WO2009003365A1 - A structural material part of a high-si mg-containing al alloy and the manufacture method thereof - Google Patents

A structural material part of a high-si mg-containing al alloy and the manufacture method thereof Download PDF

Info

Publication number
WO2009003365A1
WO2009003365A1 PCT/CN2008/001246 CN2008001246W WO2009003365A1 WO 2009003365 A1 WO2009003365 A1 WO 2009003365A1 CN 2008001246 W CN2008001246 W CN 2008001246W WO 2009003365 A1 WO2009003365 A1 WO 2009003365A1
Authority
WO
WIPO (PCT)
Prior art keywords
structural material
aluminum alloy
alloy
temperature
heat treatment
Prior art date
Application number
PCT/CN2008/001246
Other languages
French (fr)
Chinese (zh)
Inventor
Liang Zuo
Fuxiao Yu
Gang Zhao
Xiang Zhao
Yongliang Yang
Yan Li
Original Assignee
Northeastern University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University filed Critical Northeastern University
Priority to JP2010513624A priority Critical patent/JP2010531388A/en
Priority to CA002689332A priority patent/CA2689332A1/en
Priority to US12/451,232 priority patent/US20100126639A1/en
Priority to EP08772999.2A priority patent/EP2172572B1/en
Publication of WO2009003365A1 publication Critical patent/WO2009003365A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent

Definitions

  • the invention relates to an aluminum alloy and a preparation technique thereof, in particular to a magnesium containing high
  • Aluminum-silicon alloys especially high-silicon-aluminum-silicon alloys, have a wide range of applications in the automotive industry and the aerospace industry due to their low density, high wear resistance, high corrosion resistance and low coefficient of thermal expansion.
  • the aluminum-silicon alloy prepared by the ordinary solidification method there are coarse block-like precipitated Si particles and lath-like eutectic structure in the ingot, which makes the alloy brittle, and it is difficult to further improve the solidification structure and manufacture by plastic processing. High-performance materials in various cross-section shapes, thus limiting the range of applications of the alloy.
  • aluminum-silicon alloys have been classified as cast aluminum alloys.
  • Direct Chill Casting In the production of industrial pure aluminum and deformed aluminum alloys, Direct Chill Casting (DC casting) has been widely used. People mainly focus on how to reduce alloy composition segregation, reduce grain size and improve surface quality. A technique for preparing a high-silicon aluminum alloy ingot of a large-size specification without any modifier (such as P, Na, Sr) by a semi-continuous casting method has been applied for by one of the inventors of the present invention and obtained a Chinese patent authorization (Patent No. ZL200510119550) .6).
  • the object of the present invention is to provide a structural material part containing magnesium high-silicon aluminum alloy and a preparation method thereof, which can be manufactured at low cost by thermoplastic processing and heat treatment without adding any modifier on the casting process.
  • Plastic, high-strength magnesium-containing high-silicon deformation aluminum alloy structural material
  • the invention specifically provides a structural material part containing magnesium high silicon aluminum alloy, including profiles, bars, plates and forgings, characterized in that:
  • the structural material member is prepared by a semi-continuous casting method, and then pre-heat treated
  • the particles of the eutectic silicon phase are dispersed, and the final shape and microstructure are obtained by thermoplastic processing and heat treatment, and the strengthening mechanism is fine grain strengthening of the aluminum matrix, particle strengthening of the silicon particles, and precipitation strengthening of the second phase particles;
  • the structural material has a Mg content of 0.2 to 2.0% by weight and a Si content of 8 to 18% by weight; a uniformly refined microstructure, an aluminum matrix structure of equiaxed grains, and an average size of ⁇ 6 ⁇ ⁇ , Si and other second phase particles are dispersed and the average size is ⁇ 5 ⁇ ⁇ ;
  • the structural material of the magnesium-containing high-silicon aluminum alloy provided by the present invention may further contain one or more of Cu, Zn, Ni, Ti, Fe, and the total content is less than 2% by weight.
  • the invention further provides a method for preparing a structural material member of the above magnesium-containing high-silicon aluminum alloy, characterized in that:
  • Casting temperature corresponding to the liquidus temperature of the alloy above 150 ⁇ 300 °C ;
  • the amount of cooling water around the solidified billet 5 ⁇ 15g/mm-s;
  • Heating rate 10 ⁇ 30 °C / min ;
  • Heating temperature 450 ⁇ 520 °C ;
  • thermoplastic processing The above-mentioned pre-heat treated ingot is subjected to thermoplastic processing, and the process parameters are: deformation temperature: 400 ⁇ 520 ° C;
  • Cooling method natural cooling or forced cooling
  • thermoplastically processed structural material
  • the heat treatment adopts a solution treatment + an artificial aging process:
  • Heating rate 10 ⁇ 30 ° C / min
  • Solution treatment temperature 500 ⁇ 540 °C ;
  • the heat treatment adopts artificial aging or natural aging process: ——The artificial aging parameters are:
  • the total rolling reduction is preferably greater than 40%.
  • the extrusion ratio is preferably more than 15.
  • the forging ratio is more than 40%.
  • the key to the invention is to overcome the traditional technical prejudice, and use the traditional semi-continuous casting method for the preparation of magnesium-containing high-silicon aluminum alloy without adding any modifier, and combine the thermoplastic processing and heat treatment to obtain unexpected
  • the technical effect is that a new aluminum alloy processing material having fine dispersed silicon particles and a second phase distributed on an equiaxed grain aluminum substrate with good plasticity and high strength is obtained.
  • Table 1 exemplifies the extruded silicon aluminum alloy (Al-8.5Si-1.8Mg-0.27Fe, Al-12.7Si-0.7Mg-1.5Cu-0.3Ni-0.3Ti-0.3Fe and Al- prepared by the present invention). 15.5Si-0.7Mg-0.27Fe) Mechanical properties under extrusion and heat treatment, and compared with the mechanical properties of extruded 6063 alloy in Chinese national standard under T5 and ⁇ 6 conditions. Table 1 Comparison of mechanical properties of alloys prepared by the present invention and Chinese national standard 6063 alloy
  • 6063 alloy is the most versatile extruded profile alloy, which is widely used in construction, vehicles, decoration and other fields at home and abroad, and has broad market demand. Once the 6063 alloy is partially replaced with a magnesium-containing high-silicon aluminum alloy, it will bring huge economic benefits. In addition, the addition of silicon will save a lot of aluminum resources. BRIEF DESCRIPTION OF THE DRAWINGS
  • Figure 1 is a schematic structural view of a semi-continuous casting equipment
  • Example 2 is a semi-continuous casting of a typical Al-12.7Si-0.7Mg-0.3Fe alloy (#3) in Example 1 (casting temperature 730 ° C, casting speed 180 mm/min, cooling water flow rate 8 g/mrrrs) As-cast microstructure morphology;
  • Figure 3 is a semi-continuous casting of a typical Example 1 AI-12.7Si-0.7Mg-0.3Fe alloy (#3) (casting temperature 730 ° C, casting speed 180 mm / min, cooling water flow rate 8 g / mm, s) High-magnification microstructure of the ingot;
  • Figure 4 is a microscopic view of a semi-continuously cast Al-12.7Si-0.7Mg-0.3Fe alloy (#3) in Example 2 after preheating at 500 °C for 2 hr and 470 °C hot extrusion (extrusion ratio 15).
  • Fig. 5 is a typical example 3 semi-continuous casting Al-12.7Si-0.7Mg-0.3Fe alloy (#3) preheated at 500 °C for 2 hr, hot extrusion at 470 °C (extrusion ratio 15).
  • the microstructure of the post-T6 state solution temperature 540V, time lhr; artificial aging temperature 200 ° C, time 3 hr);
  • Figure 6 is a semi-continuous casting of a typical Al-15.5Si-0.7Mg-0.27Fe alloy (# 5 ) in Example 1 (casting temperature 800 ° C, casting speed 140 mm / min, cooling water flow 10 g / mnrs ) ingot The as-cast microstructure morphology;
  • Figure 7 is a semi-continuous casting of a typical Al-15.5Si-0.7Mg-0.27Fe alloy (#5) in Example 1 (casting temperature 800 ° C, casting speed 140 mm / min, Cooling water flow rate lOg/mnvs) high-strength as-cast microstructure of the ingot;
  • Figure 8 is a diagram showing the microstructure of a semi-continuously cast Al-15.5Si-0.7Mg-0.27Fe alloy (#5) in a typical example 2 after 500 hr preheating for 2 hr and 470 °C hot extrusion (extrusion ratio 45).
  • Figure 9 is a typical example 2 semi-continuous casting Al-15.5Si-0.7Mg-0.27Fe alloy (# 5) rectangular casting billet pre-heat treated at 500 ° C for 1 hr, 500 ⁇ hot rolling (compression amount 60%) Post-microscopic morphology;
  • Figure 10 is a typical example 3 semi-continuous casting Al-15.5Si-0.7Mg-0.27Fe alloy (# 5) preheated at 500 ° C for 2 hr, 470 ° C hot extrusion (extrusion ratio 45) after T6 state Microstructure morphology (solution temperature 520 ° C, time 2 hr; artificial aging temperature 180 ° C, time 4 hr);
  • Figure 11 is a typical example 3 semi-continuous casting Al-15.5Si-0.7Mg-0.27Fe alloy (# 5) rectangular casting blank pre-heat treated at 500 ° C for 1 hr, 500 ° C hot rolling (60% reduction)
  • the microstructure of the post-T6 state solution temperature 520 ° C, time 3 hr ; artificial aging temperature 200 ° C, time 4 hr);
  • Figure 12 is a typical example 3 semi-continuous casting Al-15.5Si-0.7Mg- 0.27Fe alloy (#5) high-microscopic microscopic micro-microscopic after 200
  • Example 13 is a semi-continuous casting of a typical Al-17.5Si-0.7Mg-l.0Cu-0.27Fe alloy (#7) in Example 1 (casting temperature 850 ° C, casting speed 120 mm/min, cooling) Water flow rate 10g/mnvs) The as-cast microstructure of the ingot.
  • Example 1 casting temperature 850 ° C, casting speed 120 mm/min, cooling
  • the equipment used is self-made equipment, and its structural principle is shown in Figure 1.
  • the chemical composition of the alloy is shown in Table 2.
  • the casting process parameters are shown in Table 3.
  • the pre-heat treatment is heated in the heat treatment furnace at a set heating rate, and after reaching the set temperature, it is kept warm for the set time.
  • the plastic deformation is then completed using an extruder, a hot rolling mill and a forging machine.
  • the specific process parameters are given in Table 4, Table 5, and Table 6, respectively.
  • the structural material part of the magnesium-containing high-silicon aluminum alloy of the invention and the preparation method thereof can be manufactured with good plasticity and high strength at low cost by thermoplastic processing and heat treatment without adding any modifier on the casting process.
  • Magnesium-containing high-silicon deformation aluminum alloy structural material is

Abstract

A structural material part of a high-Si Mg-containing Al alloy, which includes sectional material, bar, sheet and forged part, is characterized in that the structural material part is manufactured by: casting an ingot by semi-casting process, pre-heat-treating to disperse eutectic Si phase particles, thermal-plastic working and heat-treating to obtain eventual shape and microstructure. The structural part comprises 0.2-2.0wt% Mg and 8-18wt% Si, and has homogeneous and fine microstructure which comprises Al matrix of equiaxial crystals with an average grain size of < 6μm and dispersing Si particles and other second-phase particles with anaverage grain size of < 5μm. A structural material part of high-Si Mg-containing wrought Al alloy with good plasticity and high strength can be manufactured by the method at a low cost without adding any modifier during casting.

Description

一种含镁高硅铝合金的结构材料件及其制备方法 技术领域  Structural material piece containing magnesium high silicon aluminum alloy and preparation method thereof
本发明涉及铝合金及其制备技术, 特别提供了一种含镁高  The invention relates to an aluminum alloy and a preparation technique thereof, in particular to a magnesium containing high
构材料件及其制备方法。 背景技术  Structure material and preparation method thereof. Background technique
铝硅合金, 尤其是高硅含量的铝硅合金, 由于其低密度、 高耐磨性、 高 抗腐蚀性和低热膨胀系数, 在汽车工业和航天航空工业领域中有着广泛的应 用。 然而, 对于普通凝固方法制备的铝硅合金, 其锭坯中存在粗大的块状先 析出 Si颗粒和板条状共晶组织, 致使合金脆性极大, 难以通过塑性加工来进 一步改善凝固组织和制造各种断面形状的高性能材料, 从而限制了合金的应 用范围。 传统上, 铝硅合金被划分在铸造铝合金之列。 针对普通凝固铝硅合 金变形能力差的问题, 人们进而寻求快速凝固的方法。 但是, 采用快速凝固 方法只能获得尺寸很小 (< 10mm) 的块体, 若是制造大尺寸的部件则需要 进一步的工序。 一个典型的例子即是通过粉末冶金的方法制备, 但其生产成 本和工艺复杂程度均很高。  Aluminum-silicon alloys, especially high-silicon-aluminum-silicon alloys, have a wide range of applications in the automotive industry and the aerospace industry due to their low density, high wear resistance, high corrosion resistance and low coefficient of thermal expansion. However, for the aluminum-silicon alloy prepared by the ordinary solidification method, there are coarse block-like precipitated Si particles and lath-like eutectic structure in the ingot, which makes the alloy brittle, and it is difficult to further improve the solidification structure and manufacture by plastic processing. High-performance materials in various cross-section shapes, thus limiting the range of applications of the alloy. Traditionally, aluminum-silicon alloys have been classified as cast aluminum alloys. In view of the problem of poor deformability of ordinary solidified aluminum-silicon alloys, people have sought a method of rapid solidification. However, with the rapid solidification method, only small-sized (< 10mm) blocks can be obtained, and further steps are required if large-sized parts are manufactured. A typical example is the preparation by powder metallurgy, but its production cost and process complexity are high.
在工业纯铝和变形铝合金的生产中, 半连续铸造方法 (Direct Chill Casting, 简称 DC铸造) 一直被广泛应用, 人们主要关注如何降低合金成分 偏析、 减小晶粒尺寸、 提高表面质量。 利用半连续铸造方法制备大尺寸规格 且不含任何变质剂 (如 P、 Na、 Sr) 的高硅铝合金锭坯的技术已由本发明的 发明人之一申请并获得中国专利授权 (专利号 ZL200510119550.6)。 通过发 明人的进一步研究发现, 利用上述发明技术, 放宽 Si的下限含量 (到 8%重 量), 降低 Si的上限含量(到 18%重量), 调整 Mg的含量以及其它合金元素 的含量, 通过热塑性加工和随后热处理, 可获得具有良好塑性、 高强度的含 镁高硅铝合金的结构材料件。 发明的公开  In the production of industrial pure aluminum and deformed aluminum alloys, Direct Chill Casting (DC casting) has been widely used. People mainly focus on how to reduce alloy composition segregation, reduce grain size and improve surface quality. A technique for preparing a high-silicon aluminum alloy ingot of a large-size specification without any modifier (such as P, Na, Sr) by a semi-continuous casting method has been applied for by one of the inventors of the present invention and obtained a Chinese patent authorization (Patent No. ZL200510119550) .6). According to further research by the inventors, it was found that by using the above-mentioned invention technology, the lower limit content of Si (to 8% by weight) is relaxed, the upper limit content of Si (to 18% by weight) is lowered, the content of Mg and the content of other alloying elements are adjusted, and thermoplasticity is obtained. After processing and subsequent heat treatment, structural materials of magnesium-containing high-silicon aluminum alloy having good plasticity and high strength can be obtained. Disclosure of invention
本发明的目的在于提供一种含镁高硅铝合金的结构材料件及其制备方 法, 可以在铸造过程中不添加任何变质剂的前提下, 通过热塑性加工和热处 理, 低成本地制造出具有良好塑性、 高强度的含镁高硅变形铝合金结构材料 件。  The object of the present invention is to provide a structural material part containing magnesium high-silicon aluminum alloy and a preparation method thereof, which can be manufactured at low cost by thermoplastic processing and heat treatment without adding any modifier on the casting process. Plastic, high-strength magnesium-containing high-silicon deformation aluminum alloy structural material.
本发明具体提供了一种含镁高硅铝合金的结构材料件,包括型材、棒材、 板材、 锻件, 其特征在于:  The invention specifically provides a structural material part containing magnesium high silicon aluminum alloy, including profiles, bars, plates and forgings, characterized in that:
所述结构材料件采用半连续铸造方法制备锭坯, 然后通过预先热处理进 行共晶硅相的颗粒离散, 再通过热塑性加工和热处理获得最终形状和微观组 织的制品, 其强化机理为铝基体的细晶强化、 硅颗粒的颗粒强化和第二相粒 子的沉淀强化; The structural material member is prepared by a semi-continuous casting method, and then pre-heat treated The particles of the eutectic silicon phase are dispersed, and the final shape and microstructure are obtained by thermoplastic processing and heat treatment, and the strengthening mechanism is fine grain strengthening of the aluminum matrix, particle strengthening of the silicon particles, and precipitation strengthening of the second phase particles;
所述结构材料件中 Mg的含量为 0.2〜2.0%重量, Si的含量为 8〜18 %重 量; 具有均匀细化的微观组织结构, 铝基体组织为等轴晶粒, 平均尺寸<6 μ πι, Si与其它第二相颗粒呈弥散分布且平均尺寸 <5 μ πι; The structural material has a Mg content of 0.2 to 2.0% by weight and a Si content of 8 to 18% by weight; a uniformly refined microstructure, an aluminum matrix structure of equiaxed grains, and an average size of <6 μ πι , Si and other second phase particles are dispersed and the average size is <5 μ πι ;
本发明所提供的含镁高硅铝合金的结构材料件中, 还可含有 Cu、 Zn、 Ni、 Ti、 Fe之一种或多种, 总含量低于 2 %重量。  The structural material of the magnesium-containing high-silicon aluminum alloy provided by the present invention may further contain one or more of Cu, Zn, Ni, Ti, Fe, and the total content is less than 2% by weight.
本发明另外还提供了一种上述含镁高硅铝合金的结构材料件的制备方 法, 其特征在于:  The invention further provides a method for preparing a structural material member of the above magnesium-containing high-silicon aluminum alloy, characterized in that:
——采用半连续铸造方法制备锭坯, 工艺参数为:  ——Preparation of ingot by semi-continuous casting method, the process parameters are:
浇铸温度: 对应合金液相线温度以上 150〜300°C ; Casting temperature: corresponding to the liquidus temperature of the alloy above 150~300 °C ;
铸造速度: 100〜200mm/min;  Casting speed: 100~200mm/min;
凝固坯外围冷却水量: 5〜15g/mm-s;  The amount of cooling water around the solidified billet: 5~15g/mm-s;
不添加任何变质剂;  No added modifiers;
——对上述锭坯通过预先热处理进行共晶硅相的颗粒离散化, 工艺参数 为:  —— Discretizing the eutectic silicon phase by pre-heat treatment of the above ingot, the process parameters are:
加热速度: 10〜30°C/min; Heating rate: 10~30 °C / min ;
加热温度: 450〜520°C ; Heating temperature: 450~520 °C ;
保温时间: l〜3hr; Holding time: l~3hr ;
——对上述经预先热处理后的锭坯进行热塑性加工, 工艺参数为: 变形温度: 400〜520°C ;  ——The above-mentioned pre-heat treated ingot is subjected to thermoplastic processing, and the process parameters are: deformation temperature: 400~520 ° C;
冷却方式: 自然冷却或者强制冷却;  Cooling method: natural cooling or forced cooling;
——对上述经热塑性加工后的结构材料件进行热处理。  - heat treating the above-mentioned thermoplastically processed structural material.
本发明所提供的含镁高硅铝合金的结构材料件的制备方法中, 对于热塑 性加工后自然冷却的结构材料件, 热处理采用固溶处理 +人工时效工艺:  In the preparation method of the structural material part containing the magnesium high-silicon aluminum alloy provided by the invention, for the structural material part which is naturally cooled after the thermoplastic processing, the heat treatment adopts a solution treatment + an artificial aging process:
——固溶处理参数为:  ——The solution treatment parameters are:
加热速度: 10〜30°C/min;  Heating rate: 10~30 ° C / min;
固溶处理温度: 500〜540°C ; Solution treatment temperature: 500~540 °C ;
固溶处理时间: 0.5〜3hr;  Solution treatment time: 0.5~3hr;
——人工时效参数为:  ——The artificial aging parameters are:
时效温度: 160〜200°C ;  Aging temperature: 160~200 °C;
时效时间: l〜10hr。  Aging time: l~10hr.
本发明所提供的含镁高硅铝合金的结构材料件的制备方法中, 对于热塑 性加工后强制冷却的结构材料件, 热处理采用人工时效或自然时效工艺: ——人工时效参数为: In the preparation method of the structural material part of the magnesium-containing high-silicon aluminum alloy provided by the invention, for the structural material piece forced cooling after the thermoplastic processing, the heat treatment adopts artificial aging or natural aging process: ——The artificial aging parameters are:
时效温度: 160〜200°C ; Aging temperature: 160~200 °C ;
时效时间: l〜10hr。  Aging time: l~10hr.
本发明所提供的含镁高硅铝合金的结构材料件的制备方法中, 当热塑性 加工采用轧制工艺时, 轧制总压下量最好大于 40%。  In the method for preparing a structural material member containing a magnesium high silicon aluminum alloy provided by the present invention, when the thermoplastic processing is carried out by a rolling process, the total rolling reduction is preferably greater than 40%.
本发明所提供的含镁高硅铝合金的结构材料件的制备方法中, 当热塑性 加工采用挤压工艺时, 挤压比最好大于 15。  In the method for preparing a structural material member containing a magnesium high silicon aluminum alloy provided by the present invention, when the thermoplastic processing is carried out by an extrusion process, the extrusion ratio is preferably more than 15.
本发明所提供的含镁高硅铝合金的结构材料件的制备方法中, 当热塑性 加工采用锻造工艺时, 锻造比大于 40%。  In the method for preparing a structural material member containing a magnesium high silicon aluminum alloy provided by the present invention, when the thermoplastic processing is performed by a forging process, the forging ratio is more than 40%.
本发明的关键在于克服了传统的技术偏见, 在不添加任何变质剂的前提 下, 将传统的半连续铸造方法用于含镁高硅铝合金的制备, 结合热塑性加工 和热处理, 获得了意想不到的技术效果, 即得到了具有细小弥散硅颗粒和第 二相分布在等轴晶粒铝基体上、 具有良好塑性和高强度的新型铝合金加工材 料。  The key to the invention is to overcome the traditional technical prejudice, and use the traditional semi-continuous casting method for the preparation of magnesium-containing high-silicon aluminum alloy without adding any modifier, and combine the thermoplastic processing and heat treatment to obtain unexpected The technical effect is that a new aluminum alloy processing material having fine dispersed silicon particles and a second phase distributed on an equiaxed grain aluminum substrate with good plasticity and high strength is obtained.
表 1示例给出采用本发明制备的挤压硅铝合金 (Al-8.5Si-l .8Mg-0.27Fe、 Al-12.7Si-0.7Mg- 1.5Cu-0.3Ni-0.3Ti-0.3Fe和 Al-15.5Si- 0.7Mg-0.27Fe) 在挤压 和热处理状态下的力学性能, 并与中国国家标准中的挤压 6063合金在 T5、 Τ6状态下的力学性能进行了对比。 表 1 本发明制备的合金与中国国家标准 6063合金的力学性能对比  Table 1 exemplifies the extruded silicon aluminum alloy (Al-8.5Si-1.8Mg-0.27Fe, Al-12.7Si-0.7Mg-1.5Cu-0.3Ni-0.3Ti-0.3Fe and Al- prepared by the present invention). 15.5Si-0.7Mg-0.27Fe) Mechanical properties under extrusion and heat treatment, and compared with the mechanical properties of extruded 6063 alloy in Chinese national standard under T5 and Τ6 conditions. Table 1 Comparison of mechanical properties of alloys prepared by the present invention and Chinese national standard 6063 alloy
屈服强度 拉伸强度 延伸率 状态  Yield strength tensile strength elongation state
(MPa) (MPa) (%) (MPa) (MPa) (%)
Al-8.5Si-l .8Mg-0.27Fe Tl 175 252 13 Al-8.5Si-l .8Mg-0.27Fe Tl 175 252 13
Al-8.5Si-l .8Mg-0.27Fe T6 296 344 7.2 Al-8.5Si-l .8Mg-0.27Fe T6 296 344 7.2
Al-15.5Si-0.7Mg-0.27Fe Tl 120 232 1 1 Al-15.5Si-0.7Mg-0.27Fe Tl 120 232 1 1
Al-15.5Si-0.7Mg-0.27Fe T6 280 325 7.5 Al-15.5Si-0.7Mg-0.27Fe T6 280 325 7.5
Al-12.7Si-0.7Mg-l .5Cu-0.3Ni-0.3Ti-0.3Fe Tl 1 12 190 15 Al-12.7Si-0.7Mg-l .5Cu-0.3Ni-0.3Ti-0.3Fe Tl 1 12 190 15
Al- 12.7Si-0.7Mg- 1.5Cu-0.3Ni-0.3Ti-0.3Fe T6 268 347 9 Al-12.7Si-0.7Mg- 1.5Cu-0.3Ni-0.3Ti-0.3Fe T6 268 347 9
6063 Al-(0.2-0.6)Si-(0.4-0.9)Mg T5 1 10 160 8 6063 Al-(0.2-0.6)Si-(0.4-0.9)Mg T5 1 10 160 8
6063 Al-(0.2-0.6)Si-(0.4-0.9)Mg T6 180 205 8 可见, Al-15.5Si-0.7Mg-0.27Fe、 Al-12.7Si-0.7Mg-l .5Cu-0.3Ni-0.3Ti-0.3Fe 和 Al- 8.5Si-1.8Mg-0.27Fe合金在 T6状态下的屈服强度、抗拉强度均高于 6063 合金 Τ6状态的国家标准; 合金的挤压状态 (T1 ) 力学性能尤其是延伸率高 于 6060合金 Τ5状态的国家标准。 6063合金是最通用的挤压型材合金, 国内 外将其大量应用于建筑、 车辆、 装饰等领域, 具有广阔的市场需求。 一旦用 含镁高硅铝合金部分取代 6063合金, 必将带来巨大的经济效益。 另外, 硅的 添加将大量节约铝资源。 附图的简要说明 6063 Al-(0.2-0.6)Si-(0.4-0.9)Mg T6 180 205 8 It can be seen that Al-15.5Si-0.7Mg-0.27Fe, Al-12.7Si-0.7Mg-l .5Cu-0.3Ni-0.3Ti-0.3Fe and Al- 8.5Si-1.8Mg-0.27Fe alloy in T6 state The yield strength and tensile strength are higher than the national standard of 6063 alloy Τ6 state; the alloy extrusion state (T1) mechanical properties, especially the elongation is higher than the national standard of 6060 alloy Τ5 state. 6063 alloy is the most versatile extruded profile alloy, which is widely used in construction, vehicles, decoration and other fields at home and abroad, and has broad market demand. Once the 6063 alloy is partially replaced with a magnesium-containing high-silicon aluminum alloy, it will bring huge economic benefits. In addition, the addition of silicon will save a lot of aluminum resources. BRIEF DESCRIPTION OF THE DRAWINGS
图 1为半连续铸造设备的结构示意图; '  Figure 1 is a schematic structural view of a semi-continuous casting equipment;
图 2为典型的实施例 1中 Al-12.7Si-0.7Mg-0.3Fe合金(# 3 )的半连续铸 造 (铸造温度 730°C, 铸造速度 180mm/min, 冷却水流量 8g/mrrrs) 锭坯的 铸态微观组织形貌;  2 is a semi-continuous casting of a typical Al-12.7Si-0.7Mg-0.3Fe alloy (#3) in Example 1 (casting temperature 730 ° C, casting speed 180 mm/min, cooling water flow rate 8 g/mrrrs) As-cast microstructure morphology;
图 3为典型的实施例 1中 AI-12.7Si-0.7Mg-0.3Fe合金( # 3 )的半连续铸 造 (铸造温度 730°C, 铸造速度 180mm/min, 冷却水流量 8g/mm,s) 锭坯的 高倍铸态微观组织形貌;  Figure 3 is a semi-continuous casting of a typical Example 1 AI-12.7Si-0.7Mg-0.3Fe alloy (#3) (casting temperature 730 ° C, casting speed 180 mm / min, cooling water flow rate 8 g / mm, s) High-magnification microstructure of the ingot;
图 4为典型的实施例 2中半连续铸造 Al-12.7Si-0.7Mg-0.3Fe合金 ( # 3 ) 经 500°C预先热处理 2hr、 470°C热挤压 (挤压比 15 ) 后的微观组织形貌; 图 5为典型的实施例 3中半连续铸造 Al-12.7Si-0.7Mg-0.3Fe合金 ( # 3 ) 经 500°C预先热处理 2hr、 470°C热挤压 (挤压比 15 ) 后 T6状态 (固溶温度 540V , 时间 lhr; 人工时效温度 200°C, 时间 3hr) 的微观组织形貌;  Figure 4 is a microscopic view of a semi-continuously cast Al-12.7Si-0.7Mg-0.3Fe alloy (#3) in Example 2 after preheating at 500 °C for 2 hr and 470 °C hot extrusion (extrusion ratio 15). Fig. 5 is a typical example 3 semi-continuous casting Al-12.7Si-0.7Mg-0.3Fe alloy (#3) preheated at 500 °C for 2 hr, hot extrusion at 470 °C (extrusion ratio 15 The microstructure of the post-T6 state (solution temperature 540V, time lhr; artificial aging temperature 200 ° C, time 3 hr);
图 6为典型的实施例 1中 Al-15.5Si-0.7Mg-0.27Fe合金 (# 5 ) 的半连续 铸造 (铸造温度 800°C, 铸造速度 140mm/min, 冷却水流量 10g/mnrs )锭坯 的铸态微观组织形貌; - 图 7为典型的实施例 1中 Al-15.5Si-0.7Mg-0.27Fe合金 ( # 5 ) 的半连续 铸造 (铸造温度 800°C, 铸造速度 140mm/min, 冷却水流量 lOg/mnvs )锭坯 的高倍铸态微观组织形貌;  Figure 6 is a semi-continuous casting of a typical Al-15.5Si-0.7Mg-0.27Fe alloy (# 5 ) in Example 1 (casting temperature 800 ° C, casting speed 140 mm / min, cooling water flow 10 g / mnrs ) ingot The as-cast microstructure morphology; - Figure 7 is a semi-continuous casting of a typical Al-15.5Si-0.7Mg-0.27Fe alloy (#5) in Example 1 (casting temperature 800 ° C, casting speed 140 mm / min, Cooling water flow rate lOg/mnvs) high-strength as-cast microstructure of the ingot;
图 8为典型的实施例 2中半连续铸造 Al-15.5Si-0.7Mg-0.27Fe合金( # 5 ) 经 500Ό预先热处理 2hr、 470°C热挤压 (挤压比 45 ) 后的微观组织形貌; 图 9为典型的实施例 2中半连续铸造 Al-15.5Si-0.7Mg-0.27Fe合金( # 5 ) 矩形铸坯经 500°C预先热处理 lhr、 500Ό热轧 (压下量 60% ) 后的微观组织 形貌;  Figure 8 is a diagram showing the microstructure of a semi-continuously cast Al-15.5Si-0.7Mg-0.27Fe alloy (#5) in a typical example 2 after 500 hr preheating for 2 hr and 470 °C hot extrusion (extrusion ratio 45). Figure 9 is a typical example 2 semi-continuous casting Al-15.5Si-0.7Mg-0.27Fe alloy (# 5) rectangular casting billet pre-heat treated at 500 ° C for 1 hr, 500 Ό hot rolling (compression amount 60%) Post-microscopic morphology;
图 10为典型的实施例 3中半连续铸造 Al-15.5Si-0.7Mg-0.27Fe合金(# 5 ) 经 500°C预先热处理 2hr、 470°C热挤压 (挤压比 45 ) 后 T6状态 (固溶温度 520°C , 时间 2hr; 人工时效温度 180°C, 时间 4hr) 的微观组织形貌; 图 11为典型的实施例 3中半连续铸造 Al-15.5Si-0.7Mg-0.27Fe合金( # 5 ) 矩形铸坯经 500°C预先热处理 lhr、 500°C热轧(压下量 60%)后 T6状态(固 溶温度 520°C, 时间 3hr; 人工时效温度 200°C, 时间 4hr) 的微观组织形貌; 图 12为典型的实施例 3中半连续铸造 Al-15.5Si-0.7Mg-0.27Fe合金(#5) 经 500 预先热处理 2hr、 470Ό热挤压 (挤压比 45) 后 T6状态 (固溶温度 520°C, 时间 2hr; 人工时效温度 180°C, 时间 4hr) 的高倍微观组织形貌; 图 13为典型的实施例 1中 Al-17.5Si-0.7Mg-l.0Cu-0.27Fe合金(#7) 的 半连续铸造(铸造温度 850°C,铸造速度 120mm/min, 冷却水流量 10g/mnvs) 锭坯的铸态微观组织形貌。 实现本发明的最佳方式 Figure 10 is a typical example 3 semi-continuous casting Al-15.5Si-0.7Mg-0.27Fe alloy (# 5) preheated at 500 ° C for 2 hr, 470 ° C hot extrusion (extrusion ratio 45) after T6 state Microstructure morphology (solution temperature 520 ° C, time 2 hr; artificial aging temperature 180 ° C, time 4 hr); Figure 11 is a typical example 3 semi-continuous casting Al-15.5Si-0.7Mg-0.27Fe alloy (# 5) rectangular casting blank pre-heat treated at 500 ° C for 1 hr, 500 ° C hot rolling (60% reduction) The microstructure of the post-T6 state (solution temperature 520 ° C, time 3 hr ; artificial aging temperature 200 ° C, time 4 hr); Figure 12 is a typical example 3 semi-continuous casting Al-15.5Si-0.7Mg- 0.27Fe alloy (#5) high-microscopic microscopic micro-microscopic after 200 hr heat treatment for 2 hr, 470 Ό hot extrusion (extrusion ratio 45) and T6 state (solution temperature 520 ° C, time 2 hr; artificial aging temperature 180 ° C, time 4 hr) Fig. 13 is a semi-continuous casting of a typical Al-17.5Si-0.7Mg-l.0Cu-0.27Fe alloy (#7) in Example 1 (casting temperature 850 ° C, casting speed 120 mm/min, cooling) Water flow rate 10g/mnvs) The as-cast microstructure of the ingot. The best way to implement the invention
实施例 1 半连续铸造锭坯的制备  Example 1 Preparation of semi-continuous casting ingot
选用设备为自制设备, 其结构原理示于图 1。 图中, 1一冷却水; 2—结 晶器; 3—坯料; 4一热顶; 5—石墨环, 6—金属液。 合金的化学成分见表 2, 铸造工艺参数见表 3。  The equipment used is self-made equipment, and its structural principle is shown in Figure 1. In the figure, 1 - cooling water; 2 - crystallizer; 3 - blank; 4 - hot top; 5 - graphite ring, 6 - molten metal. The chemical composition of the alloy is shown in Table 2. The casting process parameters are shown in Table 3.
表 2 半连续铸造含镁高硅铝合金的化学成分 (wt.%)  Table 2 Chemical composition of semi-continuous casting magnesium-containing high-silicon aluminum alloy (wt.%)
Figure imgf000007_0001
表 3 不同合金的铸造工艺参数
Figure imgf000007_0001
Table 3 Casting process parameters of different alloys
a 3z. 铸坯断面尺寸 铸造温度 铸造速度 冷却水量 编号 (mm) (°C) (mm/min)  a 3z. Casting section dimensions Casting temperature Casting speed Cooling water Quantity (mm) (°C) (mm/min)
ηι Φ100 780 120 8 ηι 600X50 780 180 8  Ηι Φ100 780 120 8 ηι 600X50 780 180 8
U2 Φ100 780 120 8 U2 Φ100 780 120 8
#2 600X50 780 180 8#2 600X50 780 180 8
' »3 Φ100 730 180 10' »3 Φ100 730 180 10
S3 600X50 730 180 10 S3 600X50 730 180 10
M Φ100 730 140 8 M Φ100 730 140 8
«4 600X50 730 180 8 »5 Φ100 800 140 10«4 600X50 730 180 8 »5 Φ100 800 140 10
#5 600 50 850 180 10#5 600 50 850 180 10
#6 Φ100 800 160 12 m Φ60 850 120 10#6 Φ100 800 160 12 m Φ60 850 120 10
U8 Φ60 850 180 14U8 Φ60 850 180 14
U8 Φ100 850 180 14 实施例 2铸造合金锭坯的预先热处理及挤压、 轧制、 锻造 U8 Φ100 850 180 14 Example 2 Pre-heat treatment of cast alloy ingots and extrusion, rolling and forging
预先热处理在热处理炉中按设定加热速度加热, 到达设定温度后, 按设 定时间保温。 然后使用挤压机、 热轧机和锻造机完成塑性变形。 具体工艺参 数分别在表 4、 表 5、 表 6中给出。  The pre-heat treatment is heated in the heat treatment furnace at a set heating rate, and after reaching the set temperature, it is kept warm for the set time. The plastic deformation is then completed using an extruder, a hot rolling mill and a forging machine. The specific process parameters are given in Table 4, Table 5, and Table 6, respectively.
表 4 不同合金的预先热处理与挤压工艺参数 预处理 预处理 预处理 变形后 α五 冷却  Table 4 Pre-heat treatment and extrusion process parameters of different alloys Pretreatment Pretreatment Pretreatment After deformation α5 Cooling
加热速度 温度 时间 51 挤压比  Heating rate temperature time 51 extrusion ratio
方式  the way
(°C/min) (V) (hr)  (°C/min) (V) (hr)
# 1 25 450 3 450 36 自然 1A # 1 25 450 3 450 36 Nature 1A
#2 20 450 3 450 36 自然 2A#2 20 450 3 450 36 Nature 2A
#3 15 500 2 470 15 自然 3A#3 15 500 2 470 15 Nature 3A
#4 15 500 2 470 15 强制 4A#4 15 500 2 470 15 Mandatory 4A
#5 15 500 2 470 45 自然 5A#5 15 500 2 470 45 Nature 5A
#7 10 500 4 480 30 强制 7A#7 10 500 4 480 30 Mandatory 7A
#8 10 500 4 480 30 强制 8A 表 5 不同合金的预先热处理与轧制工艺参数 预处理 预处理 预处理 轧制 轧制 变形后 合金 冷却 #8 10 500 4 480 30 Mandatory 8A Table 5 Pre-heat treatment and rolling process parameters of different alloys Pretreatment Pretreatment Pretreatment Rolling After rolling Deformation Alloy Cooling
加热速度 温度 时间 温度 压下量 合金 编号 方式  Heating rate temperature time temperature reduction amount alloy numbering method
(°C/min) (°C) (hr) (。C) (%)  (°C/min) (°C) (hr) (.C) (%)
#1 20 450 3 450 50 自然 IB #1 20 450 3 450 50 Nature IB
#2 20 520 1 520 70 自然 2B#2 20 520 1 520 70 Nature 2B
#3 20 500 2 500 60 自然 3B#3 20 500 2 500 60 Nature 3B
#4 15 480 3 480 60 自然 4B#4 15 480 3 480 60 Nature 4B
#4 15 520 1 520 70 自然 4B2#4 15 520 1 520 70 Nature 4B2
#5 15 500 3 500 60 自然 5B#5 15 500 3 500 60 Nature 5B
#5 15 520 1 520 70 自然 5B2 表 6 不同合金的预先热处理与锻造工艺参数 预处理 预处理 预处理 锻造 变形后 合金 锻造比 冷却 #5 15 520 1 520 70 Natural 5B2 Table 6 Pre-heat treatment and forging process parameters of different alloys Pretreatment Pretreatment Pretreatment Forging Deformation Alloy Forging ratio Cooling
加热速度 温度 时间 温度 合金 编号 (%) 方式  Heating rate temperature time temperature alloy number (%) mode
(°C/min) (°C) (hr) CC)  (°C/min) (°C) (hr) CC)
#2 25 500 2 500 65 自然 2C #2 25 500 2 500 65 Nature 2C
#3 20 520 1 520 65 自然 3C #5 15 500 2 500 50 自然 5C#3 20 520 1 520 65 Nature 3C #5 15 500 2 500 50 Nature 5C
10 500 4 500 50 自然 6C10 500 4 500 50 Nature 6C
#6 15 490 4 490 50 自然 6C2#6 15 490 4 490 50 Nature 6C2
#7 10 500 4 500 50 自然 7C#7 10 500 4 500 50 Nature 7C
#8 10 500 4 500 50 自然 8C 实施例 3 合金变形 (挤压、 轧制、 锻造) 后的热处理 #8 10 500 4 500 50 Natural 8C Example 3 Heat treatment after alloy deformation (extrusion, rolling, forging)
经过挤压、 轧制、 锻造的工件, 在设定热处理工艺参数下进行热处理, 具体热处理工艺参数分别在表 7、表 8、表 9中给出。部分合金在不同变形方 式与热处理状态下的力学性能在表 10中给出。 表 7 不同合金挤压制品的热处理工艺参数  After extrusion, rolling, and forging, the heat treatment is performed under the set heat treatment process parameters. The specific heat treatment process parameters are given in Table 7, Table 8, and Table 9, respectively. The mechanical properties of some alloys under different deformation modes and heat treatment conditions are given in Table 10. Table 7 Heat treatment process parameters of different alloy extruded products
Figure imgf000009_0001
表 8 不同合金轧制制品的热处理工艺参数
Figure imgf000009_0001
Table 8 Heat treatment process parameters of different alloy rolled products
Figure imgf000009_0002
表 9 不同合金锻造制品的热处理工艺参数 变形后 固溶 固溶 人工时效 人工时效 热处理后
Figure imgf000009_0002
Table 9 Heat treatment process parameters of different alloy forged products After deformation, solid solution solid solution, artificial aging, artificial aging heat treatment
π ϋζ. 热处理  π ϋζ. Heat treatment
合金 温度 时间 温度 时间 口 fe  Alloy temperature time temperature time port fe
编号 状态  Number status
编号 CC) (hr) (°C) (hr) 编号 No. CC) (hr) (°C) (hr) No.
2C #2 Τ6 520 3 180 6 2CT62C #2 Τ6 520 3 180 6 2CT6
5C #5 Τ6 540 0.5 200 4 5CT65C #5 Τ6 540 0.5 200 4 5CT6
5C #5 T1 5CT1 6C2 # 6 T6 510 4 170 10 6C2T65C #5 T1 5CT1 6C2 # 6 T6 510 4 170 10 6C2T6
7C # 7 T6 510 3 200 2 7CT67C # 7 T6 510 3 200 2 7CT6
8C2 # 8 T6 510 4 180 8 8C2T6 表 10 部分合金不同变形、 热处理状态下的常温力学性能 8C2 # 8 T6 510 4 180 8 8C2T6 Table 10 Mechanical properties at room temperature under different deformation and heat treatment conditions
Figure imgf000010_0001
工业应用性
Figure imgf000010_0001
Industrial applicability
本发明的含镁高硅铝合金的结构材料件及其制备方法, 可以在铸造过程 中不添加任何变质剂的前提下, 通过热塑性加工和热处理, 低成本地制造出 具有良好塑性、 高强度的含镁高硅变形铝合金结构材料件。  The structural material part of the magnesium-containing high-silicon aluminum alloy of the invention and the preparation method thereof can be manufactured with good plasticity and high strength at low cost by thermoplastic processing and heat treatment without adding any modifier on the casting process. Magnesium-containing high-silicon deformation aluminum alloy structural material.

Claims

权 利 要 求 Rights request
1、 一种含镁高硅铝合金的结构材料件, 包括型材、 棒材、 板材、 锻件, 其特征在于: 1. A structural material part comprising a magnesium high silicon aluminum alloy, comprising a profile, a bar, a plate, a forging, characterized in that:
所述结构材料件采用半连续铸造方法制备锭坯, 然后通过预先热处理进 行共晶硅相的颗粒离散化, 再通过热塑性加工和热处理获得最终形状和微观 组织的铝合金制品, 其强化机理为铝基体的细晶强化、 硅颗粒的颗粒强化和 第二相粒子的沉淀强化;  The structural material part is prepared by a semi-continuous casting method, and then the particles of the eutectic silicon phase are discretized by pre-heat treatment, and then the final shape and microstructure of the aluminum alloy product are obtained by thermoplastic processing and heat treatment, and the strengthening mechanism is aluminum. Fine grain strengthening of the matrix, particle strengthening of the silicon particles, and precipitation strengthening of the second phase particles;
所述结构材料件中 Mg的含量为 0. 2〜2. 0%重量, Si的含量为 8〜18 %重 量; 具有均匀细化的微观组织结构, 铝基体组织为等轴晶粒, 平均尺寸<6 μ m, Si颗粒与其它第二相颗粒呈弥散分布且平均尺寸 <5 μ m。  The content of Mg in the structural material is 0. 2~2. 0% by weight, the content of Si is 8~18% by weight; the microstructure is uniformly refined, the aluminum matrix is equiaxed, and the average size <6 μ m, the Si particles are dispersed with other second phase particles and have an average size of <5 μm.
2、按照权利要求 1所述含镁高硅铝合金的结构材料件,其特征在于所述 合金中可含有 Cu、 Zn、 Ni、 Ti、 Fe之一种或多种, 总含量低于 2 %重量。  2. The structural material member of the magnesium-containing high-silicon aluminum alloy according to claim 1, wherein the alloy may contain one or more of Cu, Zn, Ni, Ti, Fe, and the total content is less than 2%. weight.
3、 一种权利要求 1 所述含镁高硅铝合金的结构材料件的制备方法, 其 特征在于:  3. A method of preparing a structural material member comprising a magnesium high silicon aluminum alloy according to claim 1, wherein:
^ "采用半连续铸造方法制备锭坯, 工艺参数为:  ^ "The ingot is prepared by semi-continuous casting method. The process parameters are:
浇铸温度: 对应合金液相线温度以上 150〜30(TC ; Casting temperature: corresponding to the liquidus temperature of the alloy above 150~30 (TC ;
铸造速度: 100〜200讓 /min;  Casting speed: 100~200 let /min;
凝固坯外围冷却水量: 5〜15g/固 · s ; The amount of cooling water around the solidified billet: 5~15g/solid·s ;
不添加任何变质剂;  No added modifiers;
——对上述锭坯通过预先热处理进行共晶硅相的颗粒离散化, 工艺参数 为:  —— Discretizing the eutectic silicon phase by pre-heat treatment of the above ingot, the process parameters are:
加热速度: 10〜30°C/min; Heating rate: 10~30 °C / min ;
加热温度: 450〜520Ό ; Heating temperature: 450~520Ό ;
保温时间: l〜3hr;  Holding time: l~3hr;
——对上述经预先热处理后的锭坯进行热塑性加工, 工艺参数为: 变形温度: 400〜520°C ; ——The above-mentioned pre-heat treated ingot is subjected to thermoplastic processing, and the process parameters are: deformation temperature: 400~520 ° C ;
冷却方式: 自然冷却或者强制冷却;  Cooling method: natural cooling or forced cooling;
——对上述经热塑性加工后的结构材料件进行热处理。  - heat treating the above-mentioned thermoplastically processed structural material.
4、按照权利要求 3所述含镁高硅铝合金的结构材料件的制备方法,对于 热塑性加工后自然冷却的结构材料件, 采用固溶处理 +人工时效的热处理工 艺, 其特征在于:  A method for preparing a structural material member containing a magnesium high silicon aluminum alloy according to claim 3, wherein a solid solution treatment + artificial aging heat treatment process is used for the structural material member which is naturally cooled after the thermoplastic processing, and is characterized in that:
——固溶处理参数为:  ——The solution treatment parameters are:
加热速度: 10〜30°C/min; Heating rate: 10~30 °C / min ;
固溶处理温度: 500〜540°C ; 固溶处理时间: 0. 5〜3hr; Solution treatment temperature: 500~540 °C; Solution treatment time: 0. 5~3hr;
——人工时效参数为:  ——The artificial aging parameters are:
时效温度: 160〜200°C ;  Aging temperature: 160~200 °C;
时效时间: l〜10hr。  Aging time: l~10hr.
5、按照权利要求 3所述含镁高硅铝合金的结构材料件的制备方法,对于 热塑性加工后强制冷却的结构材料件, 采用人工时效或自然时效的热处理工 艺, 其特征在于:  The method for preparing a structural material member containing a magnesium high silicon aluminum alloy according to claim 3, wherein the structural material member for forced cooling after the thermoplastic processing is subjected to an artificial aging or natural aging heat treatment process, wherein:
——人工时效参数为: - 时效温度: 160〜200°C ; —— artificial aging parameters are: - aging temperature: 160~200 °C ;
时效时间: l〜10hr。  Aging time: l~10hr.
6、按照权利要求 3所述含镁高硅铝合金的结构材料件的制备方法,对于 热塑性加工采用轧制工艺时, 其特征在于: 轧制总压下量大于 40 %。  6. A method of preparing a structural material member comprising a magnesium high silicon aluminum alloy according to claim 3, wherein when the rolling process is employed for thermoplastic processing, the total rolling reduction is greater than 40%.
7、按照权利要求 3所述含镁高硅铝合金的结构材料件的制备方法,对于 热塑性加工采用挤压工艺时, 其特征在于: 挤压比大于 15。  A method of preparing a structural material member containing a magnesium high silicon aluminum alloy according to claim 3, wherein when the extrusion process is employed for thermoplastic processing, the extrusion ratio is greater than 15.
8、按照权利要求 3所述含镁高硅铝合金的结构材料件的制备方法,对于 热塑性加工采用锻造工艺时, 其特征在于: 锻造比大于 40 %。  8. A method of preparing a structural material member comprising a magnesium high silicon aluminum alloy according to claim 3, wherein when the forging process is employed for thermoplastic processing, the forging ratio is greater than 40%.
PCT/CN2008/001246 2007-06-29 2008-06-30 A structural material part of a high-si mg-containing al alloy and the manufacture method thereof WO2009003365A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010513624A JP2010531388A (en) 2007-06-29 2008-06-30 Structural material of Al alloy containing Mg and high Si and method for producing the same
CA002689332A CA2689332A1 (en) 2007-06-29 2008-06-30 Process for manufacturing magnesium-contained high-silicon aluminum alloys as structural materials
US12/451,232 US20100126639A1 (en) 2007-06-29 2008-06-30 Magnesium-contained high-silicon aluminum alloys structural materials and manufacture method thereof
EP08772999.2A EP2172572B1 (en) 2007-06-29 2008-06-30 A structural material part of a high-si mg-containing al alloy and the manufacture method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710011919 2007-06-29
CN200710011919.0 2007-06-29

Publications (1)

Publication Number Publication Date
WO2009003365A1 true WO2009003365A1 (en) 2009-01-08

Family

ID=40196494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/001246 WO2009003365A1 (en) 2007-06-29 2008-06-30 A structural material part of a high-si mg-containing al alloy and the manufacture method thereof

Country Status (8)

Country Link
US (1) US20100126639A1 (en)
EP (1) EP2172572B1 (en)
JP (1) JP2010531388A (en)
KR (1) KR20100018048A (en)
CN (1) CN101333614B (en)
CA (1) CA2689332A1 (en)
RU (1) RU2463371C2 (en)
WO (1) WO2009003365A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105671376A (en) * 2016-01-26 2016-06-15 北京航空航天大学 High-strength and high-plasticity hypoeutectic aluminium-silicon alloy material manufactured through gravity casting and room-temperature cold rolling, and manufacturing method thereof
CN112010312A (en) * 2019-06-01 2020-12-01 通用汽车环球科技运作有限责任公司 System and method for producing high purity fines

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102230114A (en) * 2011-06-29 2011-11-02 北京科技大学 High-silicon aluminum alloy optimized based on Fe-rich phase and preparation method thereof
CN102747256A (en) * 2012-06-19 2012-10-24 东南大学 Aluminum-silicon based aluminum section and preparation technology thereof
RU2525872C1 (en) * 2013-04-23 2014-08-20 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" FORMATION OF MICROSTRUCTURE OF EUTECTIC Al-Si ALLOY
CN103769551B (en) * 2014-01-17 2016-03-30 新疆众和股份有限公司 The production technology of a kind of aluminium silicon magnesium system Birmasil
WO2015152133A1 (en) 2014-03-31 2015-10-08 日立金属株式会社 Al-Si-Mg SYSTEM ALUMINUM ALLOY FOR CASTING, WHICH HAS EXCELLENT SPECIFIC STIFFNESS, STRENGTH AND DUCTILITY, AND CAST MEMBER FORMED FROM SAME
CN104651763A (en) * 2014-05-15 2015-05-27 巩向鹏 Performance optimization method for 6063 aluminum alloy
CN104087880B (en) * 2014-07-08 2016-05-04 江苏佳铝实业股份有限公司 A kind of production technology of high damping alusil alloy sheet material
EP3228719B1 (en) * 2014-12-05 2021-03-03 Furukawa Electric Co., Ltd. Aluminum alloy wire rod, aluminum alloy stranded wire, covered wire, wire harness, and method for producing the aluminum alloy wire rod
JP6523681B2 (en) * 2014-12-25 2019-06-05 株式会社Uacj Aluminum alloy sheet for case and case
CN105112744A (en) * 2015-10-08 2015-12-02 江苏佳铝实业股份有限公司 Manufacturing process of high-silicon aluminum alloy plate
TWI565808B (en) * 2015-10-13 2017-01-11 財團法人工業技術研究院 Aluminum alloy composition and manufacturing method of aluminum alloy object
FR3044326B1 (en) * 2015-12-01 2017-12-01 Constellium Neuf-Brisach HIGH-RIGIDITY THIN SHEET FOR AUTOMOTIVE BODYWORK
CN105695811A (en) * 2015-12-15 2016-06-22 东北大学 Ti-containing high-silicon aluminum alloy capable of achieving aging strengthening and preparation method for deformation material of Ti-containing high-silicon aluminum alloy
CN105695810B (en) * 2015-12-15 2017-12-05 东北大学 One kind can ageing strengthening silumin and its deformation material preparation method containing Mn
CN106929781B (en) * 2015-12-29 2019-01-08 徐工集团工程机械股份有限公司 A kind of preparation method of high-strength aluminum alloy pin shaft
CN106544606B (en) * 2015-12-29 2018-05-01 徐工集团工程机械股份有限公司 A kind of preparation method of wear-resistant aluminum alloy axis pin
CN106399765B (en) * 2016-10-11 2019-02-26 湖南理工学院 Al-Si-Mg aluminium alloy and its preparation process
MX2020006118A (en) 2017-12-21 2020-08-24 Novelis Inc Aluminum alloy products exhibiting improved bond durability and/or having phosphorus-containing surfaces and methods of making the same.
CN112941433A (en) * 2019-12-11 2021-06-11 中国科学院金属研究所 Aging process for improving 6082 aluminum alloy parking effect
CN113881907A (en) * 2021-08-26 2022-01-04 山东创新金属科技有限公司 Aging treatment process for extrusion casting aluminum alloy
CN113862534B (en) * 2021-10-08 2022-07-29 上海交通大学 Method for regulating and controlling tissue inheritance of aluminum alloy material and method for preparing 7085 aluminum alloy thick plate
CN115305391B (en) * 2022-08-10 2023-06-06 中南大学 Low-energy-consumption aluminum-silicon-magnesium alloy and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4068645A (en) * 1973-04-16 1978-01-17 Comalco Aluminium (Bell Bay) Limited Aluminum-silicon alloys, cylinder blocks and bores, and method of making same
JPS6283453A (en) * 1985-10-07 1987-04-16 Sumitomo Alum Smelt Co Ltd Manufacture of aluminum alloy ingot for extrusion
JPS6417834A (en) * 1987-07-11 1989-01-20 Toyoda Automatic Loom Works High strength wear resistant aluminum alloy having good shear cuttability and its production
JPH05331604A (en) * 1992-05-29 1993-12-14 Nippon Light Metal Co Ltd Production of scroll made of aluminum
JPH083701A (en) * 1994-06-15 1996-01-09 Mitsubishi Alum Co Ltd Production of wear resistant aluminum alloy extruded material excellent in strength and machinability
JPH1096039A (en) * 1996-09-24 1998-04-14 Sumitomo Light Metal Ind Ltd Wear resistant aluminum alloy material excellent in cutting workability and corrosion resistance
CN1546708A (en) * 2003-12-03 2004-11-17 东华大学 Aluminum silicon alloy series possessing granulated silicon phase and its process
CN1555423A (en) * 2001-07-25 2004-12-15 �Ѻ͵繤��ʽ���� Aluminum alloy excellent in machinability, and aluminum alloy material and method for production thereof
CN1789456A (en) * 2004-11-18 2006-06-21 东北大学 Large-sized hypereutectic high-seleium aluminium alloy billet and preparation method thereof

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB582732A (en) * 1944-03-10 1946-11-26 Horace Campbell Hall Aluminium alloy having low coefficient of expansion
JPS5320243B2 (en) * 1974-04-20 1978-06-26
JPS5192709A (en) * 1975-02-12 1976-08-14 KAKYOSHOARUMINIUMUUKEISOKEIGOKINNO SHOSHOKEISOBISAIKAHO
JPS52129607A (en) * 1976-04-23 1977-10-31 Hitachi Ltd Production of a1-si alloy having fine structure
JPS5669344A (en) * 1979-11-07 1981-06-10 Showa Alum Ind Kk Aluminum alloy for forging and its manufacture
US5009844A (en) * 1989-12-01 1991-04-23 General Motors Corporation Process for manufacturing spheroidal hypoeutectic aluminum alloy
JPH06279904A (en) * 1993-03-30 1994-10-04 Nippon Light Metal Co Ltd Production of hyper-eutectic al-si alloy for forging and forging stock
JPH0741920A (en) * 1993-07-29 1995-02-10 Nippon Light Metal Co Ltd Heat treatment of hypereutectic al-si alloy for improving wear resistance
JPH07197164A (en) * 1993-12-28 1995-08-01 Furukawa Electric Co Ltd:The Aluminum alloy having high strength and high workability and its production
JPH07224340A (en) * 1994-02-14 1995-08-22 Nippon Light Metal Co Ltd Hypereutectic al-si alloy excellent in machinability and its production
JPH083674A (en) * 1994-06-17 1996-01-09 Nissan Motor Co Ltd Hypereutectic aluminum-silicon alloy and hypereutectic aluminum-silicon alloy casting
JPH08176768A (en) * 1994-12-22 1996-07-09 Nissan Motor Co Ltd Wear resistant aluminum member and production thereof
JP3261056B2 (en) * 1997-01-14 2002-02-25 住友軽金属工業株式会社 High-strength wear-resistant aluminum alloy extruded material excellent in ease of forming anodized film and uniformity of film thickness and method for producing the same
KR100291560B1 (en) * 1998-12-23 2001-06-01 박호군 Hypo-eutectic al-si wrought alloy having excellent wear-resistance and low thermal expansion coefficient, its production method, and its use
JP2001020047A (en) * 1999-07-05 2001-01-23 Toyota Autom Loom Works Ltd Stock for aluminum alloy forging and its production
US20030143102A1 (en) * 2001-07-25 2003-07-31 Showa Denko K.K. Aluminum alloy excellent in cutting ability, aluminum alloy materials and manufacturing method thereof
JP2002206132A (en) * 2001-11-27 2002-07-26 Kobe Steel Ltd Aluminum alloy extrusion material having excellent machinability and production method therefor
RU2221891C1 (en) * 2002-04-23 2004-01-20 Региональный общественный фонд содействия защите интеллектуальной собственности Aluminum-based alloy, article made from such alloy and method of manufacture of such article
JP4474528B2 (en) * 2004-11-01 2010-06-09 独立行政法人産業技術総合研究所 Hyper-eutectic Al-Si alloy material with high toughness and forge forming
JP4773796B2 (en) * 2005-10-28 2011-09-14 昭和電工株式会社 Aluminum alloy continuous casting rod, continuous casting rod casting method, continuous casting equipment

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4068645A (en) * 1973-04-16 1978-01-17 Comalco Aluminium (Bell Bay) Limited Aluminum-silicon alloys, cylinder blocks and bores, and method of making same
JPS6283453A (en) * 1985-10-07 1987-04-16 Sumitomo Alum Smelt Co Ltd Manufacture of aluminum alloy ingot for extrusion
JPS6417834A (en) * 1987-07-11 1989-01-20 Toyoda Automatic Loom Works High strength wear resistant aluminum alloy having good shear cuttability and its production
JPH05331604A (en) * 1992-05-29 1993-12-14 Nippon Light Metal Co Ltd Production of scroll made of aluminum
JPH083701A (en) * 1994-06-15 1996-01-09 Mitsubishi Alum Co Ltd Production of wear resistant aluminum alloy extruded material excellent in strength and machinability
JPH1096039A (en) * 1996-09-24 1998-04-14 Sumitomo Light Metal Ind Ltd Wear resistant aluminum alloy material excellent in cutting workability and corrosion resistance
CN1555423A (en) * 2001-07-25 2004-12-15 �Ѻ͵繤��ʽ���� Aluminum alloy excellent in machinability, and aluminum alloy material and method for production thereof
CN1546708A (en) * 2003-12-03 2004-11-17 东华大学 Aluminum silicon alloy series possessing granulated silicon phase and its process
CN1789456A (en) * 2004-11-18 2006-06-21 东北大学 Large-sized hypereutectic high-seleium aluminium alloy billet and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105671376A (en) * 2016-01-26 2016-06-15 北京航空航天大学 High-strength and high-plasticity hypoeutectic aluminium-silicon alloy material manufactured through gravity casting and room-temperature cold rolling, and manufacturing method thereof
CN112010312A (en) * 2019-06-01 2020-12-01 通用汽车环球科技运作有限责任公司 System and method for producing high purity fines

Also Published As

Publication number Publication date
CN101333614A (en) 2008-12-31
KR20100018048A (en) 2010-02-16
CN101333614B (en) 2010-09-01
RU2009149092A (en) 2011-08-10
EP2172572A1 (en) 2010-04-07
EP2172572A4 (en) 2010-12-15
JP2010531388A (en) 2010-09-24
RU2463371C2 (en) 2012-10-10
CA2689332A1 (en) 2009-01-08
US20100126639A1 (en) 2010-05-27
EP2172572B1 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
WO2009003365A1 (en) A structural material part of a high-si mg-containing al alloy and the manufacture method thereof
Kumar et al. Influence of hot rolling on microstructure and mechanical behaviour of Al6061-ZrB2 in-situ metal matrix composites
CN109530468B (en) In-situ nano reinforced aluminum alloy extrusion material for light vehicle body and isothermal variable-speed extrusion preparation method
Xiao et al. Microstructure, mechanical properties and strengthening mechanisms of Mg matrix composites reinforced with in situ nanosized TiB2 particles
Amouri et al. Microstructure and mechanical properties of Al-nano/micro SiC composites produced by stir casting technique
CN109972009B (en) High-toughness high-modulus wrought magnesium alloy and preparation method thereof
CN110029258B (en) High-strength and high-toughness wrought magnesium alloy and preparation method thereof
CN112662921B (en) High-strength and high-toughness die-casting aluminum-silicon alloy and preparation method thereof
Zhao et al. Effect of Si on Fe-rich intermetallic formation and mechanical properties of heat-treated Al–Cu–Mn–Fe alloys
Manjunatha et al. Effect of mechanical and thermal loading on boron carbide particles reinforced Al-6061 alloy
TW201435092A (en) High strength aluminum-magnesium-silicon alloy and production process thereof
CN102002617B (en) Cast aluminum alloy for automobile and preparation method thereof
CN110358951A (en) It is a kind of high to lead high strength alumin ium alloy and preparation method thereof
Chen et al. Effects of Ti addition on the microstructure and mechanical properties of Mg–Zn–Zr–Ca alloys
Birol et al. Cooling slope casting to produce EN AW 6082 forging stock for manufacture of suspension components
CN109295356A (en) A kind of high-ductility, high-strength aluminum alloy and preparation method thereof
CN112646994B (en) High-specific-strength high-specific-modulus aluminum alloy and preparation method thereof
WO2012027989A1 (en) Application of aluminium-zirconium-carbon master alloy in deforming process of magnesium or magnesium alloy
CN105543584B (en) The method that gravitational casting prepares high-strength high-plastic high-ductility hypoeutectic al-si alloy material with hot-extrudable group technology
CN111705249A (en) High-strength heat-resistant rare earth magnesium alloy and preparation method thereof
JP3829164B2 (en) Semi-melt molding material manufacturing method
CN109136672A (en) A kind of corrosion-resistant high strength alumin ium alloy and preparation method
CN104060138A (en) Low-cost high-performance non-rare-earth magnesium alloy panel and preparation method thereof
JP5575028B2 (en) High strength aluminum alloy, high strength aluminum alloy casting manufacturing method and high strength aluminum alloy member manufacturing method
Gobalakrishnan et al. A comparative study on ex-situ & in-situ formed metal matrix composites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08772999

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12451232

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2689332

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010513624

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107000263

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009149092

Country of ref document: RU

Ref document number: 2008772999

Country of ref document: EP