备的合金与中国国家标准 6063合金的力学性能对比
屈服强度 拉伸强度 延伸率 状态
(MPa) (MPa) (%)
Al-8.5Si-l .8Mg-0.27Fe Tl 175 252 13
Al-8.5Si-l .8Mg-0.27Fe T6 296 344 7.2
Al-15.5Si-0.7Mg-0.27Fe Tl 120 232 1 1
Al-15.5Si-0.7Mg-0.27Fe T6 280 325 7.5
Al-12.7Si-0.7Mg-l .5Cu-0.3Ni-0.3Ti-0.3Fe Tl 1 12 190 15
Al- 12.7Si-0.7Mg- 1.5Cu-0.3Ni-0.3Ti-0.3Fe T6 268 347 9
6063 Al-(0.2-0.6)Si-(0.4-0.9)Mg T5 1 10 160 8
6063 Al-(0.2-0.6)Si-(0.4-0.9)Mg T6 180 205 8 可见, Al-15.5Si-0.7Mg-0.27Fe、 Al-12.7Si-0.7Mg-l .5Cu-0.3Ni-0.3Ti-0.3Fe 和 Al- 8.5Si-1.8Mg-0.27Fe合金在 T6状态下的屈服强度、抗拉强度均高于 6063 合金 Τ6状态的国家标准; 合金的挤压状态 (T1 ) 力学性能尤其是延伸率高 于 6060合金 Τ5状态的国家标准。 6063合金是最通用的挤压型材合金, 国内 外将其大量应用于建筑、 车辆、 装饰等领域, 具有广阔的市场需求。 一旦用 含镁高硅铝合金部分取代 6063合金, 必将带来巨大的经济效益。 另外, 硅的 添加将大量节约铝资源。 附图的简要说明
图 1为半连续铸造设备的结构示意图; '
图 2为典型的实施例 1中 Al-12.7Si-0.7Mg-0.3Fe合金(# 3 )的半连续铸 造 (铸造温度 730°C, 铸造速度 180mm/min, 冷却水流量 8g/mrrrs) 锭坯的 铸态微观组织形貌;
图 3为典型的实施例 1中 AI-12.7Si-0.7Mg-0.3Fe合金( # 3 )的半连续铸 造 (铸造温度 730°C, 铸造速度 180mm/min, 冷却水流量 8g/mm,s) 锭坯的 高倍铸态微观组织形貌;
图 4为典型的实施例 2中半连续铸造 Al-12.7Si-0.7Mg-0.3Fe合金 ( # 3 ) 经 500°C预先热处理 2hr、 470°C热挤压 (挤压比 15 ) 后的微观组织形貌; 图 5为典型的实施例 3中半连续铸造 Al-12.7Si-0.7Mg-0.3Fe合金 ( # 3 ) 经 500°C预先热处理 2hr、 470°C热挤压 (挤压比 15 ) 后 T6状态 (固溶温度 540V , 时间 lhr; 人工时效温度 200°C, 时间 3hr) 的微观组织形貌;
图 6为典型的实施例 1中 Al-15.5Si-0.7Mg-0.27Fe合金 (# 5 ) 的半连续 铸造 (铸造温度 800°C, 铸造速度 140mm/min, 冷却水流量 10g/mnrs )锭坯 的铸态微观组织形貌; - 图 7为典型的实施例 1中 Al-15.5Si-0.7Mg-0.27Fe合金 ( # 5 ) 的半连续 铸造 (铸造温度 800°C, 铸造速度 140mm/min, 冷却水流量 lOg/mnvs )锭坯 的高倍铸态微观组织形貌;
图 8为典型的实施例 2中半连续铸造 Al-15.5Si-0.7Mg-0.27Fe合金( # 5 ) 经 500Ό预先热处理 2hr、 470°C热挤压 (挤压比 45 ) 后的微观组织形貌; 图 9为典型的实施例 2中半连续铸造 Al-15.5Si-0.7Mg-0.27Fe合金( # 5 ) 矩形铸坯经 500°C预先热处理 lhr、 500Ό热轧 (压下量 60% ) 后的微观组织 形貌;
图 10为典型的实施例 3中半连续铸造 Al-15.5Si-0.7Mg-0.27Fe合金(# 5 ) 经 500°C预先热处理 2hr、 470°C热挤压 (挤压比 45 ) 后 T6状态 (固溶温度 520°C , 时间 2hr; 人工时效温度 180°C, 时间 4hr) 的微观组织形貌; 图 11为典型的实施例 3中半连续铸造 Al-15.5Si-0.7Mg-0.27Fe合金( # 5 ) 矩形铸坯经 500°C预先热处理 lhr、 500°C热轧(压下量 60%)后 T6状态(固 溶温度 520°C, 时间 3hr; 人工时效温度 200°C, 时间 4hr) 的微观组织形貌; 图 12为典型的实施例 3中半连续铸造 Al-15.5Si-0.7Mg-0.27Fe合金(#5) 经 500 预先热处理 2hr、 470Ό热挤压 (挤压比 45) 后 T6状态 (固溶温度 520°C, 时间 2hr; 人工时效温度 180°C, 时间 4hr) 的高倍微观组织形貌; 图 13为典型的实施例 1中 Al-17.5Si-0.7Mg-l.0Cu-0.27Fe合金(#7) 的 半连续铸造(铸造温度 850°C,铸造速度 120mm/min, 冷却水流量 10g/mnvs) 锭坯的铸态微观组织形貌。 实现本发明的最佳方式
实施例 1 半连续铸造锭坯的制备
选用设备为自制设备, 其结构原理示于图 1。 图中, 1一冷却水; 2—结 晶器; 3—坯料; 4一热顶; 5—石墨环, 6—金属液。 合金的化学成分见表 2, 铸造工艺参数见表 3。
表 2 半连续铸造含镁高硅铝合金的化学成分 (wt.%)
Figure imgf000007_0001
表 3 不同合金的铸造工艺参数
a 3z. 铸坯断面尺寸 铸造温度 铸造速度 冷却水量 编号 (mm) (°C) (mm/min)
ηι Φ100 780 120 8 ηι 600X50 780 180 8
U2 Φ100 780 120 8
#2 600X50 780 180 8
' »3 Φ100 730 180 10
S3 600X50 730 180 10
M Φ100 730 140 8
«4 600X50 730 180 8 »5 Φ100 800 140 10
#5 600 50 850 180 10
#6 Φ100 800 160 12 m Φ60 850 120 10
U8 Φ60 850 180 14
U8 Φ100 850 180 14 实施例 2铸造合金锭坯的预先热处理及挤压、 轧制、 锻造
预先热处理在热处理炉中按设定加热速度加热, 到达设定温度后, 按设 定时间保温。 然后使用挤压机、 热轧机和锻造机完成塑性变形。 具体工艺参 数分别在表 4、 表 5、 表 6中给出。
表 4 不同合金的预先热处理与挤压工艺参数 预处理 预处理 预处理 变形后 α五 冷却
加热速度 温度 时间 51 挤压比
方式
(°C/min) (V) (hr)
# 1 25 450 3 450 36 自然 1A
#2 20 450 3 450 36 自然 2A
#3 15 500 2 470 15 自然 3A
#4 15 500 2 470 15 强制 4A
#5 15 500 2 470 45 自然 5A
#7 10 500 4 480 30 强制 7A
#8 10 500 4 480 30 强制 8A 表 5 不同合金的预先热处理与轧制工艺参数 预处理 预处理 预处理 轧制 轧制 变形后 合金 冷却
加热速度 温度 时间 温度 压下量 合金 编号 方式
(°C/min) (°C) (hr) (。C) (%)
#1 20 450 3 450 50 自然 IB
#2 20 520 1 520 70 自然 2B
#3 20 500 2 500 60 自然 3B
#4 15 480 3 480 60 自然 4B
#4 15 520 1 520 70 自然 4B2
#5 15 500 3 500 60 自然 5B
#5 15 520 1 520 70 自然 5B2 表 6 不同合金的预先热处理与锻造工艺参数 预处理 预处理 预处理 锻造 变形后 合金 锻造比 冷却
加热速度 温度 时间 温度 合金 编号 (%) 方式
(°C/min) (°C) (hr) CC)
#2 25 500 2 500 65 自然 2C
#3 20 520 1 520 65 自然 3C #5 15 500 2 500 50 自然 5C
10 500 4 500 50 自然 6C
#6 15 490 4 490 50 自然 6C2
#7 10 500 4 500 50 自然 7C
#8 10 500 4 500 50 自然 8C 实施例 3 合金变形 (挤压、 轧制、 锻造) 后的热处理
经过挤压、 轧制、 锻造的工件, 在设定热处理工艺参数下进行热处理, 具体热处理工艺参数分别在表 7、表 8、表 9中给出。部分合金在不同变形方 式与热处理状态下的力学性能在表 10中给出。 表 7 不同合金挤压制品的热处理工艺参数
Figure imgf000009_0001
表 8 不同合金轧制制品的热处理工艺参数
Figure imgf000009_0002
表 9 不同合金锻造制品的热处理工艺参数 变形后 固溶 固溶 人工时效 人工时效 热处理后
π ϋζ. 热处理
合金 温度 时间 温度 时间 口 fe
编号 状态
编号 CC) (hr) (°C) (hr) 编号
2C #2 Τ6 520 3 180 6 2CT6
5C #5 Τ6 540 0.5 200 4 5CT6
5C #5 T1 5CT1 6C2 # 6 T6 510 4 170 10 6C2T6
7C # 7 T6 510 3 200 2 7CT6
8C2 # 8 T6 510 4 180 8 8C2T6 表 10 部分合金不同变形、 热处理状态下的常温力学性能
Figure imgf000010_0001
工业应用性
本发明的含镁高硅铝合金的结构材料件及其制备方法, 可以在铸造过程 中不添加任何变质剂的前提下, 通过热塑性加工和热处理, 低成本地制造出 具有良好塑性、 高强度的含镁高硅变形铝合金结构材料件。

Claims

权 利 要 求
1、 一种含镁高硅铝合金的结构材料件, 包括型材、 棒材、 板材、 锻件, 其特征在于:
所述结构材料件采用半连续铸造方法制备锭坯, 然后通过预先热处理进 行共晶硅相的颗粒离散化, 再通过热塑性加工和热处理获得最终形状和微观 组织的铝合金制品, 其强化机理为铝基体的细晶强化、 硅颗粒的颗粒强化和 第二相粒子的沉淀强化;
所述结构材料件中 Mg的含量为 0. 2〜2. 0%重量, Si的含量为 8〜18 %重 量; 具有均匀细化的微观组织结构, 铝基体组织为等轴晶粒, 平均尺寸<6 μ m, Si颗粒与其它第二相颗粒呈弥散分布且平均尺寸 <5 μ m。
2、按照权利要求 1所述含镁高硅铝合金的结构材料件,其特征在于所述 合金中可含有 Cu、 Zn、 Ni、 Ti、 Fe之一种或多种, 总含量低于 2 %重量。
3、 一种权利要求 1 所述含镁高硅铝合金的结构材料件的制备方法, 其 特征在于:
^ "采用半连续铸造方法制备锭坯, 工艺参数为:
浇铸温度: 对应合金液相线温度以上 150〜30(TC ;
铸造速度: 100〜200讓 /min;
凝固坯外围冷却水量: 5〜15g/固 · s ;
不添加任何变质剂;
——对上述锭坯通过预先热处理进行共晶硅相的颗粒离散化, 工艺参数 为:
加热速度: 10〜30°C/min;
加热温度: 450〜520Ό ;
保温时间: l〜3hr;
——对上述经预先热处理后的锭坯进行热塑性加工, 工艺参数为: 变形温度: 400〜520°C ;
冷却方式: 自然冷却或者强制冷却;
——对上述经热塑性加工后的结构材料件进行热处理。
4、按照权利要求 3所述含镁高硅铝合金的结构材料件的制备方法,对于 热塑性加工后自然冷却的结构材料件, 采用固溶处理 +人工时效的热处理工 艺, 其特征在于:
——固溶处理参数为:
加热速度: 10〜30°C/min;
固溶处理温度: 500〜540°C ; 固溶处理时间: 0. 5〜3hr;
——人工时效参数为:
时效温度: 160〜200°C ;
时效时间: l〜10hr。
5、按照权利要求 3所述含镁高硅铝合金的结构材料件的制备方法,对于 热塑性加工后强制冷却的结构材料件, 采用人工时效或自然时效的热处理工 艺, 其特征在于:
——人工时效参数为: - 时效温度: 160〜200°C ;
时效时间: l〜10hr。
6、按照权利要求 3所述含镁高硅铝合金的结构材料件的制备方法,对于 热塑性加工采用轧制工艺时, 其特征在于: 轧制总压下量大于 40 %。
7、按照权利要求 3所述含镁高硅铝合金的结构材料件的制备方法,对于 热塑性加工采用挤压工艺时, 其特征在于: 挤压比大于 15。
8、按照权利要求 3所述含镁高硅铝合金的结构材料件的制备方法,对于 热塑性加工采用锻造工艺时, 其特征在于: 锻造比大于 40 %。
PCT/CN2008/001246 2007-06-29 2008-06-30 Pièce de matériau de structure en alliage d'al contenant mg et à forte teneur en si et procédé de fabrication de celle-ci WO2009003365A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/451,232 US20100126639A1 (en) 2007-06-29 2008-06-30 Magnesium-contained high-silicon aluminum alloys structural materials and manufacture method thereof
CA002689332A CA2689332A1 (en) 2007-06-29 2008-06-30 Process for manufacturing magnesium-contained high-silicon aluminum alloys as structural materials
JP2010513624A JP2010531388A (ja) 2007-06-29 2008-06-30 Mgおよび高Siを含むAl合金の構造材料およびその製造方法
EP08772999.2A EP2172572B1 (en) 2007-06-29 2008-06-30 A structural material part of a high-si mg-containing al alloy and the manufacture method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710011919 2007-06-29
CN200710011919.0 2007-06-29

Publications (1)

Publication Number Publication Date
WO2009003365A1 true WO2009003365A1 (fr) 2009-01-08

Family

ID=40196494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/001246 WO2009003365A1 (fr) 2007-06-29 2008-06-30 Pièce de matériau de structure en alliage d'al contenant mg et à forte teneur en si et procédé de fabrication de celle-ci

Country Status (8)

Country Link
US (1) US20100126639A1 (zh)
EP (1) EP2172572B1 (zh)
JP (1) JP2010531388A (zh)
KR (1) KR20100018048A (zh)
CN (1) CN101333614B (zh)
CA (1) CA2689332A1 (zh)
RU (1) RU2463371C2 (zh)
WO (1) WO2009003365A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105671376A (zh) * 2016-01-26 2016-06-15 北京航空航天大学 高强高塑重力铸造与室温冷轧亚共晶铝硅合金材料及其制造方法
CN112010312A (zh) * 2019-06-01 2020-12-01 通用汽车环球科技运作有限责任公司 生产高纯度细粉的系统和方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102230114A (zh) * 2011-06-29 2011-11-02 北京科技大学 基于富Fe相优化的高硅铝合金及其制备方法
CN102747256A (zh) * 2012-06-19 2012-10-24 东南大学 一种铝硅基铝型材及其制备工艺
RU2525872C1 (ru) * 2013-04-23 2014-08-20 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" СПОСОБ ФОРМИРОВАНИЯ МИКРОСТРУКТУРЫ ЭВТЕКТИЧЕСКОГО Al-Si СПЛАВА
CN103769551B (zh) * 2014-01-17 2016-03-30 新疆众和股份有限公司 一种铝硅镁系铸造铝合金的生产工艺
WO2015152133A1 (ja) 2014-03-31 2015-10-08 日立金属株式会社 比剛性、強度及び延性に優れた鋳造用Al-Si-Mg系アルミニウム合金、並びにそれからなる鋳造部材
CN104651763A (zh) * 2014-05-15 2015-05-27 巩向鹏 一种6063铝合金的性能优化方法
CN104087880B (zh) * 2014-07-08 2016-05-04 江苏佳铝实业股份有限公司 一种高阻尼铝硅合金板材的生产工艺
KR101990225B1 (ko) * 2014-12-05 2019-06-17 후루카와 덴키 고교 가부시키가이샤 알루미늄 합금 선재, 알루미늄 합금연선, 피복전선, 와이어 하네스, 및 알루미늄 합금 선재의 제조방법
JP6523681B2 (ja) * 2014-12-25 2019-06-05 株式会社Uacj ケース用アルミニウム合金板及びケース
CN105112744A (zh) * 2015-10-08 2015-12-02 江苏佳铝实业股份有限公司 一种高硅铝合金板材的制造工艺
TWI565808B (zh) * 2015-10-13 2017-01-11 財團法人工業技術研究院 鋁合金組成物及鋁合金物件的製造方法
FR3044326B1 (fr) * 2015-12-01 2017-12-01 Constellium Neuf-Brisach Tole mince a haute rigidite pour carrosserie automobile
CN105695811A (zh) * 2015-12-15 2016-06-22 东北大学 一种含Ti可时效强化高硅铝合金及其变形材制备方法
CN105695810B (zh) * 2015-12-15 2017-12-05 东北大学 一种含Mn可时效强化高硅铝合金及其变形材制备方法
CN106929781B (zh) * 2015-12-29 2019-01-08 徐工集团工程机械股份有限公司 一种高强度铝合金销轴的制备方法
CN106544606B (zh) * 2015-12-29 2018-05-01 徐工集团工程机械股份有限公司 一种耐磨铝合金销轴的制备方法
CN106399765B (zh) * 2016-10-11 2019-02-26 湖南理工学院 Al-Si-Mg铝合金及其制备工艺
WO2019125594A1 (en) * 2017-12-21 2019-06-27 Novelis Inc. Aluminum alloy products exhibiting improved bond durability and/or having phosphorus-containing surfaces and methods of making the same
CN112941433A (zh) * 2019-12-11 2021-06-11 中国科学院金属研究所 一种改善6082铝合金停放效应的时效工艺
CN113881907A (zh) * 2021-08-26 2022-01-04 山东创新金属科技有限公司 一种挤压铸造铝合金的时效处理工艺
CN113862534B (zh) * 2021-10-08 2022-07-29 上海交通大学 一种铝合金材料组织遗传性的调控方法及7085铝合金厚板的制备方法
CN115305391B (zh) * 2022-08-10 2023-06-06 中南大学 一种低能耗铝硅镁合金及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4068645A (en) * 1973-04-16 1978-01-17 Comalco Aluminium (Bell Bay) Limited Aluminum-silicon alloys, cylinder blocks and bores, and method of making same
JPS6283453A (ja) * 1985-10-07 1987-04-16 Sumitomo Alum Smelt Co Ltd 押出加工用アルミニウム合金鋳塊の製造法
JPS6417834A (en) * 1987-07-11 1989-01-20 Toyoda Automatic Loom Works High strength wear resistant aluminum alloy having good shear cuttability and its production
JPH05331604A (ja) * 1992-05-29 1993-12-14 Nippon Light Metal Co Ltd アルミニウム製スクロールの製造法
JPH083701A (ja) * 1994-06-15 1996-01-09 Mitsubishi Alum Co Ltd 強度と切削性にすぐれた耐摩耗性アルミニウム合金押出材の製造方法
JPH1096039A (ja) * 1996-09-24 1998-04-14 Sumitomo Light Metal Ind Ltd 切削性および耐食性に優れた耐摩耗性アルミニウム合金材
CN1546708A (zh) * 2003-12-03 2004-11-17 东华大学 一种具有粒状硅相的铝硅合金系列及其工艺方法
CN1555423A (zh) * 2001-07-25 2004-12-15 �Ѻ͵繤��ʽ���� 切削性优异的铝合金和铝合金材及其制造方法
CN1789456A (zh) * 2004-11-18 2006-06-21 东北大学 一种大尺寸过共晶高硅铝合金坯料及其制备方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB582732A (en) * 1944-03-10 1946-11-26 Horace Campbell Hall Aluminium alloy having low coefficient of expansion
JPS5320243B2 (zh) * 1974-04-20 1978-06-26
JPS5192709A (ja) * 1975-02-12 1976-08-14 Kakyoshoaruminiumuukeisokeigokinno shoshokeisobisaikaho
JPS52129607A (en) * 1976-04-23 1977-10-31 Hitachi Ltd Production of a1-si alloy having fine structure
JPS5669344A (en) * 1979-11-07 1981-06-10 Showa Alum Ind Kk Aluminum alloy for forging and its manufacture
US5009844A (en) * 1989-12-01 1991-04-23 General Motors Corporation Process for manufacturing spheroidal hypoeutectic aluminum alloy
JPH06279904A (ja) * 1993-03-30 1994-10-04 Nippon Light Metal Co Ltd 鍛造用過共晶Al−Si系合金及び鍛造用素材の製造方法
JPH0741920A (ja) * 1993-07-29 1995-02-10 Nippon Light Metal Co Ltd 耐摩耗性を向上させる過共晶Al−Si合金の熱処理方法
JPH07197164A (ja) * 1993-12-28 1995-08-01 Furukawa Electric Co Ltd:The 高強度高加工性アルミニウム合金とその製造方法
JPH07224340A (ja) * 1994-02-14 1995-08-22 Nippon Light Metal Co Ltd 切削性に優れた過共晶Al−Si合金及び製造方法
JPH083674A (ja) * 1994-06-17 1996-01-09 Nissan Motor Co Ltd 過共晶Al−Si合金および過共晶Al−Si合金鋳物
JPH08176768A (ja) * 1994-12-22 1996-07-09 Nissan Motor Co Ltd 耐摩耗アルミニウム部材およびその製造方法
JP3261056B2 (ja) * 1997-01-14 2002-02-25 住友軽金属工業株式会社 陽極酸化皮膜の形成容易性および皮膜厚の均一性に優れた高強度耐摩耗性アルミニウム合金押出材およびその製造方法
KR100291560B1 (ko) * 1998-12-23 2001-06-01 박호군 내마모성이 우수하고 열팽창계수가 낮은 아공정 Al­Si단련용 합금 및 그의 제조방법과 그 합금의 이용
JP2001020047A (ja) * 1999-07-05 2001-01-23 Toyota Autom Loom Works Ltd アルミニウム合金鍛造用素材およびその製造方法
US20030143102A1 (en) * 2001-07-25 2003-07-31 Showa Denko K.K. Aluminum alloy excellent in cutting ability, aluminum alloy materials and manufacturing method thereof
JP2002206132A (ja) * 2001-11-27 2002-07-26 Kobe Steel Ltd 切削性に優れたアルミニウム合金押出材及びその製造方法
RU2221891C1 (ru) * 2002-04-23 2004-01-20 Региональный общественный фонд содействия защите интеллектуальной собственности Сплав на основе алюминия, изделие из этого сплава и способ изготовления изделия
JP4474528B2 (ja) * 2004-11-01 2010-06-09 独立行政法人産業技術総合研究所 高靱性で鍛造成形可能な過共晶Al−Si合金材料
JP4773796B2 (ja) * 2005-10-28 2011-09-14 昭和電工株式会社 アルミニウム合金の連続鋳造棒、連続鋳造棒の鋳造方法、連続鋳造装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4068645A (en) * 1973-04-16 1978-01-17 Comalco Aluminium (Bell Bay) Limited Aluminum-silicon alloys, cylinder blocks and bores, and method of making same
JPS6283453A (ja) * 1985-10-07 1987-04-16 Sumitomo Alum Smelt Co Ltd 押出加工用アルミニウム合金鋳塊の製造法
JPS6417834A (en) * 1987-07-11 1989-01-20 Toyoda Automatic Loom Works High strength wear resistant aluminum alloy having good shear cuttability and its production
JPH05331604A (ja) * 1992-05-29 1993-12-14 Nippon Light Metal Co Ltd アルミニウム製スクロールの製造法
JPH083701A (ja) * 1994-06-15 1996-01-09 Mitsubishi Alum Co Ltd 強度と切削性にすぐれた耐摩耗性アルミニウム合金押出材の製造方法
JPH1096039A (ja) * 1996-09-24 1998-04-14 Sumitomo Light Metal Ind Ltd 切削性および耐食性に優れた耐摩耗性アルミニウム合金材
CN1555423A (zh) * 2001-07-25 2004-12-15 �Ѻ͵繤��ʽ���� 切削性优异的铝合金和铝合金材及其制造方法
CN1546708A (zh) * 2003-12-03 2004-11-17 东华大学 一种具有粒状硅相的铝硅合金系列及其工艺方法
CN1789456A (zh) * 2004-11-18 2006-06-21 东北大学 一种大尺寸过共晶高硅铝合金坯料及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105671376A (zh) * 2016-01-26 2016-06-15 北京航空航天大学 高强高塑重力铸造与室温冷轧亚共晶铝硅合金材料及其制造方法
CN112010312A (zh) * 2019-06-01 2020-12-01 通用汽车环球科技运作有限责任公司 生产高纯度细粉的系统和方法

Also Published As

Publication number Publication date
RU2009149092A (ru) 2011-08-10
RU2463371C2 (ru) 2012-10-10
EP2172572B1 (en) 2013-05-15
CN101333614A (zh) 2008-12-31
EP2172572A4 (en) 2010-12-15
EP2172572A1 (en) 2010-04-07
KR20100018048A (ko) 2010-02-16
US20100126639A1 (en) 2010-05-27
CN101333614B (zh) 2010-09-01
CA2689332A1 (en) 2009-01-08
JP2010531388A (ja) 2010-09-24

Similar Documents

Publication Publication Date Title
WO2009003365A1 (fr) Pièce de matériau de structure en alliage d&#39;al contenant mg et à forte teneur en si et procédé de fabrication de celle-ci
Kumar et al. Influence of hot rolling on microstructure and mechanical behaviour of Al6061-ZrB2 in-situ metal matrix composites
CN109530468B (zh) 一种轻质车身用原位纳米强化铝合金挤压材及等温变速挤压制备方法
Xiao et al. Microstructure, mechanical properties and strengthening mechanisms of Mg matrix composites reinforced with in situ nanosized TiB2 particles
Amouri et al. Microstructure and mechanical properties of Al-nano/micro SiC composites produced by stir casting technique
CN109972009B (zh) 一种高强韧高模量变形镁合金及其制备方法
CN110029258B (zh) 一种高强韧变形镁合金及其制备方法
CN112662921B (zh) 一种高强韧压铸铝硅合金及其制备方法
Zhao et al. Effect of Si on Fe-rich intermetallic formation and mechanical properties of heat-treated Al–Cu–Mn–Fe alloys
Manjunatha et al. Effect of mechanical and thermal loading on boron carbide particles reinforced Al-6061 alloy
TW201435092A (zh) 高強度鋁鎂矽合金及其製程
CN102002617B (zh) 汽车用铸造铝合金及其制备方法
CN110358951A (zh) 一种高导高强铝合金及其制备方法
Birol et al. Cooling slope casting to produce EN AW 6082 forging stock for manufacture of suspension components
Chen et al. Effects of Ti addition on the microstructure and mechanical properties of Mg–Zn–Zr–Ca alloys
CN109295356A (zh) 一种高塑性、高强度铝合金及其制备方法
CN112646994B (zh) 一种高比强高比模铝合金及其制备方法
WO2012027989A1 (zh) 铝-锆-碳中间合金在镁及镁合金变形加工中的应用
CN105543584B (zh) 重力铸造与热挤出组合工艺制备高强高塑高韧亚共晶铝硅合金材料的方法
CN111705249A (zh) 一种高强耐热稀土镁合金及其制备方法
JP3829164B2 (ja) 半溶融成形用素材の製造方法
CN109136672A (zh) 一种耐腐蚀高强铝合金及制备方法
CN104060138A (zh) 一种低成本高性能非稀土镁合金板材及其制备方法
Gobalakrishnan et al. A comparative study on ex-situ & in-situ formed metal matrix composites
CN110656268B (zh) 一种高强度抗疲劳铝合金及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08772999

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12451232

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2689332

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010513624

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107000263

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009149092

Country of ref document: RU

Ref document number: 2008772999

Country of ref document: EP